aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp3079
1 files changed, 3079 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp
new file mode 100644
index 000000000000..28bc43aa1633
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/IROutliner.cpp
@@ -0,0 +1,3079 @@
+//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+// Implementation for the IROutliner which is used by the IROutliner Pass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/IROutliner.h"
+#include "llvm/Analysis/IRSimilarityIdentifier.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/IPO.h"
+#include <vector>
+
+#define DEBUG_TYPE "iroutliner"
+
+using namespace llvm;
+using namespace IRSimilarity;
+
+// A command flag to be used for debugging to exclude branches from similarity
+// matching and outlining.
+namespace llvm {
+extern cl::opt<bool> DisableBranches;
+
+// A command flag to be used for debugging to indirect calls from similarity
+// matching and outlining.
+extern cl::opt<bool> DisableIndirectCalls;
+
+// A command flag to be used for debugging to exclude intrinsics from similarity
+// matching and outlining.
+extern cl::opt<bool> DisableIntrinsics;
+
+} // namespace llvm
+
+// Set to true if the user wants the ir outliner to run on linkonceodr linkage
+// functions. This is false by default because the linker can dedupe linkonceodr
+// functions. Since the outliner is confined to a single module (modulo LTO),
+// this is off by default. It should, however, be the default behavior in
+// LTO.
+static cl::opt<bool> EnableLinkOnceODRIROutlining(
+ "enable-linkonceodr-ir-outlining", cl::Hidden,
+ cl::desc("Enable the IR outliner on linkonceodr functions"),
+ cl::init(false));
+
+// This is a debug option to test small pieces of code to ensure that outlining
+// works correctly.
+static cl::opt<bool> NoCostModel(
+ "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
+ cl::desc("Debug option to outline greedily, without restriction that "
+ "calculated benefit outweighs cost"));
+
+/// The OutlinableGroup holds all the overarching information for outlining
+/// a set of regions that are structurally similar to one another, such as the
+/// types of the overall function, the output blocks, the sets of stores needed
+/// and a list of the different regions. This information is used in the
+/// deduplication of extracted regions with the same structure.
+struct OutlinableGroup {
+ /// The sections that could be outlined
+ std::vector<OutlinableRegion *> Regions;
+
+ /// The argument types for the function created as the overall function to
+ /// replace the extracted function for each region.
+ std::vector<Type *> ArgumentTypes;
+ /// The FunctionType for the overall function.
+ FunctionType *OutlinedFunctionType = nullptr;
+ /// The Function for the collective overall function.
+ Function *OutlinedFunction = nullptr;
+
+ /// Flag for whether we should not consider this group of OutlinableRegions
+ /// for extraction.
+ bool IgnoreGroup = false;
+
+ /// The return blocks for the overall function.
+ DenseMap<Value *, BasicBlock *> EndBBs;
+
+ /// The PHIBlocks with their corresponding return block based on the return
+ /// value as the key.
+ DenseMap<Value *, BasicBlock *> PHIBlocks;
+
+ /// A set containing the different GVN store sets needed. Each array contains
+ /// a sorted list of the different values that need to be stored into output
+ /// registers.
+ DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
+
+ /// Flag for whether the \ref ArgumentTypes have been defined after the
+ /// extraction of the first region.
+ bool InputTypesSet = false;
+
+ /// The number of input values in \ref ArgumentTypes. Anything after this
+ /// index in ArgumentTypes is an output argument.
+ unsigned NumAggregateInputs = 0;
+
+ /// The mapping of the canonical numbering of the values in outlined sections
+ /// to specific arguments.
+ DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
+
+ /// The number of branches in the region target a basic block that is outside
+ /// of the region.
+ unsigned BranchesToOutside = 0;
+
+ /// Tracker counting backwards from the highest unsigned value possible to
+ /// avoid conflicting with the GVNs of assigned values. We start at -3 since
+ /// -2 and -1 are assigned by the DenseMap.
+ unsigned PHINodeGVNTracker = -3;
+
+ DenseMap<unsigned,
+ std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
+ PHINodeGVNToGVNs;
+ DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
+
+ /// The number of instructions that will be outlined by extracting \ref
+ /// Regions.
+ InstructionCost Benefit = 0;
+ /// The number of added instructions needed for the outlining of the \ref
+ /// Regions.
+ InstructionCost Cost = 0;
+
+ /// The argument that needs to be marked with the swifterr attribute. If not
+ /// needed, there is no value.
+ Optional<unsigned> SwiftErrorArgument;
+
+ /// For the \ref Regions, we look at every Value. If it is a constant,
+ /// we check whether it is the same in Region.
+ ///
+ /// \param [in,out] NotSame contains the global value numbers where the
+ /// constant is not always the same, and must be passed in as an argument.
+ void findSameConstants(DenseSet<unsigned> &NotSame);
+
+ /// For the regions, look at each set of GVN stores needed and account for
+ /// each combination. Add an argument to the argument types if there is
+ /// more than one combination.
+ ///
+ /// \param [in] M - The module we are outlining from.
+ void collectGVNStoreSets(Module &M);
+};
+
+/// Move the contents of \p SourceBB to before the last instruction of \p
+/// TargetBB.
+/// \param SourceBB - the BasicBlock to pull Instructions from.
+/// \param TargetBB - the BasicBlock to put Instruction into.
+static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
+ for (Instruction &I : llvm::make_early_inc_range(SourceBB))
+ I.moveBefore(TargetBB, TargetBB.end());
+}
+
+/// A function to sort the keys of \p Map, which must be a mapping of constant
+/// values to basic blocks and return it in \p SortedKeys
+///
+/// \param SortedKeys - The vector the keys will be return in and sorted.
+/// \param Map - The DenseMap containing keys to sort.
+static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
+ DenseMap<Value *, BasicBlock *> &Map) {
+ for (auto &VtoBB : Map)
+ SortedKeys.push_back(VtoBB.first);
+
+ stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
+ const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
+ const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
+ assert(RHSC && "Not a constant integer in return value?");
+ assert(LHSC && "Not a constant integer in return value?");
+
+ return LHSC->getLimitedValue() < RHSC->getLimitedValue();
+ });
+}
+
+Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
+ Value *V) {
+ Optional<unsigned> GVN = Candidate->getGVN(V);
+ assert(GVN && "No GVN for incoming value");
+ Optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
+ Optional<unsigned> FirstGVN = Other.Candidate->fromCanonicalNum(*CanonNum);
+ Optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
+ return FoundValueOpt.value_or(nullptr);
+}
+
+BasicBlock *
+OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
+ BasicBlock *BB) {
+ Instruction *FirstNonPHI = BB->getFirstNonPHI();
+ assert(FirstNonPHI && "block is empty?");
+ Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
+ if (!CorrespondingVal)
+ return nullptr;
+ BasicBlock *CorrespondingBlock =
+ cast<Instruction>(CorrespondingVal)->getParent();
+ return CorrespondingBlock;
+}
+
+/// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
+/// in \p Included to branch to BasicBlock \p Replace if they currently branch
+/// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
+/// when PHINodes are included in outlined regions.
+///
+/// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
+/// checked.
+/// \param Find - The successor block to be replaced.
+/// \param Replace - The new succesor block to branch to.
+/// \param Included - The set of blocks about to be outlined.
+static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
+ BasicBlock *Replace,
+ DenseSet<BasicBlock *> &Included) {
+ for (PHINode &PN : PHIBlock->phis()) {
+ for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
+ ++Idx) {
+ // Check if the incoming block is included in the set of blocks being
+ // outlined.
+ BasicBlock *Incoming = PN.getIncomingBlock(Idx);
+ if (!Included.contains(Incoming))
+ continue;
+
+ BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
+ assert(BI && "Not a branch instruction?");
+ // Look over the branching instructions into this block to see if we
+ // used to branch to Find in this outlined block.
+ for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
+ Succ++) {
+ // If we have found the block to replace, we do so here.
+ if (BI->getSuccessor(Succ) != Find)
+ continue;
+ BI->setSuccessor(Succ, Replace);
+ }
+ }
+ }
+}
+
+
+void OutlinableRegion::splitCandidate() {
+ assert(!CandidateSplit && "Candidate already split!");
+
+ Instruction *BackInst = Candidate->backInstruction();
+
+ Instruction *EndInst = nullptr;
+ // Check whether the last instruction is a terminator, if it is, we do
+ // not split on the following instruction. We leave the block as it is. We
+ // also check that this is not the last instruction in the Module, otherwise
+ // the check for whether the current following instruction matches the
+ // previously recorded instruction will be incorrect.
+ if (!BackInst->isTerminator() ||
+ BackInst->getParent() != &BackInst->getFunction()->back()) {
+ EndInst = Candidate->end()->Inst;
+ assert(EndInst && "Expected an end instruction?");
+ }
+
+ // We check if the current instruction following the last instruction in the
+ // region is the same as the recorded instruction following the last
+ // instruction. If they do not match, there could be problems in rewriting
+ // the program after outlining, so we ignore it.
+ if (!BackInst->isTerminator() &&
+ EndInst != BackInst->getNextNonDebugInstruction())
+ return;
+
+ Instruction *StartInst = (*Candidate->begin()).Inst;
+ assert(StartInst && "Expected a start instruction?");
+ StartBB = StartInst->getParent();
+ PrevBB = StartBB;
+
+ DenseSet<BasicBlock *> BBSet;
+ Candidate->getBasicBlocks(BBSet);
+
+ // We iterate over the instructions in the region, if we find a PHINode, we
+ // check if there are predecessors outside of the region, if there are,
+ // we ignore this region since we are unable to handle the severing of the
+ // phi node right now.
+
+ // TODO: Handle extraneous inputs for PHINodes through variable number of
+ // inputs, similar to how outputs are handled.
+ BasicBlock::iterator It = StartInst->getIterator();
+ EndBB = BackInst->getParent();
+ BasicBlock *IBlock;
+ BasicBlock *PHIPredBlock = nullptr;
+ bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
+ while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
+ unsigned NumPredsOutsideRegion = 0;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ if (!BBSet.contains(PN->getIncomingBlock(i))) {
+ PHIPredBlock = PN->getIncomingBlock(i);
+ ++NumPredsOutsideRegion;
+ continue;
+ }
+
+ // We must consider the case there the incoming block to the PHINode is
+ // the same as the final block of the OutlinableRegion. If this is the
+ // case, the branch from this block must also be outlined to be valid.
+ IBlock = PN->getIncomingBlock(i);
+ if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
+ PHIPredBlock = PN->getIncomingBlock(i);
+ ++NumPredsOutsideRegion;
+ }
+ }
+
+ if (NumPredsOutsideRegion > 1)
+ return;
+
+ It++;
+ }
+
+ // If the region starts with a PHINode, but is not the initial instruction of
+ // the BasicBlock, we ignore this region for now.
+ if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
+ return;
+
+ // If the region ends with a PHINode, but does not contain all of the phi node
+ // instructions of the region, we ignore it for now.
+ if (isa<PHINode>(BackInst) &&
+ BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
+ return;
+
+ // The basic block gets split like so:
+ // block: block:
+ // inst1 inst1
+ // inst2 inst2
+ // region1 br block_to_outline
+ // region2 block_to_outline:
+ // region3 -> region1
+ // region4 region2
+ // inst3 region3
+ // inst4 region4
+ // br block_after_outline
+ // block_after_outline:
+ // inst3
+ // inst4
+
+ std::string OriginalName = PrevBB->getName().str();
+
+ StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
+ PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
+ // If there was a PHINode with an incoming block outside the region,
+ // make sure is correctly updated in the newly split block.
+ if (PHIPredBlock)
+ PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
+
+ CandidateSplit = true;
+ if (!BackInst->isTerminator()) {
+ EndBB = EndInst->getParent();
+ FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
+ EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
+ FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
+ } else {
+ EndBB = BackInst->getParent();
+ EndsInBranch = true;
+ FollowBB = nullptr;
+ }
+
+ // Refind the basic block set.
+ BBSet.clear();
+ Candidate->getBasicBlocks(BBSet);
+ // For the phi nodes in the new starting basic block of the region, we
+ // reassign the targets of the basic blocks branching instructions.
+ replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
+ if (FollowBB)
+ replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
+}
+
+void OutlinableRegion::reattachCandidate() {
+ assert(CandidateSplit && "Candidate is not split!");
+
+ // The basic block gets reattached like so:
+ // block: block:
+ // inst1 inst1
+ // inst2 inst2
+ // br block_to_outline region1
+ // block_to_outline: -> region2
+ // region1 region3
+ // region2 region4
+ // region3 inst3
+ // region4 inst4
+ // br block_after_outline
+ // block_after_outline:
+ // inst3
+ // inst4
+ assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
+
+ assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
+ // Make sure PHINode references to the block we are merging into are
+ // updated to be incoming blocks from the predecessor to the current block.
+
+ // NOTE: If this is updated such that the outlined block can have more than
+ // one incoming block to a PHINode, this logic will have to updated
+ // to handle multiple precessors instead.
+
+ // We only need to update this if the outlined section contains a PHINode, if
+ // it does not, then the incoming block was never changed in the first place.
+ // On the other hand, if PrevBB has no predecessors, it means that all
+ // incoming blocks to the first block are contained in the region, and there
+ // will be nothing to update.
