aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/IPO/OpenMPOpt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/OpenMPOpt.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/IPO/OpenMPOpt.cpp2459
1 files changed, 2459 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/OpenMPOpt.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/OpenMPOpt.cpp
new file mode 100644
index 000000000000..a5ba6edb9a00
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/OpenMPOpt.cpp
@@ -0,0 +1,2459 @@
+//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// OpenMP specific optimizations:
+//
+// - Deduplication of runtime calls, e.g., omp_get_thread_num.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/OpenMPOpt.h"
+
+#include "llvm/ADT/EnumeratedArray.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Frontend/OpenMP/OMPConstants.h"
+#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/IPO/Attributor.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/CallGraphUpdater.h"
+#include "llvm/Transforms/Utils/CodeExtractor.h"
+
+using namespace llvm;
+using namespace omp;
+
+#define DEBUG_TYPE "openmp-opt"
+
+static cl::opt<bool> DisableOpenMPOptimizations(
+ "openmp-opt-disable", cl::ZeroOrMore,
+ cl::desc("Disable OpenMP specific optimizations."), cl::Hidden,
+ cl::init(false));
+
+static cl::opt<bool> EnableParallelRegionMerging(
+ "openmp-opt-enable-merging", cl::ZeroOrMore,
+ cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
+ cl::init(false));
+
+static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
+ cl::Hidden);
+static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool> HideMemoryTransferLatency(
+ "openmp-hide-memory-transfer-latency",
+ cl::desc("[WIP] Tries to hide the latency of host to device memory"
+ " transfers"),
+ cl::Hidden, cl::init(false));
+
+STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
+ "Number of OpenMP runtime calls deduplicated");
+STATISTIC(NumOpenMPParallelRegionsDeleted,
+ "Number of OpenMP parallel regions deleted");
+STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
+ "Number of OpenMP runtime functions identified");
+STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
+ "Number of OpenMP runtime function uses identified");
+STATISTIC(NumOpenMPTargetRegionKernels,
+ "Number of OpenMP target region entry points (=kernels) identified");
+STATISTIC(
+ NumOpenMPParallelRegionsReplacedInGPUStateMachine,
+ "Number of OpenMP parallel regions replaced with ID in GPU state machines");
+STATISTIC(NumOpenMPParallelRegionsMerged,
+ "Number of OpenMP parallel regions merged");
+
+#if !defined(NDEBUG)
+static constexpr auto TAG = "[" DEBUG_TYPE "]";
+#endif
+
+namespace {
+
+struct AAICVTracker;
+
+/// OpenMP specific information. For now, stores RFIs and ICVs also needed for
+/// Attributor runs.
+struct OMPInformationCache : public InformationCache {
+ OMPInformationCache(Module &M, AnalysisGetter &AG,
+ BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
+ SmallPtrSetImpl<Kernel> &Kernels)
+ : InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
+ Kernels(Kernels) {
+
+ OMPBuilder.initialize();
+ initializeRuntimeFunctions();
+ initializeInternalControlVars();
+ }
+
+ /// Generic information that describes an internal control variable.
+ struct InternalControlVarInfo {
+ /// The kind, as described by InternalControlVar enum.
+ InternalControlVar Kind;
+
+ /// The name of the ICV.
+ StringRef Name;
+
+ /// Environment variable associated with this ICV.
+ StringRef EnvVarName;
+
+ /// Initial value kind.
+ ICVInitValue InitKind;
+
+ /// Initial value.
+ ConstantInt *InitValue;
+
+ /// Setter RTL function associated with this ICV.
+ RuntimeFunction Setter;
+
+ /// Getter RTL function associated with this ICV.
+ RuntimeFunction Getter;
+
+ /// RTL Function corresponding to the override clause of this ICV
+ RuntimeFunction Clause;
+ };
+
+ /// Generic information that describes a runtime function
+ struct RuntimeFunctionInfo {
+
+ /// The kind, as described by the RuntimeFunction enum.
+ RuntimeFunction Kind;
+
+ /// The name of the function.
+ StringRef Name;
+
+ /// Flag to indicate a variadic function.
+ bool IsVarArg;
+
+ /// The return type of the function.
+ Type *ReturnType;
+
+ /// The argument types of the function.
+ SmallVector<Type *, 8> ArgumentTypes;
+
+ /// The declaration if available.
+ Function *Declaration = nullptr;
+
+ /// Uses of this runtime function per function containing the use.
+ using UseVector = SmallVector<Use *, 16>;
+
+ /// Clear UsesMap for runtime function.
+ void clearUsesMap() { UsesMap.clear(); }
+
+ /// Boolean conversion that is true if the runtime function was found.
+ operator bool() const { return Declaration; }
+
+ /// Return the vector of uses in function \p F.
+ UseVector &getOrCreateUseVector(Function *F) {
+ std::shared_ptr<UseVector> &UV = UsesMap[F];
+ if (!UV)
+ UV = std::make_shared<UseVector>();
+ return *UV;
+ }
+
+ /// Return the vector of uses in function \p F or `nullptr` if there are
+ /// none.
+ const UseVector *getUseVector(Function &F) const {
+ auto I = UsesMap.find(&F);
+ if (I != UsesMap.end())
+ return I->second.get();
+ return nullptr;
+ }
+
+ /// Return how many functions contain uses of this runtime function.
+ size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
+
+ /// Return the number of arguments (or the minimal number for variadic
+ /// functions).
+ size_t getNumArgs() const { return ArgumentTypes.size(); }
+
+ /// Run the callback \p CB on each use and forget the use if the result is
+ /// true. The callback will be fed the function in which the use was
+ /// encountered as second argument.
+ void foreachUse(SmallVectorImpl<Function *> &SCC,
+ function_ref<bool(Use &, Function &)> CB) {
+ for (Function *F : SCC)
+ foreachUse(CB, F);
+ }
+
+ /// Run the callback \p CB on each use within the function \p F and forget
+ /// the use if the result is true.
+ void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
+ SmallVector<unsigned, 8> ToBeDeleted;
+ ToBeDeleted.clear();
+
+ unsigned Idx = 0;
+ UseVector &UV = getOrCreateUseVector(F);
+
+ for (Use *U : UV) {
+ if (CB(*U, *F))
+ ToBeDeleted.push_back(Idx);
+ ++Idx;
+ }
+
+ // Remove the to-be-deleted indices in reverse order as prior
+ // modifications will not modify the smaller indices.
+ while (!ToBeDeleted.empty()) {
+ unsigned Idx = ToBeDeleted.pop_back_val();
+ UV[Idx] = UV.back();
+ UV.pop_back();
+ }
+ }
+
+ private:
+ /// Map from functions to all uses of this runtime function contained in
+ /// them.
+ DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
+ };
+
+ /// An OpenMP-IR-Builder instance
+ OpenMPIRBuilder OMPBuilder;
+
+ /// Map from runtime function kind to the runtime function description.
+ EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
+ RuntimeFunction::OMPRTL___last>
+ RFIs;
+
+ /// Map from ICV kind to the ICV description.
+ EnumeratedArray<InternalControlVarInfo, InternalControlVar,
+ InternalControlVar::ICV___last>
+ ICVs;
+
+ /// Helper to initialize all internal control variable information for those
+ /// defined in OMPKinds.def.
+ void initializeInternalControlVars() {
+#define ICV_RT_SET(_Name, RTL) \
+ { \
+ auto &ICV = ICVs[_Name]; \
+ ICV.Setter = RTL; \
+ }
+#define ICV_RT_GET(Name, RTL) \
+ { \
+ auto &ICV = ICVs[Name]; \
+ ICV.Getter = RTL; \
+ }
+#define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
+ { \
+ auto &ICV = ICVs[Enum]; \
+ ICV.Name = _Name; \
+ ICV.Kind = Enum; \
+ ICV.InitKind = Init; \
+ ICV.EnvVarName = _EnvVarName; \
+ switch (ICV.InitKind) { \
+ case ICV_IMPLEMENTATION_DEFINED: \
+ ICV.InitValue = nullptr; \
+ break; \
+ case ICV_ZERO: \
+ ICV.InitValue = ConstantInt::get( \
+ Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
+ break; \
+ case ICV_FALSE: \
+ ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
+ break; \
+ case ICV_LAST: \
+ break; \
+ } \
+ }
+#include "llvm/Frontend/OpenMP/OMPKinds.def"
+ }
+
+ /// Returns true if the function declaration \p F matches the runtime
+ /// function types, that is, return type \p RTFRetType, and argument types
+ /// \p RTFArgTypes.
+ static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
+ SmallVector<Type *, 8> &RTFArgTypes) {
+ // TODO: We should output information to the user (under debug output
+ // and via remarks).
+
+ if (!F)
+ return false;
+ if (F->getReturnType() != RTFRetType)
+ return false;
+ if (F->arg_size() != RTFArgTypes.size())
+ return false;
+
+ auto RTFTyIt = RTFArgTypes.begin();
+ for (Argument &Arg : F->args()) {
+ if (Arg.getType() != *RTFTyIt)
+ return false;
+
+ ++RTFTyIt;
+ }
+
+ return true;
+ }
+
+ // Helper to collect all uses of the declaration in the UsesMap.
+ unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
+ unsigned NumUses = 0;
+ if (!RFI.Declaration)
+ return NumUses;
+ OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
+
+ if (CollectStats) {
+ NumOpenMPRuntimeFunctionsIdentified += 1;
+ NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
+ }
+
+ // TODO: We directly convert uses into proper calls and unknown uses.
+ for (Use &U : RFI.Declaration->uses()) {
+ if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
+ if (ModuleSlice.count(UserI->getFunction())) {
+ RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
+ ++NumUses;
+ }
+ } else {
+ RFI.getOrCreateUseVector(nullptr).push_back(&U);
+ ++NumUses;
+ }
+ }
+ return NumUses;
+ }
+
+ // Helper function to recollect uses of a runtime function.
