diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionAttrs.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionAttrs.cpp | 2054 |
1 files changed, 2054 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionAttrs.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionAttrs.cpp new file mode 100644 index 000000000000..e2f1944cee63 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionAttrs.cpp @@ -0,0 +1,2054 @@ +//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file implements interprocedural passes which walk the +/// call-graph deducing and/or propagating function attributes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO/FunctionAttrs.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/CGSCCPassManager.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/CallGraphSCCPass.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/LazyCallGraph.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/IPO.h" +#include "llvm/Transforms/Utils/Local.h" +#include <cassert> +#include <iterator> +#include <map> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "function-attrs" + +STATISTIC(NumReadNone, "Number of functions marked readnone"); +STATISTIC(NumReadOnly, "Number of functions marked readonly"); +STATISTIC(NumWriteOnly, "Number of functions marked writeonly"); +STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); +STATISTIC(NumReturned, "Number of arguments marked returned"); +STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); +STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); +STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly"); +STATISTIC(NumNoAlias, "Number of function returns marked noalias"); +STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); +STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); +STATISTIC(NumNoUnwind, "Number of functions marked as nounwind"); +STATISTIC(NumNoFree, "Number of functions marked as nofree"); +STATISTIC(NumWillReturn, "Number of functions marked as willreturn"); +STATISTIC(NumNoSync, "Number of functions marked as nosync"); + +STATISTIC(NumThinLinkNoRecurse, + "Number of functions marked as norecurse during thinlink"); +STATISTIC(NumThinLinkNoUnwind, + "Number of functions marked as nounwind during thinlink"); + +static cl::opt<bool> EnableNonnullArgPropagation( + "enable-nonnull-arg-prop", cl::init(true), cl::Hidden, + cl::desc("Try to propagate nonnull argument attributes from callsites to " + "caller functions.")); + +static cl::opt<bool> DisableNoUnwindInference( + "disable-nounwind-inference", cl::Hidden, + cl::desc("Stop inferring nounwind attribute during function-attrs pass")); + +static cl::opt<bool> DisableNoFreeInference( + "disable-nofree-inference", cl::Hidden, + cl::desc("Stop inferring nofree attribute during function-attrs pass")); + +static cl::opt<bool> DisableThinLTOPropagation( + "disable-thinlto-funcattrs", cl::init(true), cl::Hidden, + cl::desc("Don't propagate function-attrs in thinLTO")); + +namespace { + +using SCCNodeSet = SmallSetVector<Function *, 8>; + +} // end anonymous namespace + +/// Returns the memory access attribute for function F using AAR for AA results, +/// where SCCNodes is the current SCC. +/// +/// If ThisBody is true, this function may examine the function body and will +/// return a result pertaining to this copy of the function. If it is false, the +/// result will be based only on AA results for the function declaration; it +/// will be assumed that some other (perhaps less optimized) version of the +/// function may be selected at link time. +static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody, + AAResults &AAR, + const SCCNodeSet &SCCNodes) { + FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); + if (MRB == FMRB_DoesNotAccessMemory) + // Already perfect! + return MAK_ReadNone; + + if (!ThisBody) { + if (AliasAnalysis::onlyReadsMemory(MRB)) + return MAK_ReadOnly; + + if (AliasAnalysis::onlyWritesMemory(MRB)) + return MAK_WriteOnly; + + // Conservatively assume it reads and writes to memory. + return MAK_MayWrite; + } + + // Scan the function body for instructions that may read or write memory. + bool ReadsMemory = false; + bool WritesMemory = false; + for (Instruction &I : instructions(F)) { + // Some instructions can be ignored even if they read or write memory. + // Detect these now, skipping to the next instruction if one is found. + if (auto *Call = dyn_cast<CallBase>(&I)) { + // Ignore calls to functions in the same SCC, as long as the call sites + // don't have operand bundles. Calls with operand bundles are allowed to + // have memory effects not described by the memory effects of the call + // target. + if (!Call->hasOperandBundles() && Call->getCalledFunction() && + SCCNodes.count(Call->getCalledFunction())) + continue; + FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call); + ModRefInfo MRI = createModRefInfo(MRB); + + // If the call doesn't access memory, we're done. + if (isNoModRef(MRI)) + continue; + + // A pseudo probe call shouldn't change any function attribute since it + // doesn't translate to a real instruction. It comes with a memory access + // tag to prevent itself being removed by optimizations and not block + // other instructions being optimized. + if (isa<PseudoProbeInst>(I)) + continue; + + if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { + // The call could access any memory. If that includes writes, note it. + if (isModSet(MRI)) + WritesMemory = true; + // If it reads, note it. + if (isRefSet(MRI)) + ReadsMemory = true; + continue; + } + + // Check whether all pointer arguments point to local memory, and + // ignore calls that only access local memory. + for (const Use &U : Call->args()) { + const Value *Arg = U; + if (!Arg->getType()->isPtrOrPtrVectorTy()) + continue; + + MemoryLocation Loc = + MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata()); + + // Skip accesses to local or constant memory as they don't impact the + // externally visible mod/ref behavior. + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + + if (isModSet(MRI)) + // Writes non-local memory. + WritesMemory = true; + if (isRefSet(MRI)) + // Ok, it reads non-local memory. + ReadsMemory = true; + } + continue; + } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { + // Ignore non-volatile loads from local memory. (Atomic is okay here.) + if (!LI->isVolatile()) { + MemoryLocation Loc = MemoryLocation::get(LI); + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + } + } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { + // Ignore non-volatile stores to local memory. (Atomic is okay here.) + if (!SI->isVolatile()) { + MemoryLocation Loc = MemoryLocation::get(SI); + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + } + } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) { + // Ignore vaargs on local memory. + MemoryLocation Loc = MemoryLocation::get(VI); + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + } + + // Any remaining instructions need to be taken seriously! Check if they + // read or write memory. + // + // Writes memory, remember that. + WritesMemory |= I.mayWriteToMemory(); + + // If this instruction may read memory, remember that. + ReadsMemory |= I.mayReadFromMemory(); + } + + if (WritesMemory) { + if (!ReadsMemory) + return MAK_WriteOnly; + else + return MAK_MayWrite; + } + + return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; +} + +MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F, + AAResults &AAR) { + return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {}); +} + +/// Deduce readonly/readnone attributes for the SCC. +template <typename AARGetterT> +static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter, + SmallSet<Function *, 8> &Changed) { + // Check if any of the functions in the SCC read or write memory. If they + // write memory then they can't be marked readnone or readonly. + bool ReadsMemory = false; + bool WritesMemory = false; + for (Function *F : SCCNodes) { + // Call the callable parameter to look up AA results for this function. + AAResults &AAR = AARGetter(*F); + + // Non-exact function