diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp | 501 |
1 files changed, 279 insertions, 222 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp index 6c3cc3914337..dafd0dc865a2 100644 --- a/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp +++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp @@ -19,11 +19,8 @@ // Current limitations: // - It does not yet handle integer ranges. We do support "literal constants", // but that's off by default under an option. -// - Only 1 argument per function is specialised, // - The cost-model could be further looked into (it mainly focuses on inlining // benefits), -// - We are not yet caching analysis results, but profiling and checking where -// extra compile time is spent didn't suggest this to be a problem. // // Ideas: // - With a function specialization attribute for arguments, we could have @@ -49,15 +46,16 @@ //===----------------------------------------------------------------------===// #include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/CodeMetrics.h" -#include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueLattice.h" +#include "llvm/Analysis/ValueLatticeUtils.h" +#include "llvm/IR/IntrinsicInst.h" #include "llvm/Transforms/Scalar/SCCP.h" #include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/SCCPSolver.h" #include "llvm/Transforms/Utils/SizeOpts.h" #include <cmath> @@ -98,8 +96,13 @@ static cl::opt<bool> SpecializeOnAddresses( "func-specialization-on-address", cl::init(false), cl::Hidden, cl::desc("Enable function specialization on the address of global values")); -// TODO: This needs checking to see the impact on compile-times, which is why -// this is off by default for now. +// Disabled by default as it can significantly increase compilation times. +// Running nikic's compile time tracker on x86 with instruction count as the +// metric shows 3-4% regression for SPASS while being neutral for all other +// benchmarks of the llvm test suite. +// +// https://llvm-compile-time-tracker.com +// https://github.com/nikic/llvm-compile-time-tracker static cl::opt<bool> EnableSpecializationForLiteralConstant( "function-specialization-for-literal-constant", cl::init(false), cl::Hidden, cl::desc("Enable specialization of functions that take a literal constant " @@ -108,24 +111,18 @@ static cl::opt<bool> EnableSpecializationForLiteralConstant( namespace { // Bookkeeping struct to pass data from the analysis and profitability phase // to the actual transform helper functions. -struct ArgInfo { - Function *Fn; // The function to perform specialisation on. - Argument *Arg; // The Formal argument being analysed. - Constant *Const; // A corresponding actual constant argument. - InstructionCost Gain; // Profitability: Gain = Bonus - Cost. - - // Flag if this will be a partial specialization, in which case we will need - // to keep the original function around in addition to the added - // specializations. - bool Partial = false; - - ArgInfo(Function *F, Argument *A, Constant *C, InstructionCost G) - : Fn(F), Arg(A), Const(C), Gain(G){}; +struct SpecializationInfo { + SmallVector<ArgInfo, 8> Args; // Stores the {formal,actual} argument pairs. + InstructionCost Gain; // Profitability: Gain = Bonus - Cost. }; } // Anonymous namespace using FuncList = SmallVectorImpl<Function *>; -using ConstList = SmallVectorImpl<Constant *>; +using CallArgBinding = std::pair<CallBase *, Constant *>; +using CallSpecBinding = std::pair<CallBase *, SpecializationInfo>; +// We are using MapVector because it guarantees deterministic iteration +// order across executions. +using SpecializationMap = SmallMapVector<CallBase *, SpecializationInfo, 8>; // Helper to check if \p LV is either a constant or a constant // range with a single element. This should cover exactly the same cases as the @@ -204,41 +201,45 @@ static Constant *getConstantStackValue(CallInst *Call, Value *Val, // ret void // } // -static void constantArgPropagation(FuncList &WorkList, - Module &M, SCCPSolver &Solver) { +static void constantArgPropagation(FuncList &WorkList, Module &M, + SCCPSolver &Solver) { // Iterate over the argument tracked functions see if there // are any new constant values for the call instruction via // stack variables. for (auto *F : WorkList) { - // TODO: Generalize for any read only arguments. - if (F->arg_size() != 1) - continue; - - auto &Arg = *F->arg_begin(); - if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy()) - continue; for (auto *User : F->users()) { + auto *Call = dyn_cast<CallInst>(User); if (!Call) - break; - auto *ArgOp = Call->getArgOperand(0); - auto *ArgOpType = ArgOp->getType(); - auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver); - if (!ConstVal) - break; + continue; - Value *GV = new GlobalVariable(M, ConstVal->getType(), true, - GlobalValue::InternalLinkage, ConstVal, - "funcspec.arg"); + bool Changed = false; + for (const Use &U : Call->args()) { + unsigned Idx = Call->getArgOperandNo(&U); + Value *ArgOp = Call->getArgOperand(Idx); + Type *ArgOpType = ArgOp->getType(); - if (ArgOpType != ConstVal->getType()) - GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType()); + if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) + continue; - Call->setArgOperand(0, GV); + auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver); + if (!ConstVal) + continue; + + Value *GV = new GlobalVariable(M, ConstVal->getType(), true, + GlobalValue::InternalLinkage, ConstVal, + "funcspec.arg"); + if (ArgOpType != ConstVal->getType()) + GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType); + + Call->setArgOperand(Idx, GV); + Changed = true; + } // Add the changed CallInst to Solver Worklist - Solver.visitCall(*Call); + if (Changed) + Solver.visitCall(*Call); } } } @@ -275,7 +276,10 @@ class FunctionSpecializer { std::function<TargetTransformInfo &(Function &)> GetTTI; std::function<TargetLibraryInfo &(Function &)> GetTLI; - SmallPtrSet<Function *, 2> SpecializedFuncs; + SmallPtrSet<Function *, 4> SpecializedFuncs; + SmallPtrSet<Function *, 4> FullySpecialized; + SmallVector<Instruction *> ReplacedWithConstant; + DenseMap<Function *, CodeMetrics> FunctionMetrics; public: FunctionSpecializer(SCCPSolver &Solver, @@ -284,42 +288,66 @@ public: std::function<TargetLibraryInfo &(Function &)> GetTLI) : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {} + ~FunctionSpecializer() { + // Eliminate dead code. + removeDeadInstructions(); + removeDeadFunctions(); + } + /// Attempt to specialize functions in the module to enable constant /// propagation across function boundaries. /// /// \returns true if at least one function is specialized. - bool - specializeFunctions(FuncList &FuncDecls, - FuncList &CurrentSpecializations) { + bool specializeFunctions(FuncList &Candidates, FuncList &WorkList) { bool Changed = false; - for (auto *F : FuncDecls) { - if (!isCandidateFunction(F, CurrentSpecializations)) + for (auto *F : Candidates) { + if (!isCandidateFunction(F)) continue; auto Cost = getSpecializationCost(F); if (!Cost.isValid()) { LLVM_DEBUG( - dbgs() << "FnSpecialization: Invalid specialisation cost.\n"); + dbgs() << "FnSpecialization: Invalid specialization cost.\n"); continue; } - auto ConstArgs = calculateGains(F, Cost); - if (ConstArgs.empty()) { - LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n"); + LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " + << F->getName() << " is " << Cost << "\n"); + + SmallVector<CallSpecBinding, 8> Specializations; + if (!calculateGains(F, Cost, Specializations)) { + LLVM_DEBUG(dbgs() << "FnSpecialization: No possible constants found\n"); continue; } - for (auto &CA : ConstArgs) { - specializeFunction(CA, CurrentSpecializations); - Changed = true; - } + Changed = true; + for (auto &Entry : Specializations) + specializeFunction(F, Entry.second, WorkList); } - updateSpecializedFuncs(FuncDecls, CurrentSpecializations); + updateSpecializedFuncs(Candidates, WorkList); NumFuncSpecialized += NbFunctionsSpecialized; return Changed; } + void removeDeadInstructions() { + for (auto *I : ReplacedWithConstant) { + LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead instruction " << *I + << "\n"); + I->eraseFromParent(); + } + ReplacedWithConstant.clear(); + } + + void removeDeadFunctions() { + for (auto *F : FullySpecialized) { + LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " + << F->getName() << "\n"); + F->eraseFromParent(); + } + FullySpecialized.clear(); + } + bool tryToReplaceWithConstant(Value *V) { if (!V->getType()->isSingleValueType() || isa<CallBase>(V) || V->user_empty()) @@ -330,17 +358,26 @@ public: return false; auto *Const = isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType()); - V->replaceAllUsesWith(Const); - for (auto *U : Const->users()) + LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing " << *V + << "\nFnSpecialization: with " << *Const << "\n"); + + // Record uses of V to avoid visiting irrelevant uses of const later. + SmallVector<Instruction *> UseInsts; + for (auto *U : V->users()) if (auto *I = dyn_cast<Instruction>(U)) if (Solver.isBlockExecutable(I->getParent())) - Solver.visit(I); + UseInsts.push_back(I); + + V->replaceAllUsesWith(Const); + + for (auto *I : UseInsts) + Solver.visit(I); // Remove the instruction from Block and Solver. if (auto *I = dyn_cast<Instruction>(V)) { if (I->isSafeToRemove()) { - I->eraseFromParent(); + ReplacedWithConstant.push_back(I); Solver.removeLatticeValueFor(I); } } @@ -352,92 +389,108 @@ private: // also in the cost model. unsigned NbFunctionsSpecialized = 0; + // Compute the code metrics for function \p F. + CodeMetrics &analyzeFunction(Function *F) { + auto I = FunctionMetrics.insert({F, CodeMetrics()}); + CodeMetrics &Metrics = I.first->second; + if (I.second) { + // The code metrics were not cached. + SmallPtrSet<const Value *, 32> EphValues; + CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues); + for (BasicBlock &BB : *F) + Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues); + + LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function " + << F->getName() << " is " << Metrics.NumInsts + << " instructions\n"); + } + return Metrics; + } + /// Clone the function \p F and remove the ssa_copy intrinsics added by /// the SCCPSolver in the cloned version. - Function *cloneCandidateFunction(Function *F) { - ValueToValueMapTy EmptyMap; - Function *Clone = CloneFunction(F, EmptyMap); + Function *cloneCandidateFunction(Function *F, ValueToValueMapTy &Mappings) { + Function *Clone = CloneFunction(F, Mappings); removeSSACopy(*Clone); return Clone; } - /// This function decides whether it's worthwhile to specialize function \p F - /// based on the known constant values its arguments can take on, i.e. it - /// calculates a gain and returns a list of actual arguments that are deemed - /// profitable to specialize. Specialization is performed on the first - /// interesting argument. Specializations based on additional arguments will - /// be evaluated on following iterations of the main IPSCCP solve loop. - SmallVector<ArgInfo> calculateGains(Function *F, InstructionCost Cost) { - SmallVector<ArgInfo> Worklist; + /// This function decides whether it's worthwhile to specialize function + /// \p F based on the known constant values its arguments can take on. It + /// only discovers potential specialization opportunities without actually + /// applying them. + /// + /// \returns true if any specializations have been found. + bool calculateGains(Function *F, InstructionCost Cost, + SmallVectorImpl<CallSpecBinding> &WorkList) { + SpecializationMap Specializations; // Determine if we should specialize the function based on the values the // argument can take on. If specialization is not profitable, we continue // on to the next argument. for (Argument &FormalArg : F->args()) { - LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " - << FormalArg.getName() << "\n"); // Determine if this argument is interesting. If we know the argument can - // take on any constant values, they are collected in Constants. If the - // argument can only ever equal a constant value in Constants, the - // function will be completely specialized, and