+ Instruction *StartInst = (*Candidate->begin()).Inst;
+ if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
+ assert(!PrevBB->hasNPredecessorsOrMore(2) &&
+ "PrevBB has more than one predecessor. Should be 0 or 1.");
+ BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
+ PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
+ }
+ PrevBB->getTerminator()->eraseFromParent();
+
+ // If we reattaching after outlining, we iterate over the phi nodes to
+ // the initial block, and reassign the branch instructions of the incoming
+ // blocks to the block we are remerging into.
+ if (!ExtractedFunction) {
+ DenseSet<BasicBlock *> BBSet;
+ Candidate->getBasicBlocks(BBSet);
+
+ replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
+ if (!EndsInBranch)
+ replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
+ }
+
+ moveBBContents(*StartBB, *PrevBB);
+
+ BasicBlock *PlacementBB = PrevBB;
+ if (StartBB != EndBB)
+ PlacementBB = EndBB;
+ if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
+ assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
+ assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
+ PlacementBB->getTerminator()->eraseFromParent();
+ moveBBContents(*FollowBB, *PlacementBB);
+ PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
+ FollowBB->eraseFromParent();
+ }
+
+ PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
+ StartBB->eraseFromParent();
+
+ // Make sure to save changes back to the StartBB.
+ StartBB = PrevBB;
+ EndBB = nullptr;
+ PrevBB = nullptr;
+ FollowBB = nullptr;
+
+ CandidateSplit = false;
+}
+
+/// Find whether \p V matches the Constants previously found for the \p GVN.
+///
+/// \param V - The value to check for consistency.
+/// \param GVN - The global value number assigned to \p V.
+/// \param GVNToConstant - The mapping of global value number to Constants.
+/// \returns true if the Value matches the Constant mapped to by V and false if
+/// it \p V is a Constant but does not match.
+/// \returns None if \p V is not a Constant.
+static Optional<bool>
+constantMatches(Value *V, unsigned GVN,
+ DenseMap<unsigned, Constant *> &GVNToConstant) {
+ // See if we have a constants
+ Constant *CST = dyn_cast<Constant>(V);
+ if (!CST)
+ return None;
+
+ // Holds a mapping from a global value number to a Constant.
+ DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
+ bool Inserted;
+
+
+ // If we have a constant, try to make a new entry in the GVNToConstant.
+ std::tie(GVNToConstantIt, Inserted) =
+ GVNToConstant.insert(std::make_pair(GVN, CST));
+ // If it was found and is not equal, it is not the same. We do not
+ // handle this case yet, and exit early.
+ if (Inserted || (GVNToConstantIt->second == CST))
+ return true;
+
+ return false;
+}
+
+InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
+ InstructionCost Benefit = 0;
+
+ // Estimate the benefit of outlining a specific sections of the program. We
+ // delegate mostly this task to the TargetTransformInfo so that if the target
+ // has specific changes, we can have a more accurate estimate.
+
+ // However, getInstructionCost delegates the code size calculation for
+ // arithmetic instructions to getArithmeticInstrCost in
+ // include/Analysis/TargetTransformImpl.h, where it always estimates that the
+ // code size for a division and remainder instruction to be equal to 4, and
+ // everything else to 1. This is not an accurate representation of the
+ // division instruction for targets that have a native division instruction.
+ // To be overly conservative, we only add 1 to the number of instructions for
+ // each division instruction.
+ for (IRInstructionData &ID : *Candidate) {
+ Instruction *I = ID.Inst;
+ switch (I->getOpcode()) {
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ case Instruction::SDiv:
+ case Instruction::SRem:
+ case Instruction::UDiv:
+ case Instruction::URem:
+ Benefit += 1;
+ break;
+ default:
+ Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
+ break;
+ }
+ }
+
+ return Benefit;
+}
+
+/// Check the \p OutputMappings structure for value \p Input, if it exists
+/// it has been used as an output for outlining, and has been renamed, and we
+/// return the new value, otherwise, we return the same value.
+///
+/// \param OutputMappings [in] - The mapping of values to their renamed value
+/// after being used as an output for an outlined region.
+/// \param Input [in] - The value to find the remapped value of, if it exists.
+/// \return The remapped value if it has been renamed, and the same value if has
+/// not.
+static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
+ Value *Input) {
+ DenseMap<Value *, Value *>::const_iterator OutputMapping =
+ OutputMappings.find(Input);
+ if (OutputMapping != OutputMappings.end())
+ return OutputMapping->second;
+ return Input;
+}
+
+/// Find whether \p Region matches the global value numbering to Constant
+/// mapping found so far.
+///
+/// \param Region - The OutlinableRegion we are checking for constants
+/// \param GVNToConstant - The mapping of global value number to Constants.
+/// \param NotSame - The set of global value numbers that do not have the same
+/// constant in each region.
+/// \returns true if all Constants are the same in every use of a Constant in \p
+/// Region and false if not
+static bool
+collectRegionsConstants(OutlinableRegion &Region,
+ DenseMap<unsigned, Constant *> &GVNToConstant,
+ DenseSet<unsigned> &NotSame) {
+ bool ConstantsTheSame = true;
+
+ IRSimilarityCandidate &C = *Region.Candidate;
+ for (IRInstructionData &ID : C) {
+
+ // Iterate over the operands in an instruction. If the global value number,
+ // assigned by the IRSimilarityCandidate, has been seen before, we check if
+ // the the number has been found to be not the same value in each instance.
+ for (Value *V : ID.OperVals) {
+ Optional<unsigned> GVNOpt = C.getGVN(V);
+ assert(GVNOpt && "Expected a GVN for operand?");
+ unsigned GVN = GVNOpt.value();
+
+ // Check if this global value has been found to not be the same already.
+ if (NotSame.contains(GVN)) {
+ if (isa<Constant>(V))
+ ConstantsTheSame = false;
+ continue;
+ }
+
+ // If it has been the same so far, we check the value for if the
+ // associated Constant value match the previous instances of the same
+ // global value number. If the global value does not map to a Constant,
+ // it is considered to not be the same value.
+ Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
+ if (ConstantMatches) {
+ if (ConstantMatches.value())
+ continue;
+ else
+ ConstantsTheSame = false;
+ }
+
+ // While this value is a register, it might not have been previously,
+ // make sure we don't already have a constant mapped to this global value
+ // number.
+ if (GVNToConstant.find(GVN) != GVNToConstant.end())
+ ConstantsTheSame = false;
+
+ NotSame.insert(GVN);
+ }
+ }
+
+ return ConstantsTheSame;
+}
+
+void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
+ DenseMap<unsigned, Constant *> GVNToConstant;
+
+ for (OutlinableRegion *Region : Regions)
+ collectRegionsConstants(*Region, GVNToConstant, NotSame);
+}
+
+void OutlinableGroup::collectGVNStoreSets(Module &M) {
+ for (OutlinableRegion *OS : Regions)
+ OutputGVNCombinations.insert(OS->GVNStores);
+
+ // We are adding an extracted argument to decide between which output path
+ // to use in the basic block. It is used in a switch statement and only
+ // needs to be an integer.
+ if (OutputGVNCombinations.size() > 1)
+ ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
+}
+
+/// Get the subprogram if it exists for one of the outlined regions.
+///
+/// \param [in] Group - The set of regions to find a subprogram for.
+/// \returns the subprogram if it exists, or nullptr.
+static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
+ for (OutlinableRegion *OS : Group.Regions)
+ if (Function *F = OS->Call->getFunction())
+ if (DISubprogram *SP = F->getSubprogram())
+ return SP;
+
+ return nullptr;
+}
+
+Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
+ unsigned FunctionNameSuffix) {
+ assert(!Group.OutlinedFunction && "Function is already defined!");
+
+ Type *RetTy = Type::getVoidTy(M.getContext());
+ // All extracted functions _should_ have the same return type at this point
+ // since the similarity identifier ensures that all branches outside of the
+ // region occur in the same place.
+
+ // NOTE: Should we ever move to the model that uses a switch at every point
+ // needed, meaning that we could branch within the region or out, it is
+ // possible that we will need to switch to using the most general case all of
+ // the time.
+ for (OutlinableRegion *R : Group.Regions) {
+ Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
+ if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
+ (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
+ RetTy = ExtractedFuncType;
+ }
+
+ Group.OutlinedFunctionType = FunctionType::get(
+ RetTy, Group.ArgumentTypes, false);
+
+ // These functions will only be called from within the same module, so
+ // we can set an internal linkage.
+ Group.OutlinedFunction = Function::Create(
+ Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
+ "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
+
+ // Transfer the swifterr attribute to the correct function parameter.
+ if (Group.SwiftErrorArgument)
+ Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.value(),
+ Attribute::SwiftError);
+
+ Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
+ Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
+
+ // If there's a DISubprogram associated with this outlined function, then
+ // emit debug info for the outlined function.
+ if (DISubprogram *SP = getSubprogramOrNull(Group)) {
+ Function *F = Group.OutlinedFunction;
+ // We have a DISubprogram. Get its DICompileUnit.
+ DICompileUnit *CU = SP->getUnit();
+ DIBuilder DB(M, true, CU);
+ DIFile *Unit = SP->getFile();
+ Mangler Mg;
+ // Get the mangled name of the function for the linkage name.
+ std::string Dummy;
+ llvm::raw_string_ostream MangledNameStream(Dummy);
+ Mg.getNameWithPrefix(MangledNameStream, F, false);
+
+ DISubprogram *OutlinedSP = DB.createFunction(
+ Unit /* Context */, F->getName(), MangledNameStream.str(),
+ Unit /* File */,
+ 0 /* Line 0 is reserved for compiler-generated code. */,
+ DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
+ 0, /* Line 0 is reserved for compiler-generated code. */
+ DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
+ /* Outlined code is optimized code by definition. */
+ DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
+
+ // Don't add any new variables to the subprogram.
+ DB.finalizeSubprogram(OutlinedSP);
+
+ // Attach subprogram to the function.
+ F->setSubprogram(OutlinedSP);
+ // We're done with the DIBuilder.
+ DB.finalize();
+ }
+
+ return Group.OutlinedFunction;
+}
+
+/// Move each BasicBlock in \p Old to \p New.
+///
+/// \param [in] Old - The function to move the basic blocks from.
+/// \param [in] New - The function to move the basic blocks to.
+/// \param [out] NewEnds - The return blocks of the new overall function.
+static void moveFunctionData(Function &Old, Function &New,
+ DenseMap<Value *, BasicBlock *> &NewEnds) {
+ for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
+ CurrBB.removeFromParent();
+ CurrBB.insertInto(&New);
+ Instruction *I = CurrBB.getTerminator();
+
+ // For each block we find a return instruction is, it is a potential exit
+ // path for the function. We keep track of each block based on the return
+ // value here.
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
+ NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
+
+ std::vector<Instruction *> DebugInsts;
+
+ for (Instruction &Val : CurrBB) {
+ // We must handle the scoping of called functions differently than
+ // other outlined instructions.
+ if (!isa<CallInst>(&Val)) {
+ // Remove the debug information for outlined functions.
+ Val.setDebugLoc(DebugLoc());
+
+ // Loop info metadata may contain line locations. Update them to have no
+ // value in the new subprogram since the outlined code could be from
+ // several locations.
+ auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
+ if (DISubprogram *SP = New.getSubprogram())
+ if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
+ return DILocation::get(New.getContext(), Loc->getLine(),
+ Loc->getColumn(), SP, nullptr);
+ return MD;
+ };
+ updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
+ continue;
+ }
+
+ // From this point we are only handling call instructions.
+ CallInst *CI = cast<CallInst>(&Val);
+
+ // We add any debug statements here, to be removed after. Since the
+ // instructions originate from many different locations in the program,
+ // it will cause incorrect reporting from a debugger if we keep the
+ // same debug instructions.
+ if (isa<DbgInfoIntrinsic>(CI)) {
+ DebugInsts.push_back(&Val);
+ continue;
+ }
+
+ // Edit the scope of called functions inside of outlined functions.
+ if (DISubprogram *SP = New.getSubprogram()) {
+ DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
+ Val.setDebugLoc(DI);
+ }
+ }
+
+ for (Instruction *I : DebugInsts)
+ I->eraseFromParent();
+ }
+}
+
+/// Find the the constants that will need to be lifted into arguments
+/// as they are not the same in each instance of the region.
+///
+/// \param [in] C - The IRSimilarityCandidate containing the region we are
+/// analyzing.
+/// \param [in] NotSame - The set of global value numbers that do not have a
+/// single Constant across all OutlinableRegions similar to \p C.
+/// \param [out] Inputs - The list containing the global value numbers of the
+/// arguments needed for the region of code.
+static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
+ std::vector<unsigned> &Inputs) {
+ DenseSet<unsigned> Seen;
+ // Iterate over the instructions, and find what constants will need to be
+ // extracted into arguments.
+ for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
+ IDIt != EndIDIt; IDIt++) {
+ for (Value *V : (*IDIt).OperVals) {
+ // Since these are stored before any outlining, they will be in the
+ // global value numbering.
+ unsigned GVN = *C.getGVN(V);
+ if (isa<Constant>(V))
+ if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
+ Inputs.push_back(GVN);
+ Seen.insert(GVN);
+ }
+ }
+ }
+}
+
+/// Find the GVN for the inputs that have been found by the CodeExtractor.
+///
+/// \param [in] C - The IRSimilarityCandidate containing the region we are
+/// analyzing.
+/// \param [in] CurrentInputs - The set of inputs found by the
+/// CodeExtractor.
+/// \param [in] OutputMappings - The mapping of values that have been replaced
+/// by a new output value.