definitions may not be selected at link time, and an + // alternative version that writes to memory may be selected. See the + // comment on GlobalValue::isDefinitionExact for more details. + switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(), + AAR, SCCNodes)) { + case MAK_MayWrite: + return; + case MAK_ReadOnly: + ReadsMemory = true; + break; + case MAK_WriteOnly: + WritesMemory = true; + break; + case MAK_ReadNone: + // Nothing to do! + break; + } + } + + // If the SCC contains both functions that read and functions that write, then + // we cannot add readonly attributes. + if (ReadsMemory && WritesMemory) + return; + + // Success! Functions in this SCC do not access memory, or only read memory. + // Give them the appropriate attribute. + + for (Function *F : SCCNodes) { + if (F->doesNotAccessMemory()) + // Already perfect! + continue; + + if (F->onlyReadsMemory() && ReadsMemory) + // No change. + continue; + + if (F->onlyWritesMemory() && WritesMemory) + continue; + + Changed.insert(F); + + // Clear out any existing attributes. + AttributeMask AttrsToRemove; + AttrsToRemove.addAttribute(Attribute::ReadOnly); + AttrsToRemove.addAttribute(Attribute::ReadNone); + AttrsToRemove.addAttribute(Attribute::WriteOnly); + + if (!WritesMemory && !ReadsMemory) { + // Clear out any "access range attributes" if readnone was deduced. + AttrsToRemove.addAttribute(Attribute::ArgMemOnly); + AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly); + AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); + } + F->removeFnAttrs(AttrsToRemove); + + // Add in the new attribute. + if (WritesMemory && !ReadsMemory) + F->addFnAttr(Attribute::WriteOnly); + else + F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); + + if (WritesMemory && !ReadsMemory) + ++NumWriteOnly; + else if (ReadsMemory) + ++NumReadOnly; + else + ++NumReadNone; + } +} + +// Compute definitive function attributes for a function taking into account +// prevailing definitions and linkage types +static FunctionSummary *calculatePrevailingSummary( + ValueInfo VI, + DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary, + function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> + IsPrevailing) { + + if (CachedPrevailingSummary.count(VI)) + return CachedPrevailingSummary[VI]; + + /// At this point, prevailing symbols have been resolved. The following leads + /// to returning a conservative result: + /// - Multiple instances with local linkage. Normally local linkage would be + /// unique per module + /// as the GUID includes the module path. We could have a guid alias if + /// there wasn't any distinguishing path when each file was compiled, but + /// that should be rare so we'll punt on those. + + /// These next 2 cases should not happen and will assert: + /// - Multiple instances with external linkage. This should be caught in + /// symbol resolution + /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our + /// knowledge meaning we have to go conservative. + + /// Otherwise, we calculate attributes for a function as: + /// 1. If we have a local linkage, take its attributes. If there's somehow + /// multiple, bail and go conservative. + /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is + /// prevailing, take its attributes. + /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic + /// differences. However, if the prevailing copy is known it will be used + /// so take its attributes. If the prevailing copy is in a native file + /// all IR copies will be dead and propagation will go conservative. + /// 4. AvailableExternally summaries without a prevailing copy are known to + /// occur in a couple of circumstances: + /// a. An internal function gets imported due to its caller getting + /// imported, it becomes AvailableExternally but no prevailing + /// definition exists. Because it has to get imported along with its + /// caller the attributes will be captured by propagating on its + /// caller. + /// b. C++11 [temp.explicit]p10 can generate AvailableExternally + /// definitions of explicitly instanced template declarations + /// for inlining which are ultimately dropped from the TU. Since this + /// is localized to the TU the attributes will have already made it to + /// the callers. + /// These are edge cases and already captured by their callers so we + /// ignore these for now. If they become relevant to optimize in the + /// future this can be revisited. + /// 5. Otherwise, go conservative. + + CachedPrevailingSummary[VI] = nullptr; + FunctionSummary *Local = nullptr; + FunctionSummary *Prevailing = nullptr; + + for (const auto &GVS : VI.getSummaryList()) { + if (!GVS->isLive()) + continue; + + FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject()); + // Virtual and Unknown (e.g. indirect) calls require going conservative + if (!FS || FS->fflags().HasUnknownCall) + return nullptr; + + const auto &Linkage = GVS->linkage(); + if (GlobalValue::isLocalLinkage(Linkage)) { + if (Local) { + LLVM_DEBUG( + dbgs() + << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on " + "function " + << VI.name() << " from " << FS->modulePath() << ". Previous module " + << Local->modulePath() << "\n"); + return nullptr; + } + Local = FS; + } else if (GlobalValue::isExternalLinkage(Linkage)) { + assert(IsPrevailing(VI.getGUID(), GVS.get())); + Prevailing = FS; + break; + } else if (GlobalValue::isWeakODRLinkage(Linkage) || + GlobalValue::isLinkOnceODRLinkage(Linkage) || + GlobalValue::isWeakAnyLinkage(Linkage) || + GlobalValue::isLinkOnceAnyLinkage(Linkage)) { + if (IsPrevailing(VI.getGUID(), GVS.get())) { + Prevailing = FS; + break; + } + } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) { + // TODO: Handle these cases if they become meaningful + continue; + } + } + + if (Local) { + assert(!Prevailing); + CachedPrevailingSummary[VI] = Local; + } else if (Prevailing) { + assert(!Local); + CachedPrevailingSummary[VI] = Prevailing; + } + + return CachedPrevailingSummary[VI]; +} + +bool llvm::thinLTOPropagateFunctionAttrs( + ModuleSummaryIndex &Index, + function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> + IsPrevailing) { + // TODO: implement addNoAliasAttrs once + // there's more information about the return type in the summary + if (DisableThinLTOPropagation) + return false; + + DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary; + bool Changed = false; + + auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) { + // Assume we can propagate unless we discover otherwise + FunctionSummary::FFlags InferredFlags; + InferredFlags.NoRecurse = (SCCNodes.size() == 1); + InferredFlags.NoUnwind = true; + + for (auto &V : SCCNodes) { + FunctionSummary *CallerSummary = + calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing); + + // Function summaries can fail to contain information such as declarations + if (!CallerSummary) + return; + + if (CallerSummary->fflags().MayThrow) + InferredFlags.NoUnwind = false; + + for (const auto &Callee : CallerSummary->calls()) { + FunctionSummary *CalleeSummary = calculatePrevailingSummary( + Callee.first, CachedPrevailingSummary, IsPrevailing); + + if (!CalleeSummary) + return; + + if (!CalleeSummary->fflags().NoRecurse) + InferredFlags.NoRecurse = false; + + if (!CalleeSummary->fflags().NoUnwind) + InferredFlags.NoUnwind = false; + + if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse) + break; + } + } + + if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) { + Changed = true; + for (auto &V : SCCNodes) { + if (InferredFlags.NoRecurse) { + LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to " + << V.name() << "\n"); + ++NumThinLinkNoRecurse; + } + + if (InferredFlags.NoUnwind) { + LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to " + << V.name() << "\n"); + ++NumThinLinkNoUnwind; + } + + for (auto &S : V.getSummaryList()) { + if (auto *FS = dyn_cast<FunctionSummary>(S.get())) { + if (InferredFlags.NoRecurse) + FS->setNoRecurse(); + + if (InferredFlags.NoUnwind) + FS->setNoUnwind(); + } + } + } + } + }; + + // Call propagation functions on each SCC in the Index + for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd(); + ++I) { + std::vector<ValueInfo> Nodes(*I); + PropagateAttributes(Nodes); + } + return Changed; +} + +namespace { + +/// For a given pointer Argument, this retains a list of Arguments of functions +/// in the same SCC that the pointer data flows into. We use this to build an +/// SCC of the arguments. +struct ArgumentGraphNode { + Argument *Definition; + SmallVector<ArgumentGraphNode *, 4> Uses; +}; + +class ArgumentGraph { + // We store pointers to ArgumentGraphNode objects, so it's important that + // that they not move around upon insert. + using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>; + + ArgumentMapTy ArgumentMap; + + // There is no root node for the argument graph, in fact: + // void f(int *x, int *y) { if (...) f(x, y); } + // is an example where the graph is disconnected. The SCCIterator requires a + // single entry point, so we maintain a fake ("synthetic") root node that + // uses every node. Because the graph is directed and nothing points into + // the root, it will not participate in any SCCs (except for its own). + ArgumentGraphNode SyntheticRoot; + +public: + ArgumentGraph() { SyntheticRoot.Definition = nullptr; } + + using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator; + + iterator begin() { return SyntheticRoot.Uses.begin(); } + iterator end() { return SyntheticRoot.Uses.end(); } + ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } + + ArgumentGraphNode *operator[](Argument *A) { + ArgumentGraphNode &Node = ArgumentMap[A]; + Node.Definition = A; + SyntheticRoot.Uses.push_back(&Node); + return &Node; + } +}; + +/// This tracker checks whether callees are in the SCC, and if so it does not +/// consider that a capture, instead adding it to the "Uses" list and +/// continuing with the analysis. +struct ArgumentUsesTracker : public CaptureTracker { + ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {} + + void tooManyUses() override { Captured = true; } + + bool captured(const Use *U) override { + CallBase *CB = dyn_cast<CallBase>(U->getUser()); + if (!CB) { + Captured = true; + return true; + } + + Function *F = CB->getCalledFunction(); + if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) { + Captured = true; + return true; + } + + assert(!CB->isCallee(U) && "callee operand reported captured?"); + const unsigned UseIndex = CB->getDataOperandNo(U); + if (UseIndex >= CB->arg_size()) { + // Data operand, but not a argument operand -- must be a bundle operand + assert(CB->hasOperandBundles() && "Must be!"); + + // CaptureTracking told us that we're being captured by an operand bundle + // use. In this case it does not matter if the callee is within our SCC + // or not -- we've been captured in some unknown way, and we have to be + // conservative. + Captured = true; + return true; + } + + if (UseIndex >= F->arg_size()) { + assert(F->isVarArg() && "More params than args in non-varargs call"); + Captured = true; + return true; + } + + Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); + return false; + } + + // True only if certainly captured (used outside our SCC). + bool Captured = false; + + // Uses within our SCC. + SmallVector<Argument *, 4> Uses; + + const SCCNodeSet &SCCNodes; +}; + +} // end anonymous namespace + +namespace llvm { + +template <> struct GraphTraits<ArgumentGraphNode *> { + using NodeRef = ArgumentGraphNode *; + using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator; + + static NodeRef getEntryNode(NodeRef A) { return A; } + static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); } + static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); } +}; + +template <> +struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { + static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); } + + static ChildIteratorType nodes_begin(ArgumentGraph *AG) { + return AG->begin(); + } + + static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } +}; + +} // end namespace llvm + +/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. +static Attribute::AttrKind +determinePointerAccessAttrs(Argument *A, + const SmallPtrSet<Argument *, 8> &SCCNodes) { + SmallVector<Use *, 32> Worklist; + SmallPtrSet<Use *, 32> Visited; + + // inalloca arguments are always clobbered by the call. + if (A->hasInAllocaAttr() || A->hasPreallocatedAttr()) + return Attribute::None; + + bool IsRead = false; + bool IsWrite = false; + + for (Use &U : A->uses()) { + Visited.insert(&U); + Worklist.push_back(&U); + } + + while (!Worklist.empty()) { + if (IsWrite && IsRead) + // No point in searching further.. + return Attribute::None; + + Use *U = Worklist.pop_back_val(); + Instruction *I = cast<Instruction>(U->getUser()); + + switch (I->getOpcode()) { + case Instruction::BitCast: + case Instruction::GetElementPtr: + case Instruction::PHI: + case Instruction::Select: + case Instruction::AddrSpaceCast: + // The original value is not read/written via this if the new value isn't. + for (Use &UU : I->uses()) + if (Visited.insert(&UU).second) + Worklist.push_back(&UU); + break; + + case Instruction::Call: + case Instruction::Invoke: { + CallBase &CB = cast<CallBase>(*I); + if (CB.isCallee(U)) { + IsRead = true; + // Note that indirect calls do not capture, see comment in + // CaptureTracking for context + continue; + } + + // Given we've explictily handled the callee operand above, what's left + // must be a data operand (e.g. argument or operand bundle) + const unsigned UseIndex = CB.getDataOperandNo(U); + + if (!CB.doesNotCapture(UseIndex)) { + if (!CB.onlyReadsMemory()) + // If the callee can save a copy into other memory, then simply + // scanning uses of the call is insufficient. We have no way + // of tracking copies of the pointer through memory to see + // if a reloaded copy is written to, thus we must give up. + return Attribute::None; + // Push users for processing once we finish this one + if (!I->getType()->isVoidTy()) + for (Use &UU : I->uses()) + if (Visited.insert(&UU).second) + Worklist.push_back(&UU); + } + + if (CB.doesNotAccessMemory()) + continue; + + if (Function *F = CB.getCalledFunction()) + if (CB.isArgOperand(U) && UseIndex < F->arg_size() && + SCCNodes.count(F->getArg(UseIndex))) + // This is an argument which is part of the speculative SCC. Note + // that only operands corresponding to formal arguments of the callee + // can participate in the speculation. + break; + + // The accessors used on call site here do the right thing for calls and + // invokes with operand bundles. + if (CB.doesNotAccessMemory(UseIndex)) { + /* nop */ + } else if (CB.onlyReadsMemory() || CB.onlyReadsMemory(UseIndex)) { + IsRead = true; + } else if (CB.hasFnAttr(Attribute::WriteOnly) || + CB.dataOperandHasImpliedAttr(UseIndex, Attribute::WriteOnly)) { + IsWrite = true; + } else { + return Attribute::None; + } + break; + } + + case Instruction::Load: + // A volatile load has side effects beyond what readonly can be relied + // upon. + if (cast<LoadInst>(I)->isVolatile()) + return Attribute::None; + + IsRead = true; + break; + + case Instruction::Store: + if (cast<StoreInst>(I)->getValueOperand() == *U) + // untrackable capture + return Attribute::None; + + // A volatile store has side effects beyond what writeonly can be relied + // upon. + if (cast<StoreInst>(I)->isVolatile()) + return Attribute::None; + + IsWrite = true; + break; + + case Instruction::ICmp: + case Instruction::Ret: + break; + + default: + return Attribute::None; + } + } + + if (IsWrite && IsRead) + return Attribute::None; + else if (IsRead) + return Attribute::ReadOnly; + else if (IsWrite) + return Attribute::WriteOnly; + else + return Attribute::ReadNone; +} + +/// Deduce returned attributes for the SCC. +static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + // Check each function in turn, determining if an argument is always returned. + for (Function *F : SCCNodes) { + // We can infer and propagate function attributes only when we know that the + // definition we'll get at link time is *exactly* the definition we see now. + // For more details, see GlobalValue::mayBeDerefined. + if (!F->hasExactDefinition()) + continue; + + if (F->getReturnType()->isVoidTy()) + continue; + + // There is nothing to do if an argument is already marked as 'returned'. + if (llvm::any_of(F->args(), + [](const Argument &Arg) { return Arg.hasReturnedAttr(); })) + continue; + + auto FindRetArg = [&]() -> Value * { + Value *RetArg = nullptr; + for (BasicBlock &BB : *F) + if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) { + // Note that stripPointerCasts should look through functions with + // returned arguments. + Value *RetVal = Ret->getReturnValue()->stripPointerCasts(); + if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType()) + return nullptr; + + if (!RetArg) + RetArg = RetVal; + else if (RetArg != RetVal) + return nullptr; + } + + return RetArg; + }; + + if (Value *RetArg = FindRetArg()) { + auto *A = cast<Argument>(RetArg); + A->addAttr(Attribute::Returned); + ++NumReturned; + Changed.insert(F); + } + } +} + +/// If a callsite has arguments that are also arguments to the parent function, +/// try to propagate attributes from the callsite's arguments to the parent's +/// arguments. This may be important because inlining can cause information loss +/// when attribute knowledge disappears with the inlined call. +static bool addArgumentAttrsFromCallsites(Function &F) { + if (!EnableNonnullArgPropagation) + return false; + + bool Changed = false; + + // For an argument attribute to transfer from a callsite to the parent, the + // call must be guaranteed to execute every time the parent is called. + // Conservatively, just check for calls in the entry block that are guaranteed + // to execute. + // TODO: This could be enhanced by testing if the callsite post-dominates the + // entry block or by doing simple forward walks or backward walks to the + // callsite. + BasicBlock &Entry = F.getEntryBlock(); + for (Instruction &I : Entry) { + if (auto *CB = dyn_cast<CallBase>(&I)) { + if (auto *CalledFunc = CB->getCalledFunction()) { + for (auto &CSArg : CalledFunc->args()) { + if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false)) + continue; + + // If the non-null callsite argument operand is an argument to 'F' + // (the caller) and the call is guaranteed to execute, then the value + // must be non-null throughout 'F'. + auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo())); + if (FArg && !FArg->hasNonNullAttr()) { + FArg->addAttr(Attribute::NonNull); + Changed = true; + } + } + } + } + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + break; + } + + return Changed; +} + +static bool addAccessAttr(Argument *A, Attribute::AttrKind R) { + assert((R == Attribute::ReadOnly || R == Attribute::ReadNone || + R == Attribute::WriteOnly) + && "Must be an access attribute."); + assert(A && "Argument must not be null."); + + // If the argument already has the attribute, nothing needs to be done. + if (A->hasAttribute(R)) + return false; + + // Otherwise, remove potentially conflicting attribute, add the new one, + // and update statistics. + A->removeAttr(Attribute::WriteOnly); + A->removeAttr(Attribute::ReadOnly); + A->removeAttr(Attribute::ReadNone); + A->addAttr(R); + if (R == Attribute::ReadOnly) + ++NumReadOnlyArg; + else if (R == Attribute::WriteOnly) + ++NumWriteOnlyArg; + else + ++NumReadNoneArg; + return true; +} + +/// Deduce nocapture attributes for the SCC. +static void addArgumentAttrs(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + ArgumentGraph AG; + + // Check each function in turn, determining which pointer arguments are not + // captured. + for (Function *F : SCCNodes) { + // We can infer and propagate function attributes only when we know that the + // definition we'll get at link time is *exactly* the definition we see now. + // For more details, see GlobalValue::mayBeDerefined. + if (!F->hasExactDefinition()) + continue; + + if (addArgumentAttrsFromCallsites(*F)) + Changed.insert(F); + + // Functions that are readonly (or readnone) and nounwind and don't return + // a value can't capture arguments. Don't analyze them. + if (F->onlyReadsMemory() && F->doesNotThrow() && + F->getReturnType()->isVoidTy()) { + for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; + ++A) { + if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { + A->addAttr(Attribute::NoCapture); + ++NumNoCapture; + Changed.insert(F); + } + } + continue; + } + + for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; + ++A) { + if (!A->getType()->isPointerTy()) + continue; + bool HasNonLocalUses = false; + if (!A->hasNoCaptureAttr()) { + ArgumentUsesTracker Tracker(SCCNodes); + PointerMayBeCaptured(&*A, &Tracker); + if (!Tracker.Captured) { + if (Tracker.Uses.empty()) { + // If it's trivially not captured, mark it nocapture now. + A->addAttr(Attribute::NoCapture); + ++NumNoCapture; + Changed.insert(F); + } else { + // If it's not trivially captured and not trivially not captured, + // then it must be calling into another function in our SCC. Save + // its particulars for Argument-SCC analysis later. + ArgumentGraphNode *Node = AG[&*A]; + for (Argument *Use : Tracker.Uses) { + Node->Uses.push_back(AG[Use]); + if (Use != &*A) + HasNonLocalUses = true; + } + } + } + // Otherwise, it's captured. Don't bother doing SCC analysis on it. + } + if (!HasNonLocalUses && !A->onlyReadsMemory()) { + // Can we determine that it's readonly/readnone/writeonly without doing + // an SCC? Note that we don't allow any calls at all here, or else our + // result will be dependent on the iteration order through the + // functions in the SCC. + SmallPtrSet<Argument *, 8> Self; + Self.insert(&*A); + Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); + if (R != Attribute::None) + if (addAccessAttr(A, R)) + Changed.insert(F); + } + } + } + + // The graph we've collected is partial because we stopped scanning for + // argument uses once we solved the argument trivially. These partial nodes + // show up as ArgumentGraphNode objects with an empty Uses list, and for + // these nodes the final decision about whether they capture has already been + // made. If the definition doesn't have a 'nocapture' attribute by now, it + // captures. + + for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { + const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; + if (ArgumentSCC.size() == 1) { + if (!ArgumentSCC[0]->Definition) + continue; // synthetic root node + + // eg. "void f(int* x) { if (...) f(x); }" + if (ArgumentSCC[0]->Uses.size() == 1 && + ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { + Argument *A = ArgumentSCC[0]->Definition; + A->addAttr(Attribute::NoCapture); + ++NumNoCapture; + Changed.insert(A->getParent()); + + // Infer the access attributes given the new nocapture one + SmallPtrSet<Argument *, 8> Self; + Self.insert(&*A); + Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self); + if (R != Attribute::None) + addAccessAttr(A, R); + } + continue; + } + + bool SCCCaptured = false; + for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); + I != E && !SCCCaptured; ++I) { + ArgumentGraphNode *Node = *I; + if (Node->Uses.empty()) { + if (!Node->Definition->hasNoCaptureAttr()) + SCCCaptured = true; + } + } + if (SCCCaptured) + continue; + + SmallPtrSet<Argument *, 8> ArgumentSCCNodes; + // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for + // quickly looking up whether a given Argument is in this ArgumentSCC. + for (ArgumentGraphNode *I : ArgumentSCC) { + ArgumentSCCNodes.insert(I->Definition); + } + + for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); + I != E && !SCCCaptured; ++I) { + ArgumentGraphNode *N = *I; + for (ArgumentGraphNode *Use : N->Uses) { + Argument *A = Use->Definition; + if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) + continue; + SCCCaptured = true; + break; + } + } + if (SCCCaptured) + continue; + + for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { + Argument *A = ArgumentSCC[i]->Definition; + A->addAttr(Attribute::NoCapture); + ++NumNoCapture; + Changed.insert(A->getParent()); + } + + // We also want to compute readonly/readnone/writeonly. With a small number + // of false negatives, we can assume that any