+ void recollectUsesForFunction(RuntimeFunction RTF) {
+ auto &RFI = RFIs[RTF];
+ RFI.clearUsesMap();
+ collectUses(RFI, /*CollectStats*/ false);
+ }
+
+ // Helper function to recollect uses of all runtime functions.
+ void recollectUses() {
+ for (int Idx = 0; Idx < RFIs.size(); ++Idx)
+ recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
+ }
+
+ /// Helper to initialize all runtime function information for those defined
+ /// in OpenMPKinds.def.
+ void initializeRuntimeFunctions() {
+ Module &M = *((*ModuleSlice.begin())->getParent());
+
+ // Helper macros for handling __VA_ARGS__ in OMP_RTL
+#define OMP_TYPE(VarName, ...) \
+ Type *VarName = OMPBuilder.VarName; \
+ (void)VarName;
+
+#define OMP_ARRAY_TYPE(VarName, ...) \
+ ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
+ (void)VarName##Ty; \
+ PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
+ (void)VarName##PtrTy;
+
+#define OMP_FUNCTION_TYPE(VarName, ...) \
+ FunctionType *VarName = OMPBuilder.VarName; \
+ (void)VarName; \
+ PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
+ (void)VarName##Ptr;
+
+#define OMP_STRUCT_TYPE(VarName, ...) \
+ StructType *VarName = OMPBuilder.VarName; \
+ (void)VarName; \
+ PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
+ (void)VarName##Ptr;
+
+#define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
+ { \
+ SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
+ Function *F = M.getFunction(_Name); \
+ if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
+ auto &RFI = RFIs[_Enum]; \
+ RFI.Kind = _Enum; \
+ RFI.Name = _Name; \
+ RFI.IsVarArg = _IsVarArg; \
+ RFI.ReturnType = OMPBuilder._ReturnType; \
+ RFI.ArgumentTypes = std::move(ArgsTypes); \
+ RFI.Declaration = F; \
+ unsigned NumUses = collectUses(RFI); \
+ (void)NumUses; \
+ LLVM_DEBUG({ \
+ dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
+ << " found\n"; \
+ if (RFI.Declaration) \
+ dbgs() << TAG << "-> got " << NumUses << " uses in " \
+ << RFI.getNumFunctionsWithUses() \
+ << " different functions.\n"; \
+ }); \
+ } \
+ }
+#include "llvm/Frontend/OpenMP/OMPKinds.def"
+
+ // TODO: We should attach the attributes defined in OMPKinds.def.
+ }
+
+ /// Collection of known kernels (\see Kernel) in the module.
+ SmallPtrSetImpl<Kernel> &Kernels;
+};
+
+/// Used to map the values physically (in the IR) stored in an offload
+/// array, to a vector in memory.
+struct OffloadArray {
+ /// Physical array (in the IR).
+ AllocaInst *Array = nullptr;
+ /// Mapped values.
+ SmallVector<Value *, 8> StoredValues;
+ /// Last stores made in the offload array.
+ SmallVector<StoreInst *, 8> LastAccesses;
+
+ OffloadArray() = default;
+
+ /// Initializes the OffloadArray with the values stored in \p Array before
+ /// instruction \p Before is reached. Returns false if the initialization
+ /// fails.
+ /// This MUST be used immediately after the construction of the object.
+ bool initialize(AllocaInst &Array, Instruction &Before) {
+ if (!Array.getAllocatedType()->isArrayTy())
+ return false;
+
+ if (!getValues(Array, Before))
+ return false;
+
+ this->Array = &Array;
+ return true;
+ }
+
+ static const unsigned DeviceIDArgNum = 1;
+ static const unsigned BasePtrsArgNum = 3;
+ static const unsigned PtrsArgNum = 4;
+ static const unsigned SizesArgNum = 5;
+
+private:
+ /// Traverses the BasicBlock where \p Array is, collecting the stores made to
+ /// \p Array, leaving StoredValues with the values stored before the
+ /// instruction \p Before is reached.
+ bool getValues(AllocaInst &Array, Instruction &Before) {
+ // Initialize container.
+ const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
+ StoredValues.assign(NumValues, nullptr);
+ LastAccesses.assign(NumValues, nullptr);
+
+ // TODO: This assumes the instruction \p Before is in the same
+ // BasicBlock as Array. Make it general, for any control flow graph.
+ BasicBlock *BB = Array.getParent();
+ if (BB != Before.getParent())
+ return false;
+
+ const DataLayout &DL = Array.getModule()->getDataLayout();
+ const unsigned int PointerSize = DL.getPointerSize();
+
+ for (Instruction &I : *BB) {
+ if (&I == &Before)
+ break;
+
+ if (!isa<StoreInst>(&I))
+ continue;
+
+ auto *S = cast<StoreInst>(&I);
+ int64_t Offset = -1;
+ auto *Dst =
+ GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
+ if (Dst == &Array) {
+ int64_t Idx = Offset / PointerSize;
+ StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
+ LastAccesses[Idx] = S;
+ }
+ }
+
+ return isFilled();
+ }
+
+ /// Returns true if all values in StoredValues and
+ /// LastAccesses are not nullptrs.
+ bool isFilled() {
+ const unsigned NumValues = StoredValues.size();
+ for (unsigned I = 0; I < NumValues; ++I) {
+ if (!StoredValues[I] || !LastAccesses[I])
+ return false;
+ }
+
+ return true;
+ }
+};
+
+struct OpenMPOpt {
+
+ using OptimizationRemarkGetter =
+ function_ref<OptimizationRemarkEmitter &(Function *)>;
+
+ OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
+ OptimizationRemarkGetter OREGetter,
+ OMPInformationCache &OMPInfoCache, Attributor &A)
+ : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
+ OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
+
+ /// Check if any remarks are enabled for openmp-opt
+ bool remarksEnabled() {
+ auto &Ctx = M.getContext();
+ return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
+ }
+
+ /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
+ bool run() {
+ if (SCC.empty())
+ return false;
+
+ bool Changed = false;
+
+ LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
+ << " functions in a slice with "
+ << OMPInfoCache.ModuleSlice.size() << " functions\n");
+
+ if (PrintICVValues)
+ printICVs();
+ if (PrintOpenMPKernels)
+ printKernels();
+
+ Changed |= rewriteDeviceCodeStateMachine();
+
+ Changed |= runAttributor();
+
+ // Recollect uses, in case Attributor deleted any.
+ OMPInfoCache.recollectUses();
+
+ Changed |= deleteParallelRegions();
+ if (HideMemoryTransferLatency)
+ Changed |= hideMemTransfersLatency();
+ if (remarksEnabled())
+ analysisGlobalization();
+ Changed |= deduplicateRuntimeCalls();
+ if (EnableParallelRegionMerging) {
+ if (mergeParallelRegions()) {
+ deduplicateRuntimeCalls();
+ Changed = true;
+ }
+ }
+
+ return Changed;
+ }
+
+ /// Print initial ICV values for testing.
+ /// FIXME: This should be done from the Attributor once it is added.
+ void printICVs() const {
+ InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
+ ICV_proc_bind};
+
+ for (Function *F : OMPInfoCache.ModuleSlice) {
+ for (auto ICV : ICVs) {
+ auto ICVInfo = OMPInfoCache.ICVs[ICV];
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
+ << " Value: "
+ << (ICVInfo.InitValue
+ ? ICVInfo.InitValue->getValue().toString(10, true)
+ : "IMPLEMENTATION_DEFINED");
+ };
+
+ emitRemarkOnFunction(F, "OpenMPICVTracker", Remark);
+ }
+ }
+ }
+
+ /// Print OpenMP GPU kernels for testing.
+ void printKernels() const {
+ for (Function *F : SCC) {
+ if (!OMPInfoCache.Kernels.count(F))
+ continue;
+
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "OpenMP GPU kernel "
+ << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
+ };
+
+ emitRemarkOnFunction(F, "OpenMPGPU", Remark);
+ }
+ }
+
+ /// Return the call if \p U is a callee use in a regular call. If \p RFI is
+ /// given it has to be the callee or a nullptr is returned.
+ static CallInst *getCallIfRegularCall(
+ Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
+ CallInst *CI = dyn_cast<CallInst>(U.getUser());
+ if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
+ (!RFI || CI->getCalledFunction() == RFI->Declaration))
+ return CI;
+ return nullptr;
+ }
+
+ /// Return the call if \p V is a regular call. If \p RFI is given it has to be
+ /// the callee or a nullptr is returned.
+ static CallInst *getCallIfRegularCall(
+ Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
+ CallInst *CI = dyn_cast<CallInst>(&V);
+ if (CI && !CI->hasOperandBundles() &&
+ (!RFI || CI->getCalledFunction() == RFI->Declaration))
+ return CI;
+ return nullptr;
+ }
+
+private:
+ /// Merge parallel regions when it is safe.
+ bool mergeParallelRegions() {
+ const unsigned CallbackCalleeOperand = 2;
+ const unsigned CallbackFirstArgOperand = 3;
+ using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
+
+ // Check if there are any __kmpc_fork_call calls to merge.
+ OMPInformationCache::RuntimeFunctionInfo &RFI =
+ OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
+
+ if (!RFI.Declaration)
+ return false;
+
+ // Unmergable calls that prevent merging a parallel region.
+ OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
+ OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
+ OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
+ };
+
+ bool Changed = false;
+ LoopInfo *LI = nullptr;
+ DominatorTree *DT = nullptr;
+
+ SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
+
+ BasicBlock *StartBB = nullptr, *EndBB = nullptr;
+ auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
+ BasicBlock &ContinuationIP) {
+ BasicBlock *CGStartBB = CodeGenIP.getBlock();
+ BasicBlock *CGEndBB =
+ SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
+ assert(StartBB != nullptr && "StartBB should not be null");
+ CGStartBB->getTerminator()->setSuccessor(0, StartBB);
+ assert(EndBB != nullptr && "EndBB should not be null");
+ EndBB->getTerminator()->setSuccessor(0, CGEndBB);
+ };
+
+ auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
+ Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
+ ReplacementValue = &Inner;
+ return CodeGenIP;
+ };
+
+ auto FiniCB = [&](InsertPointTy CodeGenIP) {};
+
+ /// Create a sequential execution region within a merged parallel region,
+ /// encapsulated in a master construct with a barrier for synchronization.
+ auto CreateSequentialRegion = [&](Function *OuterFn,
+ BasicBlock *OuterPredBB,
+ Instruction *SeqStartI,
+ Instruction *SeqEndI) {
+ // Isolate the instructions of the sequential region to a separate
+ // block.
+ BasicBlock *ParentBB = SeqStartI->getParent();
+ BasicBlock *SeqEndBB =
+ SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
+ BasicBlock *SeqAfterBB =
+ SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
+ BasicBlock *SeqStartBB =
+ SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
+
+ assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
+ "Expected a different CFG");
+ const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
+ ParentBB->getTerminator()->eraseFromParent();
+
+ auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
+ BasicBlock &ContinuationIP) {
+ BasicBlock *CGStartBB = CodeGenIP.getBlock();
+ BasicBlock *CGEndBB =
+ SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
+ assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
+ CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
+ assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
+ SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
+ };
+ auto FiniCB = [&](InsertPointTy CodeGenIP) {};
+
+ // Find outputs from the sequential region to outside users and
+ // broadcast their values to them.
+ for (Instruction &I : *SeqStartBB) {
+ SmallPtrSet<Instruction *, 4> OutsideUsers;
+ for (User *Usr : I.users()) {
+ Instruction &UsrI = *cast<Instruction>(Usr);
+ // Ignore outputs to LT intrinsics, code extraction for the merged
+ // parallel region will fix them.
+ if (UsrI.isLifetimeStartOrEnd())
+ continue;
+
+ if (UsrI.getParent() != SeqStartBB)
+ OutsideUsers.insert(&UsrI);
+ }
+
+ if (OutsideUsers.empty())
+ continue;
+
+ // Emit an alloca in the outer region to store the broadcasted
+ // value.
+ const DataLayout &DL = M.getDataLayout();
+ AllocaInst *AllocaI = new AllocaInst(
+ I.getType(), DL.getAllocaAddrSpace(), nullptr,
+ I.getName() + ".seq.output.alloc", &OuterFn->front().front());
+
+ // Emit a store instruction in the sequential BB to update the
+ // value.
+ new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
+
+ // Emit a load instruction and replace the use of the output value
+ // with it.
+ for (Instruction *UsrI : OutsideUsers) {
+ LoadInst *LoadI = new LoadInst(I.getType(), AllocaI,
+ I.getName() + ".seq.output.load", UsrI);
+ UsrI->replaceUsesOfWith(&I, LoadI);
+ }
+ }
+
+ OpenMPIRBuilder::LocationDescription Loc(
+ InsertPointTy(ParentBB, ParentBB->end()), DL);
+ InsertPointTy SeqAfterIP =
+ OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
+
+ OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
+
+ BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
+
+ LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
+ << "\n");
+ };
+
+ // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
+ // contained in BB and only separated by instructions that can be
+ // redundantly executed in parallel. The block BB is split before the first
+ // call (in MergableCIs) and after the last so the entire region we merge
+ // into a single parallel region is contained in a single basic block
+ // without any other instructions. We use the OpenMPIRBuilder to outline
+ // that block and call the resulting function via __kmpc_fork_call.
+ auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) {
+ // TODO: Change the interface to allow single CIs expanded, e.g, to
+ // include an outer loop.
+ assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
+
+ auto Remark = [&](OptimizationRemark OR) {
+ OR << "Parallel region at "
+ << ore::NV("OpenMPParallelMergeFront",
+ MergableCIs.front()->getDebugLoc())
+ << " merged with parallel regions at ";
+ for (auto *CI : llvm::drop_begin(MergableCIs)) {
+ OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
+ if (CI != MergableCIs.back())
+ OR << ", ";
+ }
+ return OR;
+ };
+
+ emitRemark<OptimizationRemark>(MergableCIs.front(),
+ "OpenMPParallelRegionMerging", Remark);
+
+ Function *OriginalFn = BB->getParent();
+ LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
+ << " parallel regions in " << OriginalFn->getName()
+ << "\n");
+
+ // Isolate the calls to merge in a separate block.
+ EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
+ BasicBlock *AfterBB =
+ SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
+ StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
+ "omp.par.merged");
+
+ assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
+ const DebugLoc DL = BB->getTerminator()->getDebugLoc();
+ BB->getTerminator()->eraseFromParent();
+
+ // Create sequential regions for sequential instructions that are
+ // in-between mergable parallel regions.
+ for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
+ It != End; ++It) {
+ Instruction *ForkCI = *It;
+ Instruction *NextForkCI = *(It + 1);
+
+ // Continue if there are not in-between instructions.
+ if (ForkCI->getNextNode() == NextForkCI)
+ continue;
+
+ CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
+ NextForkCI->getPrevNode());
+ }
+
+ OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
+ DL);
+ IRBuilder<>::InsertPoint AllocaIP(
+ &OriginalFn->getEntryBlock(),
+ OriginalFn->getEntryBlock().getFirstInsertionPt());
+ // Create the merged parallel region with default proc binding, to
+ // avoid overriding binding settings, and without explicit cancellation.
+ InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
+ Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
+ OMP_PROC_BIND_default, /* IsCancellable */ false);
+ BranchInst::Create(AfterBB, AfterIP.getBlock());
+
+ // Perform the actual outlining.
+ OMPInfoCache.OMPBuilder.finalize(/* AllowExtractorSinking */ true);
+
+ Function *OutlinedFn = MergableCIs.front()->getCaller();
+
+ // Replace the __kmpc_fork_call calls with direct calls to the outlined
+ // callbacks.
+ SmallVector<Value *, 8> Args;
+ for (auto *CI : MergableCIs) {
+ Value *Callee =
+ CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts();
+ FunctionType *FT =
+ cast<FunctionType>(Callee->getType()->getPointerElementType());
+ Args.clear();
+ Args.push_back(OutlinedFn->getArg(0));
+ Args.push_back(OutlinedFn->getArg(1));
+ for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
+ U < E; ++U)
+ Args.push_back(CI->getArgOperand(U));
+
+ CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
+ if (CI->getDebugLoc())
+ NewCI->setDebugLoc(CI->getDebugLoc());
+
+ // Forward parameter attributes from the callback to the callee.
+ for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
+ U < E; ++U)
+ for (const Attribute &A : CI->getAttributes().getParamAttributes(U))
+ NewCI->addParamAttr(
+ U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
+
+ // Emit an explicit barrier to replace the implicit fork-join barrier.
+ if (CI != MergableCIs.back()) {
+ // TODO: Remove barrier if the merged parallel region includes the
+ // 'nowait' clause.
+ OMPInfoCache.OMPBuilder.createBarrier(
+ InsertPointTy(NewCI->getParent(),
+ NewCI->getNextNode()->getIterator()),
+ OMPD_parallel);
+ }
+
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "Parallel region at "
+ << ore::NV("OpenMPParallelMerge", CI->getDebugLoc())
+ << " merged with "
+ << ore::NV("OpenMPParallelMergeFront",
+ MergableCIs.front()->getDebugLoc());
+ };
+ if (CI != MergableCIs.front())
+ emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionMerging",
+ Remark);
+
+ CI->eraseFromParent();
+ }
+
+ assert(OutlinedFn != OriginalFn && "Outlining failed");
+ CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
+ CGUpdater.reanalyzeFunction(*OriginalFn);
+
+ NumOpenMPParallelRegionsMerged += MergableCIs.size();
+
+ return true;
+ };
+
+ // Helper function that identifes sequences of
+ // __kmpc_fork_call uses in a basic block.
+ auto DetectPRsCB = [&](Use &U, Function &F) {
+ CallInst *CI = getCallIfRegularCall(U, &RFI);
+ BB2PRMap[CI->getParent()].insert(CI);
+
+ return false;
+ };
+
+ BB2PRMap.clear();
+ RFI.foreachUse(SCC, DetectPRsCB);
+ SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
+ // Find mergable parallel regions within a basic block that are
+ // safe to merge, that is any in-between instructions can safely
+ // execute in parallel after merging.
+ // TODO: support merging across basic-blocks.
+ for (auto &It : BB2PRMap) {
+ auto &CIs = It.getSecond();
+ if (CIs.size() < 2)
+ continue;
+
+ BasicBlock *BB = It.getFirst();
+ SmallVector<CallInst *, 4> MergableCIs;
+
+ /// Returns true if the instruction is mergable, false otherwise.
+ /// A terminator instruction is unmergable by definition since merging
+ /// works within a BB. Instructions before the mergable region are
+ /// mergable if they are not calls to OpenMP runtime functions that may
+ /// set different execution parameters for subsequent parallel regions.
+ /// Instructions in-between parallel regions are mergable if they are not
+ /// calls to any non-intrinsic function since that may call a non-mergable
+ /// OpenMP runtime function.
+ auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
+ // We do not merge across BBs, hence return false (unmergable) if the
+ // instruction is a terminator.
+ if (I.isTerminator())
+ return false;
+
+ if (!isa<CallInst>(&I))
+ return true;
+
+ CallInst *CI = cast<CallInst>(&I);
+ if (IsBeforeMergableRegion) {
+ Function *CalledFunction = CI->getCalledFunction();
+ if (!CalledFunction)
+ return false;
+ // Return false (unmergable) if the call before the parallel
+ // region calls an explicit affinity (proc_bind) or number of
+ // threads (num_threads) compiler-generated function. Those settings
+ // may be incompatible with following parallel regions.
+ // TODO: ICV tracking to detect compatibility.
+ for (const auto &RFI : UnmergableCallsInfo) {
+ if (CalledFunction == RFI.Declaration)
+ return false;
+ }
+ } else {
+ // Return false (unmergable) if there is a call instruction
+ // in-between parallel regions when it is not an intrinsic. It
+ // may call an unmergable OpenMP runtime function in its callpath.
+ // TODO: Keep track of possible OpenMP calls in the callpath.
+ if (!isa<IntrinsicInst>(CI))
+ return false;
+ }
+
+ return true;
+ };
+ // Find maximal number of parallel region CIs that are safe to merge.
+ for (auto It = BB->begin(), End = BB->end(); It != End;) {
+ Instruction &I = *It;
+ ++It;
+
+ if (CIs.count(&I)) {
+ MergableCIs.push_back(cast<CallInst>(&I));
+ continue;
+ }
+
+ // Continue expanding if the instruction is mergable.
+ if (IsMergable(I, MergableCIs.empty()))
+ continue;
+
+ // Forward the instruction iterator to skip the next parallel region
+ // since there is an unmergable instruction which can affect it.
+ for (; It != End; ++It) {
+ Instruction &SkipI = *It;
+ if (CIs.count(&SkipI)) {
+ LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
+ << " due to " << I << "\n");
+ ++It;
+ break;
+ }
+ }
+
+ // Store mergable regions found.
+ if (MergableCIs.size() > 1) {
+ MergableCIsVector.push_back(MergableCIs);
+ LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
+ << " parallel regions in block " << BB->getName()
+ << " of function " << BB->getParent()->getName()
+ << "\n";);
+ }
+
+ MergableCIs.clear();
+ }
+
+ if (!MergableCIsVector.empty()) {
+ Changed = true;
+
+ for (auto &MergableCIs : MergableCIsVector)
+ Merge(MergableCIs, BB);
+ }
+ }
+
+ if (Changed) {
+ /// Re-collect use for fork calls, emitted barrier calls, and
+ /// any emitted master/end_master calls.
+ OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
+ OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
+ OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
+ OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
+ }
+
+ return Changed;
+ }
+
+ /// Try to delete parallel regions if possible.
+ bool deleteParallelRegions() {
+ const unsigned CallbackCalleeOperand = 2;
+
+ OMPInformationCache::RuntimeFunctionInfo &RFI =
+ OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
+
+ if (!RFI.Declaration)
+ return false;
+
+ bool Changed = false;
+ auto DeleteCallCB = [&](Use &U, Function &) {
+ CallInst *CI = getCallIfRegularCall(U);
+ if (!CI)
+ return false;
+ auto *Fn = dyn_cast<Function>(
+ CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
+ if (!Fn)
+ return false;
+ if (!Fn->onlyReadsMemory())
+ return false;
+ if (!Fn->hasFnAttribute(Attribute::WillReturn))
+ return false;
+
+ LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
+ << CI->getCaller()->getName() << "\n");
+
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "Parallel region in "
+ << ore::NV("OpenMPParallelDelete", CI->getCaller()->getName())
+ << " deleted";
+ };
+ emitRemark<OptimizationRemark>(CI, "OpenMPParallelRegionDeletion",
+ Remark);
+
+ CGUpdater.removeCallSite(*CI);
+ CI->eraseFromParent();
+ Changed = true;
+ ++NumOpenMPParallelRegionsDeleted;
+ return true;
+ };
+
+ RFI.foreachUse(SCC, DeleteCallCB);
+
+ return Changed;
+ }
+
+ /// Try to eliminate runtime calls by reusing existing ones.
+ bool deduplicateRuntimeCalls() {
+ bool Changed = false;
+
+ RuntimeFunction DeduplicableRuntimeCallIDs[] = {
+ OMPRTL_omp_get_num_threads,
+ OMPRTL_omp_in_parallel,
+ OMPRTL_omp_get_cancellation,
+ OMPRTL_omp_get_thread_limit,
+ OMPRTL_omp_get_supported_active_levels,
+ OMPRTL_omp_get_level,
+ OMPRTL_omp_get_ancestor_thread_num,
+ OMPRTL_omp_get_team_size,
+ OMPRTL_omp_get_active_level,
+ OMPRTL_omp_in_final,
+ OMPRTL_omp_get_proc_bind,
+ OMPRTL_omp_get_num_places,
+ OMPRTL_omp_get_num_procs,
+ OMPRTL_omp_get_place_num,
+ OMPRTL_omp_get_partition_num_places,
+ OMPRTL_omp_get_partition_place_nums};
+
+ // Global-tid is handled separately.
+ SmallSetVector<Value *, 16> GTIdArgs;
+ collectGlobalThreadIdArguments(GTIdArgs);
+ LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
+ << " global thread ID arguments\n");
+
+ for (Function *F : SCC) {
+ for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
+ Changed |= deduplicateRuntimeCalls(
+ *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
+
+ // __kmpc_global_thread_num is special as we can replace it with an
+ // argument in enough cases to make it worth trying.
+ Value *GTIdArg = nullptr;
+ for (Argument &Arg : F->args())
+ if (GTIdArgs.count(&Arg)) {
+ GTIdArg = &Arg;
+ break;
+ }
+ Changed |= deduplicateRuntimeCalls(
+ *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
+ }
+
+ return Changed;
+ }
+
+ /// Tries to hide the latency of runtime calls that involve host to
+ /// device memory transfers by splitting them into their "issue" and "wait"
+ /// versions. The "issue" is moved upwards as much as possible. The "wait" is
+ /// moved downards as much as possible. The "issue" issues the memory transfer
+ /// asynchronously, returning a handle. The "wait" waits in the returned
+ /// handle for the memory transfer to finish.
+ bool hideMemTransfersLatency() {
+ auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
+ bool Changed = false;
+ auto SplitMemTransfers = [&](Use &U, Function &Decl) {
+ auto *RTCall = getCallIfRegularCall(U, &RFI);
+ if (!RTCall)
+ return false;
+
+ OffloadArray OffloadArrays[3];
+ if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
+ return false;
+
+ LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
+
+ // TODO: Check if can be moved upwards.
+ bool WasSplit = false;
+ Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
+ if (WaitMovementPoint)
+ WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
+
+ Changed |= WasSplit;
+ return WasSplit;
+ };
+ RFI.foreachUse(SCC, SplitMemTransfers);
+
+ return Changed;
+ }
+
+ void analysisGlobalization() {
+ RuntimeFunction GlobalizationRuntimeIDs[] = {
+ OMPRTL___kmpc_data_sharing_coalesced_push_stack,
+ OMPRTL___kmpc_data_sharing_push_stack};
+
+ for (const auto GlobalizationCallID : GlobalizationRuntimeIDs) {
+ auto &RFI = OMPInfoCache.RFIs[GlobalizationCallID];
+
+ auto CheckGlobalization = [&](Use &U, Function &Decl) {
+ if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
+ auto Remark = [&](OptimizationRemarkAnalysis ORA) {
+ return ORA
+ << "Found thread data sharing on the GPU. "
+ << "Expect degraded performance due to data globalization.";
+ };
+ emitRemark<OptimizationRemarkAnalysis>(CI, "OpenMPGlobalization",
+ Remark);
+ }
+
+ return false;
+ };
+
+ RFI.foreachUse(SCC, CheckGlobalization);
+ }
+ }
+
+ /// Maps the values stored in the offload arrays passed as arguments to
+ /// \p RuntimeCall into the offload arrays in \p OAs.
+ bool getValuesInOffloadArrays(CallInst &RuntimeCall,
+ MutableArrayRef<OffloadArray> OAs) {
+ assert(OAs.size() == 3 && "Need space for three offload arrays!");
+
+ // A runtime call that involves memory offloading looks something like:
+ // call void @__tgt_target_data_begin_mapper(arg0, arg1,
+ // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
+ // ...)
+ // So, the idea is to access the allocas that allocate space for these
+ // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
+ // Therefore:
+ // i8** %offload_baseptrs.
+ Value *BasePtrsArg =
+ RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
+ // i8** %offload_ptrs.
+ Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
+ // i8** %offload_sizes.
+ Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
+
+ // Get values stored in **offload_baseptrs.
+ auto *V = getUnderlyingObject(BasePtrsArg);
+ if (!isa<AllocaInst>(V))
+ return false;
+ auto *BasePtrsArray = cast<AllocaInst>(V);
+ if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
+ return false;
+
+ // Get values stored in **offload_baseptrs.
+ V = getUnderlyingObject(PtrsArg);
+ if (!isa<AllocaInst>(V))
+ return false;
+ auto *PtrsArray = cast<AllocaInst>(V);
+ if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
+ return false;
+
+ // Get values stored in **offload_sizes.
+ V = getUnderlyingObject(SizesArg);
+ // If it's a [constant] global array don't analyze it.
+ if (isa<GlobalValue>(V))
+ return isa<Constant>(V);
+ if (!isa<AllocaInst>(V))
+ return false;
+
+ auto *SizesArray = cast<AllocaInst>(V);
+ if (!OAs[2].initialize(*SizesArray, RuntimeCall))
+ return false;
+
+ return true;
+ }
+
+ /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
+ /// For now this is a way to test that the function getValuesInOffloadArrays
+ /// is working properly.
+ /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
+ void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
+ assert(OAs.size() == 3 && "There are three offload arrays to debug!");
+
+ LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
+ std::string ValuesStr;
+ raw_string_ostream Printer(ValuesStr);
+ std::string Separator = " --- ";
+
+ for (auto *BP : OAs[0].StoredValues) {
+ BP->print(Printer);
+ Printer << Separator;
+ }
+ LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
+ ValuesStr.clear();
+
+ for (auto *P : OAs[1].StoredValues) {
+ P->print(Printer);
+ Printer << Separator;
+ }
+ LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
+ ValuesStr.clear();
+
+ for (auto *S : OAs[2].StoredValues) {
+ S->print(Printer);
+ Printer << Separator;
+ }
+ LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
+ }
+
+ /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
+ /// moved. Returns nullptr if the movement is not possible, or not worth it.
+ Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
+ // FIXME: This traverses only the BasicBlock where RuntimeCall is.
+ // Make it traverse the CFG.
+
+ Instruction *CurrentI = &RuntimeCall;
+ bool IsWorthIt = false;
+ while ((CurrentI = CurrentI->getNextNode())) {
+
+ // TODO: Once we detect the regions to be offloaded we should use the
+ // alias analysis manager to check if CurrentI may modify one of
+ // the offloaded regions.
+ if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
+ if (IsWorthIt)
+ return CurrentI;
+
+ return nullptr;
+ }
+
+ // FIXME: For now if we move it over anything without side effect
+ // is worth it.
+ IsWorthIt = true;
+ }
+
+ // Return end of BasicBlock.
+ return RuntimeCall.getParent()->getTerminator();
+ }
+
+ /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
+ bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
+ Instruction &WaitMovementPoint) {
+ // Create stack allocated handle (__tgt_async_info) at the beginning of the
+ // function. Used for storing information of the async transfer, allowing to
+ // wait on it later.
+ auto &IRBuilder = OMPInfoCache.OMPBuilder;
+ auto *F = RuntimeCall.getCaller();
+ Instruction *FirstInst = &(F->getEntryBlock().front());
+ AllocaInst *Handle = new AllocaInst(
+ IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);
+
+ // Add "issue" runtime call declaration:
+ // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
+ // i8**, i8**, i64*, i64*)
+ FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
+ M, OMPRTL___tgt_target_data_begin_mapper_issue);
+
+ // Change RuntimeCall call site for its asynchronous version.
+ SmallVector<Value *, 16> Args;
+ for (auto &Arg : RuntimeCall.args())
+ Args.push_back(Arg.get());
+ Args.push_back(Handle);
+
+ CallInst *IssueCallsite =
+ CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
+ RuntimeCall.eraseFromParent();
+
+ // Add "wait" runtime call declaration:
+ // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
+ FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
+ M, OMPRTL___tgt_target_data_begin_mapper_wait);
+
+ Value *WaitParams[2] = {
+ IssueCallsite->getArgOperand(
+ OffloadArray::DeviceIDArgNum), // device_id.
+ Handle // handle to wait on.
+ };
+ CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
+
+ return true;
+ }
+
+ static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
+ bool GlobalOnly, bool &SingleChoice) {
+ if (CurrentIdent == NextIdent)
+ return CurrentIdent;
+
+ // TODO: Figure out how to actually combine multiple debug locations. For
+ // now we just keep an existing one if there is a single choice.
+ if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
+ SingleChoice = !CurrentIdent;
+ return NextIdent;
+ }
+ return nullptr;
+ }
+
+ /// Return an `struct ident_t*` value that represents the ones used in the
+ /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
+ /// return a local `struct ident_t*`. For now, if we cannot find a suitable
+ /// return value we create one from scratch. We also do not yet combine
+ /// information, e.g., the source locations, see combinedIdentStruct.
+ Value *
+ getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
+ Function &F, bool GlobalOnly) {
+ bool SingleChoice = true;
+ Value *Ident = nullptr;
+ auto CombineIdentStruct = [&](Use &U, Function &Caller) {
+ CallInst *CI = getCallIfRegularCall(U, &RFI);
+ if (!CI || &F != &Caller)
+ return false;
+ Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
+ /* GlobalOnly */ true, SingleChoice);
+ return false;
+ };
+ RFI.foreachUse(SCC, CombineIdentStruct);
+
+ if (!Ident || !SingleChoice) {
+ // The IRBuilder uses the insertion block to get to the module, this is
+ // unfortunate but we work around it for now.
+ if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
+ OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
+ &F.getEntryBlock(), F.getEntryBlock().begin()));
+ // Create a fallback location if non was found.
+ // TODO: Use the debug locations of the calls instead.
+ Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr();
+ Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc);
+ }
+ return Ident;
+ }
+
+ /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
+ /// \p ReplVal if given.
+ bool deduplicateRuntimeCalls(Function &F,
+ OMPInformationCache::RuntimeFunctionInfo &RFI,
+ Value *ReplVal = nullptr) {
+ auto *UV = RFI.getUseVector(F);
+ if (!UV || UV->size() + (ReplVal != nullptr) < 2)
+ return false;
+
+ LLVM_DEBUG(
+ dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
+ << (ReplVal ? " with an existing value\n" : "\n") << "\n");
+
+ assert((!ReplVal || (isa<Argument>(ReplVal) &&
+ cast<Argument>(ReplVal)->getParent() == &F)) &&
+ "Unexpected replacement value!");
+
+ // TODO: Use dominance to find a good position instead.
+ auto CanBeMoved = [this](CallBase &CB) {
+ unsigned NumArgs = CB.getNumArgOperands();
+ if (NumArgs == 0)
+ return true;
+ if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
+ return false;
+ for (unsigned u = 1; u < NumArgs; ++u)
+ if (isa<Instruction>(CB.getArgOperand(u)))
+ return false;
+ return true;
+ };
+
+ if (!ReplVal) {
+ for (Use *U : *UV)
+ if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
+ if (!CanBeMoved(*CI))
+ continue;
+
+ auto Remark = [&](OptimizationRemark OR) {
+ auto newLoc = &*F.getEntryBlock().getFirstInsertionPt();
+ return OR << "OpenMP runtime call "
+ << ore::NV("OpenMPOptRuntime", RFI.Name) << " moved to "
+ << ore::NV("OpenMPRuntimeMoves", newLoc->getDebugLoc());
+ };
+ emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeCodeMotion", Remark);
+
+ CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
+ ReplVal = CI;
+ break;
+ }
+ if (!ReplVal)
+ return false;
+ }
+
+ // If we use a call as a replacement value we need to make sure the ident is
+ // valid at the new location. For now we just pick a global one, either
+ // existing and used by one of the calls, or created from scratch.
+ if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
+ if (CI->getNumArgOperands() > 0 &&
+ CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
+ Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
+ /* GlobalOnly */ true);
+ CI->setArgOperand(0, Ident);
+ }
+ }
+
+ bool Changed = false;
+ auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
+ CallInst *CI = getCallIfRegularCall(U, &RFI);
+ if (!CI || CI == ReplVal || &F != &Caller)
+ return false;
+ assert(CI->getCaller() == &F && "Unexpected call!");
+
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "OpenMP runtime call "
+ << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated";
+ };
+ emitRemark<OptimizationRemark>(CI, "OpenMPRuntimeDeduplicated", Remark);
+
+ CGUpdater.removeCallSite(*CI);
+ CI->replaceAllUsesWith(ReplVal);
+ CI->eraseFromParent();
+ ++NumOpenMPRuntimeCallsDeduplicated;
+ Changed = true;
+ return true;
+ };
+ RFI.foreachUse(SCC, ReplaceAndDeleteCB);
+
+ return Changed;
+ }
+
+ /// Collect arguments that represent the global thread id in \p GTIdArgs.
+ void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> &GTIdArgs) {
+ // TODO: Below we basically perform a fixpoint iteration with a pessimistic
+ // initialization. We could define an AbstractAttribute instead and
+ // run the Attributor here once it can be run as an SCC pass.
+
+ // Helper to check the argument \p ArgNo at all call sites of \p F for
+ // a GTId.
+ auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
+ if (!F.hasLocalLinkage())
+ return false;
+ for (Use &U : F.uses()) {
+ if (CallInst *CI = getCallIfRegularCall(U)) {
+ Value *ArgOp = CI->getArgOperand(ArgNo);
+ if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
+ getCallIfRegularCall(
+ *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
+ continue;
+ }
+ return false;
+ }
+ return true;
+ };
+
+ // Helper to identify uses of a GTId as GTId arguments.
+ auto AddUserArgs = [&](Value &GTId) {
+ for (Use &U : GTId.uses())
+ if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
+ if (CI->isArgOperand(&U))
+ if (Function *Callee = CI->getCalledFunction())
+ if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
+ GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
+ };
+
+ // The argument users of __kmpc_global_thread_num calls are GTIds.
+ OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
+ OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
+
+ GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
+ if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
+ AddUserArgs(*CI);
+ return false;
+ });
+
+ // Transitively search for more arguments by looking at the users of the
+ // ones we know already. During the search the GTIdArgs vector is extended
+ // so we cannot cache the size nor can we use a range based for.
+ for (unsigned u = 0; u < GTIdArgs.size(); ++u)
+ AddUserArgs(*GTIdArgs[u]);
+ }
+
+ /// Kernel (=GPU) optimizations and utility functions
+ ///
+ ///{{
+
+ /// Check if \p F is a kernel, hence entry point for target offloading.
+ bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
+
+ /// Cache to remember the unique kernel for a function.
+ DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;
+
+ /// Find the unique kernel that will execute \p F, if any.
+ Kernel getUniqueKernelFor(Function &F);
+
+ /// Find the unique kernel that will execute \p I, if any.
+ Kernel getUniqueKernelFor(Instruction &I) {
+ return getUniqueKernelFor(*I.getFunction());
+ }
+
+ /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
+ /// the cases we can avoid taking the address of a function.
+ bool rewriteDeviceCodeStateMachine();
+
+ ///
+ ///}}
+
+ /// Emit a remark generically
+ ///
+ /// This template function can be used to generically emit a remark. The
+ /// RemarkKind should be one of the following:
+ /// - OptimizationRemark to indicate a successful optimization attempt
+ /// - OptimizationRemarkMissed to report a failed optimization attempt
+ /// - OptimizationRemarkAnalysis to provide additional information about an
+ /// optimization attempt
+ ///
+ /// The remark is built using a callback function provided by the caller that
+ /// takes a RemarkKind as input and returns a RemarkKind.
+ template <typename RemarkKind,
+ typename RemarkCallBack = function_ref<RemarkKind(RemarkKind &&)>>
+ void emitRemark(Instruction *Inst, StringRef RemarkName,
+ RemarkCallBack &&RemarkCB) const {
+ Function *F = Inst->getParent()->getParent();
+ auto &ORE = OREGetter(F);
+
+ ORE.emit(
+ [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, Inst)); });
+ }
+
+ /// Emit a remark on a function. Since only OptimizationRemark is supporting
+ /// this, it can't be made generic.
+ void
+ emitRemarkOnFunction(Function *F, StringRef RemarkName,
+ function_ref<OptimizationRemark(OptimizationRemark &&)>
+ &&RemarkCB) const {
+ auto &ORE = OREGetter(F);
+
+ ORE.emit([&]() {
+ return RemarkCB(OptimizationRemark(DEBUG_TYPE, RemarkName, F));
+ });
+ }
+
+ /// The underlying module.
+ Module &M;
+
+ /// The SCC we are operating on.
+ SmallVectorImpl<Function *> &SCC;
+
+ /// Callback to update the call graph, the first argument is a removed call,
+ /// the second an optional replacement call.
+ CallGraphUpdater &CGUpdater;
+
+ /// Callback to get an OptimizationRemarkEmitter from a Function *
+ OptimizationRemarkGetter OREGetter;
+
+ /// OpenMP-specific information cache. Also Used for Attributor runs.
+ OMPInformationCache &OMPInfoCache;
+
+ /// Attributor instance.
+ Attributor &A;
+
+ /// Helper function to run Attributor on SCC.
+ bool runAttributor() {
+ if (SCC.empty())
+ return false;
+
+ registerAAs();
+
+ ChangeStatus Changed = A.run();
+
+ LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
+ << " functions, result: " << Changed << ".\n");
+
+ return Changed == ChangeStatus::CHANGED;
+ }
+
+ /// Populate the Attributor with abstract attribute opportunities in the
+ /// function.
+ void registerAAs() {
+ if (SCC.empty())
+ return;
+
+ // Create CallSite AA for all Getters.
+ for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
+ auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
+
+ auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
+
+ auto CreateAA = [&](Use &U, Function &Caller) {
+ CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
+ if (!CI)
+ return false;
+
+ auto &CB = cast<CallBase>(*CI);
+
+ IRPosition CBPos = IRPosition::callsite_function(CB);
+ A.getOrCreateAAFor<AAICVTracker>(CBPos);
+ return false;
+ };
+
+ GetterRFI.foreachUse(SCC, CreateAA);
+ }
+ }
+};
+
+Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
+ if (!OMPInfoCache.ModuleSlice.count(&F))
+ return nullptr;
+
+ // Use a scope to keep the lifetime of the CachedKernel short.
+ {
+ Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
+ if (CachedKernel)
+ return *CachedKernel;
+
+ // TODO: We should use an AA to create an (optimistic and callback
+ // call-aware) call graph. For now we stick to simple patterns that
+ // are less powerful, basically the worst fixpoint.
+ if (isKernel(F)) {
+ CachedKernel = Kernel(&F);
+ return *CachedKernel;
+ }
+
+ CachedKernel = nullptr;
+ if (!F.hasLocalLinkage()) {
+
+ // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "[OMP100] Potentially unknown OpenMP target region caller";
+ };
+ emitRemarkOnFunction(&F, "OMP100", Remark);
+
+ return nullptr;
+ }
+ }
+
+ auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
+ if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
+ // Allow use in equality comparisons.
+ if (Cmp->isEquality())
+ return getUniqueKernelFor(*Cmp);
+ return nullptr;
+ }
+ if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
+ // Allow direct calls.
+ if (CB->isCallee(&U))
+ return getUniqueKernelFor(*CB);
+ // Allow the use in __kmpc_kernel_prepare_parallel calls.
+ if (Function *Callee = CB->getCalledFunction())
+ if (Callee->getName() == "__kmpc_kernel_prepare_parallel")
+ return getUniqueKernelFor(*CB);
+ return nullptr;
+ }
+ // Disallow every other use.
+ return nullptr;
+ };
+
+ // TODO: In the future we want to track more than just a unique kernel.
+ SmallPtrSet<Kernel, 2> PotentialKernels;
+ OMPInformationCache::foreachUse(F, [&](const Use &U) {
+ PotentialKernels.insert(GetUniqueKernelForUse(U));
+ });
+
+ Kernel K = nullptr;
+ if (PotentialKernels.size() == 1)
+ K = *PotentialKernels.begin();
+
+ // Cache the result.
+ UniqueKernelMap[&F] = K;
+
+ return K;
+}
+
+bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
+ OMPInformationCache::RuntimeFunctionInfo &KernelPrepareParallelRFI =
+ OMPInfoCache.RFIs[OMPRTL___kmpc_kernel_prepare_parallel];
+
+ bool Changed = false;
+ if (!KernelPrepareParallelRFI)
+ return Changed;
+
+ for (Function *F : SCC) {
+
+ // Check if the function is uses in a __kmpc_kernel_prepare_parallel call at
+ // all.
+ bool UnknownUse = false;
+ bool KernelPrepareUse = false;
+ unsigned NumDirectCalls = 0;
+
+ SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
+ OMPInformationCache::foreachUse(*F, [&](Use &U) {
+ if (auto *CB = dyn_cast<CallBase>(U.getUser()))
+ if (CB->isCallee(&U)) {
+ ++NumDirectCalls;
+ return;
+ }
+
+ if (isa<ICmpInst>(U.getUser())) {
+ ToBeReplacedStateMachineUses.push_back(&U);
+ return;
+ }
+ if (!KernelPrepareUse && OpenMPOpt::getCallIfRegularCall(
+ *U.getUser(), &KernelPrepareParallelRFI)) {
+ KernelPrepareUse = true;
+ ToBeReplacedStateMachineUses.push_back(&U);
+ return;
+ }
+ UnknownUse = true;
+ });
+
+ // Do not emit a remark if we haven't seen a __kmpc_kernel_prepare_parallel
+ // use.
+ if (!KernelPrepareUse)
+ continue;
+
+ {
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "Found a parallel region that is called in a target "
+ "region but not part of a combined target construct nor "
+ "nesed inside a target construct without intermediate "
+ "code. This can lead to excessive register usage for "
+ "unrelated target regions in the same translation unit "
+ "due to spurious call edges assumed by ptxas.";
+ };
+ emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark);
+ }
+
+ // If this ever hits, we should investigate.
+ // TODO: Checking the number of uses is not a necessary restriction and
+ // should be lifted.
+ if (UnknownUse || NumDirectCalls != 1 ||
+ ToBeReplacedStateMachineUses.size() != 2) {
+ {
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "Parallel region is used in "
+ << (UnknownUse ? "unknown" : "unexpected")
+ << " ways; will not attempt to rewrite the state machine.";
+ };
+ emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD", Remark);
+ }
+ continue;
+ }
+
+ // Even if we have __kmpc_kernel_prepare_parallel calls, we (for now) give
+ // up if the function is not called from a unique kernel.
+ Kernel K = getUniqueKernelFor(*F);
+ if (!K) {
+ {
+ auto Remark = [&](OptimizationRemark OR) {
+ return OR << "Parallel region is not known to be called from a "
+ "unique single target region, maybe the surrounding "
+ "function has external linkage?; will not attempt to "
+ "rewrite the state machine use.";
+ };
+ emitRemarkOnFunction(F, "OpenMPParallelRegionInMultipleKernesl",
+ Remark);
+ }
+ continue;
+ }
+
+ // We now know F is a parallel body function called only from the kernel K.
+ // We also identified the state machine uses in which we replace the
+ // function pointer by a new global symbol for identification purposes. This
+ // ensures only direct calls to the function are left.
+
+ {
+ auto RemarkParalleRegion = [&](OptimizationRemark OR) {
+ return OR << "Specialize parallel region that is only reached from a "
+ "single target region to avoid spurious call edges and "
+ "excessive register usage in other target regions. "
+ "(parallel region ID: "
+ << ore::NV("OpenMPParallelRegion", F->getName())
+ << ", kernel ID: "
+ << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
+ };
+ emitRemarkOnFunction(F, "OpenMPParallelRegionInNonSPMD",
+ RemarkParalleRegion);
+ auto RemarkKernel = [&](OptimizationRemark OR) {
+ return OR << "Target region containing the parallel region that is "
+ "specialized. (parallel region ID: "
+ << ore::NV("OpenMPParallelRegion", F->getName())
+ << ", kernel ID: "
+ << ore::NV("OpenMPTargetRegion", K->getName()) << ")";
+ };
+ emitRemarkOnFunction(K, "OpenMPParallelRegionInNonSPMD", RemarkKernel);
+ }
+
+ Module &M = *F->getParent();
+ Type *Int8Ty = Type::getInt8Ty(M.getContext());
+
+ auto *ID = new GlobalVariable(
+ M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
+ UndefValue::get(Int8Ty), F->getName() + ".ID");
+
+ for (Use *U : ToBeReplacedStateMachineUses)
+ U->set(ConstantExpr::getBitCast(ID, U->get()->getType()));
+
+ ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
+
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+/// Abstract Attribute for tracking ICV values.
+struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
+ using Base = StateWrapper<BooleanState, AbstractAttribute>;
+ AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
+
+ void initialize(Attributor &A) override {
+ Function *F = getAnchorScope();
+ if (!F || !A.isFunctionIPOAmendable(*F))
+ indicatePessimisticFixpoint();
+ }
+
+ /// Returns true if value is assumed to be tracked.
+ bool isAssumedTracked() const { return getAssumed(); }
+
+ /// Returns true if value is known to be tracked.
+ bool isKnownTracked() const { return getAssumed(); }
+
+ /// Create an abstract attribute biew for the position \p IRP.
+ static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
+
+ /// Return the value with which \p I can be replaced for specific \p ICV.
+ virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
+ const Instruction *I,
+ Attributor &A) const {
+ return None;
+ }
+
+ /// Return an assumed unique ICV value if a single candidate is found. If
+ /// there cannot be one, return a nullptr. If it is not clear yet, return the
+ /// Optional::NoneType.