+/// \param [out] EndInputNumbers - The global value numbers for the extracted
+/// arguments.
+static void mapInputsToGVNs(IRSimilarityCandidate &C,
+ SetVector<Value *> &CurrentInputs,
+ const DenseMap<Value *, Value *> &OutputMappings,
+ std::vector<unsigned> &EndInputNumbers) {
+ // Get the Global Value Number for each input. We check if the Value has been
+ // replaced by a different value at output, and use the original value before
+ // replacement.
+ for (Value *Input : CurrentInputs) {
+ assert(Input && "Have a nullptr as an input");
+ if (OutputMappings.find(Input) != OutputMappings.end())
+ Input = OutputMappings.find(Input)->second;
+ assert(C.getGVN(Input) && "Could not find a numbering for the given input");
+ EndInputNumbers.push_back(C.getGVN(Input).value());
+ }
+}
+
+/// Find the original value for the \p ArgInput values if any one of them was
+/// replaced during a previous extraction.
+///
+/// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
+/// \param [in] OutputMappings - The mapping of values that have been replaced
+/// by a new output value.
+/// \param [out] RemappedArgInputs - The remapped values according to
+/// \p OutputMappings that will be extracted.
+static void
+remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
+ const DenseMap<Value *, Value *> &OutputMappings,
+ SetVector<Value *> &RemappedArgInputs) {
+ // Get the global value number for each input that will be extracted as an
+ // argument by the code extractor, remapping if needed for reloaded values.
+ for (Value *Input : ArgInputs) {
+ if (OutputMappings.find(Input) != OutputMappings.end())
+ Input = OutputMappings.find(Input)->second;
+ RemappedArgInputs.insert(Input);
+ }
+}
+
+/// Find the input GVNs and the output values for a region of Instructions.
+/// Using the code extractor, we collect the inputs to the extracted function.
+///
+/// The \p Region can be identified as needing to be ignored in this function.
+/// It should be checked whether it should be ignored after a call to this
+/// function.
+///
+/// \param [in,out] Region - The region of code to be analyzed.
+/// \param [out] InputGVNs - The global value numbers for the extracted
+/// arguments.
+/// \param [in] NotSame - The global value numbers in the region that do not
+/// have the same constant value in the regions structurally similar to
+/// \p Region.
+/// \param [in] OutputMappings - The mapping of values that have been replaced
+/// by a new output value after extraction.
+/// \param [out] ArgInputs - The values of the inputs to the extracted function.
+/// \param [out] Outputs - The set of values extracted by the CodeExtractor
+/// as outputs.
+static void getCodeExtractorArguments(
+ OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
+ DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
+ SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
+ IRSimilarityCandidate &C = *Region.Candidate;
+
+ // OverallInputs are the inputs to the region found by the CodeExtractor,
+ // SinkCands and HoistCands are used by the CodeExtractor to find sunken
+ // allocas of values whose lifetimes are contained completely within the
+ // outlined region. PremappedInputs are the arguments found by the
+ // CodeExtractor, removing conditions such as sunken allocas, but that
+ // may need to be remapped due to the extracted output values replacing
+ // the original values. We use DummyOutputs for this first run of finding
+ // inputs and outputs since the outputs could change during findAllocas,
+ // the correct set of extracted outputs will be in the final Outputs ValueSet.
+ SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
+ DummyOutputs;
+
+ // Use the code extractor to get the inputs and outputs, without sunken
+ // allocas or removing llvm.assumes.
+ CodeExtractor *CE = Region.CE;
+ CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
+ assert(Region.StartBB && "Region must have a start BasicBlock!");
+ Function *OrigF = Region.StartBB->getParent();
+ CodeExtractorAnalysisCache CEAC(*OrigF);
+ BasicBlock *Dummy = nullptr;
+
+ // The region may be ineligible due to VarArgs in the parent function. In this
+ // case we ignore the region.
+ if (!CE->isEligible()) {
+ Region.IgnoreRegion = true;
+ return;
+ }
+
+ // Find if any values are going to be sunk into the function when extracted
+ CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
+ CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
+
+ // TODO: Support regions with sunken allocas: values whose lifetimes are
+ // contained completely within the outlined region. These are not guaranteed
+ // to be the same in every region, so we must elevate them all to arguments
+ // when they appear. If these values are not equal, it means there is some
+ // Input in OverallInputs that was removed for ArgInputs.
+ if (OverallInputs.size() != PremappedInputs.size()) {
+ Region.IgnoreRegion = true;
+ return;
+ }
+
+ findConstants(C, NotSame, InputGVNs);
+
+ mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
+
+ remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
+ ArgInputs);
+
+ // Sort the GVNs, since we now have constants included in the \ref InputGVNs
+ // we need to make sure they are in a deterministic order.
+ stable_sort(InputGVNs);
+}
+
+/// Look over the inputs and map each input argument to an argument in the
+/// overall function for the OutlinableRegions. This creates a way to replace
+/// the arguments of the extracted function with the arguments of the new
+/// overall function.
+///
+/// \param [in,out] Region - The region of code to be analyzed.
+/// \param [in] InputGVNs - The global value numbering of the input values
+/// collected.
+/// \param [in] ArgInputs - The values of the arguments to the extracted
+/// function.
+static void
+findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
+ std::vector<unsigned> &InputGVNs,
+ SetVector<Value *> &ArgInputs) {
+
+ IRSimilarityCandidate &C = *Region.Candidate;
+ OutlinableGroup &Group = *Region.Parent;
+
+ // This counts the argument number in the overall function.
+ unsigned TypeIndex = 0;
+
+ // This counts the argument number in the extracted function.
+ unsigned OriginalIndex = 0;
+
+ // Find the mapping of the extracted arguments to the arguments for the
+ // overall function. Since there may be extra arguments in the overall
+ // function to account for the extracted constants, we have two different
+ // counters as we find extracted arguments, and as we come across overall
+ // arguments.
+
+ // Additionally, in our first pass, for the first extracted function,
+ // we find argument locations for the canonical value numbering. This
+ // numbering overrides any discovered location for the extracted code.
+ for (unsigned InputVal : InputGVNs) {
+ Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
+ assert(CanonicalNumberOpt && "Canonical number not found?");
+ unsigned CanonicalNumber = CanonicalNumberOpt.value();
+
+ Optional<Value *> InputOpt = C.fromGVN(InputVal);
+ assert(InputOpt && "Global value number not found?");
+ Value *Input = InputOpt.value();
+
+ DenseMap<unsigned, unsigned>::iterator AggArgIt =
+ Group.CanonicalNumberToAggArg.find(CanonicalNumber);
+
+ if (!Group.InputTypesSet) {
+ Group.ArgumentTypes.push_back(Input->getType());
+ // If the input value has a swifterr attribute, make sure to mark the
+ // argument in the overall function.
+ if (Input->isSwiftError()) {
+ assert(
+ !Group.SwiftErrorArgument &&
+ "Argument already marked with swifterr for this OutlinableGroup!");
+ Group.SwiftErrorArgument = TypeIndex;
+ }
+ }
+
+ // Check if we have a constant. If we do add it to the overall argument
+ // number to Constant map for the region, and continue to the next input.
+ if (Constant *CST = dyn_cast<Constant>(Input)) {
+ if (AggArgIt != Group.CanonicalNumberToAggArg.end())
+ Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
+ else {
+ Group.CanonicalNumberToAggArg.insert(
+ std::make_pair(CanonicalNumber, TypeIndex));
+ Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
+ }
+ TypeIndex++;
+ continue;
+ }
+
+ // It is not a constant, we create the mapping from extracted argument list
+ // to the overall argument list, using the canonical location, if it exists.
+ assert(ArgInputs.count(Input) && "Input cannot be found!");
+
+ if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
+ if (OriginalIndex != AggArgIt->second)
+ Region.ChangedArgOrder = true;
+ Region.ExtractedArgToAgg.insert(
+ std::make_pair(OriginalIndex, AggArgIt->second));
+ Region.AggArgToExtracted.insert(
+ std::make_pair(AggArgIt->second, OriginalIndex));
+ } else {
+ Group.CanonicalNumberToAggArg.insert(
+ std::make_pair(CanonicalNumber, TypeIndex));
+ Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
+ Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
+ }
+ OriginalIndex++;
+ TypeIndex++;
+ }
+
+ // If the function type definitions for the OutlinableGroup holding the region
+ // have not been set, set the length of the inputs here. We should have the
+ // same inputs for all of the different regions contained in the
+ // OutlinableGroup since they are all structurally similar to one another.
+ if (!Group.InputTypesSet) {
+ Group.NumAggregateInputs = TypeIndex;
+ Group.InputTypesSet = true;
+ }
+
+ Region.NumExtractedInputs = OriginalIndex;
+}
+
+/// Check if the \p V has any uses outside of the region other than \p PN.
+///
+/// \param V [in] - The value to check.
+/// \param PHILoc [in] - The location in the PHINode of \p V.
+/// \param PN [in] - The PHINode using \p V.
+/// \param Exits [in] - The potential blocks we exit to from the outlined
+/// region.
+/// \param BlocksInRegion [in] - The basic blocks contained in the region.
+/// \returns true if \p V has any use soutside its region other than \p PN.
+static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
+ SmallPtrSet<BasicBlock *, 1> &Exits,
+ DenseSet<BasicBlock *> &BlocksInRegion) {
+ // We check to see if the value is used by the PHINode from some other
+ // predecessor not included in the region. If it is, we make sure
+ // to keep it as an output.
+ if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
+ [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
+ return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
+ !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
+ }))
+ return true;
+
+ // Check if the value is used by any other instructions outside the region.
+ return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
+ Instruction *I = dyn_cast<Instruction>(U);
+ if (!I)
+ return false;
+
+ // If the use of the item is inside the region, we skip it. Uses
+ // inside the region give us useful information about how the item could be
+ // used as an output.
+ BasicBlock *Parent = I->getParent();
+ if (BlocksInRegion.contains(Parent))
+ return false;
+
+ // If it's not a PHINode then we definitely know the use matters. This
+ // output value will not completely combined with another item in a PHINode
+ // as it is directly reference by another non-phi instruction
+ if (!isa<PHINode>(I))
+ return true;
+
+ // If we have a PHINode outside one of the exit locations, then it
+ // can be considered an outside use as well. If there is a PHINode
+ // contained in the Exit where this values use matters, it will be
+ // caught when we analyze that PHINode.
+ if (!Exits.contains(Parent))
+ return true;
+
+ return false;
+ });
+}
+
+/// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
+/// considered outputs. A PHINodes is an output when more than one incoming
+/// value has been marked by the CodeExtractor as an output.
+///
+/// \param CurrentExitFromRegion [in] - The block to analyze.
+/// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
+/// region.
+/// \param RegionBlocks [in] - The basic blocks in the region.
+/// \param Outputs [in, out] - The existing outputs for the region, we may add
+/// PHINodes to this as we find that they replace output values.
+/// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
+/// totally replaced by a PHINode.
+/// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
+/// in PHINodes, but have other uses, and should still be considered outputs.
+static void analyzeExitPHIsForOutputUses(
+ BasicBlock *CurrentExitFromRegion,
+ SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
+ DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
+ DenseSet<Value *> &OutputsReplacedByPHINode,
+ DenseSet<Value *> &OutputsWithNonPhiUses) {
+ for (PHINode &PN : CurrentExitFromRegion->phis()) {
+ // Find all incoming values from the outlining region.
+ SmallVector<unsigned, 2> IncomingVals;
+ for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
+ if (RegionBlocks.contains(PN.getIncomingBlock(I)))
+ IncomingVals.push_back(I);
+
+ // Do not process PHI if there are no predecessors from region.
+ unsigned NumIncomingVals = IncomingVals.size();
+ if (NumIncomingVals == 0)
+ continue;
+
+ // If there is one predecessor, we mark it as a value that needs to be kept
+ // as an output.
+ if (NumIncomingVals == 1) {
+ Value *V = PN.getIncomingValue(*IncomingVals.begin());
+ OutputsWithNonPhiUses.insert(V);
+ OutputsReplacedByPHINode.erase(V);
+ continue;
+ }
+
+ // This PHINode will be used as an output value, so we add it to our list.
+ Outputs.insert(&PN);
+
+ // Not all of the incoming values should be ignored as other inputs and
+ // outputs may have uses in outlined region. If they have other uses
+ // outside of the single PHINode we should not skip over it.
+ for (unsigned Idx : IncomingVals) {
+ Value *V = PN.getIncomingValue(Idx);
+ if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
+ OutputsWithNonPhiUses.insert(V);
+ OutputsReplacedByPHINode.erase(V);
+ continue;
+ }
+ if (!OutputsWithNonPhiUses.contains(V))
+ OutputsReplacedByPHINode.insert(V);
+ }
+ }
+}
+
+// Represents the type for the unsigned number denoting the output number for
+// phi node, along with the canonical number for the exit block.
+using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
+// The list of canonical numbers for the incoming values to a PHINode.
+using CanonList = SmallVector<unsigned, 2>;
+// The pair type representing the set of canonical values being combined in the
+// PHINode, along with the location data for the PHINode.
+using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
+
+/// Encode \p PND as an integer for easy lookup based on the argument location,
+/// the parent BasicBlock canonical numbering, and the canonical numbering of
+/// the values stored in the PHINode.
+///
+/// \param PND - The data to hash.
+/// \returns The hash code of \p PND.