pointer which is captured + // isn't going to be provably readonly or readnone, since by definition + // we can't analyze all uses of a captured pointer. + // + // The false negatives happen when the pointer is captured by a function + // that promises readonly/readnone behaviour on the pointer, then the + // pointer's lifetime ends before anything that writes to arbitrary memory. + // Also, a readonly/readnone pointer may be returned, but returning a + // pointer is capturing it. + + auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) { + if (A == B) + return A; + if (A == Attribute::ReadNone) + return B; + if (B == Attribute::ReadNone) + return A; + return Attribute::None; + }; + + Attribute::AttrKind AccessAttr = Attribute::ReadNone; + for (unsigned i = 0, e = ArgumentSCC.size(); + i != e && AccessAttr != Attribute::None; ++i) { + Argument *A = ArgumentSCC[i]->Definition; + Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes); + AccessAttr = meetAccessAttr(AccessAttr, K); + } + + if (AccessAttr != Attribute::None) { + for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { + Argument *A = ArgumentSCC[i]->Definition; + if (addAccessAttr(A, AccessAttr)) + Changed.insert(A->getParent()); + } + } + } +} + +/// Tests whether a function is "malloc-like". +/// +/// A function is "malloc-like" if it returns either null or a pointer that +/// doesn't alias any other pointer visible to the caller. +static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { + SmallSetVector<Value *, 8> FlowsToReturn; + for (BasicBlock &BB : *F) + if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) + FlowsToReturn.insert(Ret->getReturnValue()); + + for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { + Value *RetVal = FlowsToReturn[i]; + + if (Constant *C = dyn_cast<Constant>(RetVal)) { + if (!C->isNullValue() && !isa<UndefValue>(C)) + return false; + + continue; + } + + if (isa<Argument>(RetVal)) + return false; + + if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) + switch (RVI->getOpcode()) { + // Extend the analysis by looking upwards. + case Instruction::BitCast: + case Instruction::GetElementPtr: + case Instruction::AddrSpaceCast: + FlowsToReturn.insert(RVI->getOperand(0)); + continue; + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(RVI); + FlowsToReturn.insert(SI->getTrueValue()); + FlowsToReturn.insert(SI->getFalseValue()); + continue; + } + case Instruction::PHI: { + PHINode *PN = cast<PHINode>(RVI); + for (Value *IncValue : PN->incoming_values()) + FlowsToReturn.insert(IncValue); + continue; + } + + // Check whether the pointer came from an allocation. + case Instruction::Alloca: + break; + case Instruction::Call: + case Instruction::Invoke: { + CallBase &CB = cast<CallBase>(*RVI); + if (CB.hasRetAttr(Attribute::NoAlias)) + break; + if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction())) + break; + LLVM_FALLTHROUGH; + } + default: + return false; // Did not come from an allocation. + } + + if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) + return false; + } + + return true; +} + +/// Deduce noalias attributes for the SCC. +static void addNoAliasAttrs(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + // Check each function in turn, determining which functions return noalias + // pointers. + for (Function *F : SCCNodes) { + // Already noalias. + if (F->returnDoesNotAlias()) + continue; + + // We can infer and propagate function attributes only when we know that the + // definition we'll get at link time is *exactly* the definition we see now. + // For more details, see GlobalValue::mayBeDerefined. + if (!F->hasExactDefinition()) + return; + + // We annotate noalias return values, which are only applicable to + // pointer types. + if (!F->getReturnType()->isPointerTy()) + continue; + + if (!isFunctionMallocLike(F, SCCNodes)) + return; + } + + for (Function *F : SCCNodes) { + if (F->returnDoesNotAlias() || + !F->getReturnType()->isPointerTy()) + continue; + + F->setReturnDoesNotAlias(); + ++NumNoAlias; + Changed.insert(F); + } +} + +/// Tests whether this function is known to not return null. +/// +/// Requires that the function returns a pointer. +/// +/// Returns true if it believes the function will not return a null, and sets +/// \p Speculative based on whether the returned conclusion is a speculative +/// conclusion due to SCC calls. +static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, + bool &Speculative) { + assert(F->getReturnType()->isPointerTy() && + "nonnull only meaningful on pointer types"); + Speculative = false; + + SmallSetVector<Value *, 8> FlowsToReturn; + for (BasicBlock &BB : *F) + if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) + FlowsToReturn.insert(Ret->getReturnValue()); + + auto &DL = F->getParent()->getDataLayout(); + + for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { + Value *RetVal = FlowsToReturn[i]; + + // If this value is locally known to be non-null, we're good + if (isKnownNonZero(RetVal, DL)) + continue; + + // Otherwise, we need to look upwards since we can't make any local + // conclusions. + Instruction *RVI = dyn_cast<Instruction>(RetVal); + if (!RVI) + return false; + switch (RVI->getOpcode()) { + // Extend the analysis by looking upwards. + case Instruction::BitCast: + case Instruction::GetElementPtr: + case Instruction::AddrSpaceCast: + FlowsToReturn.insert(RVI->getOperand(0)); + continue; + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(RVI); + FlowsToReturn.insert(SI->getTrueValue()); + FlowsToReturn.insert(SI->getFalseValue()); + continue; + } + case Instruction::PHI: { + PHINode *PN = cast<PHINode>(RVI); + for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + FlowsToReturn.insert(PN->getIncomingValue(i)); + continue; + } + case Instruction::Call: + case Instruction::Invoke: { + CallBase &CB = cast<CallBase>(*RVI); + Function *Callee = CB.getCalledFunction(); + // A call to a node within the SCC is assumed to return null until + // proven otherwise + if (Callee && SCCNodes.count(Callee)) { + Speculative = true; + continue; + } + return false; + } + default: + return false; // Unknown source, may be null + }; + llvm_unreachable("should have either continued or returned"); + } + + return true; +} + +/// Deduce nonnull attributes for the SCC. +static void addNonNullAttrs(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + // Speculative that all functions in the SCC return only nonnull + // pointers. We may refute this as we analyze functions. + bool SCCReturnsNonNull = true; + + // Check each function in turn, determining which functions return nonnull + // pointers. + for (Function *F : SCCNodes) { + // Already nonnull. + if (F->getAttributes().hasRetAttr(Attribute::NonNull)) + continue; + + // We can infer and propagate function attributes only when we know that the + // definition we'll get at link time is *exactly* the definition we see now. + // For more details, see GlobalValue::mayBeDerefined. + if (!F->hasExactDefinition()) + return; + + // We annotate nonnull return values, which are only applicable to + // pointer types. + if (!F->getReturnType()->isPointerTy()) + continue; + + bool Speculative = false; + if (isReturnNonNull(F, SCCNodes, Speculative)) { + if (!Speculative) { + // Mark the function eagerly since we may discover a function + // which prevents us from speculating about the entire SCC + LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName() + << " as nonnull\n"); + F->addRetAttr(Attribute::NonNull); + ++NumNonNullReturn; + Changed.insert(F); + } + continue; + } + // At least one function returns something which could be null, can't + // speculate any more. + SCCReturnsNonNull = false; + } + + if (SCCReturnsNonNull) { + for (Function *F : SCCNodes) { + if (F->getAttributes().hasRetAttr(Attribute::NonNull) || + !F->getReturnType()->isPointerTy()) + continue; + + LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); + F->addRetAttr(Attribute::NonNull); + ++NumNonNullReturn; + Changed.insert(F); + } + } +} + +namespace { + +/// Collects a set of attribute inference requests and performs them all in one +/// go on a single SCC Node. Inference involves scanning function bodies +/// looking for instructions that violate attribute assumptions. +/// As soon as all the bodies are fine we are free to set the attribute. +/// Customization of inference for individual attributes is performed by +/// providing a handful of predicates for each attribute. +class AttributeInferer { +public: + /// Describes a request for inference of a single attribute. + struct InferenceDescriptor { + + /// Returns true if this function does not have to be handled. + /// General intent for this predicate is to provide an optimization + /// for functions that do not need this attribute inference at all + /// (say, for functions that already have the attribute). + std::function<bool(const Function &)> SkipFunction; + + /// Returns true if this instruction violates attribute assumptions. + std::function<bool(Instruction &)> InstrBreaksAttribute; + + /// Sets the inferred attribute for this function. + std::function<void(Function &)> SetAttribute; + + /// Attribute we derive. + Attribute::AttrKind AKind; + + /// If true, only "exact" definitions can be used to infer this attribute. + /// See GlobalValue::isDefinitionExact. + bool RequiresExactDefinition; + + InferenceDescriptor(Attribute::AttrKind AK, + std::function<bool(const Function &)> SkipFunc, + std::function<bool(Instruction &)> InstrScan, + std::function<void(Function &)> SetAttr, + bool ReqExactDef) + : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan), + SetAttribute(SetAttr), AKind(AK), + RequiresExactDefinition(ReqExactDef) {} + }; + +private: + SmallVector<InferenceDescriptor, 4> InferenceDescriptors; + +public: + void registerAttrInference(InferenceDescriptor AttrInference) { + InferenceDescriptors.push_back(AttrInference); + } + + void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed); +}; + +/// Perform all the requested attribute inference actions according to the +/// attribute predicates stored before. +void AttributeInferer::run(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors; + // Go through all the functions in SCC and check corresponding attribute + // assumptions for each of them. Attributes that are invalid for this SCC + // will be removed from InferInSCC. + for (Function *F : SCCNodes) { + + // No attributes whose assumptions are still valid - done. + if (InferInSCC.empty()) + return; + + // Check if our attributes ever need scanning/can be scanned. + llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) { + if (ID.SkipFunction(*F)) + return false; + + // Remove from further inference (invalidate) when visiting a function + // that has no instructions to scan/has an unsuitable definition. + return F->isDeclaration() || + (ID.RequiresExactDefinition && !F->hasExactDefinition()); + }); + + // For each attribute still in InferInSCC that doesn't explicitly skip F, + // set up the F instructions scan to verify assumptions of the attribute. + SmallVector<InferenceDescriptor, 4> InferInThisFunc; + llvm::copy_if( + InferInSCC, std::back_inserter(InferInThisFunc), + [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); }); + + if (InferInThisFunc.empty()) + continue; + + // Start instruction scan. + for (Instruction &I : instructions(*F)) { + llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) { + if (!ID.InstrBreaksAttribute(I)) + return false; + // Remove attribute from further inference on any other functions + // because attribute assumptions have just been violated. + llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) { + return D.AKind == ID.AKind; + }); + // Remove attribute from the rest of current instruction scan. + return true; + }); + + if (InferInThisFunc.empty()) + break; + } + } + + if (InferInSCC.empty()) + return; + + for (Function *F : SCCNodes) + // At this point InferInSCC contains only functions that were either: + // - explicitly skipped from scan/inference, or + // - verified to have no instructions that break attribute assumptions. + // Hence we just go and force the attribute for all non-skipped functions. + for (auto &ID : InferInSCC) { + if (ID.SkipFunction(*F)) + continue; + Changed.insert(F); + ID.SetAttribute(*F); + } +} + +struct SCCNodesResult { + SCCNodeSet SCCNodes; + bool HasUnknownCall; +}; + +} // end anonymous namespace + +/// Helper for non-Convergent inference predicate InstrBreaksAttribute. +static bool InstrBreaksNonConvergent(Instruction &I, + const SCCNodeSet &SCCNodes) { + const CallBase *CB = dyn_cast<CallBase>(&I); + // Breaks non-convergent assumption if CS is a convergent call to a function + // not in the SCC. + return CB && CB->isConvergent() && + !SCCNodes.contains(CB->getCalledFunction()); +} + +/// Helper for NoUnwind inference predicate InstrBreaksAttribute. +static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) { + if (!I.mayThrow()) + return false; + if (const auto *CI = dyn_cast<CallInst>(&I)) { + if (Function *Callee = CI->getCalledFunction()) { + // I is a may-throw call to a function inside our SCC. This doesn't + // invalidate our current working assumption that the SCC is no-throw; we + // just have to scan that other function. + if (SCCNodes.contains(Callee)) + return false; + } + } + return true; +} + +/// Helper for NoFree inference predicate InstrBreaksAttribute. +static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) { + CallBase *CB = dyn_cast<CallBase>(&I); + if (!CB) + return false; + + if (CB->hasFnAttr(Attribute::NoFree)) + return false; + + // Speculatively assume in SCC. + if (Function *Callee = CB->getCalledFunction()) + if (SCCNodes.contains(Callee)) + return false; + + return true; +} + +/// Attempt to remove convergent function attribute when possible. +/// +/// Returns true if any changes to function attributes were made. +static void inferConvergent(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + AttributeInferer AI; + + // Request to remove the convergent attribute from all functions in the SCC + // if every callsite within the SCC is not convergent (except for calls + // to functions within the SCC). + // Note: Removal of the attr from the callsites will happen in + // InstCombineCalls separately. + AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ + Attribute::Convergent, + // Skip non-convergent functions. + [](const Function &F) { return !F.isConvergent(); }, + // Instructions that break non-convergent assumption. + [SCCNodes](Instruction &I) { + return InstrBreaksNonConvergent(I, SCCNodes); + }, + [](Function &F) { + LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName() + << "\n"); + F.setNotConvergent(); + }, + /* RequiresExactDefinition= */ false}); + // Perform all the requested attribute inference actions. + AI.run(SCCNodes, Changed); +} + +/// Infer attributes from all functions in the SCC by scanning every +/// instruction for compliance to the attribute assumptions. Currently it +/// does: +/// - addition of NoUnwind attribute +/// +/// Returns true if any changes to function attributes were made. +static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + AttributeInferer AI; + + if (!DisableNoUnwindInference) + // Request to infer nounwind attribute for all the functions in the SCC if + // every callsite within the SCC is not throwing (except for calls to + // functions within the SCC). Note that nounwind attribute suffers from + // derefinement - results may change depending on how functions are + // optimized. Thus it can be inferred only from exact definitions. + AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ + Attribute::NoUnwind, + // Skip non-throwing functions. + [](const Function &F) { return F.doesNotThrow(); }, + // Instructions that break non-throwing assumption. + [&SCCNodes](Instruction &I) { + return InstrBreaksNonThrowing(I, SCCNodes); + }, + [](Function &F) { + LLVM_DEBUG(dbgs() + << "Adding nounwind attr to fn " << F.getName() << "\n"); + F.setDoesNotThrow(); + ++NumNoUnwind; + }, + /* RequiresExactDefinition= */ true}); + + if (!DisableNoFreeInference) + // Request to infer nofree attribute for all the functions in the SCC if + // every callsite within the SCC does not directly or indirectly free + // memory (except for calls to functions within the SCC). Note that nofree + // attribute suffers from derefinement - results may change depending on + // how functions are optimized. Thus it can be inferred only from exact + // definitions. + AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ + Attribute::NoFree, + // Skip functions known not to free memory. + [](const Function &F) { return F.doesNotFreeMemory(); }, + // Instructions that break non-deallocating assumption. + [&SCCNodes](Instruction &I) { + return InstrBreaksNoFree(I, SCCNodes); + }, + [](Function &F) { + LLVM_DEBUG(dbgs() + << "Adding nofree attr to fn " << F.getName() << "\n"); + F.setDoesNotFreeMemory(); + ++NumNoFree; + }, + /* RequiresExactDefinition= */ true}); + + // Perform all the requested attribute inference actions. + AI.run(SCCNodes, Changed); +} + +static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + // Try and identify functions that do not recurse. + + // If the SCC contains multiple nodes we know for sure there is recursion. + if (SCCNodes.size() != 1) + return; + + Function *F = *SCCNodes.begin(); + if (!F || !F->hasExactDefinition() || F->doesNotRecurse()) + return; + + // If all of the calls in F are identifiable and are to norecurse functions, F + // is norecurse. This check also detects self-recursion as F is not currently + // marked norecurse, so any called from F to F will not be marked norecurse. + for (auto &BB : *F) + for (auto &I : BB.instructionsWithoutDebug()) + if (auto *CB = dyn_cast<CallBase>(&I)) { + Function *Callee = CB->getCalledFunction(); + if (!Callee || Callee == F || !Callee->doesNotRecurse()) + // Function calls a potentially recursive function. + return; + } + + // Every call was to a non-recursive function other than this function, and + // we have no indirect recursion as the SCC size is one. This function cannot + // recurse. + F->setDoesNotRecurse(); + ++NumNoRecurse; + Changed.insert(F); +} + +static bool instructionDoesNotReturn(Instruction &I) { + if (auto *CB = dyn_cast<CallBase>(&I)) + return CB->hasFnAttr(Attribute::NoReturn); + return false; +} + +// A basic block can only return if it terminates with a ReturnInst and does not +// contain calls to noreturn functions. +static bool basicBlockCanReturn(BasicBlock &BB) { + if (!isa<ReturnInst>(BB.getTerminator())) + return false; + return none_of(BB, instructionDoesNotReturn); +} + +// FIXME: this doesn't handle recursion. +static bool canReturn(Function &F) { + SmallVector<BasicBlock *, 16> Worklist; + SmallPtrSet<BasicBlock *, 16> Visited; + + Visited.insert(&F.front()); + Worklist.push_back(&F.front()); + + do { + BasicBlock *BB = Worklist.pop_back_val(); + if (basicBlockCanReturn(*BB)) + return true; + for (BasicBlock *Succ : successors(BB)) + if (Visited.insert(Succ).second) + Worklist.push_back(Succ); + } while (!Worklist.empty()); + + return false; +} + +// Set the noreturn function attribute if possible. +static void addNoReturnAttrs(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + for (Function *F : SCCNodes) { + if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) || + F->doesNotReturn()) + continue; + + if (!canReturn(*F)) { + F->setDoesNotReturn(); + Changed.insert(F); + } + } +} + +static bool functionWillReturn(const Function &F) { + // We can infer and propagate function attributes only when we know that the + // definition we'll get at link time is *exactly* the definition we see now. + // For more details, see GlobalValue::mayBeDerefined. + if (!F.hasExactDefinition()) + return false; + + // Must-progress function without side-effects must return. + if (F.mustProgress() && F.onlyReadsMemory()) + return true; + + // Can only analyze functions with a definition. + if (F.isDeclaration()) + return false; + + // Functions with loops require more sophisticated analysis, as the loop + // may be infinite. For now, don't try to handle them. + SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges; + FindFunctionBackedges(F, Backedges); + if (!Backedges.empty()) + return false; + + // If there are no loops, then the function is willreturn if all calls in + // it are willreturn. + return all_of(instructions(F), [](const Instruction &I) { + return I.willReturn(); + }); +} + +// Set the willreturn function attribute if possible. +static void addWillReturn(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + for (Function *F : SCCNodes) { + if (!F || F->willReturn() || !functionWillReturn(*F)) + continue; + + F->setWillReturn(); + NumWillReturn++; + Changed.insert(F); + } +} + +// Return true if this is an atomic which has an ordering stronger than +// unordered. Note that this is different than the predicate we use in +// Attributor. Here we chose to be conservative and consider monotonic +// operations potentially synchronizing. We generally don't do much with +// monotonic operations, so this is simply risk reduction. +static bool isOrderedAtomic(Instruction *I) { + if (!I->isAtomic()) + return false; + + if (auto *FI = dyn_cast<FenceInst>(I)) + // All legal orderings for fence are stronger than monotonic. + return FI->getSyncScopeID() != SyncScope::SingleThread; + else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I)) + return true; + else if (auto *SI = dyn_cast<StoreInst>(I)) + return !SI->isUnordered(); + else if (auto *LI = dyn_cast<LoadInst>(I)) + return !LI->isUnordered(); + else { + llvm_unreachable("unknown atomic instruction?"); + } +} + +static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) { + // Volatile may synchronize + if (I.isVolatile()) + return true; + + // An ordered atomic may synchronize. (See comment about on monotonic.) + if (isOrderedAtomic(&I)) + return true; + + auto *CB = dyn_cast<CallBase>(&I); + if (!CB) + // Non call site cases covered by the two checks above + return false; + + if (CB->hasFnAttr(Attribute::NoSync)) + return false; + + // Non volatile memset/memcpy/memmoves are nosync + // NOTE: Only intrinsics with volatile flags should be handled here. All + // others should be marked in Intrinsics.td. + if (auto *MI = dyn_cast<MemIntrinsic>(&I)) + if (!MI->isVolatile()) + return false; + + // Speculatively assume in SCC. + if (Function *Callee = CB->getCalledFunction()) + if (SCCNodes.contains(Callee)) + return false; + + return true; +} + +// Infer the nosync attribute. +static void addNoSyncAttr(const SCCNodeSet &SCCNodes, + SmallSet<Function *, 8> &Changed) { + AttributeInferer AI; + AI.registerAttrInference(AttributeInferer::InferenceDescriptor{ + Attribute::NoSync, + // Skip already marked functions. + [](const Function &F) { return F.hasNoSync(); }, + // Instructions that break nosync assumption. + [&SCCNodes](Instruction &I) { + return InstrBreaksNoSync(I, SCCNodes); + }, + [](Function &F) { + LLVM_DEBUG(dbgs() + << "Adding nosync attr to fn " << F.getName() << "\n"); + F.setNoSync(); + ++NumNoSync; + }, + /* RequiresExactDefinition= */ true}); + AI.run(SCCNodes, Changed); +} + +static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) { + SCCNodesResult Res; + Res.HasUnknownCall = false; + for (Function *F : Functions) { + if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) || + F->isPresplitCoroutine()) { + // Treat any function we're trying not to optimize as if it were an + // indirect call and omit it from the node set used below. + Res.HasUnknownCall = true; + continue; + } + // Track whether any functions in this SCC have an unknown call edge. + // Note: if this is ever a performance hit, we can common it with + // subsequent routines which also do scans over the instructions of the + // function. + if (!Res.HasUnknownCall) { + for (Instruction &I : instructions(*F)) { + if (auto *CB = dyn_cast<CallBase>(&I)) { + if (!CB->getCalledFunction()) { + Res.HasUnknownCall = true; + break; + } + } + } + } + Res.SCCNodes.insert(F); + } + return Res; +} + +template <typename AARGetterT> +static SmallSet<Function *, 8> +deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) { + SCCNodesResult Nodes = createSCCNodeSet(Functions); + + // Bail