the IsPartial flag will - // be set to false by isArgumentInteresting (that function only adds - // values to the Constants list that are deemed profitable). - bool IsPartial = true; - SmallVector<Constant *> ActualConstArg; - if (!isArgumentInteresting(&FormalArg, ActualConstArg, IsPartial)) { - LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n"); + // take on any constant values, they are collected in Constants. + SmallVector<CallArgBinding, 8> ActualArgs; + if (!isArgumentInteresting(&FormalArg, ActualArgs)) { + LLVM_DEBUG(dbgs() << "FnSpecialization: Argument " + << FormalArg.getNameOrAsOperand() + << " is not interesting\n"); continue; } - for (auto *ActualArg : ActualConstArg) { - InstructionCost Gain = - ForceFunctionSpecialization - ? 1 - : getSpecializationBonus(&FormalArg, ActualArg) - Cost; - - if (Gain <= 0) - continue; - Worklist.push_back({F, &FormalArg, ActualArg, Gain}); - } + for (const auto &Entry : ActualArgs) { + CallBase *Call = Entry.first; + Constant *ActualArg = Entry.second; - if (Worklist.empty()) - continue; + auto I = Specializations.insert({Call, SpecializationInfo()}); + SpecializationInfo &S = I.first->second; - // Sort the candidates in descending order. - llvm::stable_sort(Worklist, [](const ArgInfo &L, const ArgInfo &R) { - return L.Gain > R.Gain; - }); - - // Truncate the worklist to 'MaxClonesThreshold' candidates if - // necessary. - if (Worklist.size() > MaxClonesThreshold) { - LLVM_DEBUG(dbgs() << "FnSpecialization: number of candidates exceed " - << "the maximum number of clones threshold.\n" - << "Truncating worklist to " << MaxClonesThreshold - << " candidates.\n"); - Worklist.erase(Worklist.begin() + MaxClonesThreshold, - Worklist.end()); + if (I.second) + S.Gain = ForceFunctionSpecialization ? 1 : 0 - Cost; + if (!ForceFunctionSpecialization) + S.Gain += getSpecializationBonus(&FormalArg, ActualArg); + S.Args.push_back({&FormalArg, ActualArg}); } + } - if (IsPartial || Worklist.size() < ActualConstArg.size()) - for (auto &ActualArg : Worklist) - ActualArg.Partial = true; - - LLVM_DEBUG(dbgs() << "Sorted list of candidates by gain:\n"; - for (auto &C - : Worklist) { - dbgs() << "- Function = " << C.Fn->getName() << ", "; - dbgs() << "FormalArg = " << C.Arg->getName() << ", "; - dbgs() << "ActualArg = " << C.Const->getName() << ", "; - dbgs() << "Gain = " << C.Gain << "\n"; - }); - - // FIXME: Only one argument per function. - break; + // Remove unprofitable specializations. + Specializations.remove_if( + [](const auto &Entry) { return Entry.second.Gain <= 0; }); + + // Clear the MapVector and return the underlying vector. + WorkList = Specializations.takeVector(); + + // Sort the candidates in descending order. + llvm::stable_sort(WorkList, [](const auto &L, const auto &R) { + return L.second.Gain > R.second.Gain; + }); + + // Truncate the worklist to 'MaxClonesThreshold' candidates if necessary. + if (WorkList.size() > MaxClonesThreshold) { + LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " + << "the maximum number of clones threshold.\n" + << "FnSpecialization: Truncating worklist to " + << MaxClonesThreshold << " candidates.\n"); + WorkList.erase(WorkList.begin() + MaxClonesThreshold, WorkList.end()); } - return Worklist; + + LLVM_DEBUG(dbgs() << "FnSpecialization: Specializations for function " + << F->getName() << "\n"; + for (const auto &Entry + : WorkList) { + dbgs() << "FnSpecialization: Gain = " << Entry.second.Gain + << "\n"; + for (const ArgInfo &Arg : Entry.second.Args) + dbgs() << "FnSpecialization: FormalArg = " + << Arg.Formal->getNameOrAsOperand() + << ", ActualArg = " + << Arg.Actual->getNameOrAsOperand() << "\n"; + }); + + return !WorkList.empty(); } - bool isCandidateFunction(Function *F, FuncList &Specializations) { + bool isCandidateFunction(Function *F) { // Do not specialize the cloned function again. if (SpecializedFuncs.contains(F)) return false; @@ -461,44 +514,45 @@ private: return true; } - void specializeFunction(ArgInfo &AI, FuncList &Specializations) { - Function *Clone = cloneCandidateFunction(AI.Fn); - Argument *ClonedArg = Clone->getArg(AI.Arg->getArgNo()); + void specializeFunction(Function *F, SpecializationInfo &S, + FuncList &WorkList) { + ValueToValueMapTy Mappings; + Function *Clone = cloneCandidateFunction(F, Mappings); // Rewrite calls to the function so that they call the clone instead. - rewriteCallSites(AI.Fn, Clone, *ClonedArg, AI.Const); + rewriteCallSites(Clone, S.Args, Mappings); // Initialize the lattice state of the arguments of the function clone, // marking the argument on which we specialized the function constant // with the given value. - Solver.markArgInFuncSpecialization(AI.Fn, ClonedArg, AI.Const); + Solver.markArgInFuncSpecialization(Clone, S.Args); // Mark all the specialized functions - Specializations.push_back(Clone); + WorkList.push_back(Clone); NbFunctionsSpecialized++; // If the function has been completely specialized, the original function // is no longer needed. Mark it unreachable. - if (!AI.Partial) - Solver.markFunctionUnreachable(AI.Fn); + if (F->getNumUses() == 0 || all_of(F->users(), [F](User *U) { + if (auto *CS = dyn_cast<CallBase>(U)) + return CS->getFunction() == F; + return false; + })) { + Solver.markFunctionUnreachable(F); + FullySpecialized.insert(F); + } } /// Compute and return the cost of specializing function \p F. InstructionCost getSpecializationCost(Function *F) { - // Compute the code metrics for the function. - SmallPtrSet<const Value *, 32> EphValues; - CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues); - CodeMetrics Metrics; - for (BasicBlock &BB : *F) - Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues); - + CodeMetrics &Metrics = analyzeFunction(F); // If the code metrics reveal that we shouldn't duplicate the function, we // shouldn't specialize it. Set the specialization cost to Invalid. // Or if the lines of codes implies that this function is easy to get // inlined so that we shouldn't specialize it. - if (Metrics.notDuplicatable || + if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || (!ForceFunctionSpecialization && - Metrics.NumInsts < SmallFunctionThreshold)) { + *Metrics.NumInsts.getValue() < SmallFunctionThreshold)) { InstructionCost C{}; C.setInvalid(); return C; @@ -539,31 +593,20 @@ private: DominatorTree DT(*F); LoopInfo LI(DT); auto &TTI = (GetTTI)(*F); - LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A - << "\n"); + LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " + << C->getNameOrAsOperand() << "\n"); InstructionCost TotalCost = 0; for (auto *U : A->users()) { TotalCost += getUserBonus(U, TTI, LI); - LLVM_DEBUG(dbgs() << "FnSpecialization: User cost "; + LLVM_DEBUG(dbgs() << "FnSpecialization: User cost "; TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n"); } // The below heuristic is only concerned with exposing inlining // opportunities via indirect call promotion. If the argument is not a - // function pointer, give up. - if (!isa<PointerType>(A->getType()) || - !isa<FunctionType>(A->getType()->getPointerElementType())) - return TotalCost; - - // Since the argument is a function pointer, its incoming constant values - // should be functions or constant expressions. The code below attempts to - // look through cast expressions to find the function that will be called. - Value *CalledValue = C; - while (isa<ConstantExpr>(CalledValue) && - cast<ConstantExpr>(CalledValue)->isCast()) - CalledValue = cast<User>(CalledValue)->getOperand(0); - Function *CalledFunction = dyn_cast<Function>(CalledValue); + // (potentially casted) function pointer, give up. + Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); if (!CalledFunction) return TotalCost; @@ -603,6 +646,9 @@ private: Bonus += Params.DefaultThreshold; else if (IC.isVariable() && IC.getCostDelta() > 0) Bonus += IC.getCostDelta(); + + LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus + << " for user " << *U << "\n"); } return TotalCost + Bonus; @@ -615,15 +661,12 @@ private: /// specializing the function based on the incoming values of argument \p A /// would result in any significant