+static hash_code encodePHINodeData(PHINodeData &PND) {
+ return llvm::hash_combine(
+ llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
+ llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
+}
+
+/// Create a special GVN for PHINodes that will be used outside of
+/// the region. We create a hash code based on the Canonical number of the
+/// parent BasicBlock, the canonical numbering of the values stored in the
+/// PHINode and the aggregate argument location. This is used to find whether
+/// this PHINode type has been given a canonical numbering already. If not, we
+/// assign it a value and store it for later use. The value is returned to
+/// identify different output schemes for the set of regions.
+///
+/// \param Region - The region that \p PN is an output for.
+/// \param PN - The PHINode we are analyzing.
+/// \param Blocks - The blocks for the region we are analyzing.
+/// \param AggArgIdx - The argument \p PN will be stored into.
+/// \returns An optional holding the assigned canonical number, or None if
+/// there is some attribute of the PHINode blocking it from being used.
+static Optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
+ PHINode *PN,
+ DenseSet<BasicBlock *> &Blocks,
+ unsigned AggArgIdx) {
+ OutlinableGroup &Group = *Region.Parent;
+ IRSimilarityCandidate &Cand = *Region.Candidate;
+ BasicBlock *PHIBB = PN->getParent();
+ CanonList PHIGVNs;
+ Value *Incoming;
+ BasicBlock *IncomingBlock;
+ for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
+ Incoming = PN->getIncomingValue(Idx);
+ IncomingBlock = PN->getIncomingBlock(Idx);
+ // If we cannot find a GVN, and the incoming block is included in the region
+ // this means that the input to the PHINode is not included in the region we
+ // are trying to analyze, meaning, that if it was outlined, we would be
+ // adding an extra input. We ignore this case for now, and so ignore the
+ // region.
+ Optional<unsigned> OGVN = Cand.getGVN(Incoming);
+ if (!OGVN && Blocks.contains(IncomingBlock)) {
+ Region.IgnoreRegion = true;
+ return None;
+ }
+
+ // If the incoming block isn't in the region, we don't have to worry about
+ // this incoming value.
+ if (!Blocks.contains(IncomingBlock))
+ continue;
+
+ // Collect the canonical numbers of the values in the PHINode.
+ unsigned GVN = *OGVN;
+ OGVN = Cand.getCanonicalNum(GVN);
+ assert(OGVN && "No GVN found for incoming value?");
+ PHIGVNs.push_back(*OGVN);
+
+ // Find the incoming block and use the canonical numbering as well to define
+ // the hash for the PHINode.
+ OGVN = Cand.getGVN(IncomingBlock);
+
+ // If there is no number for the incoming block, it is becaause we have
+ // split the candidate basic blocks. So we use the previous block that it
+ // was split from to find the valid global value numbering for the PHINode.
+ if (!OGVN) {
+ assert(Cand.getStartBB() == IncomingBlock &&
+ "Unknown basic block used in exit path PHINode.");
+
+ BasicBlock *PrevBlock = nullptr;
+ // Iterate over the predecessors to the incoming block of the
+ // PHINode, when we find a block that is not contained in the region
+ // we know that this is the first block that we split from, and should
+ // have a valid global value numbering.
+ for (BasicBlock *Pred : predecessors(IncomingBlock))
+ if (!Blocks.contains(Pred)) {
+ PrevBlock = Pred;
+ break;
+ }
+ assert(PrevBlock && "Expected a predecessor not in the reigon!");
+ OGVN = Cand.getGVN(PrevBlock);
+ }
+ GVN = *OGVN;
+ OGVN = Cand.getCanonicalNum(GVN);
+ assert(OGVN && "No GVN found for incoming block?");
+ PHIGVNs.push_back(*OGVN);
+ }
+
+ // Now that we have the GVNs for the incoming values, we are going to combine
+ // them with the GVN of the incoming bock, and the output location of the
+ // PHINode to generate a hash value representing this instance of the PHINode.
+ DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
+ DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
+ Optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
+ assert(BBGVN && "Could not find GVN for the incoming block!");
+
+ BBGVN = Cand.getCanonicalNum(BBGVN.value());
+ assert(BBGVN && "Could not find canonical number for the incoming block!");
+ // Create a pair of the exit block canonical value, and the aggregate
+ // argument location, connected to the canonical numbers stored in the
+ // PHINode.
+ PHINodeData TemporaryPair =
+ std::make_pair(std::make_pair(BBGVN.value(), AggArgIdx), PHIGVNs);
+ hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
+
+ // Look for and create a new entry in our connection between canonical
+ // numbers for PHINodes, and the set of objects we just created.
+ GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
+ if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
+ bool Inserted = false;
+ std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
+ std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
+ std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
+ std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
+ }
+
+ return GVNToPHIIt->second;
+}
+
+/// Create a mapping of the output arguments for the \p Region to the output
+/// arguments of the overall outlined function.
+///
+/// \param [in,out] Region - The region of code to be analyzed.
+/// \param [in] Outputs - The values found by the code extractor.
+static void
+findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
+ SetVector<Value *> &Outputs) {
+ OutlinableGroup &Group = *Region.Parent;
+ IRSimilarityCandidate &C = *Region.Candidate;
+
+ SmallVector<BasicBlock *> BE;
+ DenseSet<BasicBlock *> BlocksInRegion;
+ C.getBasicBlocks(BlocksInRegion, BE);
+
+ // Find the exits to the region.
+ SmallPtrSet<BasicBlock *, 1> Exits;
+ for (BasicBlock *Block : BE)
+ for (BasicBlock *Succ : successors(Block))
+ if (!BlocksInRegion.contains(Succ))
+ Exits.insert(Succ);
+
+ // After determining which blocks exit to PHINodes, we add these PHINodes to
+ // the set of outputs to be processed. We also check the incoming values of
+ // the PHINodes for whether they should no longer be considered outputs.
+ DenseSet<Value *> OutputsReplacedByPHINode;
+ DenseSet<Value *> OutputsWithNonPhiUses;
+ for (BasicBlock *ExitBB : Exits)
+ analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
+ OutputsReplacedByPHINode,
+ OutputsWithNonPhiUses);
+
+ // This counts the argument number in the extracted function.
+ unsigned OriginalIndex = Region.NumExtractedInputs;
+
+ // This counts the argument number in the overall function.
+ unsigned TypeIndex = Group.NumAggregateInputs;
+ bool TypeFound;
+ DenseSet<unsigned> AggArgsUsed;
+
+ // Iterate over the output types and identify if there is an aggregate pointer
+ // type whose base type matches the current output type. If there is, we mark
+ // that we will use this output register for this value. If not we add another
+ // type to the overall argument type list. We also store the GVNs used for
+ // stores to identify which values will need to be moved into an special
+ // block that holds the stores to the output registers.
+ for (Value *Output : Outputs) {
+ TypeFound = false;
+ // We can do this since it is a result value, and will have a number
+ // that is necessarily the same. BUT if in the future, the instructions
+ // do not have to be in same order, but are functionally the same, we will
+ // have to use a different scheme, as one-to-one correspondence is not
+ // guaranteed.
+ unsigned ArgumentSize = Group.ArgumentTypes.size();
+
+ // If the output is combined in a PHINode, we make sure to skip over it.
+ if (OutputsReplacedByPHINode.contains(Output))
+ continue;
+
+ unsigned AggArgIdx = 0;
+ for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
+ if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
+ continue;
+
+ if (AggArgsUsed.contains(Jdx))
+ continue;
+
+ TypeFound = true;
+ AggArgsUsed.insert(Jdx);
+ Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
+ Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
+ AggArgIdx = Jdx;
+ break;
+ }
+
+ // We were unable to find an unused type in the output type set that matches
+ // the output, so we add a pointer type to the argument types of the overall
+ // function to handle this output and create a mapping to it.
+ if (!TypeFound) {
+ Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
+ // Mark the new pointer type as the last value in the aggregate argument
+ // list.
+ unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
+ AggArgsUsed.insert(ArgTypeIdx);
+ Region.ExtractedArgToAgg.insert(
+ std::make_pair(OriginalIndex, ArgTypeIdx));
+ Region.AggArgToExtracted.insert(
+ std::make_pair(ArgTypeIdx, OriginalIndex));
+ AggArgIdx = ArgTypeIdx;
+ }
+
+ // TODO: Adapt to the extra input from the PHINode.
+ PHINode *PN = dyn_cast<PHINode>(Output);
+
+ Optional<unsigned> GVN;
+ if (PN && !BlocksInRegion.contains(PN->getParent())) {
+ // Values outside the region can be combined into PHINode when we
+ // have multiple exits. We collect both of these into a list to identify
+ // which values are being used in the PHINode. Each list identifies a
+ // different PHINode, and a different output. We store the PHINode as it's
+ // own canonical value. These canonical values are also dependent on the
+ // output argument it is saved to.
+
+ // If two PHINodes have the same canonical values, but different aggregate
+ // argument locations, then they will have distinct Canonical Values.
+ GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
+ if (!GVN)
+ return;
+ } else {
+ // If we do not have a PHINode we use the global value numbering for the
+ // output value, to find the canonical number to add to the set of stored
+ // values.
+ GVN = C.getGVN(Output);
+ GVN = C.getCanonicalNum(*GVN);
+ }
+
+ // Each region has a potentially unique set of outputs. We save which
+ // values are output in a list of canonical values so we can differentiate
+ // among the different store schemes.
+ Region.GVNStores.push_back(*GVN);
+
+ OriginalIndex++;
+ TypeIndex++;
+ }
+
+ // We sort the stored values to make sure that we are not affected by analysis
+ // order when determining what combination of items were stored.
+ stable_sort(Region.GVNStores);
+}
+
+void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
+ DenseSet<unsigned> &NotSame) {
+ std::vector<unsigned> Inputs;
+ SetVector<Value *> ArgInputs, Outputs;
+
+ getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
+ Outputs);
+
+ if (Region.IgnoreRegion)
+ return;
+
+ // Map the inputs found by the CodeExtractor to the arguments found for
+ // the overall function.
+ findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
+
+ // Map the outputs found by the CodeExtractor to the arguments found for
+ // the overall function.
+ findExtractedOutputToOverallOutputMapping(Region, Outputs);
+}
+
+/// Replace the extracted function in the Region with a call to the overall
+/// function constructed from the deduplicated similar regions, replacing and
+/// remapping the values passed to the extracted function as arguments to the
+/// new arguments of the overall function.
+///
+/// \param [in] M - The module to outline from.
+/// \param [in] Region - The regions of extracted code to be replaced with a new
+/// function.
+/// \returns a call instruction with the replaced function.
+CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
+ std::vector<Value *> NewCallArgs;
+ DenseMap<unsigned, unsigned>::iterator ArgPair;
+
+ OutlinableGroup &Group = *Region.Parent;
+ CallInst *Call = Region.Call;
+ assert(Call && "Call to replace is nullptr?");
+ Function *AggFunc = Group.OutlinedFunction;
+ assert(AggFunc && "Function to replace with is nullptr?");
+
+ // If the arguments are the same size, there are not values that need to be
+ // made into an argument, the argument ordering has not been change, or
+ // different output registers to handle. We can simply replace the called
+ // function in this case.
+ if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
+ LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
+ << *AggFunc << " with same number of arguments\n");
+ Call->setCalledFunction(AggFunc);
+ return Call;
+ }
+
+ // We have a different number of arguments than the new function, so
+ // we need to use our previously mappings off extracted argument to overall
+ // function argument, and constants to overall function argument to create the
+ // new argument list.
+ for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
+
+ if (AggArgIdx == AggFunc->arg_size() - 1 &&
+ Group.OutputGVNCombinations.size() > 1) {
+ // If we are on the last argument, and we need to differentiate between
+ // output blocks, add an integer to the argument list to determine
+ // what block to take
+ LLVM_DEBUG(dbgs() << "Set switch block argument to "
+ << Region.OutputBlockNum << "\n");
+ NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
+ Region.OutputBlockNum));
+ continue;
+ }
+
+ ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
+ if (ArgPair != Region.AggArgToExtracted.end()) {
+ Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
+ // If we found the mapping from the extracted function to the overall
+ // function, we simply add it to the argument list. We use the same
+ // value, it just needs to honor the new order of arguments.
+ LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
+ << *ArgumentValue << "\n");
+ NewCallArgs.push_back(ArgumentValue);
+ continue;
+ }
+
+ // If it is a constant, we simply add it to the argument list as a value.
+ if (Region.AggArgToConstant.find(AggArgIdx) !=
+ Region.AggArgToConstant.end()) {
+ Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
+ LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
+ << *CST << "\n");
+ NewCallArgs.push_back(CST);
+ continue;
+ }
+
+ // Add a nullptr value if the argument is not found in the extracted
+ // function. If we cannot find a value, it means it is not in use
+ // for the region, so we should not pass anything to it.
+ LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
+ NewCallArgs.push_back(ConstantPointerNull::get(
+ static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
+ }
+
+ LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
+ << *AggFunc << " with new set of arguments\n");
+ // Create the new call instruction and erase the old one.
+ Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
+ Call);
+
+ // It is possible that the call to the outlined function is either the first
+ // instruction is in the new block, the last instruction, or both. If either
+ // of these is the case, we need to make sure that we replace the instruction
+ // in the IRInstructionData struct with the new call.
+ CallInst *OldCall = Region.Call;
+ if (Region.NewFront->Inst == OldCall)
+ Region.NewFront->Inst = Call;
+ if (Region.NewBack->Inst == OldCall)
+ Region.NewBack->Inst = Call;
+
+ // Transfer any debug information.