if the SCC only contains optnone functions. + if (Nodes.SCCNodes.empty()) + return {}; + + SmallSet<Function *, 8> Changed; + + addArgumentReturnedAttrs(Nodes.SCCNodes, Changed); + addReadAttrs(Nodes.SCCNodes, AARGetter, Changed); + addArgumentAttrs(Nodes.SCCNodes, Changed); + inferConvergent(Nodes.SCCNodes, Changed); + addNoReturnAttrs(Nodes.SCCNodes, Changed); + addWillReturn(Nodes.SCCNodes, Changed); + + // If we have no external nodes participating in the SCC, we can deduce some + // more precise attributes as well. + if (!Nodes.HasUnknownCall) { + addNoAliasAttrs(Nodes.SCCNodes, Changed); + addNonNullAttrs(Nodes.SCCNodes, Changed); + inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed); + addNoRecurseAttrs(Nodes.SCCNodes, Changed); + } + + addNoSyncAttr(Nodes.SCCNodes, Changed); + + // Finally, infer the maximal set of attributes from the ones we've inferred + // above. This is handling the cases where one attribute on a signature + // implies another, but for implementation reasons the inference rule for + // the later is missing (or simply less sophisticated). + for (Function *F : Nodes.SCCNodes) + if (F) + if (inferAttributesFromOthers(*F)) + Changed.insert(F); + + return Changed; +} + +PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C, + CGSCCAnalysisManager &AM, + LazyCallGraph &CG, + CGSCCUpdateResult &) { + FunctionAnalysisManager &FAM = + AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); + + // We pass a lambda into functions to wire them up to the analysis manager + // for getting function analyses. + auto AARGetter = [&](Function &F) -> AAResults & { + return FAM.getResult<AAManager>(F); + }; + + SmallVector<Function *, 8> Functions; + for (LazyCallGraph::Node &N : C) { + Functions.push_back(&N.getFunction()); + } + + auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter); + if (ChangedFunctions.empty()) + return PreservedAnalyses::all(); + + // Invalidate analyses for modified functions so that we don't have to + // invalidate all analyses for all functions in this SCC. + PreservedAnalyses FuncPA; + // We haven't changed the CFG for modified functions. + FuncPA.preserveSet<CFGAnalyses>(); + for (Function *Changed : ChangedFunctions) { + FAM.invalidate(*Changed, FuncPA); + // Also invalidate any direct callers of changed functions since analyses + // may care about attributes of direct callees. For example, MemorySSA cares + // about whether or not a call's callee modifies memory and queries that + // through function attributes. + for (auto *U : Changed->users()) { + if (auto *Call = dyn_cast<CallBase>(U)) { + if (Call->getCalledFunction() == Changed) + FAM.invalidate(*Call->getFunction(), FuncPA); + } + } + } + + PreservedAnalyses PA; + // We have not added or removed functions. + PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); + // We already invalidated all relevant function analyses above. + PA.preserveSet<AllAnalysesOn<Function>>(); + return PA; +} + +namespace { + +struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass { + // Pass identification, replacement for typeid + static char ID; + + PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) { + initializePostOrderFunctionAttrsLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnSCC(CallGraphSCC &SCC) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<AssumptionCacheTracker>(); + getAAResultsAnalysisUsage(AU); + CallGraphSCCPass::getAnalysisUsage(AU); + } +}; + +} // end anonymous namespace + +char PostOrderFunctionAttrsLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs", + "Deduce function attributes", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) +INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs", + "Deduce function attributes", false, false) + +Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { + return new PostOrderFunctionAttrsLegacyPass(); +} + +template <typename AARGetterT> +static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) { + SmallVector<Function *, 8> Functions; + for (CallGraphNode *I : SCC) { + Functions.push_back(I->getFunction()); + } + + return !deriveAttrsInPostOrder(Functions, AARGetter).empty(); +} + +bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) { + if (skipSCC(SCC)) + return false; + return runImpl(SCC, LegacyAARGetter(*this)); +} + +namespace { + +struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass { + // Pass identification, replacement for typeid + static char ID; + + ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) { + initializeReversePostOrderFunctionAttrsLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<CallGraphWrapperPass>(); + AU.addPreserved<CallGraphWrapperPass>(); + } +}; + +} // end anonymous namespace + +char ReversePostOrderFunctionAttrsLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, + "rpo-function-attrs", "Deduce function attributes in RPO", + false, false) +INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) +INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, + "rpo-function-attrs", "Deduce function attributes in RPO", + false, false) + +Pass *llvm::createReversePostOrderFunctionAttrsPass() { + return new ReversePostOrderFunctionAttrsLegacyPass(); +} + +static bool addNoRecurseAttrsTopDown(Function &F) { + // We check the preconditions for the function prior to calling this to avoid + // the cost of building up a reversible post-order list. We assert them here + // to make sure none of the invariants this relies on were violated. + assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); + assert(!F.doesNotRecurse() && + "This function has already been deduced as norecurs!"); + assert(F.hasInternalLinkage() && + "Can only do top-down deduction for internal linkage functions!"); + + // If F is internal and all of its uses are calls from a non-recursive + // functions, then none of its calls could in fact recurse without going + // through a function marked norecurse, and so we can mark this function too + // as norecurse. Note that the uses must actually be calls -- otherwise + // a pointer to this function could be returned from a norecurse function but + // this function could be recursively (indirectly) called. Note that this + // also detects if F is directly recursive as F is not yet marked as + // a norecurse function. + for (auto *U : F.users()) { + auto *I = dyn_cast<Instruction>(U); + if (!I) + return false; + CallBase *CB = dyn_cast<CallBase>(I); + if (!CB || !CB->getParent()->getParent()->doesNotRecurse()) + return false; + } + F.setDoesNotRecurse(); + ++NumNoRecurse; + return true; +} + +static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) { + // We only have a post-order SCC traversal (because SCCs are inherently + // discovered in post-order), so we accumulate them in a vector and then walk + // it in reverse. This is simpler than using the RPO iterator infrastructure + // because we need to combine SCC detection and the PO walk of the call + // graph. We can also cheat egregiously because we're primarily interested in + // synthesizing norecurse and so we can only save the singular SCCs as SCCs + // with multiple functions in them will clearly be recursive. + SmallVector<Function *, 16> Worklist; + for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { + if (I->size() != 1) + continue; + + Function *F = I->front()->getFunction(); + if (F && !F->isDeclaration() && !F->doesNotRecurse() && + F->hasInternalLinkage()) + Worklist.push_back(F); + } + + bool Changed = false; + for (auto *F : llvm::reverse(Worklist)) + Changed |= addNoRecurseAttrsTopDown(*F); + + return Changed; +} + +bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) { + if (skipModule(M)) + return false; + + auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); + + return deduceFunctionAttributeInRPO(M, CG); +} + +PreservedAnalyses +ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) { + auto &CG = AM.getResult<CallGraphAnalysis>(M); + + if (!deduceFunctionAttributeInRPO(M, CG)) + return PreservedAnalyses::all(); + + PreservedAnalyses PA; + PA.preserve<CallGraphAnalysis>(); + return PA; +} |