optimization opportunities. If /// optimization opportunities exist, the constant values of \p A on which to - /// specialize the function are collected in \p Constants. If the values in - /// \p Constants represent the complete set of values that \p A can take on, - /// the function will be completely specialized, and the \p IsPartial flag is - /// set to false. + /// specialize the function are collected in \p Constants. /// /// \returns true if the function should be specialized on the given /// argument. - bool isArgumentInteresting(Argument *A, ConstList &Constants, - bool &IsPartial) { + bool isArgumentInteresting(Argument *A, + SmallVectorImpl<CallArgBinding> &Constants) { // For now, don't attempt to specialize functions based on the values of // composite types. if (!A->getType()->isSingleValueType() || A->user_empty()) @@ -632,8 +675,9 @@ private: // If the argument isn't overdefined, there's nothing to do. It should // already be constant. if (!Solver.getLatticeValueFor(A).isOverdefined()) { - LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already " - << "constant?\n"); + LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, argument " + << A->getNameOrAsOperand() + << " is already constant?\n"); return false; } @@ -650,20 +694,26 @@ private: // // TODO 2: this currently does not support constants, i.e. integer ranges. // - IsPartial = !getPossibleConstants(A, Constants); - LLVM_DEBUG(dbgs() << "FnSpecialization: interesting arg: " << *A << "\n"); + getPossibleConstants(A, Constants); + + if (Constants.empty()) + return false; + + LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " + << A->getNameOrAsOperand() << "\n"); return true; } /// Collect in \p Constants all the constant values that argument \p A can /// take on. - /// - /// \returns true if all of the values the argument can take on are constant - /// (e.g., the argument's parent function cannot be called with an - /// overdefined value). - bool getPossibleConstants(Argument *A, ConstList &Constants) { + void getPossibleConstants(Argument *A, + SmallVectorImpl<CallArgBinding> &Constants) { Function *F = A->getParent(); - bool AllConstant = true; + + // SCCP solver does not record an argument that will be constructed on + // stack. + if (A->hasByValAttr() && !F->onlyReadsMemory()) + return; // Iterate over all the call sites of the argument's parent function. for (User *U : F->users()) { @@ -672,10 +722,8 @@ private: auto &CS = *cast<CallBase>(U); // If the call site has attribute minsize set, that callsite won't be // specialized. - if (CS.hasFnAttr(Attribute::MinSize)) { - AllConstant = false; + if (CS.hasFnAttr(Attribute::MinSize)) continue; - } // If the parent of the call site will never be executed, we don't need // to worry about the passed value. @@ -684,13 +732,7 @@ private: auto *V = CS.getArgOperand(A->getArgNo()); if (isa<PoisonValue>(V)) - return false; - - // For now, constant expressions are fine but only if they are function - // calls. - if (auto *CE = dyn_cast<ConstantExpr>(V)) - if (!isa<Function>(CE->getOperand(0))) - return false; + return; // TrackValueOfGlobalVariable only tracks scalar global variables. if (auto *GV = dyn_cast<GlobalVariable>(V)) { @@ -698,36 +740,32 @@ private: // global values. if (!GV->isConstant()) if (!SpecializeOnAddresses) - return false; + return; if (!GV->getValueType()->isSingleValueType()) - return false; + return; } if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() || EnableSpecializationForLiteralConstant)) - Constants.push_back(cast<Constant>(V)); - else - AllConstant = false; + Constants.push_back({&CS, cast<Constant>(V)}); } - - // If the argument can only take on constant values, AllConstant will be - // true. - return AllConstant; } /// Rewrite calls to function \p F to call function \p Clone instead. /// - /// This function modifies calls to function \p F whose argument at index \p - /// ArgNo is equal to constant \p C. The calls are rewritten to call function - /// \p Clone instead. + /// This function modifies calls to function \p F as long as the actual + /// arguments match those in \p Args. Note that for recursive calls we + /// need to compare against the cloned formal arguments. /// /// Callsites that have been marked with the MinSize function attribute won't /// be specialized and rewritten. - void rewriteCallSites(Function *F, Function *Clone, Argument &Arg, - Constant *C) { - unsigned ArgNo = Arg.getArgNo(); - SmallVector<CallBase *, 4> CallSitesToRewrite; + void rewriteCallSites(Function *Clone, const SmallVectorImpl<ArgInfo> &Args, + ValueToValueMapTy &Mappings) { + assert(!Args.empty() && "Specialization without arguments"); + Function *F = Args[0].Formal->getParent(); + + SmallVector<CallBase *, 8> CallSitesToRewrite; for (auto *U : F->users()) { if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) continue; @@ -736,35 +774,50 @@ private: continue; CallSitesToRewrite.push_back(&CS); } + + LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing call sites of " + << F->getName() << " with " << Clone->getName() << "\n"); + for (auto *CS : CallSitesToRewrite) { - if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) || - CS->getArgOperand(ArgNo) == C) { + LLVM_DEBUG(dbgs() << "FnSpecialization: " + << CS->getFunction()->getName() << " ->" << *CS + << "\n"); + if (/* recursive call */ + (CS->getFunction() == Clone && + all_of(Args, + [CS, &Mappings](const ArgInfo &Arg) { + unsigned ArgNo = Arg.Formal->getArgNo(); + return CS->getArgOperand(ArgNo) == Mappings[Arg.Formal]; + })) || + /* normal call */ + all_of(Args, [CS](const ArgInfo &Arg) { + unsigned ArgNo = Arg.Formal->getArgNo(); + return CS->getArgOperand(ArgNo) == Arg.Actual; + })) { CS->setCalledFunction(Clone); Solver.markOverdefined(CS); } } } - void updateSpecializedFuncs(FuncList &FuncDecls, - FuncList &CurrentSpecializations) { - for (auto *SpecializedFunc : CurrentSpecializations) { - SpecializedFuncs.insert(SpecializedFunc); + void updateSpecializedFuncs(FuncList &Candidates, FuncList &WorkList) { + for (auto *F : WorkList) { + SpecializedFuncs.insert(F); // Initialize the state of the newly created functions, marking them // argument-tracked and executable. - if (SpecializedFunc->hasExactDefinition() && - !SpecializedFunc->hasFnAttribute(Attribute::Naked)) - Solver.addTrackedFunction(SpecializedFunc); + if (F->hasExactDefinition() && !F->hasFnAttribute(Attribute::Naked)) + Solver.addTrackedFunction(F); - Solver.addArgumentTrackedFunction(SpecializedFunc); - FuncDecls.push_back(SpecializedFunc); - Solver.markBlockExecutable(&SpecializedFunc->front()); + Solver.addArgumentTrackedFunction(F); + Candidates.push_back(F); + Solver.markBlockExecutable(&F->front()); // Replace the function arguments for the specialized functions. - for (Argument &Arg : SpecializedFunc->args()) + for (Argument &Arg : F->args()) if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg)) LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: " - << Arg.getName() << "\n"); + << Arg.getNameOrAsOperand() << "\n"); } } }; @@ -871,22 +924,26 @@ bool llvm::runFunctionSpecialization( // Initially resolve the constants in all the argument tracked functions. RunSCCPSolver(FuncDecls); - SmallVector<Function *, 2> CurrentSpecializations; + SmallVector<Function *, 8> WorkList; unsigned I = 0; while (FuncSpecializationMaxIters != I++ && - FS.specializeFunctions(FuncDecls, CurrentSpecializations)) { + FS.specializeFunctions(FuncDecls, WorkList)) { + LLVM_DEBUG(dbgs() << "FnSpecialization: Finished iteration " << I << "\n"); // Run the solver for the specialized functions. - RunSCCPSolver(CurrentSpecializations); + RunSCCPSolver(WorkList); // Replace some unresolved constant arguments. constantArgPropagation(FuncDecls, M, Solver); - CurrentSpecializations.clear(); + WorkList.clear(); Changed = true; } - // Clean up the IR by removing ssa_copy intrinsics. + LLVM_DEBUG(dbgs() << "FnSpecialization: Number of specializations = " + << NumFuncSpecialized << "\n"); + + // Remove any ssa_copy intrinsics that may have been introduced. removeSSACopy(M); return Changed; } |