+ Call->setDebugLoc(Region.Call->getDebugLoc());
+ // Since our output may determine which branch we go to, we make sure to
+ // propogate this new call value through the module.
+ OldCall->replaceAllUsesWith(Call);
+
+ // Remove the old instruction.
+ OldCall->eraseFromParent();
+ Region.Call = Call;
+
+ // Make sure that the argument in the new function has the SwiftError
+ // argument.
+ if (Group.SwiftErrorArgument)
+ Call->addParamAttr(Group.SwiftErrorArgument.value(), Attribute::SwiftError);
+
+ return Call;
+}
+
+/// Find or create a BasicBlock in the outlined function containing PhiBlocks
+/// for \p RetVal.
+///
+/// \param Group - The OutlinableGroup containing the information about the
+/// overall outlined function.
+/// \param RetVal - The return value or exit option that we are currently
+/// evaluating.
+/// \returns The found or newly created BasicBlock to contain the needed
+/// PHINodes to be used as outputs.
+static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
+ DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
+ ReturnBlockForRetVal;
+ PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
+ ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
+ assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
+ "Could not find output value!");
+ BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
+
+ // Find if a PHIBlock exists for this return value already. If it is
+ // the first time we are analyzing this, we will not, so we record it.
+ PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
+ if (PhiBlockForRetVal != Group.PHIBlocks.end())
+ return PhiBlockForRetVal->second;
+
+ // If we did not find a block, we create one, and insert it into the
+ // overall function and record it.
+ bool Inserted = false;
+ BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
+ ReturnBB->getParent());
+ std::tie(PhiBlockForRetVal, Inserted) =
+ Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
+
+ // We find the predecessors of the return block in the newly created outlined
+ // function in order to point them to the new PHIBlock rather than the already
+ // existing return block.
+ SmallVector<BranchInst *, 2> BranchesToChange;
+ for (BasicBlock *Pred : predecessors(ReturnBB))
+ BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
+
+ // Now we mark the branch instructions found, and change the references of the
+ // return block to the newly created PHIBlock.
+ for (BranchInst *BI : BranchesToChange)
+ for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
+ if (BI->getSuccessor(Succ) != ReturnBB)
+ continue;
+ BI->setSuccessor(Succ, PHIBlock);
+ }
+
+ BranchInst::Create(ReturnBB, PHIBlock);
+
+ return PhiBlockForRetVal->second;
+}
+
+/// For the function call now representing the \p Region, find the passed value
+/// to that call that represents Argument \p A at the call location if the
+/// call has already been replaced with a call to the overall, aggregate
+/// function.
+///
+/// \param A - The Argument to get the passed value for.
+/// \param Region - The extracted Region corresponding to the outlined function.
+/// \returns The Value representing \p A at the call site.
+static Value *
+getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
+ const OutlinableRegion &Region) {
+ // If we don't need to adjust the argument number at all (since the call
+ // has already been replaced by a call to the overall outlined function)
+ // we can just get the specified argument.
+ return Region.Call->getArgOperand(A->getArgNo());
+}
+
+/// For the function call now representing the \p Region, find the passed value
+/// to that call that represents Argument \p A at the call location if the
+/// call has only been replaced by the call to the aggregate function.
+///
+/// \param A - The Argument to get the passed value for.
+/// \param Region - The extracted Region corresponding to the outlined function.
+/// \returns The Value representing \p A at the call site.
+static Value *
+getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
+ const OutlinableRegion &Region) {
+ unsigned ArgNum = A->getArgNo();
+
+ // If it is a constant, we can look at our mapping from when we created
+ // the outputs to figure out what the constant value is.
+ if (Region.AggArgToConstant.count(ArgNum))
+ return Region.AggArgToConstant.find(ArgNum)->second;
+
+ // If it is not a constant, and we are not looking at the overall function, we
+ // need to adjust which argument we are looking at.
+ ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
+ return Region.Call->getArgOperand(ArgNum);
+}
+
+/// Find the canonical numbering for the incoming Values into the PHINode \p PN.
+///
+/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
+/// \param Region [in] - The OutlinableRegion containing \p PN.
+/// \param OutputMappings [in] - The mapping of output values from outlined
+/// region to their original values.
+/// \param CanonNums [out] - The canonical numbering for the incoming values to
+/// \p PN paired with their incoming block.
+/// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
+/// of \p Region rather than the overall function's call.
+static void findCanonNumsForPHI(
+ PHINode *PN, OutlinableRegion &Region,
+ const DenseMap<Value *, Value *> &OutputMappings,
+ SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
+ bool ReplacedWithOutlinedCall = true) {
+ // Iterate over the incoming values.
+ for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
+ Value *IVal = PN->getIncomingValue(Idx);
+ BasicBlock *IBlock = PN->getIncomingBlock(Idx);
+ // If we have an argument as incoming value, we need to grab the passed
+ // value from the call itself.
+ if (Argument *A = dyn_cast<Argument>(IVal)) {
+ if (ReplacedWithOutlinedCall)
+ IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
+ else
+ IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
+ }
+
+ // Get the original value if it has been replaced by an output value.
+ IVal = findOutputMapping(OutputMappings, IVal);
+
+ // Find and add the canonical number for the incoming value.
+ Optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
+ assert(GVN && "No GVN for incoming value");
+ Optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
+ assert(CanonNum && "No Canonical Number for GVN");
+ CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
+ }
+}
+
+/// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
+/// in order to condense the number of instructions added to the outlined
+/// function.
+///
+/// \param PN [in] - The PHINode that we are finding the canonical numbers for.
+/// \param Region [in] - The OutlinableRegion containing \p PN.
+/// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
+/// \p PN in.
+/// \param OutputMappings [in] - The mapping of output values from outlined
+/// region to their original values.
+/// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
+/// matched.
+/// \return the newly found or created PHINode in \p OverallPhiBlock.
+static PHINode*
+findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
+ BasicBlock *OverallPhiBlock,
+ const DenseMap<Value *, Value *> &OutputMappings,
+ DenseSet<PHINode *> &UsedPHIs) {
+ OutlinableGroup &Group = *Region.Parent;
+
+
+ // A list of the canonical numbering assigned to each incoming value, paired
+ // with the incoming block for the PHINode passed into this function.
+ SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
+
+ // We have to use the extracted function since we have merged this region into
+ // the overall function yet. We make sure to reassign the argument numbering
+ // since it is possible that the argument ordering is different between the
+ // functions.
+ findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
+ /* ReplacedWithOutlinedCall = */ false);
+
+ OutlinableRegion *FirstRegion = Group.Regions[0];
+
+ // A list of the canonical numbering assigned to each incoming value, paired
+ // with the incoming block for the PHINode that we are currently comparing
+ // the passed PHINode to.
+ SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
+
+ // Find the Canonical Numbering for each PHINode, if it matches, we replace
+ // the uses of the PHINode we are searching for, with the found PHINode.
+ for (PHINode &CurrPN : OverallPhiBlock->phis()) {
+ // If this PHINode has already been matched to another PHINode to be merged,
+ // we skip it.
+ if (UsedPHIs.contains(&CurrPN))
+ continue;
+
+ CurrentCanonNums.clear();
+ findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
+ /* ReplacedWithOutlinedCall = */ true);
+
+ // If the list of incoming values is not the same length, then they cannot
+ // match since there is not an analogue for each incoming value.
+ if (PNCanonNums.size() != CurrentCanonNums.size())
+ continue;
+
+ bool FoundMatch = true;
+
+ // We compare the canonical value for each incoming value in the passed
+ // in PHINode to one already present in the outlined region. If the
+ // incoming values do not match, then the PHINodes do not match.
+
+ // We also check to make sure that the incoming block matches as well by
+ // finding the corresponding incoming block in the combined outlined region
+ // for the current outlined region.
+ for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
+ std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
+ std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
+ if (ToCompareTo.first != ToAdd.first) {
+ FoundMatch = false;
+ break;
+ }
+
+ BasicBlock *CorrespondingBlock =
+ Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
+ assert(CorrespondingBlock && "Found block is nullptr");
+ if (CorrespondingBlock != ToCompareTo.second) {
+ FoundMatch = false;
+ break;
+ }
+ }
+
+ // If all incoming values and branches matched, then we can merge
+ // into the found PHINode.
+ if (FoundMatch) {
+ UsedPHIs.insert(&CurrPN);
+ return &CurrPN;
+ }
+ }
+
+ // If we've made it here, it means we weren't able to replace the PHINode, so
+ // we must insert it ourselves.
+ PHINode *NewPN = cast<PHINode>(PN.clone());
+ NewPN->insertBefore(&*OverallPhiBlock->begin());
+ for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
+ Idx++) {
+ Value *IncomingVal = NewPN->getIncomingValue(Idx);
+ BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
+
+ // Find corresponding basic block in the overall function for the incoming
+ // block.
+ BasicBlock *BlockToUse =
+ Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
+ NewPN->setIncomingBlock(Idx, BlockToUse);
+
+ // If we have an argument we make sure we replace using the argument from
+ // the correct function.
+ if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
+ Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
+ NewPN->setIncomingValue(Idx, Val);
+ continue;
+ }
+
+ // Find the corresponding value in the overall function.
+ IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
+ Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
+ assert(Val && "Value is nullptr?");
+ DenseMap<Value *, Value *>::iterator RemappedIt =
+ FirstRegion->RemappedArguments.find(Val);
+ if (RemappedIt != FirstRegion->RemappedArguments.end())
+ Val = RemappedIt->second;
+ NewPN->setIncomingValue(Idx, Val);
+ }
+ return NewPN;
+}
+
+// Within an extracted function, replace the argument uses of the extracted
+// region with the arguments of the function for an OutlinableGroup.
+//
+/// \param [in] Region - The region of extracted code to be changed.
+/// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
+/// region.
+/// \param [in] FirstFunction - A flag to indicate whether we are using this
+/// function to define the overall outlined function for all the regions, or
+/// if we are operating on one of the following regions.
+static void
+replaceArgumentUses(OutlinableRegion &Region,
+ DenseMap<Value *, BasicBlock *> &OutputBBs,
+ const DenseMap<Value *, Value *> &OutputMappings,
+ bool FirstFunction = false) {
+ OutlinableGroup &Group = *Region.Parent;
+ assert(Region.ExtractedFunction && "Region has no extracted function?");
+
+ Function *DominatingFunction = Region.ExtractedFunction;
+ if (FirstFunction)
+ DominatingFunction = Group.OutlinedFunction;
+ DominatorTree DT(*DominatingFunction);
+ DenseSet<PHINode *> UsedPHIs;
+
+ for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
+ ArgIdx++) {
+ assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
+ Region.ExtractedArgToAgg.end() &&
+ "No mapping from extracted to outlined?");
+ unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
+ Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
+ Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
+ // The argument is an input, so we can simply replace it with the overall
+ // argument value
+ if (ArgIdx < Region.NumExtractedInputs) {
+ LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
+ << *Region.ExtractedFunction << " with " << *AggArg
+ << " in function " << *Group.OutlinedFunction << "\n");
+ Arg->replaceAllUsesWith(AggArg);
+ Value *V = Region.Call->getArgOperand(ArgIdx);
+ Region.RemappedArguments.insert(std::make_pair(V, AggArg));
+ continue;
+ }
+
+ // If we are replacing an output, we place the store value in its own
+ // block inside the overall function before replacing the use of the output
+ // in the function.
+ assert(Arg->hasOneUse() && "Output argument can only have one use");
+ User *InstAsUser = Arg->user_back();
+ assert(InstAsUser && "User is nullptr!");
+
+ Instruction *I = cast<Instruction>(InstAsUser);
+ BasicBlock *BB = I->getParent();
+ SmallVector<BasicBlock *, 4> Descendants;
+ DT.getDescendants(BB, Descendants);
+ bool EdgeAdded = false;
+ if (Descendants.size() == 0) {
+ EdgeAdded = true;
+ DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
+ DT.getDescendants(BB, Descendants);
+ }
+
+ // Iterate over the following blocks, looking for return instructions,
+ // if we find one, find the corresponding output block for the return value
+ // and move our store instruction there.
+ for (BasicBlock *DescendBB : Descendants) {
+ ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
+ if (!RI)
+ continue;
+ Value *RetVal = RI->getReturnValue();
+ auto VBBIt = OutputBBs.find(RetVal);
+ assert(VBBIt != OutputBBs.end() && "Could not find output value!");
+
+ // If this is storing a PHINode, we must make sure it is included in the
+ // overall function.
+ StoreInst *SI = cast<StoreInst>(I);
+
+ Value *ValueOperand = SI->getValueOperand();
+
+ StoreInst *NewI = cast<StoreInst>(I->clone());
+ NewI->setDebugLoc(DebugLoc());
+ BasicBlock *OutputBB = VBBIt->second;
+ OutputBB->getInstList().push_back(NewI);
+ LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
+ << *OutputBB << "\n");
+
+ // If this is storing a PHINode, we must make sure it is included in the
+ // overall function.
+ if (!isa<PHINode>(ValueOperand) ||
+ Region.Candidate->getGVN(ValueOperand).has_value()) {
+ if (FirstFunction)
+ continue;
+ Value *CorrVal =
+ Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
+ assert(CorrVal && "Value is nullptr?");
+ NewI->setOperand(0, CorrVal);
+ continue;
+ }
+ PHINode *PN = cast<PHINode>(SI->getValueOperand());
+ // If it has a value, it was not split by the code extractor, which
+ // is what we are looking for.