+ virtual Optional<Value *>
+ getUniqueReplacementValue(InternalControlVar ICV) const = 0;
+
+ // Currently only nthreads is being tracked.
+ // this array will only grow with time.
+ InternalControlVar TrackableICVs[1] = {ICV_nthreads};
+
+ /// See AbstractAttribute::getName()
+ const std::string getName() const override { return "AAICVTracker"; }
+
+ /// See AbstractAttribute::getIdAddr()
+ const char *getIdAddr() const override { return &ID; }
+
+ /// This function should return true if the type of the \p AA is AAICVTracker
+ static bool classof(const AbstractAttribute *AA) {
+ return (AA->getIdAddr() == &ID);
+ }
+
+ static const char ID;
+};
+
+struct AAICVTrackerFunction : public AAICVTracker {
+ AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
+ : AAICVTracker(IRP, A) {}
+
+ // FIXME: come up with better string.
+ const std::string getAsStr() const override { return "ICVTrackerFunction"; }
+
+ // FIXME: come up with some stats.
+ void trackStatistics() const override {}
+
+ /// We don't manifest anything for this AA.
+ ChangeStatus manifest(Attributor &A) override {
+ return ChangeStatus::UNCHANGED;
+ }
+
+ // Map of ICV to their values at specific program point.
+ EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
+ InternalControlVar::ICV___last>
+ ICVReplacementValuesMap;
+
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
+
+ Function *F = getAnchorScope();
+
+ auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
+
+ for (InternalControlVar ICV : TrackableICVs) {
+ auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
+
+ auto &ValuesMap = ICVReplacementValuesMap[ICV];
+ auto TrackValues = [&](Use &U, Function &) {
+ CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
+ if (!CI)
+ return false;
+
+ // FIXME: handle setters with more that 1 arguments.
+ /// Track new value.
+ if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
+ HasChanged = ChangeStatus::CHANGED;
+
+ return false;
+ };
+
+ auto CallCheck = [&](Instruction &I) {
+ Optional<Value *> ReplVal = getValueForCall(A, &I, ICV);
+ if (ReplVal.hasValue() &&
+ ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
+ HasChanged = ChangeStatus::CHANGED;
+
+ return true;
+ };
+
+ // Track all changes of an ICV.
+ SetterRFI.foreachUse(TrackValues, F);
+
+ A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
+ /* CheckBBLivenessOnly */ true);
+
+ /// TODO: Figure out a way to avoid adding entry in
+ /// ICVReplacementValuesMap
+ Instruction *Entry = &F->getEntryBlock().front();
+ if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
+ ValuesMap.insert(std::make_pair(Entry, nullptr));
+ }
+
+ return HasChanged;
+ }
+
+ /// Hepler to check if \p I is a call and get the value for it if it is
+ /// unique.
+ Optional<Value *> getValueForCall(Attributor &A, const Instruction *I,
+ InternalControlVar &ICV) const {
+
+ const auto *CB = dyn_cast<CallBase>(I);
+ if (!CB || CB->hasFnAttr("no_openmp") ||
+ CB->hasFnAttr("no_openmp_routines"))
+ return None;
+
+ auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
+ auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
+ auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
+ Function *CalledFunction = CB->getCalledFunction();
+
+ // Indirect call, assume ICV changes.
+ if (CalledFunction == nullptr)
+ return nullptr;
+ if (CalledFunction == GetterRFI.Declaration)
+ return None;
+ if (CalledFunction == SetterRFI.Declaration) {
+ if (ICVReplacementValuesMap[ICV].count(I))
+ return ICVReplacementValuesMap[ICV].lookup(I);
+
+ return nullptr;
+ }
+
+ // Since we don't know, assume it changes the ICV.
+ if (CalledFunction->isDeclaration())
+ return nullptr;
+
+ const auto &ICVTrackingAA =
+ A.getAAFor<AAICVTracker>(*this, IRPosition::callsite_returned(*CB));
+
+ if (ICVTrackingAA.isAssumedTracked())
+ return ICVTrackingAA.getUniqueReplacementValue(ICV);
+
+ // If we don't know, assume it changes.
+ return nullptr;
+ }
+
+ // We don't check unique value for a function, so return None.
+ Optional<Value *>
+ getUniqueReplacementValue(InternalControlVar ICV) const override {
+ return None;
+ }
+
+ /// Return the value with which \p I can be replaced for specific \p ICV.
+ Optional<Value *> getReplacementValue(InternalControlVar ICV,
+ const Instruction *I,
+ Attributor &A) const override {
+ const auto &ValuesMap = ICVReplacementValuesMap[ICV];
+ if (ValuesMap.count(I))
+ return ValuesMap.lookup(I);
+
+ SmallVector<const Instruction *, 16> Worklist;
+ SmallPtrSet<const Instruction *, 16> Visited;
+ Worklist.push_back(I);
+
+ Optional<Value *> ReplVal;
+
+ while (!Worklist.empty()) {
+ const Instruction *CurrInst = Worklist.pop_back_val();
+ if (!Visited.insert(CurrInst).second)
+ continue;
+
+ const BasicBlock *CurrBB = CurrInst->getParent();
+
+ // Go up and look for all potential setters/calls that might change the
+ // ICV.
+ while ((CurrInst = CurrInst->getPrevNode())) {
+ if (ValuesMap.count(CurrInst)) {
+ Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
+ // Unknown value, track new.
+ if (!ReplVal.hasValue()) {
+ ReplVal = NewReplVal;
+ break;
+ }
+
+ // If we found a new value, we can't know the icv value anymore.
+ if (NewReplVal.hasValue())
+ if (ReplVal != NewReplVal)
+ return nullptr;
+
+ break;
+ }
+
+ Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV);
+ if (!NewReplVal.hasValue())
+ continue;
+
+ // Unknown value, track new.
+ if (!ReplVal.hasValue()) {
+ ReplVal = NewReplVal;
+ break;
+ }
+
+ // if (NewReplVal.hasValue())
+ // We found a new value, we can't know the icv value anymore.
+ if (ReplVal != NewReplVal)
+ return nullptr;
+ }
+
+ // If we are in the same BB and we have a value, we are done.
+ if (CurrBB == I->getParent() && ReplVal.hasValue())
+ return ReplVal;
+
+ // Go through all predecessors and add terminators for analysis.
+ for (const BasicBlock *Pred : predecessors(CurrBB))
+ if (const Instruction *Terminator = Pred->getTerminator())
+ Worklist.push_back(Terminator);
+ }
+
+ return ReplVal;
+ }
+};
+
+struct AAICVTrackerFunctionReturned : AAICVTracker {
+ AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
+ : AAICVTracker(IRP, A) {}
+
+ // FIXME: come up with better string.
+ const std::string getAsStr() const override {
+ return "ICVTrackerFunctionReturned";
+ }
+
+ // FIXME: come up with some stats.
+ void trackStatistics() const override {}
+
+ /// We don't manifest anything for this AA.
+ ChangeStatus manifest(Attributor &A) override {
+ return ChangeStatus::UNCHANGED;
+ }
+
+ // Map of ICV to their values at specific program point.
+ EnumeratedArray<Optional<Value *>, InternalControlVar,
+ InternalControlVar::ICV___last>
+ ICVReplacementValuesMap;
+
+ /// Return the value with which \p I can be replaced for specific \p ICV.
+ Optional<Value *>
+ getUniqueReplacementValue(InternalControlVar ICV) const override {
+ return ICVReplacementValuesMap[ICV];
+ }
+
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus Changed = ChangeStatus::UNCHANGED;
+ const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
+ *this, IRPosition::function(*getAnchorScope()));
+
+ if (!ICVTrackingAA.isAssumedTracked())
+ return indicatePessimisticFixpoint();
+
+ for (InternalControlVar ICV : TrackableICVs) {
+ Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
+ Optional<Value *> UniqueICVValue;
+
+ auto CheckReturnInst = [&](Instruction &I) {
+ Optional<Value *> NewReplVal =
+ ICVTrackingAA.getReplacementValue(ICV, &I, A);
+
+ // If we found a second ICV value there is no unique returned value.
+ if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal)
+ return false;
+
+ UniqueICVValue = NewReplVal;
+
+ return true;
+ };
+
+ if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
+ /* CheckBBLivenessOnly */ true))
+ UniqueICVValue = nullptr;
+
+ if (UniqueICVValue == ReplVal)
+ continue;
+
+ ReplVal = UniqueICVValue;
+ Changed = ChangeStatus::CHANGED;
+ }
+
+ return Changed;
+ }
+};
+
+struct AAICVTrackerCallSite : AAICVTracker {
+ AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
+ : AAICVTracker(IRP, A) {}
+
+ void initialize(Attributor &A) override {
+ Function *F = getAnchorScope();
+ if (!F || !A.isFunctionIPOAmendable(*F))
+ indicatePessimisticFixpoint();
+
+ // We only initialize this AA for getters, so we need to know which ICV it
+ // gets.
+ auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
+ for (InternalControlVar ICV : TrackableICVs) {
+ auto ICVInfo = OMPInfoCache.ICVs[ICV];
+ auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
+ if (Getter.Declaration == getAssociatedFunction()) {
+ AssociatedICV = ICVInfo.Kind;
+ return;
+ }
+ }
+
+ /// Unknown ICV.
+ indicatePessimisticFixpoint();
+ }
+
+ ChangeStatus manifest(Attributor &A) override {
+ if (!ReplVal.hasValue() || !ReplVal.getValue())
+ return ChangeStatus::UNCHANGED;
+
+ A.changeValueAfterManifest(*getCtxI(), **ReplVal);
+ A.deleteAfterManifest(*getCtxI());
+
+ return ChangeStatus::CHANGED;
+ }
+
+ // FIXME: come up with better string.
+ const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
+
+ // FIXME: come up with some stats.
+ void trackStatistics() const override {}
+
+ InternalControlVar AssociatedICV;
+ Optional<Value *> ReplVal;
+
+ ChangeStatus updateImpl(Attributor &A) override {
+ const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
+ *this, IRPosition::function(*getAnchorScope()));
+
+ // We don't have any information, so we assume it changes the ICV.
+ if (!ICVTrackingAA.isAssumedTracked())
+ return indicatePessimisticFixpoint();
+
+ Optional<Value *> NewReplVal =
+ ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
+
+ if (ReplVal == NewReplVal)
+ return ChangeStatus::UNCHANGED;
+
+ ReplVal = NewReplVal;
+ return ChangeStatus::CHANGED;
+ }
+
+ // Return the value with which associated value can be replaced for specific
+ // \p ICV.
+ Optional<Value *>
+ getUniqueReplacementValue(InternalControlVar ICV) const override {
+ return ReplVal;
+ }
+};
+
+struct AAICVTrackerCallSiteReturned : AAICVTracker {
+ AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
+ : AAICVTracker(IRP, A) {}
+
+ // FIXME: come up with better string.
+ const std::string getAsStr() const override {
+ return "ICVTrackerCallSiteReturned";
+ }
+
+ // FIXME: come up with some stats.
+ void trackStatistics() const override {}
+
+ /// We don't manifest anything for this AA.
+ ChangeStatus manifest(Attributor &A) override {
+ return ChangeStatus::UNCHANGED;
+ }
+
+ // Map of ICV to their values at specific program point.
+ EnumeratedArray<Optional<Value *>, InternalControlVar,
+ InternalControlVar::ICV___last>
+ ICVReplacementValuesMap;
+
+ /// Return the value with which associated value can be replaced for specific
+ /// \p ICV.
+ Optional<Value *>
+ getUniqueReplacementValue(InternalControlVar ICV) const override {
+ return ICVReplacementValuesMap[ICV];
+ }
+
+ ChangeStatus updateImpl(Attributor &A) override {
+ ChangeStatus Changed = ChangeStatus::UNCHANGED;
+ const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
+ *this, IRPosition::returned(*getAssociatedFunction()));
+
+ // We don't have any information, so we assume it changes the ICV.
+ if (!ICVTrackingAA.isAssumedTracked())
+ return indicatePessimisticFixpoint();
+
+ for (InternalControlVar ICV : TrackableICVs) {
+ Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
+ Optional<Value *> NewReplVal =
+ ICVTrackingAA.getUniqueReplacementValue(ICV);
+
+ if (ReplVal == NewReplVal)
+ continue;
+
+ ReplVal = NewReplVal;
+ Changed = ChangeStatus::CHANGED;
+ }
+ return Changed;
+ }
+};
+} // namespace
+
+const char AAICVTracker::ID = 0;
+
+AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
+ Attributor &A) {
+ AAICVTracker *AA = nullptr;
+ switch (IRP.getPositionKind()) {
+ case IRPosition::IRP_INVALID:
+ case IRPosition::IRP_FLOAT:
+ case IRPosition::IRP_ARGUMENT:
+ case IRPosition::IRP_CALL_SITE_ARGUMENT:
+ llvm_unreachable("ICVTracker can only be created for function position!");
+ case IRPosition::IRP_RETURNED:
+ AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
+ break;
+ case IRPosition::IRP_CALL_SITE_RETURNED:
+ AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
+ break;
+ case IRPosition::IRP_CALL_SITE:
+ AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
+ break;
+ case IRPosition::IRP_FUNCTION:
+ AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
+ break;
+ }
+
+ return *AA;
+}
+
+PreservedAnalyses OpenMPOptPass::run(LazyCallGraph::SCC &C,
+ CGSCCAnalysisManager &AM,
+ LazyCallGraph &CG, CGSCCUpdateResult &UR) {
+ if (!containsOpenMP(*C.begin()->getFunction().getParent(), OMPInModule))
+ return PreservedAnalyses::all();
+
+ if (DisableOpenMPOptimizations)
+ return PreservedAnalyses::all();
+
+ SmallVector<Function *, 16> SCC;
+ // If there are kernels in the module, we have to run on all SCC's.
+ bool SCCIsInteresting = !OMPInModule.getKernels().empty();
+ for (LazyCallGraph::Node &N : C) {
+ Function *Fn = &N.getFunction();
+ SCC.push_back(Fn);
+
+ // Do we already know that the SCC contains kernels,
+ // or that OpenMP functions are called from this SCC?
+ if (SCCIsInteresting)
+ continue;
+ // If not, let's check that.
+ SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
+ }
+
+ if (!SCCIsInteresting || SCC.empty())
+ return PreservedAnalyses::all();
+
+ FunctionAnalysisManager &FAM =
+ AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
+
+ AnalysisGetter AG(FAM);
+
+ auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
+ return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
+ };
+
+ CallGraphUpdater CGUpdater;
+ CGUpdater.initialize(CG, C, AM, UR);
+
+ SetVector<Function *> Functions(SCC.begin(), SCC.end());
+ BumpPtrAllocator Allocator;
+ OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
+ /*CGSCC*/ Functions, OMPInModule.getKernels());
+
+ Attributor A(Functions, InfoCache, CGUpdater);
+
+ OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
+ bool Changed = OMPOpt.run();
+ if (Changed)
+ return PreservedAnalyses::none();
+
+ return PreservedAnalyses::all();
+}
+
+namespace {
+
+struct OpenMPOptLegacyPass : public CallGraphSCCPass {
+ CallGraphUpdater CGUpdater;
+ OpenMPInModule OMPInModule;
+ static char ID;
+
+ OpenMPOptLegacyPass() : CallGraphSCCPass(ID) {
+ initializeOpenMPOptLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ CallGraphSCCPass::getAnalysisUsage(AU);
+ }
+
+ bool doInitialization(CallGraph &CG) override {
+ // Disable the pass if there is no OpenMP (runtime call) in the module.
+ containsOpenMP(CG.getModule(), OMPInModule);
+ return false;
+ }
+
+ bool runOnSCC(CallGraphSCC &CGSCC) override {
+ if (!containsOpenMP(CGSCC.getCallGraph().getModule(), OMPInModule))
+ return false;
+ if (DisableOpenMPOptimizations || skipSCC(CGSCC))
+ return false;
+
+ SmallVector<Function *, 16> SCC;
+ // If there are kernels in the module, we have to run on all SCC's.
+ bool SCCIsInteresting = !OMPInModule.getKernels().empty();
+ for (CallGraphNode *CGN : CGSCC) {
+ Function *Fn = CGN->getFunction();
+ if (!Fn || Fn->isDeclaration())
+ continue;
+ SCC.push_back(Fn);
+
+ // Do we already know that the SCC contains kernels,
+ // or that OpenMP functions are called from this SCC?
+ if (SCCIsInteresting)
+ continue;
+ // If not, let's check that.
+ SCCIsInteresting |= OMPInModule.containsOMPRuntimeCalls(Fn);
+ }
+
+ if (!SCCIsInteresting || SCC.empty())
+ return false;
+
+ CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
+ CGUpdater.initialize(CG, CGSCC);
+
+ // Maintain a map of functions to avoid rebuilding the ORE
+ DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
+ auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
+ std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
+ if (!ORE)
+ ORE = std::make_unique<OptimizationRemarkEmitter>(F);
+ return *ORE;
+ };
+
+ AnalysisGetter AG;
+ SetVector<Function *> Functions(SCC.begin(), SCC.end());
+ BumpPtrAllocator Allocator;
+ OMPInformationCache InfoCache(
+ *(Functions.back()->getParent()), AG, Allocator,
+ /*CGSCC*/ Functions, OMPInModule.getKernels());
+
+ Attributor A(Functions, InfoCache, CGUpdater);
+
+ OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
+ return OMPOpt.run();
+ }
+
+ bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
+};
+
+} // end anonymous namespace
+
+void OpenMPInModule::identifyKernels(Module &M) {
+
+ NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
+ if (!MD)
+ return;
+
+ for (auto *Op : MD->operands()) {
+ if (Op->getNumOperands() < 2)
+ continue;
+ MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
+ if (!KindID || KindID->getString() != "kernel")
+ continue;
+
+ Function *KernelFn =
+ mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
+ if (!KernelFn)
+ continue;
+
+ ++NumOpenMPTargetRegionKernels;
+
+ Kernels.insert(KernelFn);
+ }
+}
+
+bool llvm::omp::containsOpenMP(Module &M, OpenMPInModule &OMPInModule) {
+ if (OMPInModule.isKnown())
+ return OMPInModule;
+
+ auto RecordFunctionsContainingUsesOf = [&](Function *F) {
+ for (User *U : F->users())
+ if (auto *I = dyn_cast<Instruction>(U))
+ OMPInModule.FuncsWithOMPRuntimeCalls.insert(I->getFunction());
+ };
+
+ // MSVC doesn't like long if-else chains for some reason and instead just
+ // issues an error. Work around it..
+ do {
+#define OMP_RTL(_Enum, _Name, ...) \
+ if (Function *F = M.getFunction(_Name)) { \
+ RecordFunctionsContainingUsesOf(F); \
+ OMPInModule = true; \
+ }
+#include "llvm/Frontend/OpenMP/OMPKinds.def"
+ } while (false);
+
+ // Identify kernels once. TODO: We should split the OMPInformationCache into a
+ // module and an SCC part. The kernel information, among other things, could
+ // go into the module part.
+ if (OMPInModule.isKnown() && OMPInModule) {
+ OMPInModule.identifyKernels(M);
+ return true;
+ }
+
+ return OMPInModule = false;
+}
+
+char OpenMPOptLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(OpenMPOptLegacyPass, "openmpopt",
+ "OpenMP specific optimizations", false, false)
+INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
+INITIALIZE_PASS_END(OpenMPOptLegacyPass, "openmpopt",
+ "OpenMP specific optimizations", false, false)
+
+Pass *llvm::createOpenMPOptLegacyPass() { return new OpenMPOptLegacyPass(); }