+ if (Region.Candidate->getGVN(PN))
+ continue;
+
+ // We record the parent block for the PHINode in the Region so that
+ // we can exclude it from checks later on.
+ Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
+
+ // If this is the first function, we do not need to worry about mergiing
+ // this with any other block in the overall outlined function, so we can
+ // just continue.
+ if (FirstFunction) {
+ BasicBlock *PHIBlock = PN->getParent();
+ Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
+ continue;
+ }
+
+ // We look for the aggregate block that contains the PHINodes leading into
+ // this exit path. If we can't find one, we create one.
+ BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
+
+ // For our PHINode, we find the combined canonical numbering, and
+ // attempt to find a matching PHINode in the overall PHIBlock. If we
+ // cannot, we copy the PHINode and move it into this new block.
+ PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
+ OutputMappings, UsedPHIs);
+ NewI->setOperand(0, NewPN);
+ }
+
+ // If we added an edge for basic blocks without a predecessor, we remove it
+ // here.
+ if (EdgeAdded)
+ DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
+ I->eraseFromParent();
+
+ LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
+ << *Region.ExtractedFunction << " with " << *AggArg
+ << " in function " << *Group.OutlinedFunction << "\n");
+ Arg->replaceAllUsesWith(AggArg);
+ }
+}
+
+/// Within an extracted function, replace the constants that need to be lifted
+/// into arguments with the actual argument.
+///
+/// \param Region [in] - The region of extracted code to be changed.
+void replaceConstants(OutlinableRegion &Region) {
+ OutlinableGroup &Group = *Region.Parent;
+ // Iterate over the constants that need to be elevated into arguments
+ for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
+ unsigned AggArgIdx = Const.first;
+ Function *OutlinedFunction = Group.OutlinedFunction;
+ assert(OutlinedFunction && "Overall Function is not defined?");
+ Constant *CST = Const.second;
+ Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
+ // Identify the argument it will be elevated to, and replace instances of
+ // that constant in the function.
+
+ // TODO: If in the future constants do not have one global value number,
+ // i.e. a constant 1 could be mapped to several values, this check will
+ // have to be more strict. It cannot be using only replaceUsesWithIf.
+
+ LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
+ << " in function " << *OutlinedFunction << " with "
+ << *Arg << "\n");
+ CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
+ if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
+ return I->getFunction() == OutlinedFunction;
+ return false;
+ });
+ }
+}
+
+/// It is possible that there is a basic block that already performs the same
+/// stores. This returns a duplicate block, if it exists
+///
+/// \param OutputBBs [in] the blocks we are looking for a duplicate of.
+/// \param OutputStoreBBs [in] The existing output blocks.
+/// \returns an optional value with the number output block if there is a match.
+Optional<unsigned> findDuplicateOutputBlock(
+ DenseMap<Value *, BasicBlock *> &OutputBBs,
+ std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
+
+ bool Mismatch = false;
+ unsigned MatchingNum = 0;
+ // We compare the new set output blocks to the other sets of output blocks.
+ // If they are the same number, and have identical instructions, they are
+ // considered to be the same.
+ for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
+ Mismatch = false;
+ for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
+ DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
+ OutputBBs.find(VToB.first);
+ if (OutputBBIt == OutputBBs.end()) {
+ Mismatch = true;
+ break;
+ }
+
+ BasicBlock *CompBB = VToB.second;
+ BasicBlock *OutputBB = OutputBBIt->second;
+ if (CompBB->size() - 1 != OutputBB->size()) {
+ Mismatch = true;
+ break;
+ }
+
+ BasicBlock::iterator NIt = OutputBB->begin();
+ for (Instruction &I : *CompBB) {
+ if (isa<BranchInst>(&I))
+ continue;
+
+ if (!I.isIdenticalTo(&(*NIt))) {
+ Mismatch = true;
+ break;
+ }
+
+ NIt++;
+ }
+ }
+
+ if (!Mismatch)
+ return MatchingNum;
+
+ MatchingNum++;
+ }
+
+ return None;
+}
+
+/// Remove empty output blocks from the outlined region.
+///
+/// \param BlocksToPrune - Mapping of return values output blocks for the \p
+/// Region.
+/// \param Region - The OutlinableRegion we are analyzing.
+static bool
+analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
+ OutlinableRegion &Region) {
+ bool AllRemoved = true;
+ Value *RetValueForBB;
+ BasicBlock *NewBB;
+ SmallVector<Value *, 4> ToRemove;
+ // Iterate over the output blocks created in the outlined section.
+ for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
+ RetValueForBB = VtoBB.first;
+ NewBB = VtoBB.second;
+
+ // If there are no instructions, we remove it from the module, and also
+ // mark the value for removal from the return value to output block mapping.
+ if (NewBB->size() == 0) {
+ NewBB->eraseFromParent();
+ ToRemove.push_back(RetValueForBB);
+ continue;
+ }
+
+ // Mark that we could not remove all the blocks since they were not all
+ // empty.
+ AllRemoved = false;
+ }
+
+ // Remove the return value from the mapping.
+ for (Value *V : ToRemove)
+ BlocksToPrune.erase(V);
+
+ // Mark the region as having the no output scheme.
+ if (AllRemoved)
+ Region.OutputBlockNum = -1;
+
+ return AllRemoved;
+}
+
+/// For the outlined section, move needed the StoreInsts for the output
+/// registers into their own block. Then, determine if there is a duplicate
+/// output block already created.
+///
+/// \param [in] OG - The OutlinableGroup of regions to be outlined.
+/// \param [in] Region - The OutlinableRegion that is being analyzed.
+/// \param [in,out] OutputBBs - the blocks that stores for this region will be
+/// placed in.
+/// \param [in] EndBBs - the final blocks of the extracted function.
+/// \param [in] OutputMappings - OutputMappings the mapping of values that have
+/// been replaced by a new output value.
+/// \param [in,out] OutputStoreBBs - The existing output blocks.
+static void alignOutputBlockWithAggFunc(
+ OutlinableGroup &OG, OutlinableRegion &Region,
+ DenseMap<Value *, BasicBlock *> &OutputBBs,
+ DenseMap<Value *, BasicBlock *> &EndBBs,
+ const DenseMap<Value *, Value *> &OutputMappings,
+ std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
+ // If none of the output blocks have any instructions, this means that we do
+ // not have to determine if it matches any of the other output schemes, and we
+ // don't have to do anything else.
+ if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
+ return;
+
+ // Determine is there is a duplicate set of blocks.
+ Optional<unsigned> MatchingBB =
+ findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
+
+ // If there is, we remove the new output blocks. If it does not,
+ // we add it to our list of sets of output blocks.
+ if (MatchingBB) {
+ LLVM_DEBUG(dbgs() << "Set output block for region in function"
+ << Region.ExtractedFunction << " to "
+ << MatchingBB.value());
+
+ Region.OutputBlockNum = MatchingBB.value();
+ for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
+ VtoBB.second->eraseFromParent();
+ return;
+ }
+
+ Region.OutputBlockNum = OutputStoreBBs.size();
+
+ Value *RetValueForBB;
+ BasicBlock *NewBB;
+ OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
+ for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
+ RetValueForBB = VtoBB.first;
+ NewBB = VtoBB.second;
+ DenseMap<Value *, BasicBlock *>::iterator VBBIt =
+ EndBBs.find(RetValueForBB);
+ LLVM_DEBUG(dbgs() << "Create output block for region in"
+ << Region.ExtractedFunction << " to "
+ << *NewBB);
+ BranchInst::Create(VBBIt->second, NewBB);
+ OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
+ }
+}
+
+/// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
+/// before creating a basic block for each \p NewMap, and inserting into the new
+/// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
+///
+/// \param OldMap [in] - The mapping to base the new mapping off of.
+/// \param NewMap [out] - The output mapping using the keys of \p OldMap.
+/// \param ParentFunc [in] - The function to put the new basic block in.
+/// \param BaseName [in] - The start of the BasicBlock names to be appended to
+/// by an index value.
+static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
+ DenseMap<Value *, BasicBlock *> &NewMap,
+ Function *ParentFunc, Twine BaseName) {
+ unsigned Idx = 0;
+ std::vector<Value *> SortedKeys;
+
+ getSortedConstantKeys(SortedKeys, OldMap);
+
+ for (Value *RetVal : SortedKeys) {
+ BasicBlock *NewBB = BasicBlock::Create(
+ ParentFunc->getContext(),
+ Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
+ ParentFunc);
+ NewMap.insert(std::make_pair(RetVal, NewBB));
+ }
+}
+
+/// Create the switch statement for outlined function to differentiate between
+/// all the output blocks.
+///
+/// For the outlined section, determine if an outlined block already exists that
+/// matches the needed stores for the extracted section.
+/// \param [in] M - The module we are outlining from.
+/// \param [in] OG - The group of regions to be outlined.
+/// \param [in] EndBBs - The final blocks of the extracted function.
+/// \param [in,out] OutputStoreBBs - The existing output blocks.
+void createSwitchStatement(
+ Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
+ std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
+ // We only need the switch statement if there is more than one store
+ // combination, or there is more than one set of output blocks. The first
+ // will occur when we store different sets of values for two different
+ // regions. The second will occur when we have two outputs that are combined
+ // in a PHINode outside of the region in one outlined instance, and are used
+ // seaparately in another. This will create the same set of OutputGVNs, but
+ // will generate two different output schemes.
+ if (OG.OutputGVNCombinations.size() > 1) {
+ Function *AggFunc = OG.OutlinedFunction;
+ // Create a final block for each different return block.
+ DenseMap<Value *, BasicBlock *> ReturnBBs;
+ createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
+
+ for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
+ std::pair<Value *, BasicBlock *> &OutputBlock =
+ *OG.EndBBs.find(RetBlockPair.first);
+ BasicBlock *ReturnBlock = RetBlockPair.second;
+ BasicBlock *EndBB = OutputBlock.second;
+ Instruction *Term = EndBB->getTerminator();
+ // Move the return value to the final block instead of the original exit
+ // stub.
+ Term->moveBefore(*ReturnBlock, ReturnBlock->end());
+ // Put the switch statement in the old end basic block for the function
+ // with a fall through to the new return block.
+ LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
+ << OutputStoreBBs.size() << "\n");
+ SwitchInst *SwitchI =
+ SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
+ ReturnBlock, OutputStoreBBs.size(), EndBB);
+
+ unsigned Idx = 0;
+ for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
+ DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
+ OutputStoreBB.find(OutputBlock.first);
+
+ if (OSBBIt == OutputStoreBB.end())
+ continue;
+
+ BasicBlock *BB = OSBBIt->second;
+ SwitchI->addCase(
+ ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
+ Term = BB->getTerminator();
+ Term->setSuccessor(0, ReturnBlock);
+ Idx++;
+ }
+ }
+ return;
+ }
+
+ assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
+
+ // If there needs to be stores, move them from the output blocks to their
+ // corresponding ending block. We do not check that the OutputGVNCombinations
+ // is equal to 1 here since that could just been the case where there are 0
+ // outputs. Instead, we check whether there is more than one set of output
+ // blocks since this is the only case where we would have to move the
+ // stores, and erase the extraneous blocks.
+ if (OutputStoreBBs.size() == 1) {
+ LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
+ << *OG.OutlinedFunction << "\n");
+ DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
+ for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
+ DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
+ EndBBs.find(VBPair.first);
+ assert(EndBBIt != EndBBs.end() && "Could not find end block");
+ BasicBlock *EndBB = EndBBIt->second;
+ BasicBlock *OutputBB = VBPair.second;
+ Instruction *Term = OutputBB->getTerminator();
+ Term->eraseFromParent();
+ Term = EndBB->getTerminator();
+ moveBBContents(*OutputBB, *EndBB);
+ Term->moveBefore(*EndBB, EndBB->end());
+ OutputBB->eraseFromParent();
+ }
+ }
+}
+
+/// Fill the new function that will serve as the replacement function for all of
+/// the extracted regions of a certain structure from the first region in the
+/// list of regions. Replace this first region's extracted function with the
+/// new overall function.
+///
+/// \param [in] M - The module we are outlining from.
+/// \param [in] CurrentGroup - The group of regions to be outlined.
+/// \param [in,out] OutputStoreBBs - The output blocks for each different
+/// set of stores needed for the different functions.
+/// \param [in,out] FuncsToRemove - Extracted functions to erase from module
+/// once outlining is complete.
+/// \param [in] OutputMappings - Extracted functions to erase from module
+/// once outlining is complete.
+static void fillOverallFunction(
+ Module &M, OutlinableGroup &CurrentGroup,
+ std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
+ std::vector<Function *> &FuncsToRemove,
+ const DenseMap<Value *, Value *> &OutputMappings) {
+ OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
+
+ // Move first extracted function's instructions into new function.
+ LLVM_DEBUG(dbgs() << "Move instructions from "
+ << *CurrentOS->ExtractedFunction << " to instruction "
+ << *CurrentGroup.OutlinedFunction << "\n");
+ moveFunctionData(*CurrentOS->ExtractedFunction,
+ *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
+
+ // Transfer the attributes from the function to the new function.
+ for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
+ CurrentGroup.OutlinedFunction->addFnAttr(A);
+
+ // Create a new set of output blocks for the first extracted function.
+ DenseMap<Value *, BasicBlock *> NewBBs;
+ createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
+ CurrentGroup.OutlinedFunction, "output_block_0");
+ CurrentOS->OutputBlockNum = 0;
+
+ replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
+ replaceConstants(*CurrentOS);
+
+ // We first identify if any output blocks are empty, if they are we remove
+ // them. We then create a branch instruction to the basic block to the return
+ // block for the function for each non empty output block.
+ if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
+ OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
+ for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
+ DenseMap<Value *, BasicBlock *>::iterator VBBIt =
+ CurrentGroup.EndBBs.find(VToBB.first);
+ BasicBlock *EndBB = VBBIt->second;
+ BranchInst::Create(EndBB, VToBB.second);
+ OutputStoreBBs.back().insert(VToBB);
+ }
+ }
+
+ // Replace the call to the extracted function with the outlined function.
+ CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
+
+ // We only delete the extracted functions at the end since we may need to
+ // reference instructions contained in them for mapping purposes.
+ FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
+}
+
+void IROutliner::deduplicateExtractedSections(
+ Module &M, OutlinableGroup &CurrentGroup,
+ std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
+ createFunction(M, CurrentGroup, OutlinedFunctionNum);
+
+ std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
+
+ OutlinableRegion *CurrentOS;
+
+ fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
+ OutputMappings);
+
+ std::vector<Value *> SortedKeys;
+ for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
+ CurrentOS = CurrentGroup.Regions[Idx];
+ AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
+ *CurrentOS->ExtractedFunction);
+
+ // Create a set of BasicBlocks, one for each return block, to hold the
+ // needed store instructions.
+ DenseMap<Value *, BasicBlock *> NewBBs;
+ createAndInsertBasicBlocks(
+ CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
+ "output_block_" + Twine(static_cast<unsigned>(Idx)));
+ replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
+ alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
+ CurrentGroup.EndBBs, OutputMappings,
+ OutputStoreBBs);
+
+ CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
+ FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
+ }
+
+ // Create a switch statement to handle the different output schemes.
+ createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
+
+ OutlinedFunctionNum++;
+}
+
+/// Checks that the next instruction in the InstructionDataList matches the
+/// next instruction in the module. If they do not, there could be the
+/// possibility that extra code has been inserted, and we must ignore it.
+///
+/// \param ID - The IRInstructionData to check the next instruction of.
+/// \returns true if the InstructionDataList and actual instruction match.
+static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
+ // We check if there is a discrepancy between the InstructionDataList
+ // and the actual next instruction in the module. If there is, it means
+ // that an extra instruction was added, likely by the CodeExtractor.
+
+ // Since we do not have any similarity data about this particular
+ // instruction, we cannot confidently outline it, and must discard this
+ // candidate.
+ IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
+ Instruction *NextIDLInst = NextIDIt->Inst;
+ Instruction *NextModuleInst = nullptr;
+ if (!ID.Inst->isTerminator())
+ NextModuleInst = ID.Inst->getNextNonDebugInstruction();
+ else if (NextIDLInst != nullptr)
+ NextModuleInst =
+ &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
+
+ if (NextIDLInst && NextIDLInst != NextModuleInst)
+ return false;
+
+ return true;
+}
+
+bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
+ const OutlinableRegion &Region) {
+ IRSimilarityCandidate *IRSC = Region.Candidate;
+ unsigned StartIdx = IRSC->getStartIdx();
+ unsigned EndIdx = IRSC->getEndIdx();
+
+ // A check to make sure that we are not about to attempt to outline something
+ // that has already been outlined.
+ for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
+ if (Outlined.contains(Idx))
+ return false;
+
+ // We check if the recorded instruction matches the actual next instruction,
+ // if it does not, we fix it in the InstructionDataList.
+ if (!Region.Candidate->backInstruction()->isTerminator()) {
+ Instruction *NewEndInst =
+ Region.Candidate->backInstruction()->getNextNonDebugInstruction();
+ assert(NewEndInst && "Next instruction is a nullptr?");
+ if (Region.Candidate->end()->Inst != NewEndInst) {
+ IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
+ IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
+ IRInstructionData(*NewEndInst,
+ InstructionClassifier.visit(*NewEndInst), *IDL);
+
+ // Insert the first IRInstructionData of the new region after the
+ // last IRInstructionData of the IRSimilarityCandidate.
+ IDL->insert(Region.Candidate->end(), *NewEndIRID);
+ }
+ }
+
+ return none_of(*IRSC, [this](IRInstructionData &ID) {
+ if (!nextIRInstructionDataMatchesNextInst(ID))
+ return true;
+
+ return !this->InstructionClassifier.visit(ID.Inst);
+ });
+}
+
+void IROutliner::pruneIncompatibleRegions(
+ std::vector<IRSimilarityCandidate> &CandidateVec,
+ OutlinableGroup &CurrentGroup) {
+ bool PreviouslyOutlined;
+
+ // Sort from beginning to end, so the IRSimilarityCandidates are in order.
+ stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
+ const IRSimilarityCandidate &RHS) {
+ return LHS.getStartIdx() < RHS.getStartIdx();
+ });
+
+ IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
+ // Since outlining a call and a branch instruction will be the same as only
+ // outlinining a call instruction, we ignore it as a space saving.
+ if (FirstCandidate.getLength() == 2) {
+ if (isa<CallInst>(FirstCandidate.front()->Inst) &&
+ isa<BranchInst>(FirstCandidate.back()->Inst))
+ return;
+ }
+
+ unsigned CurrentEndIdx = 0;
+ for (IRSimilarityCandidate &IRSC : CandidateVec) {
+ PreviouslyOutlined = false;
+ unsigned StartIdx = IRSC.getStartIdx();
+ unsigned EndIdx = IRSC.getEndIdx();
+
+ for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
+ if (Outlined.contains(Idx)) {
+ PreviouslyOutlined = true;
+ break;
+ }
+
+ if (PreviouslyOutlined)
+ continue;
+
+ // Check over the instructions, and if the basic block has its address
+ // taken for use somewhere else, we do not outline that block.
+ bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
+ return ID.Inst->getParent()->hasAddressTaken();
+ });
+
+ if (BBHasAddressTaken)
+ continue;
+
+ if (IRSC.getFunction()->hasOptNone())
+ continue;
+
+ if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
+ !OutlineFromLinkODRs)
+ continue;
+
+ // Greedily prune out any regions that will overlap with already chosen
+ // regions.
+ if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
+ continue;
+
+ bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
+ if (!nextIRInstructionDataMatchesNextInst(ID))
+ return true;
+
+ return !this->InstructionClassifier.visit(ID.Inst);
+ });
+
+ if (BadInst)
+ continue;
+
+ OutlinableRegion *OS = new (RegionAllocator.Allocate())
+ OutlinableRegion(IRSC, CurrentGroup);
+ CurrentGroup.Regions.push_back(OS);
+
+ CurrentEndIdx = EndIdx;
+ }
+}
+
+InstructionCost
+IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
+ InstructionCost RegionBenefit = 0;
+ for (OutlinableRegion *Region : CurrentGroup.Regions) {
+ TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
+ // We add the number of instructions in the region to the benefit as an
+ // estimate as to how much will be removed.
+ RegionBenefit += Region->getBenefit(TTI);
+ LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
+ << " saved instructions to overfall benefit.\n");
+ }
+
+ return RegionBenefit;
+}
+
+/// For the \p OutputCanon number passed in find the value represented by this
+/// canonical number. If it is from a PHINode, we pick the first incoming
+/// value and return that Value instead.
+///
+/// \param Region - The OutlinableRegion to get the Value from.
+/// \param OutputCanon - The canonical number to find the Value from.
+/// \returns The Value represented by a canonical number \p OutputCanon in \p
+/// Region.
+static Value *findOutputValueInRegion(OutlinableRegion &Region,
+ unsigned OutputCanon) {
+ OutlinableGroup &CurrentGroup = *Region.Parent;
+ // If the value is greater than the value in the tracker, we have a
+ // PHINode and will instead use one of the incoming values to find the
+ // type.
+ if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
+ auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
+ assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
+ "Could not find GVN set for PHINode number!");
+ assert(It->second.second.size() > 0 && "PHINode does not have any values!");
+ OutputCanon = *It->second.second.begin();
+ }
+ Optional<unsigned> OGVN = Region.Candidate->fromCanonicalNum(OutputCanon);
+ assert(OGVN && "Could not find GVN for Canonical Number?");
+ Optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
+ assert(OV && "Could not find value for GVN?");
+ return *OV;
+}
+
+InstructionCost
+IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
+ InstructionCost OverallCost = 0;
+ for (OutlinableRegion *Region : CurrentGroup.Regions) {
+ TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
+
+ // Each output incurs a load after the call, so we add that to the cost.
+ for (unsigned OutputCanon : Region->GVNStores) {
+ Value *V = findOutputValueInRegion(*Region, OutputCanon);
+ InstructionCost LoadCost =
+ TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
+ TargetTransformInfo::TCK_CodeSize);
+
+ LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
+ << " instructions to cost for output of type "
+ << *V->getType() << "\n");
+ OverallCost += LoadCost;
+ }
+ }
+
+ return OverallCost;
+}
+
+/// Find the extra instructions needed to handle any output values for the
+/// region.
+///
+/// \param [in] M - The Module to outline from.
+/// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
+/// \param [in] TTI - The TargetTransformInfo used to collect information for
+/// new instruction costs.
+/// \returns the additional cost to handle the outputs.
+static InstructionCost findCostForOutputBlocks(Module &M,
+ OutlinableGroup &CurrentGroup,
+ TargetTransformInfo &TTI) {
+ InstructionCost OutputCost = 0;
+ unsigned NumOutputBranches = 0;
+
+ OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
+ IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
+ DenseSet<BasicBlock *> CandidateBlocks;
+ Candidate.getBasicBlocks(CandidateBlocks);
+
+ // Count the number of different output branches that point to blocks outside
+ // of the region.
+ DenseSet<BasicBlock *> FoundBlocks;
+ for (IRInstructionData &ID : Candidate) {
+ if (!isa<BranchInst>(ID.Inst))
+ continue;
+
+ for (Value *V : ID.OperVals) {
+ BasicBlock *BB = static_cast<BasicBlock *>(V);
+ if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
+ NumOutputBranches++;
+ }
+ }
+
+ CurrentGroup.BranchesToOutside = NumOutputBranches;
+
+ for (const ArrayRef<unsigned> &OutputUse :
+ CurrentGroup.OutputGVNCombinations) {
+ for (unsigned OutputCanon : OutputUse) {
+ Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
+ InstructionCost StoreCost =
+ TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
+ TargetTransformInfo::TCK_CodeSize);
+
+ // An instruction cost is added for each store set that needs to occur for
+ // various output combinations inside the function, plus a branch to
+ // return to the exit block.
+ LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
+ << " instructions to cost for output of type "
+ << *V->getType() << "\n");
+ OutputCost += StoreCost * NumOutputBranches;
+ }
+
+ InstructionCost BranchCost =
+ TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
+ LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
+ << " a branch instruction\n");
+ OutputCost += BranchCost * NumOutputBranches;
+ }
+
+ // If there is more than one output scheme, we must have a comparison and
+ // branch for each different item in the switch statement.
+ if (CurrentGroup.OutputGVNCombinations.size() > 1) {
+ InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
+ Instruction::ICmp, Type::getInt32Ty(M.getContext()),
+ Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
+ TargetTransformInfo::TCK_CodeSize);
+ InstructionCost BranchCost =
+ TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
+
+ unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
+ InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
+
+ LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
+ << " instructions for each switch case for each different"
+ << " output path in a function\n");
+ OutputCost += TotalCost * NumOutputBranches;
+ }
+
+ return OutputCost;
+}
+
+void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
+ InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
+ CurrentGroup.Benefit += RegionBenefit;
+ LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
+
+ InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
+ CurrentGroup.Cost += OutputReloadCost;
+ LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
+
+ InstructionCost AverageRegionBenefit =
+ RegionBenefit / CurrentGroup.Regions.size();
+ unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
+ unsigned NumRegions = CurrentGroup.Regions.size();
+ TargetTransformInfo &TTI =
+ getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
+
+ // We add one region to the cost once, to account for the instructions added
+ // inside of the newly created function.
+ LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
+ << " instructions to cost for body of new function.\n");
+ CurrentGroup.Cost += AverageRegionBenefit;
+ LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
+
+ // For each argument, we must add an instruction for loading the argument
+ // out of the register and into a value inside of the newly outlined function.
+ LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
+ << " instructions to cost for each argument in the new"
+ << " function.\n");
+ CurrentGroup.Cost +=
+ OverallArgumentNum * TargetTransformInfo::TCC_Basic;
+ LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
+
+ // Each argument needs to either be loaded into a register or onto the stack.
+ // Some arguments will only be loaded into the stack once the argument
+ // registers are filled.
+ LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
+ << " instructions to cost for each argument in the new"
+ << " function " << NumRegions << " times for the "
+ << "needed argument handling at the call site.\n");
+ CurrentGroup.Cost +=
+ 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
+ LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
+
+ CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
+ LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
+}
+
+void IROutliner::updateOutputMapping(OutlinableRegion &Region,
+ ArrayRef<Value *> Outputs,
+ LoadInst *LI) {
+ // For and load instructions following the call
+ Value *Operand = LI->getPointerOperand();
+ Optional<unsigned> OutputIdx = None;
+ // Find if the operand it is an output register.
+ for (unsigned ArgIdx = Region.NumExtractedInputs;
+ ArgIdx < Region.Call->arg_size(); ArgIdx++) {
+ if (Operand == Region.Call->getArgOperand(ArgIdx)) {
+ OutputIdx = ArgIdx - Region.NumExtractedInputs;
+ break;
+ }
+ }
+
+ // If we found an output register, place a mapping of the new value
+ // to the original in the mapping.
+ if (!OutputIdx)
+ return;
+
+ if (OutputMappings.find(Outputs[OutputIdx.value()]) == OutputMappings.end()) {
+ LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
+ << *Outputs[OutputIdx.value()] << "\n");
+ OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.value()]));
+ } else {
+ Value *Orig = OutputMappings.find(Outputs[OutputIdx.value()])->second;
+ LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
+ << *Outputs[OutputIdx.value()] << "\n");
+ OutputMappings.insert(std::make_pair(LI, Orig));
+ }
+}
+
+bool IROutliner::extractSection(OutlinableRegion &Region) {
+ SetVector<Value *> ArgInputs, Outputs, SinkCands;
+ assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
+ BasicBlock *InitialStart = Region.StartBB;
+ Function *OrigF = Region.StartBB->getParent();
+ CodeExtractorAnalysisCache CEAC(*OrigF);
+ Region.ExtractedFunction =
+ Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
+
+ // If the extraction was successful, find the BasicBlock, and reassign the
+ // OutlinableRegion blocks
+ if (!Region.ExtractedFunction) {
+ LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
+ << "\n");
+ Region.reattachCandidate();
+ return false;
+ }
+
+ // Get the block containing the called branch, and reassign the blocks as
+ // necessary. If the original block still exists, it is because we ended on
+ // a branch instruction, and so we move the contents into the block before
+ // and assign the previous block correctly.
+ User *InstAsUser = Region.ExtractedFunction->user_back();
+ BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
+ Region.PrevBB = RewrittenBB->getSinglePredecessor();
+ assert(Region.PrevBB && "PrevBB is nullptr?");
+ if (Region.PrevBB == InitialStart) {
+ BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
+ Instruction *BI = NewPrev->getTerminator();
+ BI->eraseFromParent();
+ moveBBContents(*InitialStart, *NewPrev);
+ Region.PrevBB = NewPrev;
+ InitialStart->eraseFromParent();
+ }
+
+ Region.StartBB = RewrittenBB;
+ Region.EndBB = RewrittenBB;
+
+ // The sequences of outlinable regions has now changed. We must fix the
+ // IRInstructionDataList for consistency. Although they may not be illegal
+ // instructions, they should not be compared with anything else as they
+ // should not be outlined in this round. So marking these as illegal is
+ // allowed.
+ IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
+ Instruction *BeginRewritten = &*RewrittenBB->begin();
+ Instruction *EndRewritten = &*RewrittenBB->begin();
+ Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
+ *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
+ Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
+ *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
+
+ // Insert the first IRInstructionData of the new region in front of the
+ // first IRInstructionData of the IRSimilarityCandidate.
+ IDL->insert(Region.Candidate->begin(), *Region.NewFront);
+ // Insert the first IRInstructionData of the new region after the
+ // last IRInstructionData of the IRSimilarityCandidate.
+ IDL->insert(Region.Candidate->end(), *Region.NewBack);
+ // Remove the IRInstructionData from the IRSimilarityCandidate.
+ IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
+
+ assert(RewrittenBB != nullptr &&
+ "Could not find a predecessor after extraction!");
+
+ // Iterate over the new set of instructions to find the new call
+ // instruction.
+ for (Instruction &I : *RewrittenBB)
+ if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ if (Region.ExtractedFunction == CI->getCalledFunction())
+ Region.Call = CI;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
+ updateOutputMapping(Region, Outputs.getArrayRef(), LI);
+ Region.reattachCandidate();
+ return true;
+}
+
+unsigned IROutliner::doOutline(Module &M) {
+ // Find the possible similarity sections.
+ InstructionClassifier.EnableBranches = !DisableBranches;
+ InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
+ InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
+
+ IRSimilarityIdentifier &Identifier = getIRSI(M);
+ SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
+
+ // Sort them by size of extracted sections
+ unsigned OutlinedFunctionNum = 0;
+ // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
+ // to sort them by the potential number of instructions to be outlined
+ if (SimilarityCandidates.size() > 1)
+ llvm::stable_sort(SimilarityCandidates,
+ [](const std::vector<IRSimilarityCandidate> &LHS,
+ const std::vector<IRSimilarityCandidate> &RHS) {
+ return LHS[0].getLength() * LHS.size() >
+ RHS[0].getLength() * RHS.size();
+ });
+ // Creating OutlinableGroups for each SimilarityCandidate to be used in
+ // each of the following for loops to avoid making an allocator.
+ std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
+
+ DenseSet<unsigned> NotSame;
+ std::vector<OutlinableGroup *> NegativeCostGroups;
+ std::vector<OutlinableRegion *> OutlinedRegions;
+ // Iterate over the possible sets of similarity.
+ unsigned PotentialGroupIdx = 0;
+ for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
+ OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
+
+ // Remove entries that were previously outlined
+ pruneIncompatibleRegions(CandidateVec, CurrentGroup);
+
+ // We pruned the number of regions to 0 to 1, meaning that it's not worth
+ // trying to outlined since there is no compatible similar instance of this
+ // code.
+ if (CurrentGroup.Regions.size() < 2)
+ continue;
+
+ // Determine if there are any values that are the same constant throughout
+ // each section in the set.
+ NotSame.clear();
+ CurrentGroup.findSameConstants(NotSame);
+
+ if (CurrentGroup.IgnoreGroup)
+ continue;
+
+ // Create a CodeExtractor for each outlinable region. Identify inputs and
+ // outputs for each section using the code extractor and create the argument
+ // types for the Aggregate Outlining Function.
+ OutlinedRegions.clear();
+ for (OutlinableRegion *OS : CurrentGroup.Regions) {
+ // Break the outlinable region out of its parent BasicBlock into its own
+ // BasicBlocks (see function implementation).
+ OS->splitCandidate();
+
+ // There's a chance that when the region is split, extra instructions are
+ // added to the region. This makes the region no longer viable
+ // to be split, so we ignore it for outlining.
+ if (!OS->CandidateSplit)
+ continue;
+
+ SmallVector<BasicBlock *> BE;
+ DenseSet<BasicBlock *> BlocksInRegion;
+ OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
+ OS->CE = new (ExtractorAllocator.Allocate())
+ CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
+ false, nullptr, "outlined");
+ findAddInputsOutputs(M, *OS, NotSame);
+ if (!OS->IgnoreRegion)
+ OutlinedRegions.push_back(OS);
+
+ // We recombine the blocks together now that we have gathered all the
+ // needed information.
+ OS->reattachCandidate();
+ }
+
+ CurrentGroup.Regions = std::move(OutlinedRegions);
+
+ if (CurrentGroup.Regions.empty())
+ continue;
+
+ CurrentGroup.collectGVNStoreSets(M);
+
+ if (CostModel)
+ findCostBenefit(M, CurrentGroup);
+
+ // If we are adhering to the cost model, skip those groups where the cost
+ // outweighs the benefits.
+ if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
+ OptimizationRemarkEmitter &ORE =
+ getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
+ ORE.emit([&]() {
+ IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
+ OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
+ C->frontInstruction());
+ R << "did not outline "
+ << ore::NV(std::to_string(CurrentGroup.Regions.size()))
+ << " regions due to estimated increase of "
+ << ore::NV("InstructionIncrease",
+ CurrentGroup.Cost - CurrentGroup.Benefit)
+ << " instructions at locations ";
+ interleave(
+ CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
+ [&R](OutlinableRegion *Region) {
+ R << ore::NV(
+ "DebugLoc",
+ Region->Candidate->frontInstruction()->getDebugLoc());
+ },
+ [&R]() { R << " "; });
+ return R;
+ });
+ continue;
+ }
+
+ NegativeCostGroups.push_back(&CurrentGroup);
+ }
+
+ ExtractorAllocator.DestroyAll();
+
+ if (NegativeCostGroups.size() > 1)
+ stable_sort(NegativeCostGroups,
+ [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
+ return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
+ });
+
+ std::vector<Function *> FuncsToRemove;
+ for (OutlinableGroup *CG : NegativeCostGroups) {
+ OutlinableGroup &CurrentGroup = *CG;
+
+ OutlinedRegions.clear();
+ for (OutlinableRegion *Region : CurrentGroup.Regions) {
+ // We check whether our region is compatible with what has already been
+ // outlined, and whether we need to ignore this item.
+ if (!isCompatibleWithAlreadyOutlinedCode(*Region))
+ continue;
+ OutlinedRegions.push_back(Region);
+ }
+
+ if (OutlinedRegions.size() < 2)
+ continue;
+
+ // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
+ // we are still outlining enough regions to make up for the added cost.
+ CurrentGroup.Regions = std::move(OutlinedRegions);
+ if (CostModel) {
+ CurrentGroup.Benefit = 0;
+ CurrentGroup.Cost = 0;
+ findCostBenefit(M, CurrentGroup);
+ if (CurrentGroup.Cost >= CurrentGroup.Benefit)
+ continue;
+ }
+ OutlinedRegions.clear();
+ for (OutlinableRegion *Region : CurrentGroup.Regions) {
+ Region->splitCandidate();
+ if (!Region->CandidateSplit)
+ continue;
+ OutlinedRegions.push_back(Region);
+ }
+
+ CurrentGroup.Regions = std::move(OutlinedRegions);
+ if (CurrentGroup.Regions.size() < 2) {
+ for (OutlinableRegion *R : CurrentGroup.Regions)
+ R->reattachCandidate();
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
+ << " and benefit " << CurrentGroup.Benefit << "\n");
+
+ // Create functions out of all the sections, and mark them as outlined.
+ OutlinedRegions.clear();
+ for (OutlinableRegion *OS : CurrentGroup.Regions) {
+ SmallVector<BasicBlock *> BE;
+ DenseSet<BasicBlock *> BlocksInRegion;
+ OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
+ OS->CE = new (ExtractorAllocator.Allocate())
+ CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
+ false, nullptr, "outlined");
+ bool FunctionOutlined = extractSection(*OS);
+ if (FunctionOutlined) {
+ unsigned StartIdx = OS->Candidate->getStartIdx();
+ unsigned EndIdx = OS->Candidate->getEndIdx();
+ for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
+ Outlined.insert(Idx);
+
+ OutlinedRegions.push_back(OS);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
+ << " with benefit " << CurrentGroup.Benefit
+ << " and cost " << CurrentGroup.Cost << "\n");
+
+ CurrentGroup.Regions = std::move(OutlinedRegions);
+
+ if (CurrentGroup.Regions.empty())
+ continue;
+
+ OptimizationRemarkEmitter &ORE =
+ getORE(*CurrentGroup.Regions[0]->Call->getFunction());
+ ORE.emit([&]() {
+ IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
+ OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
+ R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
+ << " regions with decrease of "
+ << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
+ << " instructions at locations ";
+ interleave(
+ CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
+ [&R](OutlinableRegion *Region) {
+ R << ore::NV("DebugLoc",
+ Region->Candidate->frontInstruction()->getDebugLoc());
+ },
+ [&R]() { R << " "; });
+ return R;
+ });
+
+ deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
+ OutlinedFunctionNum);
+ }
+
+ for (Function *F : FuncsToRemove)
+ F->eraseFromParent();
+
+ return OutlinedFunctionNum;
+}
+
+bool IROutliner::run(Module &M) {
+ CostModel = !NoCostModel;
+ OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
+
+ return doOutline(M) > 0;
+}
+
+// Pass Manager Boilerplate
+namespace {
+class IROutlinerLegacyPass : public ModulePass {
+public:
+ static char ID;
+ IROutlinerLegacyPass() : ModulePass(ID) {
+ initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<IRSimilarityIdentifierWrapperPass>();
+ }
+
+ bool runOnModule(Module &M) override;
+};
+} // namespace
+
+bool IROutlinerLegacyPass::runOnModule(Module &M) {
+ if (skipModule(M))
+ return false;
+
+ std::unique_ptr<OptimizationRemarkEmitter> ORE;
+ auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
+ ORE.reset(new OptimizationRemarkEmitter(&F));
+ return *ORE;
+ };
+
+ auto GTTI = [this](Function &F) -> TargetTransformInfo & {
+ return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ };
+
+ auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
+ return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
+ };
+
+ return IROutliner(GTTI, GIRSI, GORE).run(M);
+}
+
+PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
+ auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
+
+ std::function<TargetTransformInfo &(Function &)> GTTI =
+ [&FAM](Function &F) -> TargetTransformInfo & {
+ return FAM.getResult<TargetIRAnalysis>(F);
+ };
+
+ std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
+ [&AM](Module &M) -> IRSimilarityIdentifier & {
+ return AM.getResult<IRSimilarityAnalysis>(M);
+ };
+
+ std::unique_ptr<OptimizationRemarkEmitter> ORE;
+ std::function<OptimizationRemarkEmitter &(Function &)> GORE =
+ [&ORE](Function &F) -> OptimizationRemarkEmitter & {
+ ORE.reset(new OptimizationRemarkEmitter(&F));
+ return *ORE;
+ };
+
+ if (IROutliner(GTTI, GIRSI, GORE).run(M))
+ return PreservedAnalyses::none();
+ return PreservedAnalyses::all();
+}
+
+char IROutlinerLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
+ false)
+
+ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }