aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp2693
1 files changed, 2693 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp
new file mode 100644
index 000000000000..a6a419bfe742
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/SampleProfile.cpp
@@ -0,0 +1,2693 @@
+//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SampleProfileLoader transformation. This pass
+// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
+// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
+// profile information in the given profile.
+//
+// This pass generates branch weight annotations on the IR:
+//
+// - prof: Represents branch weights. This annotation is added to branches
+// to indicate the weights of each edge coming out of the branch.
+// The weight of each edge is the weight of the target block for
+// that edge. The weight of a block B is computed as the maximum
+// number of samples found in B.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/SampleProfile.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CallGraphSCCPass.h"
+#include "llvm/Analysis/InlineAdvisor.h"
+#include "llvm/Analysis/InlineCost.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/ReplayInlineAdvisor.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/ProfileData/InstrProf.h"
+#include "llvm/ProfileData/SampleProf.h"
+#include "llvm/ProfileData/SampleProfReader.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/GenericDomTree.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/IPO/SampleContextTracker.h"
+#include "llvm/Transforms/IPO/SampleProfileProbe.h"
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/Transforms/Utils/CallPromotionUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <limits>
+#include <map>
+#include <memory>
+#include <queue>
+#include <string>
+#include <system_error>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace sampleprof;
+using ProfileCount = Function::ProfileCount;
+#define DEBUG_TYPE "sample-profile"
+#define CSINLINE_DEBUG DEBUG_TYPE "-inline"
+
+STATISTIC(NumCSInlined,
+ "Number of functions inlined with context sensitive profile");
+STATISTIC(NumCSNotInlined,
+ "Number of functions not inlined with context sensitive profile");
+STATISTIC(NumMismatchedProfile,
+ "Number of functions with CFG mismatched profile");
+STATISTIC(NumMatchedProfile, "Number of functions with CFG matched profile");
+STATISTIC(NumDuplicatedInlinesite,
+ "Number of inlined callsites with a partial distribution factor");
+
+STATISTIC(NumCSInlinedHitMinLimit,
+ "Number of functions with FDO inline stopped due to min size limit");
+STATISTIC(NumCSInlinedHitMaxLimit,
+ "Number of functions with FDO inline stopped due to max size limit");
+STATISTIC(
+ NumCSInlinedHitGrowthLimit,
+ "Number of functions with FDO inline stopped due to growth size limit");
+
+// Command line option to specify the file to read samples from. This is
+// mainly used for debugging.
+static cl::opt<std::string> SampleProfileFile(
+ "sample-profile-file", cl::init(""), cl::value_desc("filename"),
+ cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
+
+// The named file contains a set of transformations that may have been applied
+// to the symbol names between the program from which the sample data was
+// collected and the current program's symbols.
+static cl::opt<std::string> SampleProfileRemappingFile(
+ "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
+ cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
+
+static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
+ "sample-profile-max-propagate-iterations", cl::init(100),
+ cl::desc("Maximum number of iterations to go through when propagating "
+ "sample block/edge weights through the CFG."));
+
+static cl::opt<unsigned> SampleProfileRecordCoverage(
+ "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
+ cl::desc("Emit a warning if less than N% of records in the input profile "
+ "are matched to the IR."));
+
+static cl::opt<unsigned> SampleProfileSampleCoverage(
+ "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
+ cl::desc("Emit a warning if less than N% of samples in the input profile "
+ "are matched to the IR."));
+
+static cl::opt<bool> NoWarnSampleUnused(
+ "no-warn-sample-unused", cl::init(false), cl::Hidden,
+ cl::desc("Use this option to turn off/on warnings about function with "
+ "samples but without debug information to use those samples. "));
+
+static cl::opt<bool> ProfileSampleAccurate(
+ "profile-sample-accurate", cl::Hidden, cl::init(false),
+ cl::desc("If the sample profile is accurate, we will mark all un-sampled "
+ "callsite and function as having 0 samples. Otherwise, treat "
+ "un-sampled callsites and functions conservatively as unknown. "));
+
+static cl::opt<bool> ProfileAccurateForSymsInList(
+ "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
+ cl::init(true),
+ cl::desc("For symbols in profile symbol list, regard their profiles to "
+ "be accurate. It may be overriden by profile-sample-accurate. "));
+
+static cl::opt<bool> ProfileMergeInlinee(
+ "sample-profile-merge-inlinee", cl::Hidden, cl::init(true),
+ cl::desc("Merge past inlinee's profile to outline version if sample "
+ "profile loader decided not to inline a call site. It will "
+ "only be enabled when top-down order of profile loading is "
+ "enabled. "));
+
+static cl::opt<bool> ProfileTopDownLoad(
+ "sample-profile-top-down-load", cl::Hidden, cl::init(true),
+ cl::desc("Do profile annotation and inlining for functions in top-down "
+ "order of call graph during sample profile loading. It only "
+ "works for new pass manager. "));
+
+static cl::opt<bool> UseProfileIndirectCallEdges(
+ "use-profile-indirect-call-edges", cl::init(true), cl::Hidden,
+ cl::desc("Considering indirect call samples from profile when top-down "
+ "processing functions. Only CSSPGO is supported."));
+
+static cl::opt<bool> UseProfileTopDownOrder(
+ "use-profile-top-down-order", cl::init(false), cl::Hidden,
+ cl::desc("Process functions in one SCC in a top-down order "
+ "based on the input profile."));
+
+static cl::opt<bool> ProfileSizeInline(
+ "sample-profile-inline-size", cl::Hidden, cl::init(false),
+ cl::desc("Inline cold call sites in profile loader if it's beneficial "
+ "for code size."));
+
+static cl::opt<int> ProfileInlineGrowthLimit(
+ "sample-profile-inline-growth-limit", cl::Hidden, cl::init(12),
+ cl::desc("The size growth ratio limit for proirity-based sample profile "
+ "loader inlining."));
+
+static cl::opt<int> ProfileInlineLimitMin(
+ "sample-profile-inline-limit-min", cl::Hidden, cl::init(100),
+ cl::desc("The lower bound of size growth limit for "
+ "proirity-based sample profile loader inlining."));
+
+static cl::opt<int> ProfileInlineLimitMax(
+ "sample-profile-inline-limit-max", cl::Hidden, cl::init(10000),
+ cl::desc("The upper bound of size growth limit for "
+ "proirity-based sample profile loader inlining."));
+
+static cl::opt<int> ProfileICPThreshold(
+ "sample-profile-icp-threshold", cl::Hidden, cl::init(5),
+ cl::desc(
+ "Relative hotness threshold for indirect "
+ "call promotion in proirity-based sample profile loader inlining."));
+
+static cl::opt<int> SampleHotCallSiteThreshold(
+ "sample-profile-hot-inline-threshold", cl::Hidden, cl::init(3000),
+ cl::desc("Hot callsite threshold for proirity-based sample profile loader "
+ "inlining."));
+
+static cl::opt<bool> CallsitePrioritizedInline(
+ "sample-profile-prioritized-inline", cl::Hidden, cl::ZeroOrMore,
+ cl::init(false),
+ cl::desc("Use call site prioritized inlining for sample profile loader."
+ "Currently only CSSPGO is supported."));
+
+static cl::opt<int> SampleColdCallSiteThreshold(
+ "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
+ cl::desc("Threshold for inlining cold callsites"));
+
+static cl::opt<std::string> ProfileInlineReplayFile(
+ "sample-profile-inline-replay", cl::init(""), cl::value_desc("filename"),
+ cl::desc(
+ "Optimization remarks file containing inline remarks to be replayed "
+ "by inlining from sample profile loader."),
+ cl::Hidden);
+
+namespace {
+
+using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
+using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
+using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
+using EdgeWeightMap = DenseMap<Edge, uint64_t>;
+using BlockEdgeMap =
+ DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
+
+class SampleProfileLoader;
+
+class SampleCoverageTracker {
+public:
+ SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
+
+ bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
+ uint32_t Discriminator, uint64_t Samples);
+ unsigned computeCoverage(unsigned Used, unsigned Total) const;
+ unsigned countUsedRecords(const FunctionSamples *FS,
+ ProfileSummaryInfo *PSI) const;
+ unsigned countBodyRecords(const FunctionSamples *FS,
+ ProfileSummaryInfo *PSI) const;
+ uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
+ uint64_t countBodySamples(const FunctionSamples *FS,
+ ProfileSummaryInfo *PSI) const;
+
+ void clear() {
+ SampleCoverage.clear();
+ TotalUsedSamples = 0;
+ }
+
+private:
+ using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
+ using FunctionSamplesCoverageMap =
+ DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
+
+ /// Coverage map for sampling records.
+ ///
+ /// This map keeps a record of sampling records that have been matched to
+ /// an IR instruction. This is used to detect some form of staleness in
+ /// profiles (see flag -sample-profile-check-coverage).
+ ///
+ /// Each entry in the map corresponds to a FunctionSamples instance. This is
+ /// another map that counts how many times the sample record at the
+ /// given location has been used.
+ FunctionSamplesCoverageMap SampleCoverage;
+
+ /// Number of samples used from the profile.
+ ///
+ /// When a sampling record is used for the first time, the samples from
+ /// that record are added to this accumulator. Coverage is later computed
+ /// based on the total number of samples available in this function and
+ /// its callsites.
+ ///
+ /// Note that this accumulator tracks samples used from a single function
+ /// and all the inlined callsites. Strictly, we should have a map of counters
+ /// keyed by FunctionSamples pointers, but these stats are cleared after
+ /// every function, so we just need to keep a single counter.
+ uint64_t TotalUsedSamples = 0;
+
+ SampleProfileLoader &SPLoader;
+};
+
+class GUIDToFuncNameMapper {
+public:
+ GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
+ DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
+ : CurrentReader(Reader), CurrentModule(M),
+ CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
+ if (!CurrentReader.useMD5())
+ return;
+
+ for (const auto &F : CurrentModule) {
+ StringRef OrigName = F.getName();
+ CurrentGUIDToFuncNameMap.insert(
+ {Function::getGUID(OrigName), OrigName});
+
+ // Local to global var promotion used by optimization like thinlto
+ // will rename the var and add suffix like ".llvm.xxx" to the
+ // original local name. In sample profile, the suffixes of function
+ // names are all stripped. Since it is possible that the mapper is
+ // built in post-thin-link phase and var promotion has been done,
+ // we need to add the substring of function name without the suffix
+ // into the GUIDToFuncNameMap.
+ StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
+ if (CanonName != OrigName)
+ CurrentGUIDToFuncNameMap.insert(
+ {Function::getGUID(CanonName), CanonName});
+ }
+
+ // Update GUIDToFuncNameMap for each function including inlinees.
+ SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
+ }
+
+ ~GUIDToFuncNameMapper() {
+ if (!CurrentReader.useMD5())
+ return;
+
+ CurrentGUIDToFuncNameMap.clear();
+
+ // Reset GUIDToFuncNameMap for of each function as they're no
+ // longer valid at this point.
+ SetGUIDToFuncNameMapForAll(nullptr);
+ }
+
+private:
+ void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
+ std::queue<FunctionSamples *> FSToUpdate;
+ for (auto &IFS : CurrentReader.getProfiles()) {
+ FSToUpdate.push(&IFS.second);
+ }
+
+ while (!FSToUpdate.empty()) {
+ FunctionSamples *FS = FSToUpdate.front();
+ FSToUpdate.pop();
+ FS->GUIDToFuncNameMap = Map;
+ for (const auto &ICS : FS->getCallsiteSamples()) {
+ const FunctionSamplesMap &FSMap = ICS.second;
+ for (auto &IFS : FSMap) {
+ FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
+ FSToUpdate.push(&FS);
+ }
+ }
+ }
+ }
+
+ SampleProfileReader &CurrentReader;
+ Module &CurrentModule;
+ DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
+};
+
+// Inline candidate used by iterative callsite prioritized inliner
+struct InlineCandidate {
+ CallBase *CallInstr;
+ const FunctionSamples *CalleeSamples;
+ // Prorated callsite count, which will be used to guide inlining. For example,
+ // if a callsite is duplicated in LTO prelink, then in LTO postlink the two
+ // copies will get their own distribution factors and their prorated counts
+ // will be used to decide if they should be inlined independently.
+ uint64_t CallsiteCount;
+ // Call site distribution factor to prorate the profile samples for a
+ // duplicated callsite. Default value is 1.0.
+ float CallsiteDistribution;
+};
+
+// Inline candidate comparer using call site weight
+struct CandidateComparer {
+ bool operator()(const InlineCandidate &LHS, const InlineCandidate &RHS) {
+ if (LHS.CallsiteCount != RHS.CallsiteCount)
+ return LHS.CallsiteCount < RHS.CallsiteCount;
+
+ // Tie breaker using GUID so we have stable/deterministic inlining order
+ assert(LHS.CalleeSamples && RHS.CalleeSamples &&
+ "Expect non-null FunctionSamples");
+ return LHS.CalleeSamples->getGUID(LHS.CalleeSamples->getName()) <
+ RHS.CalleeSamples->getGUID(RHS.CalleeSamples->getName());
+ }
+};
+
+using CandidateQueue =
+ PriorityQueue<InlineCandidate, std::vector<InlineCandidate>,
+ CandidateComparer>;
+
+/// Sample profile pass.
+///
+/// This pass reads profile data from the file specified by
+/// -sample-profile-file and annotates every affected function with the
+/// profile information found in that file.
+class SampleProfileLoader {
+public:
+ SampleProfileLoader(
+ StringRef Name, StringRef RemapName, ThinOrFullLTOPhase LTOPhase,
+ std::function<AssumptionCache &(Function &)> GetAssumptionCache,
+ std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo,
+ std::function<const TargetLibraryInfo &(Function &)> GetTLI)
+ : GetAC(std::move(GetAssumptionCache)),
+ GetTTI(std::move(GetTargetTransformInfo)), GetTLI(std::move(GetTLI)),
+ CoverageTracker(*this), Filename(std::string(Name)),
+ RemappingFilename(std::string(RemapName)), LTOPhase(LTOPhase) {}
+
+ bool doInitialization(Module &M, FunctionAnalysisManager *FAM = nullptr);
+ bool runOnModule(Module &M, ModuleAnalysisManager *AM,
+ ProfileSummaryInfo *_PSI, CallGraph *CG);
+
+ void dump() { Reader->dump(); }
+
+protected:
+ friend class SampleCoverageTracker;
+
+ bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
+ unsigned getFunctionLoc(Function &F);
+ bool emitAnnotations(Function &F);
+ ErrorOr<uint64_t> getInstWeight(const Instruction &I);
+ ErrorOr<uint64_t> getProbeWeight(const Instruction &I);
+ ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
+ const FunctionSamples *findCalleeFunctionSamples(const CallBase &I) const;
+ std::vector<const FunctionSamples *>
+ findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
+ mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
+ const FunctionSamples *findFunctionSamples(const Instruction &I) const;
+ // Attempt to promote indirect call and also inline the promoted call
+ bool tryPromoteAndInlineCandidate(
+ Function &F, InlineCandidate &Candidate, uint64_t SumOrigin,
+ uint64_t &Sum, DenseSet<Instruction *> &PromotedInsns,
+ SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
+ bool inlineHotFunctions(Function &F,
+ DenseSet<GlobalValue::GUID> &InlinedGUIDs);
+ InlineCost shouldInlineCandidate(InlineCandidate &Candidate);
+ bool getInlineCandidate(InlineCandidate *NewCandidate, CallBase *CB);
+ bool
+ tryInlineCandidate(InlineCandidate &Candidate,
+ SmallVector<CallBase *, 8> *InlinedCallSites = nullptr);
+ bool
+ inlineHotFunctionsWithPriority(Function &F,
+ DenseSet<GlobalValue::GUID> &InlinedGUIDs);
+ // Inline cold/small functions in addition to hot ones
+ bool shouldInlineColdCallee(CallBase &CallInst);
+ void emitOptimizationRemarksForInlineCandidates(
+ const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
+ bool Hot);
+ void printEdgeWeight(raw_ostream &OS, Edge E);
+ void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
+ void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
+ bool computeBlockWeights(Function &F);
+ void findEquivalenceClasses(Function &F);
+ template <bool IsPostDom>
+ void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
+ DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
+
+ void propagateWeights(Function &F);
+ uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
+ void buildEdges(Function &F);
+ std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
+ void addCallGraphEdges(CallGraph &CG, const FunctionSamples &Samples);
+ void replaceCallGraphEdges(CallGraph &CG, StringMap<Function *> &SymbolMap);
+ bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
+ void computeDominanceAndLoopInfo(Function &F);
+ void clearFunctionData();
+ bool callsiteIsHot(const FunctionSamples *CallsiteFS,
+ ProfileSummaryInfo *PSI);
+
+ /// Map basic blocks to their computed weights.
+ ///
+ /// The weight of a basic block is defined to be the maximum
+ /// of all the instruction weights in that block.
+ BlockWeightMap BlockWeights;
+
+ /// Map edges to their computed weights.
+ ///
+ /// Edge weights are computed by propagating basic block weights in
+ /// SampleProfile::propagateWeights.
+ EdgeWeightMap EdgeWeights;
+
+ /// Set of visited blocks during propagation.
+ SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
+
+ /// Set of visited edges during propagation.
+ SmallSet<Edge, 32> VisitedEdges;
+
+ /// Equivalence classes for block weights.
+ ///
+ /// Two blocks BB1 and BB2 are in the same equivalence class if they
+ /// dominate and post-dominate each other, and they are in the same loop
+ /// nest. When this happens, the two blocks are guaranteed to execute
+ /// the same number of times.
+ EquivalenceClassMap EquivalenceClass;
+
+ /// Map from function name to Function *. Used to find the function from
+ /// the function name. If the function name contains suffix, additional
+ /// entry is added to map from the stripped name to the function if there
+ /// is one-to-one mapping.
+ StringMap<Function *> SymbolMap;
+
+ /// Dominance, post-dominance and loop information.
+ std::unique_ptr<DominatorTree> DT;
+ std::unique_ptr<PostDominatorTree> PDT;
+ std::unique_ptr<LoopInfo> LI;
+
+ std::function<AssumptionCache &(Function &)> GetAC;
+ std::function<TargetTransformInfo &(Function &)> GetTTI;
+ std::function<const TargetLibraryInfo &(Function &)> GetTLI;
+
+ /// Predecessors for each basic block in the CFG.
+ BlockEdgeMap Predecessors;
+
+ /// Successors for each basic block in the CFG.
+ BlockEdgeMap Successors;
+
+ SampleCoverageTracker CoverageTracker;
+
+ /// Profile reader object.
+ std::unique_ptr<SampleProfileReader> Reader;
+
+ /// Profile tracker for different context.
+ std::unique_ptr<SampleContextTracker> ContextTracker;
+
+ /// Samples collected for the body of this function.
+ FunctionSamples *Samples = nullptr;
+
+ /// Name of the profile file to load.
+ std::string Filename;
+
+ /// Name of the profile remapping file to load.
+ std::string RemappingFilename;
+
+ /// Flag indicating whether the profile input loaded successfully.
+ bool ProfileIsValid = false;
+
+ /// Flag indicating whether input profile is context-sensitive
+ bool ProfileIsCS = false;
+
+ /// Flag indicating which LTO/ThinLTO phase the pass is invoked in.
+ ///
+ /// We need to know the LTO phase because for example in ThinLTOPrelink
+ /// phase, in annotation, we should not promote indirect calls. Instead,
+ /// we will mark GUIDs that needs to be annotated to the function.
+ ThinOrFullLTOPhase LTOPhase;
+
+ /// Profile Summary Info computed from sample profile.
+ ProfileSummaryInfo *PSI = nullptr;
+
+ /// Profle Symbol list tells whether a function name appears in the binary
+ /// used to generate the current profile.
+ std::unique_ptr<ProfileSymbolList> PSL;
+
+ /// Total number of samples collected in this profile.
+ ///
+ /// This is the sum of all the samples collected in all the functions executed
+ /// at runtime.
+ uint64_t TotalCollectedSamples = 0;
+
+ /// Optimization Remark Emitter used to emit diagnostic remarks.
+ OptimizationRemarkEmitter *ORE = nullptr;
+
+ // Information recorded when we declined to inline a call site
+ // because we have determined it is too cold is accumulated for
+ // each callee function. Initially this is just the entry count.
+ struct NotInlinedProfileInfo {
+ uint64_t entryCount;
+ };
+ DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
+
+ // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
+ // all the function symbols defined or declared in current module.
+ DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
+
+ // All the Names used in FunctionSamples including outline function
+ // names, inline instance names and call target names.
+ StringSet<> NamesInProfile;
+
+ // For symbol in profile symbol list, whether to regard their profiles
+ // to be accurate. It is mainly decided by existance of profile symbol
+ // list and -profile-accurate-for-symsinlist flag, but it can be
+ // overriden by -profile-sample-accurate or profile-sample-accurate
+ // attribute.
+ bool ProfAccForSymsInList;
+
+ // External inline advisor used to replay inline decision from remarks.
+ std::unique_ptr<ReplayInlineAdvisor> ExternalInlineAdvisor;
+
+ // A pseudo probe helper to correlate the imported sample counts.
+ std::unique_ptr<PseudoProbeManager> ProbeManager;
+};
+
+class SampleProfileLoaderLegacyPass : public ModulePass {
+public:
+ // Class identification, replacement for typeinfo
+ static char ID;
+
+ SampleProfileLoaderLegacyPass(
+ StringRef Name = SampleProfileFile,
+ ThinOrFullLTOPhase LTOPhase = ThinOrFullLTOPhase::None)
+ : ModulePass(ID), SampleLoader(
+ Name, SampleProfileRemappingFile, LTOPhase,
+ [&](Function &F) -> AssumptionCache & {
+ return ACT->getAssumptionCache(F);
+ },
+ [&](Function &F) -> TargetTransformInfo & {
+ return TTIWP->getTTI(F);
+ },
+ [&](Function &F) -> TargetLibraryInfo & {
+ return TLIWP->getTLI(F);
+ }) {
+ initializeSampleProfileLoaderLegacyPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ void dump() { SampleLoader.dump(); }
+
+ bool doInitialization(Module &M) override {
+ return SampleLoader.doInitialization(M);
+ }
+
+ StringRef getPassName() const override { return "Sample profile pass"; }
+ bool runOnModule(Module &M) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ }
+
+private:
+ SampleProfileLoader SampleLoader;
+ AssumptionCacheTracker *ACT = nullptr;
+ TargetTransformInfoWrapperPass *TTIWP = nullptr;
+ TargetLibraryInfoWrapperPass *TLIWP = nullptr;
+};
+
+} // end anonymous namespace
+
+/// Return true if the given callsite is hot wrt to hot cutoff threshold.
+///
+/// Functions that were inlined in the original binary will be represented
+/// in the inline stack in the sample profile. If the profile shows that
+/// the original inline decision was "good" (i.e., the callsite is executed
+/// frequently), then we will recreate the inline decision and apply the
+/// profile from the inlined callsite.
+///
+/// To decide whether an inlined callsite is hot, we compare the callsite
+/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
+/// regarded as hot if the count is above the cutoff value.
+///
+/// When ProfileAccurateForSymsInList is enabled and profile symbol list
+/// is present, functions in the profile symbol list but without profile will
+/// be regarded as cold and much less inlining will happen in CGSCC inlining
+/// pass, so we tend to lower the hot criteria here to allow more early
+/// inlining to happen for warm callsites and it is helpful for performance.
+bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
+ ProfileSummaryInfo *PSI) {
+ if (!CallsiteFS)
+ return false; // The callsite was not inlined in the original binary.
+
+ assert(PSI && "PSI is expected to be non null");
+ uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
+ if (ProfAccForSymsInList)
+ return !PSI->isColdCount(CallsiteTotalSamples);
+ else
+ return PSI->isHotCount(CallsiteTotalSamples);
+}
+
+/// Mark as used the sample record for the given function samples at
+/// (LineOffset, Discriminator).
+///
+/// \returns true if this is the first time we mark the given record.
+bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
+ uint32_t LineOffset,
+ uint32_t Discriminator,
+ uint64_t Samples) {
+ LineLocation Loc(LineOffset, Discriminator);
+ unsigned &Count = SampleCoverage[FS][Loc];
+ bool FirstTime = (++Count == 1);
+ if (FirstTime)
+ TotalUsedSamples += Samples;
+ return FirstTime;
+}
+
+/// Return the number of sample records that were applied from this profile.
+///
+/// This count does not include records from cold inlined callsites.
+unsigned
+SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
+ ProfileSummaryInfo *PSI) const {
+ auto I = SampleCoverage.find(FS);
+
+ // The size of the coverage map for FS represents the number of records
+ // that were marked used at least once.
+ unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
+
+ // If there are inlined callsites in this function, count the samples found
+ // in the respective bodies. However, do not bother counting callees with 0
+ // total samples, these are callees that were never invoked at runtime.
+ for (const auto &I : FS->getCallsiteSamples())
+ for (const auto &J : I.second) {
+ const FunctionSamples *CalleeSamples = &J.second;
+ if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
+ Count += countUsedRecords(CalleeSamples, PSI);
+ }
+
+ return Count;
+}
+
+/// Return the number of sample records in the body of this profile.
+///
+/// This count does not include records from cold inlined callsites.
+unsigned
+SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
+ ProfileSummaryInfo *PSI) const {
+ unsigned Count = FS->getBodySamples().size();
+
+ // Only count records in hot callsites.
+ for (const auto &I : FS->getCallsiteSamples())
+ for (const auto &J : I.second) {
+ const FunctionSamples *CalleeSamples = &J.second;
+ if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
+ Count += countBodyRecords(CalleeSamples, PSI);
+ }
+
+ return Count;
+}
+
+/// Return the number of samples collected in the body of this profile.
+///
+/// This count does not include samples from cold inlined callsites.
+uint64_t
+SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
+ ProfileSummaryInfo *PSI) const {
+ uint64_t Total = 0;
+ for (const auto &I : FS->getBodySamples())
+ Total += I.second.getSamples();
+
+ // Only count samples in hot callsites.
+ for (const auto &I : FS->getCallsiteSamples())
+ for (const auto &J : I.second) {
+ const FunctionSamples *CalleeSamples = &J.second;
+ if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
+ Total += countBodySamples(CalleeSamples, PSI);
+ }
+
+ return Total;
+}
+
+/// Return the fraction of sample records used in this profile.
+///
+/// The returned value is an unsigned integer in the range 0-100 indicating
+/// the percentage of sample records that were used while applying this
+/// profile to the associated function.
+unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
+ unsigned Total) const {
+ assert(Used <= Total &&
+ "number of used records cannot exceed the total number of records");
+ return Total > 0 ? Used * 100 / Total : 100;
+}
+
+/// Clear all the per-function data used to load samples and propagate weights.
+void SampleProfileLoader::clearFunctionData() {
+ BlockWeights.clear();
+ EdgeWeights.clear();
+ VisitedBlocks.clear();
+ VisitedEdges.clear();
+ EquivalenceClass.clear();
+ DT = nullptr;
+ PDT = nullptr;
+ LI = nullptr;
+ Predecessors.clear();
+ Successors.clear();
+ CoverageTracker.clear();
+}
+
+#ifndef NDEBUG
+/// Print the weight of edge \p E on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+/// \param E Edge to print.
+void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
+ OS << "weight[" << E.first->getName() << "->" << E.second->getName()
+ << "]: " << EdgeWeights[E] << "\n";
+}
+
+/// Print the equivalence class of block \p BB on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+/// \param BB Block to print.
+void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
+ const BasicBlock *BB) {
+ const BasicBlock *Equiv = EquivalenceClass[BB];
+ OS << "equivalence[" << BB->getName()
+ << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
+}
+
+/// Print the weight of block \p BB on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+/// \param BB Block to print.
+void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
+ const BasicBlock *BB) const {
+ const auto &I = BlockWeights.find(BB);
+ uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
+ OS << "weight[" << BB->getName() << "]: " << W << "\n";
+}
+#endif
+
+/// Get the weight for an instruction.
+///
+/// The "weight" of an instruction \p Inst is the number of samples
+/// collected on that instruction at runtime. To retrieve it, we
+/// need to compute the line number of \p Inst relative to the start of its
+/// function. We use HeaderLineno to compute the offset. We then
+/// look up the samples collected for \p Inst using BodySamples.
+///
+/// \param Inst Instruction to query.
+///
+/// \returns the weight of \p Inst.
+ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
+ if (FunctionSamples::ProfileIsProbeBased)
+ return getProbeWeight(Inst);
+
+ const DebugLoc &DLoc = Inst.getDebugLoc();
+ if (!DLoc)
+ return std::error_code();
+
+ const FunctionSamples *FS = findFunctionSamples(Inst);
+ if (!FS)
+ return std::error_code();
+
+ // Ignore all intrinsics, phinodes and branch instructions.
+ // Branch and phinodes instruction usually contains debug info from sources outside of
+ // the residing basic block, thus we ignore them during annotation.
+ if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
+ return std::error_code();
+
+ // If a direct call/invoke instruction is inlined in profile
+ // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
+ // it means that the inlined callsite has no sample, thus the call
+ // instruction should have 0 count.
+ if (!ProfileIsCS)
+ if (const auto *CB = dyn_cast<CallBase>(&Inst))
+ if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
+ return 0;
+
+ const DILocation *DIL = DLoc;
+ uint32_t LineOffset = FunctionSamples::getOffset(DIL);
+ uint32_t Discriminator = DIL->getBaseDiscriminator();
+ ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
+ if (R) {
+ bool FirstMark =
+ CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
+ if (FirstMark) {
+ ORE->emit([&]() {
+ OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
+ Remark << "Applied " << ore::NV("NumSamples", *R);
+ Remark << " samples from profile (offset: ";
+ Remark << ore::NV("LineOffset", LineOffset);
+ if (Discriminator) {
+ Remark << ".";
+ Remark << ore::NV("Discriminator", Discriminator);
+ }
+ Remark << ")";
+ return Remark;
+ });
+ }
+ LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."
+ << DIL->getBaseDiscriminator() << ":" << Inst
+ << " (line offset: " << LineOffset << "."
+ << DIL->getBaseDiscriminator() << " - weight: " << R.get()
+ << ")\n");
+ }
+ return R;
+}
+
+ErrorOr<uint64_t> SampleProfileLoader::getProbeWeight(const Instruction &Inst) {
+ assert(FunctionSamples::ProfileIsProbeBased &&
+ "Profile is not pseudo probe based");
+ Optional<PseudoProbe> Probe = extractProbe(Inst);
+ if (!Probe)
+ return std::error_code();
+
+ const FunctionSamples *FS = findFunctionSamples(Inst);
+ if (!FS)
+ return std::error_code();
+
+ // If a direct call/invoke instruction is inlined in profile
+ // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
+ // it means that the inlined callsite has no sample, thus the call
+ // instruction should have 0 count.
+ if (const auto *CB = dyn_cast<CallBase>(&Inst))
+ if (!CB->isIndirectCall() && findCalleeFunctionSamples(*CB))
+ return 0;
+
+ const ErrorOr<uint64_t> &R = FS->findSamplesAt(Probe->Id, 0);
+ if (R) {
+ uint64_t Samples = R.get() * Probe->Factor;
+ bool FirstMark = CoverageTracker.markSamplesUsed(FS, Probe->Id, 0, Samples);
+ if (FirstMark) {
+ ORE->emit([&]() {
+ OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
+ Remark << "Applied " << ore::NV("NumSamples", Samples);
+ Remark << " samples from profile (ProbeId=";
+ Remark << ore::NV("ProbeId", Probe->Id);
+ Remark << ", Factor=";
+ Remark << ore::NV("Factor", Probe->Factor);
+ Remark << ", OriginalSamples=";
+ Remark << ore::NV("OriginalSamples", R.get());
+ Remark << ")";
+ return Remark;
+ });
+ }
+ LLVM_DEBUG(dbgs() << " " << Probe->Id << ":" << Inst
+ << " - weight: " << R.get() << " - factor: "
+ << format("%0.2f", Probe->Factor) << ")\n");
+ return Samples;
+ }
+ return R;
+}
+
+/// Compute the weight of a basic block.
+///
+/// The weight of basic block \p BB is the maximum weight of all the
+/// instructions in BB.
+///
+/// \param BB The basic block to query.
+///
+/// \returns the weight for \p BB.
+ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
+ uint64_t Max = 0;
+ bool HasWeight = false;
+ for (auto &I : BB->getInstList()) {
+ const ErrorOr<uint64_t> &R = getInstWeight(I);
+ if (R) {
+ Max = std::max(Max, R.get());
+ HasWeight = true;
+ }
+ }
+ return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
+}
+
+/// Compute and store the weights of every basic block.
+///
+/// This populates the BlockWeights map by computing
+/// the weights of every basic block in the CFG.
+///
+/// \param F The function to query.
+bool SampleProfileLoader::computeBlockWeights(Function &F) {
+ bool Changed = false;
+ LLVM_DEBUG(dbgs() << "Block weights\n");
+ for (const auto &BB : F) {
+ ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
+ if (Weight) {
+ BlockWeights[&BB] = Weight.get();
+ VisitedBlocks.insert(&BB);
+ Changed = true;
+ }
+ LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
+ }
+
+ return Changed;
+}
+
+/// Get the FunctionSamples for a call instruction.
+///
+/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
+/// instance in which that call instruction is calling to. It contains
+/// all samples that resides in the inlined instance. We first find the
+/// inlined instance in which the call instruction is from, then we
+/// traverse its children to find the callsite with the matching
+/// location.
+///
+/// \param Inst Call/Invoke instruction to query.
+///
+/// \returns The FunctionSamples pointer to the inlined instance.
+const FunctionSamples *
+SampleProfileLoader::findCalleeFunctionSamples(const CallBase &Inst) const {
+ const DILocation *DIL = Inst.getDebugLoc();
+ if (!DIL) {
+ return nullptr;
+ }
+
+ StringRef CalleeName;
+ if (Function *Callee = Inst.getCalledFunction())
+ CalleeName = FunctionSamples::getCanonicalFnName(*Callee);
+
+ if (ProfileIsCS)
+ return ContextTracker->getCalleeContextSamplesFor(Inst, CalleeName);
+
+ const FunctionSamples *FS = findFunctionSamples(Inst);
+ if (FS == nullptr)
+ return nullptr;
+
+ return FS->findFunctionSamplesAt(FunctionSamples::getCallSiteIdentifier(DIL),
+ CalleeName, Reader->getRemapper());
+}
+
+/// Returns a vector of FunctionSamples that are the indirect call targets
+/// of \p Inst. The vector is sorted by the total number of samples. Stores
+/// the total call count of the indirect call in \p Sum.
+std::vector<const FunctionSamples *>
+SampleProfileLoader::findIndirectCallFunctionSamples(
+ const Instruction &Inst, uint64_t &Sum) const {
+ const DILocation *DIL = Inst.getDebugLoc();
+ std::vector<const FunctionSamples *> R;
+
+ if (!DIL) {
+ return R;
+ }
+
+ auto FSCompare = [](const FunctionSamples *L, const FunctionSamples *R) {
+ assert(L && R && "Expect non-null FunctionSamples");
+ if (L->getEntrySamples() != R->getEntrySamples())
+ return L->getEntrySamples() > R->getEntrySamples();
+ return FunctionSamples::getGUID(L->getName()) <
+ FunctionSamples::getGUID(R->getName());
+ };
+
+ if (ProfileIsCS) {
+ auto CalleeSamples =
+ ContextTracker->getIndirectCalleeContextSamplesFor(DIL);
+ if (CalleeSamples.empty())
+ return R;
+
+ // For CSSPGO, we only use target context profile's entry count
+ // as that already includes both inlined callee and non-inlined ones..
+ Sum = 0;
+ for (const auto *const FS : CalleeSamples) {
+ Sum += FS->getEntrySamples();
+ R.push_back(FS);
+ }
+ llvm::sort(R, FSCompare);
+ return R;
+ }
+
+ const FunctionSamples *FS = findFunctionSamples(Inst);
+ if (FS == nullptr)
+ return R;
+
+ auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
+ auto T = FS->findCallTargetMapAt(CallSite);
+ Sum = 0;
+ if (T)
+ for (const auto &T_C : T.get())
+ Sum += T_C.second;
+ if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(CallSite)) {
+ if (M->empty())
+ return R;
+ for (const auto &NameFS : *M) {
+ Sum += NameFS.second.getEntrySamples();
+ R.push_back(&NameFS.second);
+ }
+ llvm::sort(R, FSCompare);
+ }
+ return R;
+}
+
+/// Get the FunctionSamples for an instruction.
+///
+/// The FunctionSamples of an instruction \p Inst is the inlined instance
+/// in which that instruction is coming from. We traverse the inline stack
+/// of that instruction, and match it with the tree nodes in the profile.
+///
+/// \param Inst Instruction to query.
+///
+/// \returns the FunctionSamples pointer to the inlined instance.
+const FunctionSamples *
+SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
+ if (FunctionSamples::ProfileIsProbeBased) {
+ Optional<PseudoProbe> Probe = extractProbe(Inst);
+ if (!Probe)
+ return nullptr;
+ }
+
+ const DILocation *DIL = Inst.getDebugLoc();
+ if (!DIL)
+ return Samples;
+
+ auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
+ if (it.second) {
+ if (ProfileIsCS)
+ it.first->second = ContextTracker->getContextSamplesFor(DIL);
+ else
+ it.first->second =
+ Samples->findFunctionSamples(DIL, Reader->getRemapper());
+ }
+ return it.first->second;
+}
+
+/// Attempt to promote indirect call and also inline the promoted call.
+///
+/// \param F Caller function.
+/// \param Candidate ICP and inline candidate.
+/// \param Sum Sum of target counts for indirect call.
+/// \param PromotedInsns Map to keep track of indirect call already processed.
+/// \param Candidate ICP and inline candidate.
+/// \param InlinedCallSite Output vector for new call sites exposed after
+/// inlining.
+bool SampleProfileLoader::tryPromoteAndInlineCandidate(
+ Function &F, InlineCandidate &Candidate, uint64_t SumOrigin, uint64_t &Sum,
+ DenseSet<Instruction *> &PromotedInsns,
+ SmallVector<CallBase *, 8> *InlinedCallSite) {
+ const char *Reason = "Callee function not available";
+ // R->getValue() != &F is to prevent promoting a recursive call.
+ // If it is a recursive call, we do not inline it as it could bloat
+ // the code exponentially. There is way to better handle this, e.g.
+ // clone the caller first, and inline the cloned caller if it is
+ // recursive. As llvm does not inline recursive calls, we will
+ // simply ignore it instead of handling it explicitly.
+ auto R = SymbolMap.find(Candidate.CalleeSamples->getFuncName());
+ if (R != SymbolMap.end() && R->getValue() &&
+ !R->getValue()->isDeclaration() && R->getValue()->getSubprogram() &&
+ R->getValue()->hasFnAttribute("use-sample-profile") &&
+ R->getValue() != &F &&
+ isLegalToPromote(*Candidate.CallInstr, R->getValue(), &Reason)) {
+ auto *DI =
+ &pgo::promoteIndirectCall(*Candidate.CallInstr, R->getValue(),
+ Candidate.CallsiteCount, Sum, false, ORE);
+ if (DI) {
+ Sum -= Candidate.CallsiteCount;
+ // Prorate the indirect callsite distribution.
+ // Do not update the promoted direct callsite distribution at this
+ // point since the original distribution combined with the callee
+ // profile will be used to prorate callsites from the callee if
+ // inlined. Once not inlined, the direct callsite distribution should
+ // be prorated so that the it will reflect the real callsite counts.
+ setProbeDistributionFactor(*Candidate.CallInstr,
+ Candidate.CallsiteDistribution * Sum /
+ SumOrigin);
+ PromotedInsns.insert(Candidate.CallInstr);
+ Candidate.CallInstr = DI;
+ if (isa<CallInst>(DI) || isa<InvokeInst>(DI)) {
+ bool Inlined = tryInlineCandidate(Candidate, InlinedCallSite);
+ if (!Inlined) {
+ // Prorate the direct callsite distribution so that it reflects real
+ // callsite counts.
+ setProbeDistributionFactor(*DI, Candidate.CallsiteDistribution *
+ Candidate.CallsiteCount /
+ SumOrigin);
+ }
+ return Inlined;
+ }
+ }
+ } else {
+ LLVM_DEBUG(dbgs() << "\nFailed to promote indirect call to "
+ << Candidate.CalleeSamples->getFuncName() << " because "
+ << Reason << "\n");
+ }
+ return false;
+}
+
+bool SampleProfileLoader::shouldInlineColdCallee(CallBase &CallInst) {
+ if (!ProfileSizeInline)
+ return false;
+
+ Function *Callee = CallInst.getCalledFunction();
+ if (Callee == nullptr)
+ return false;
+
+ InlineCost Cost = getInlineCost(CallInst, getInlineParams(), GetTTI(*Callee),
+ GetAC, GetTLI);
+
+ if (Cost.isNever())
+ return false;
+
+ if (Cost.isAlways())
+ return true;
+
+ return Cost.getCost() <= SampleColdCallSiteThreshold;
+}
+
+void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
+ const SmallVectorImpl<CallBase *> &Candidates, const Function &F,
+ bool Hot) {
+ for (auto I : Candidates) {
+ Function *CalledFunction = I->getCalledFunction();
+ if (CalledFunction) {
+ ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
+ I->getDebugLoc(), I->getParent())
+ << "previous inlining reattempted for "
+ << (Hot ? "hotness: '" : "size: '")
+ << ore::NV("Callee", CalledFunction) << "' into '"
+ << ore::NV("Caller", &F) << "'");
+ }
+ }
+}
+
+/// Iteratively inline hot callsites of a function.
+///
+/// Iteratively traverse all callsites of the function \p F, and find if
+/// the corresponding inlined instance exists and is hot in profile. If
+/// it is hot enough, inline the callsites and adds new callsites of the
+/// callee into the caller. If the call is an indirect call, first promote
+/// it to direct call. Each indirect call is limited with a single target.
+///
+/// \param F function to perform iterative inlining.
+/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
+/// inlined in the profiled binary.
+///
+/// \returns True if there is any inline happened.
+bool SampleProfileLoader::inlineHotFunctions(
+ Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
+ DenseSet<Instruction *> PromotedInsns;
+
+ // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
+ // Profile symbol list is ignored when profile-sample-accurate is on.
+ assert((!ProfAccForSymsInList ||
+ (!ProfileSampleAccurate &&
+ !F.hasFnAttribute("profile-sample-accurate"))) &&
+ "ProfAccForSymsInList should be false when profile-sample-accurate "
+ "is enabled");
+
+ DenseMap<CallBase *, const FunctionSamples *> LocalNotInlinedCallSites;
+ bool Changed = false;
+ bool LocalChanged = true;
+ while (LocalChanged) {
+ LocalChanged = false;
+ SmallVector<CallBase *, 10> CIS;
+ for (auto &BB : F) {
+ bool Hot = false;
+ SmallVector<CallBase *, 10> AllCandidates;
+ SmallVector<CallBase *, 10> ColdCandidates;
+ for (auto &I : BB.getInstList()) {
+ const FunctionSamples *FS = nullptr;
+ if (auto *CB = dyn_cast<CallBase>(&I)) {
+ if (!isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(*CB))) {
+ assert((!FunctionSamples::UseMD5 || FS->GUIDToFuncNameMap) &&
+ "GUIDToFuncNameMap has to be populated");
+ AllCandidates.push_back(CB);
+ if (FS->getEntrySamples() > 0 || ProfileIsCS)
+ LocalNotInlinedCallSites.try_emplace(CB, FS);
+ if (callsiteIsHot(FS, PSI))
+ Hot = true;
+ else if (shouldInlineColdCallee(*CB))
+ ColdCandidates.push_back(CB);
+ }
+ }
+ }
+ if (Hot || ExternalInlineAdvisor) {
+ CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
+ emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
+ } else {
+ CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
+ emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
+ }
+ }
+ for (CallBase *I : CIS) {
+ Function *CalledFunction = I->getCalledFunction();
+ InlineCandidate Candidate = {
+ I,
+ LocalNotInlinedCallSites.count(I) ? LocalNotInlinedCallSites[I]
+ : nullptr,
+ 0 /* dummy count */, 1.0 /* dummy distribution factor */};
+ // Do not inline recursive calls.
+ if (CalledFunction == &F)
+ continue;
+ if (I->isIndirectCall()) {
+ if (PromotedInsns.count(I))
+ continue;
+ uint64_t Sum;
+ for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
+ uint64_t SumOrigin = Sum;
+ if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
+ FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
+ PSI->getOrCompHotCountThreshold());
+ continue;
+ }
+ if (!callsiteIsHot(FS, PSI))
+ continue;
+
+ Candidate = {I, FS, FS->getEntrySamples(), 1.0};
+ if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
+ PromotedInsns)) {
+ LocalNotInlinedCallSites.erase(I);
+ LocalChanged = true;
+ }
+ }
+ } else if (CalledFunction && CalledFunction->getSubprogram() &&
+ !CalledFunction->isDeclaration()) {
+ if (tryInlineCandidate(Candidate)) {
+ LocalNotInlinedCallSites.erase(I);
+ LocalChanged = true;
+ }
+ } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
+ findCalleeFunctionSamples(*I)->findInlinedFunctions(
+ InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
+ }
+ }
+ Changed |= LocalChanged;
+ }
+
+ // For CS profile, profile for not inlined context will be merged when
+ // base profile is being trieved
+ if (ProfileIsCS)
+ return Changed;
+
+ // Accumulate not inlined callsite information into notInlinedSamples
+ for (const auto &Pair : LocalNotInlinedCallSites) {
+ CallBase *I = Pair.getFirst();
+ Function *Callee = I->getCalledFunction();
+ if (!Callee || Callee->isDeclaration())
+ continue;
+
+ ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
+ I->getDebugLoc(), I->getParent())
+ << "previous inlining not repeated: '"
+ << ore::NV("Callee", Callee) << "' into '"
+ << ore::NV("Caller", &F) << "'");
+
+ ++NumCSNotInlined;
+ const FunctionSamples *FS = Pair.getSecond();
+ if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
+ continue;
+ }
+
+ if (ProfileMergeInlinee) {
+ // A function call can be replicated by optimizations like callsite
+ // splitting or jump threading and the replicates end up sharing the
+ // sample nested callee profile instead of slicing the original inlinee's
+ // profile. We want to do merge exactly once by filtering out callee
+ // profiles with a non-zero head sample count.
+ if (FS->getHeadSamples() == 0) {
+ // Use entry samples as head samples during the merge, as inlinees
+ // don't have head samples.
+ const_cast<FunctionSamples *>(FS)->addHeadSamples(
+ FS->getEntrySamples());
+
+ // Note that we have to do the merge right after processing function.
+ // This allows OutlineFS's profile to be used for annotation during
+ // top-down processing of functions' annotation.
+ FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
+ OutlineFS->merge(*FS);
+ }
+ } else {
+ auto pair =
+ notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
+ pair.first->second.entryCount += FS->getEntrySamples();
+ }
+ }
+ return Changed;
+}
+
+bool SampleProfileLoader::tryInlineCandidate(
+ InlineCandidate &Candidate, SmallVector<CallBase *, 8> *InlinedCallSites) {
+
+ CallBase &CB = *Candidate.CallInstr;
+ Function *CalledFunction = CB.getCalledFunction();
+ assert(CalledFunction && "Expect a callee with definition");
+ DebugLoc DLoc = CB.getDebugLoc();
+ BasicBlock *BB = CB.getParent();
+
+ InlineCost Cost = shouldInlineCandidate(Candidate);
+ if (Cost.isNever()) {
+ ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
+ << "incompatible inlining");
+ return false;
+ }
+
+ if (!Cost)
+ return false;
+
+ InlineFunctionInfo IFI(nullptr, GetAC);
+ if (InlineFunction(CB, IFI).isSuccess()) {
+ // The call to InlineFunction erases I, so we can't pass it here.
+ emitInlinedInto(*ORE, DLoc, BB, *CalledFunction, *BB->getParent(), Cost,
+ true, CSINLINE_DEBUG);
+
+ // Now populate the list of newly exposed call sites.
+ if (InlinedCallSites) {
+ InlinedCallSites->clear();
+ for (auto &I : IFI.InlinedCallSites)
+ InlinedCallSites->push_back(I);
+ }
+
+ if (ProfileIsCS)
+ ContextTracker->markContextSamplesInlined(Candidate.CalleeSamples);
+ ++NumCSInlined;
+
+ // Prorate inlined probes for a duplicated inlining callsite which probably
+ // has a distribution less than 100%. Samples for an inlinee should be
+ // distributed among the copies of the original callsite based on each
+ // callsite's distribution factor for counts accuracy. Note that an inlined
+ // probe may come with its own distribution factor if it has been duplicated
+ // in the inlinee body. The two factor are multiplied to reflect the
+ // aggregation of duplication.
+ if (Candidate.CallsiteDistribution < 1) {
+ for (auto &I : IFI.InlinedCallSites) {
+ if (Optional<PseudoProbe> Probe = extractProbe(*I))
+ setProbeDistributionFactor(*I, Probe->Factor *
+ Candidate.CallsiteDistribution);
+ }
+ NumDuplicatedInlinesite++;
+ }
+
+ return true;
+ }
+ return false;
+}
+
+bool SampleProfileLoader::getInlineCandidate(InlineCandidate *NewCandidate,
+ CallBase *CB) {
+ assert(CB && "Expect non-null call instruction");
+
+ if (isa<IntrinsicInst>(CB))
+ return false;
+
+ // Find the callee's profile. For indirect call, find hottest target profile.
+ const FunctionSamples *CalleeSamples = findCalleeFunctionSamples(*CB);
+ if (!CalleeSamples)
+ return false;
+
+ float Factor = 1.0;
+ if (Optional<PseudoProbe> Probe = extractProbe(*CB))
+ Factor = Probe->Factor;
+
+ uint64_t CallsiteCount = 0;
+ ErrorOr<uint64_t> Weight = getBlockWeight(CB->getParent());
+ if (Weight)
+ CallsiteCount = Weight.get();
+ if (CalleeSamples)
+ CallsiteCount = std::max(
+ CallsiteCount, uint64_t(CalleeSamples->getEntrySamples() * Factor));
+
+ *NewCandidate = {CB, CalleeSamples, CallsiteCount, Factor};
+ return true;
+}
+
+InlineCost
+SampleProfileLoader::shouldInlineCandidate(InlineCandidate &Candidate) {
+ std::unique_ptr<InlineAdvice> Advice = nullptr;
+ if (ExternalInlineAdvisor) {
+ Advice = ExternalInlineAdvisor->getAdvice(*Candidate.CallInstr);
+ if (!Advice->isInliningRecommended()) {
+ Advice->recordUnattemptedInlining();
+ return InlineCost::getNever("not previously inlined");
+ }
+ Advice->recordInlining();
+ return InlineCost::getAlways("previously inlined");
+ }
+
+ // Adjust threshold based on call site hotness, only do this for callsite
+ // prioritized inliner because otherwise cost-benefit check is done earlier.
+ int SampleThreshold = SampleColdCallSiteThreshold;
+ if (CallsitePrioritizedInline) {
+ if (Candidate.CallsiteCount > PSI->getHotCountThreshold())
+ SampleThreshold = SampleHotCallSiteThreshold;
+ else if (!ProfileSizeInline)
+ return InlineCost::getNever("cold callsite");
+ }
+
+ Function *Callee = Candidate.CallInstr->getCalledFunction();
+ assert(Callee && "Expect a definition for inline candidate of direct call");
+
+ InlineParams Params = getInlineParams();
+ Params.ComputeFullInlineCost = true;
+ // Checks if there is anything in the reachable portion of the callee at
+ // this callsite that makes this inlining potentially illegal. Need to
+ // set ComputeFullInlineCost, otherwise getInlineCost may return early
+ // when cost exceeds threshold without checking all IRs in the callee.
+ // The acutal cost does not matter because we only checks isNever() to
+ // see if it is legal to inline the callsite.
+ InlineCost Cost = getInlineCost(*Candidate.CallInstr, Callee, Params,
+ GetTTI(*Callee), GetAC, GetTLI);
+
+ // Honor always inline and never inline from call analyzer
+ if (Cost.isNever() || Cost.isAlways())
+ return Cost;
+
+ // For old FDO inliner, we inline the call site as long as cost is not
+ // "Never". The cost-benefit check is done earlier.
+ if (!CallsitePrioritizedInline) {
+ return InlineCost::get(Cost.getCost(), INT_MAX);
+ }
+
+ // Otherwise only use the cost from call analyzer, but overwite threshold with
+ // Sample PGO threshold.
+ return InlineCost::get(Cost.getCost(), SampleThreshold);
+}
+
+bool SampleProfileLoader::inlineHotFunctionsWithPriority(
+ Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
+ DenseSet<Instruction *> PromotedInsns;
+ assert(ProfileIsCS && "Prioritiy based inliner only works with CSSPGO now");
+
+ // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
+ // Profile symbol list is ignored when profile-sample-accurate is on.
+ assert((!ProfAccForSymsInList ||
+ (!ProfileSampleAccurate &&
+ !F.hasFnAttribute("profile-sample-accurate"))) &&
+ "ProfAccForSymsInList should be false when profile-sample-accurate "
+ "is enabled");
+
+ // Populating worklist with initial call sites from root inliner, along
+ // with call site weights.
+ CandidateQueue CQueue;
+ InlineCandidate NewCandidate;
+ for (auto &BB : F) {
+ for (auto &I : BB.getInstList()) {
+ auto *CB = dyn_cast<CallBase>(&I);
+ if (!CB)
+ continue;
+ if (getInlineCandidate(&NewCandidate, CB))
+ CQueue.push(NewCandidate);
+ }
+ }
+
+ // Cap the size growth from profile guided inlining. This is needed even
+ // though cost of each inline candidate already accounts for callee size,
+ // because with top-down inlining, we can grow inliner size significantly
+ // with large number of smaller inlinees each pass the cost check.
+ assert(ProfileInlineLimitMax >= ProfileInlineLimitMin &&
+ "Max inline size limit should not be smaller than min inline size "
+ "limit.");
+ unsigned SizeLimit = F.getInstructionCount() * ProfileInlineGrowthLimit;
+ SizeLimit = std::min(SizeLimit, (unsigned)ProfileInlineLimitMax);
+ SizeLimit = std::max(SizeLimit, (unsigned)ProfileInlineLimitMin);
+ if (ExternalInlineAdvisor)
+ SizeLimit = std::numeric_limits<unsigned>::max();
+
+ // Perform iterative BFS call site prioritized inlining
+ bool Changed = false;
+ while (!CQueue.empty() && F.getInstructionCount() < SizeLimit) {
+ InlineCandidate Candidate = CQueue.top();
+ CQueue.pop();
+ CallBase *I = Candidate.CallInstr;
+ Function *CalledFunction = I->getCalledFunction();
+
+ if (CalledFunction == &F)
+ continue;
+ if (I->isIndirectCall()) {
+ if (PromotedInsns.count(I))
+ continue;
+ uint64_t Sum;
+ auto CalleeSamples = findIndirectCallFunctionSamples(*I, Sum);
+ uint64_t SumOrigin = Sum;
+ Sum *= Candidate.CallsiteDistribution;
+ for (const auto *FS : CalleeSamples) {
+ // TODO: Consider disable pre-lTO ICP for MonoLTO as well
+ if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
+ FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
+ PSI->getOrCompHotCountThreshold());
+ continue;
+ }
+ uint64_t EntryCountDistributed =
+ FS->getEntrySamples() * Candidate.CallsiteDistribution;
+ // In addition to regular inline cost check, we also need to make sure
+ // ICP isn't introducing excessive speculative checks even if individual
+ // target looks beneficial to promote and inline. That means we should
+ // only do ICP when there's a small number dominant targets.
+ if (EntryCountDistributed < SumOrigin / ProfileICPThreshold)
+ break;
+ // TODO: Fix CallAnalyzer to handle all indirect calls.
+ // For indirect call, we don't run CallAnalyzer to get InlineCost
+ // before actual inlining. This is because we could see two different
+ // types from the same definition, which makes CallAnalyzer choke as
+ // it's expecting matching parameter type on both caller and callee
+ // side. See example from PR18962 for the triggering cases (the bug was
+ // fixed, but we generate different types).
+ if (!PSI->isHotCount(EntryCountDistributed))
+ break;
+ SmallVector<CallBase *, 8> InlinedCallSites;
+ // Attach function profile for promoted indirect callee, and update
+ // call site count for the promoted inline candidate too.
+ Candidate = {I, FS, EntryCountDistributed,
+ Candidate.CallsiteDistribution};
+ if (tryPromoteAndInlineCandidate(F, Candidate, SumOrigin, Sum,
+ PromotedInsns, &InlinedCallSites)) {
+ for (auto *CB : InlinedCallSites) {
+ if (getInlineCandidate(&NewCandidate, CB))
+ CQueue.emplace(NewCandidate);
+ }
+ Changed = true;
+ }
+ }
+ } else if (CalledFunction && CalledFunction->getSubprogram() &&
+ !CalledFunction->isDeclaration()) {
+ SmallVector<CallBase *, 8> InlinedCallSites;
+ if (tryInlineCandidate(Candidate, &InlinedCallSites)) {
+ for (auto *CB : InlinedCallSites) {
+ if (getInlineCandidate(&NewCandidate, CB))
+ CQueue.emplace(NewCandidate);
+ }
+ Changed = true;
+ }
+ } else if (LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink) {
+ findCalleeFunctionSamples(*I)->findInlinedFunctions(
+ InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
+ }
+ }
+
+ if (!CQueue.empty()) {
+ if (SizeLimit == (unsigned)ProfileInlineLimitMax)
+ ++NumCSInlinedHitMaxLimit;
+ else if (SizeLimit == (unsigned)ProfileInlineLimitMin)
+ ++NumCSInlinedHitMinLimit;
+ else
+ ++NumCSInlinedHitGrowthLimit;
+ }
+
+ return Changed;
+}
+
+/// Find equivalence classes for the given block.
+///
+/// This finds all the blocks that are guaranteed to execute the same
+/// number of times as \p BB1. To do this, it traverses all the
+/// descendants of \p BB1 in the dominator or post-dominator tree.
+///
+/// A block BB2 will be in the same equivalence class as \p BB1 if
+/// the following holds:
+///
+/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
+/// is a descendant of \p BB1 in the dominator tree, then BB2 should
+/// dominate BB1 in the post-dominator tree.
+///
+/// 2- Both BB2 and \p BB1 must be in the same loop.
+///
+/// For every block BB2 that meets those two requirements, we set BB2's
+/// equivalence class to \p BB1.
+///
+/// \param BB1 Block to check.
+/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
+/// \param DomTree Opposite dominator tree. If \p Descendants is filled
+/// with blocks from \p BB1's dominator tree, then
+/// this is the post-dominator tree, and vice versa.
+template <bool IsPostDom>
+void SampleProfileLoader::findEquivalencesFor(
+ BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
+ DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
+ const BasicBlock *EC = EquivalenceClass[BB1];
+ uint64_t Weight = BlockWeights[EC];
+ for (const auto *BB2 : Descendants) {
+ bool IsDomParent = DomTree->dominates(BB2, BB1);
+ bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
+ if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
+ EquivalenceClass[BB2] = EC;
+ // If BB2 is visited, then the entire EC should be marked as visited.
+ if (VisitedBlocks.count(BB2)) {
+ VisitedBlocks.insert(EC);
+ }
+
+ // If BB2 is heavier than BB1, make BB2 have the same weight
+ // as BB1.
+ //
+ // Note that we don't worry about the opposite situation here
+ // (when BB2 is lighter than BB1). We will deal with this
+ // during the propagation phase. Right now, we just want to
+ // make sure that BB1 has the largest weight of all the
+ // members of its equivalence set.
+ Weight = std::max(Weight, BlockWeights[BB2]);
+ }
+ }
+ if (EC == &EC->getParent()->getEntryBlock()) {
+ BlockWeights[EC] = Samples->getHeadSamples() + 1;
+ } else {
+ BlockWeights[EC] = Weight;
+ }
+}
+
+/// Find equivalence classes.
+///
+/// Since samples may be missing from blocks, we can fill in the gaps by setting
+/// the weights of all the blocks in the same equivalence class to the same
+/// weight. To compute the concept of equivalence, we use dominance and loop
+/// information. Two blocks B1 and B2 are in the same equivalence class if B1
+/// dominates B2, B2 post-dominates B1 and both are in the same loop.
+///
+/// \param F The function to query.
+void SampleProfileLoader::findEquivalenceClasses(Function &F) {
+ SmallVector<BasicBlock *, 8> DominatedBBs;
+ LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
+ // Find equivalence sets based on dominance and post-dominance information.
+ for (auto &BB : F) {
+ BasicBlock *BB1 = &BB;
+
+ // Compute BB1's equivalence class once.
+ if (EquivalenceClass.count(BB1)) {
+ LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
+ continue;
+ }
+
+ // By default, blocks are in their own equivalence class.
+ EquivalenceClass[BB1] = BB1;
+
+ // Traverse all the blocks dominated by BB1. We are looking for
+ // every basic block BB2 such that:
+ //
+ // 1- BB1 dominates BB2.
+ // 2- BB2 post-dominates BB1.
+ // 3- BB1 and BB2 are in the same loop nest.
+ //
+ // If all those conditions hold, it means that BB2 is executed
+ // as many times as BB1, so they are placed in the same equivalence
+ // class by making BB2's equivalence class be BB1.
+ DominatedBBs.clear();
+ DT->getDescendants(BB1, DominatedBBs);
+ findEquivalencesFor(BB1, DominatedBBs, PDT.get());
+
+ LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
+ }
+
+ // Assign weights to equivalence classes.
+ //
+ // All the basic blocks in the same equivalence class will execute
+ // the same number of times. Since we know that the head block in
+ // each equivalence class has the largest weight, assign that weight
+ // to all the blocks in that equivalence class.
+ LLVM_DEBUG(
+ dbgs() << "\nAssign the same weight to all blocks in the same class\n");
+ for (auto &BI : F) {
+ const BasicBlock *BB = &BI;
+ const BasicBlock *EquivBB = EquivalenceClass[BB];
+ if (BB != EquivBB)
+ BlockWeights[BB] = BlockWeights[EquivBB];
+ LLVM_DEBUG(printBlockWeight(dbgs(), BB));
+ }
+}
+
+/// Visit the given edge to decide if it has a valid weight.
+///
+/// If \p E has not been visited before, we copy to \p UnknownEdge
+/// and increment the count of unknown edges.
+///
+/// \param E Edge to visit.
+/// \param NumUnknownEdges Current number of unknown edges.
+/// \param UnknownEdge Set if E has not been visited before.
+///
+/// \returns E's weight, if known. Otherwise, return 0.
+uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
+ Edge *UnknownEdge) {
+ if (!VisitedEdges.count(E)) {
+ (*NumUnknownEdges)++;
+ *UnknownEdge = E;
+ return 0;
+ }
+
+ return EdgeWeights[E];
+}
+
+/// Propagate weights through incoming/outgoing edges.
+///
+/// If the weight of a basic block is known, and there is only one edge
+/// with an unknown weight, we can calculate the weight of that edge.
+///
+/// Similarly, if all the edges have a known count, we can calculate the
+/// count of the basic block, if needed.
+///
+/// \param F Function to process.
+/// \param UpdateBlockCount Whether we should update basic block counts that
+/// has already been annotated.
+///
+/// \returns True if new weights were assigned to edges or blocks.
+bool SampleProfileLoader::propagateThroughEdges(Function &F,
+ bool UpdateBlockCount) {
+ bool Changed = false;
+ LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
+ for (const auto &BI : F) {
+ const BasicBlock *BB = &BI;
+ const BasicBlock *EC = EquivalenceClass[BB];
+
+ // Visit all the predecessor and successor edges to determine
+ // which ones have a weight assigned already. Note that it doesn't
+ // matter that we only keep track of a single unknown edge. The
+ // only case we are interested in handling is when only a single
+ // edge is unknown (see setEdgeOrBlockWeight).
+ for (unsigned i = 0; i < 2; i++) {
+ uint64_t TotalWeight = 0;
+ unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
+ Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
+
+ if (i == 0) {
+ // First, visit all predecessor edges.
+ NumTotalEdges = Predecessors[BB].size();
+ for (auto *Pred : Predecessors[BB]) {
+ Edge E = std::make_pair(Pred, BB);
+ TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
+ if (E.first == E.second)
+ SelfReferentialEdge = E;
+ }
+ if (NumTotalEdges == 1) {
+ SingleEdge = std::make_pair(Predecessors[BB][0], BB);
+ }
+ } else {
+ // On the second round, visit all successor edges.
+ NumTotalEdges = Successors[BB].size();
+ for (auto *Succ : Successors[BB]) {
+ Edge E = std::make_pair(BB, Succ);
+ TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
+ }
+ if (NumTotalEdges == 1) {
+ SingleEdge = std::make_pair(BB, Successors[BB][0]);
+ }
+ }
+
+ // After visiting all the edges, there are three cases that we
+ // can handle immediately:
+ //
+ // - All the edge weights are known (i.e., NumUnknownEdges == 0).
+ // In this case, we simply check that the sum of all the edges
+ // is the same as BB's weight. If not, we change BB's weight
+ // to match. Additionally, if BB had not been visited before,
+ // we mark it visited.
+ //
+ // - Only one edge is unknown and BB has already been visited.
+ // In this case, we can compute the weight of the edge by
+ // subtracting the total block weight from all the known
+ // edge weights. If the edges weight more than BB, then the
+ // edge of the last remaining edge is set to zero.
+ //
+ // - There exists a self-referential edge and the weight of BB is
+ // known. In this case, this edge can be based on BB's weight.
+ // We add up all the other known edges and set the weight on
+ // the self-referential edge as we did in the previous case.
+ //
+ // In any other case, we must continue iterating. Eventually,
+ // all edges will get a weight, or iteration will stop when
+ // it reaches SampleProfileMaxPropagateIterations.
+ if (NumUnknownEdges <= 1) {
+ uint64_t &BBWeight = BlockWeights[EC];
+ if (NumUnknownEdges == 0) {
+ if (!VisitedBlocks.count(EC)) {
+ // If we already know the weight of all edges, the weight of the
+ // basic block can be computed. It should be no larger than the sum
+ // of all edge weights.
+ if (TotalWeight > BBWeight) {
+ BBWeight = TotalWeight;
+ Changed = true;
+ LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
+ << " known. Set weight for block: ";
+ printBlockWeight(dbgs(), BB););
+ }
+ } else if (NumTotalEdges == 1 &&
+ EdgeWeights[SingleEdge] < BlockWeights[EC]) {
+ // If there is only one edge for the visited basic block, use the
+ // block weight to adjust edge weight if edge weight is smaller.
+ EdgeWeights[SingleEdge] = BlockWeights[EC];
+ Changed = true;
+ }
+ } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
+ // If there is a single unknown edge and the block has been
+ // visited, then we can compute E's weight.
+ if (BBWeight >= TotalWeight)
+ EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
+ else
+ EdgeWeights[UnknownEdge] = 0;
+ const BasicBlock *OtherEC;
+ if (i == 0)
+ OtherEC = EquivalenceClass[UnknownEdge.first];
+ else
+ OtherEC = EquivalenceClass[UnknownEdge.second];
+ // Edge weights should never exceed the BB weights it connects.
+ if (VisitedBlocks.count(OtherEC) &&
+ EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
+ EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
+ VisitedEdges.insert(UnknownEdge);
+ Changed = true;
+ LLVM_DEBUG(dbgs() << "Set weight for edge: ";
+ printEdgeWeight(dbgs(), UnknownEdge));
+ }
+ } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
+ // If a block Weights 0, all its in/out edges should weight 0.
+ if (i == 0) {
+ for (auto *Pred : Predecessors[BB]) {
+ Edge E = std::make_pair(Pred, BB);
+ EdgeWeights[E] = 0;
+ VisitedEdges.insert(E);
+ }
+ } else {
+ for (auto *Succ : Successors[BB]) {
+ Edge E = std::make_pair(BB, Succ);
+ EdgeWeights[E] = 0;
+ VisitedEdges.insert(E);
+ }
+ }
+ } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
+ uint64_t &BBWeight = BlockWeights[BB];
+ // We have a self-referential edge and the weight of BB is known.
+ if (BBWeight >= TotalWeight)
+ EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
+ else
+ EdgeWeights[SelfReferentialEdge] = 0;
+ VisitedEdges.insert(SelfReferentialEdge);
+ Changed = true;
+ LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
+ printEdgeWeight(dbgs(), SelfReferentialEdge));
+ }
+ if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
+ BlockWeights[EC] = TotalWeight;
+ VisitedBlocks.insert(EC);
+ Changed = true;
+ }
+ }
+ }
+
+ return Changed;
+}
+
+/// Build in/out edge lists for each basic block in the CFG.
+///
+/// We are interested in unique edges. If a block B1 has multiple
+/// edges to another block B2, we only add a single B1->B2 edge.
+void SampleProfileLoader::buildEdges(Function &F) {
+ for (auto &BI : F) {
+ BasicBlock *B1 = &BI;
+
+ // Add predecessors for B1.
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ if (!Predecessors[B1].empty())
+ llvm_unreachable("Found a stale predecessors list in a basic block.");
+ for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
+ BasicBlock *B2 = *PI;
+ if (Visited.insert(B2).second)
+ Predecessors[B1].push_back(B2);
+ }
+
+ // Add successors for B1.
+ Visited.clear();
+ if (!Successors[B1].empty())
+ llvm_unreachable("Found a stale successors list in a basic block.");
+ for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
+ BasicBlock *B2 = *SI;
+ if (Visited.insert(B2).second)
+ Successors[B1].push_back(B2);
+ }
+ }
+}
+
+/// Returns the sorted CallTargetMap \p M by count in descending order.
+static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
+ const SampleRecord::CallTargetMap & M) {
+ SmallVector<InstrProfValueData, 2> R;
+ for (const auto &I : SampleRecord::SortCallTargets(M)) {
+ R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
+ }
+ return R;
+}
+
+/// Propagate weights into edges
+///
+/// The following rules are applied to every block BB in the CFG:
+///
+/// - If BB has a single predecessor/successor, then the weight
+/// of that edge is the weight of the block.
+///
+/// - If all incoming or outgoing edges are known except one, and the
+/// weight of the block is already known, the weight of the unknown
+/// edge will be the weight of the block minus the sum of all the known
+/// edges. If the sum of all the known edges is larger than BB's weight,
+/// we set the unknown edge weight to zero.
+///
+/// - If there is a self-referential edge, and the weight of the block is
+/// known, the weight for that edge is set to the weight of the block
+/// minus the weight of the other incoming edges to that block (if
+/// known).
+void SampleProfileLoader::propagateWeights(Function &F) {
+ bool Changed = true;
+ unsigned I = 0;
+
+ // If BB weight is larger than its corresponding loop's header BB weight,
+ // use the BB weight to replace the loop header BB weight.
+ for (auto &BI : F) {
+ BasicBlock *BB = &BI;
+ Loop *L = LI->getLoopFor(BB);
+ if (!L) {
+ continue;
+ }
+ BasicBlock *Header = L->getHeader();
+ if (Header && BlockWeights[BB] > BlockWeights[Header]) {
+ BlockWeights[Header] = BlockWeights[BB];
+ }
+ }
+
+ // Before propagation starts, build, for each block, a list of
+ // unique predecessors and successors. This is necessary to handle
+ // identical edges in multiway branches. Since we visit all blocks and all
+ // edges of the CFG, it is cleaner to build these lists once at the start
+ // of the pass.
+ buildEdges(F);
+
+ // Propagate until we converge or we go past the iteration limit.
+ while (Changed && I++ < SampleProfileMaxPropagateIterations) {
+ Changed = propagateThroughEdges(F, false);
+ }
+
+ // The first propagation propagates BB counts from annotated BBs to unknown
+ // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
+ // to propagate edge weights.
+ VisitedEdges.clear();
+ Changed = true;
+ while (Changed && I++ < SampleProfileMaxPropagateIterations) {
+ Changed = propagateThroughEdges(F, false);
+ }
+
+ // The 3rd propagation pass allows adjust annotated BB weights that are
+ // obviously wrong.
+ Changed = true;
+ while (Changed && I++ < SampleProfileMaxPropagateIterations) {
+ Changed = propagateThroughEdges(F, true);
+ }
+
+ // Generate MD_prof metadata for every branch instruction using the
+ // edge weights computed during propagation.
+ LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
+ LLVMContext &Ctx = F.getContext();
+ MDBuilder MDB(Ctx);
+ for (auto &BI : F) {
+ BasicBlock *BB = &BI;
+
+ if (BlockWeights[BB]) {
+ for (auto &I : BB->getInstList()) {
+ if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
+ continue;
+ if (!cast<CallBase>(I).getCalledFunction()) {
+ const DebugLoc &DLoc = I.getDebugLoc();
+ if (!DLoc)
+ continue;
+ const DILocation *DIL = DLoc;
+ const FunctionSamples *FS = findFunctionSamples(I);
+ if (!FS)
+ continue;
+ auto CallSite = FunctionSamples::getCallSiteIdentifier(DIL);
+ auto T = FS->findCallTargetMapAt(CallSite);
+ if (!T || T.get().empty())
+ continue;
+ // Prorate the callsite counts to reflect what is already done to the
+ // callsite, such as ICP or calliste cloning.
+ if (FunctionSamples::ProfileIsProbeBased) {
+ if (Optional<PseudoProbe> Probe = extractProbe(I)) {
+ if (Probe->Factor < 1)
+ T = SampleRecord::adjustCallTargets(T.get(), Probe->Factor);
+ }
+ }
+ SmallVector<InstrProfValueData, 2> SortedCallTargets =
+ GetSortedValueDataFromCallTargets(T.get());
+ uint64_t Sum;
+ findIndirectCallFunctionSamples(I, Sum);
+ annotateValueSite(*I.getParent()->getParent()->getParent(), I,
+ SortedCallTargets, Sum, IPVK_IndirectCallTarget,
+ SortedCallTargets.size());
+ } else if (!isa<IntrinsicInst>(&I)) {
+ I.setMetadata(LLVMContext::MD_prof,
+ MDB.createBranchWeights(
+ {static_cast<uint32_t>(BlockWeights[BB])}));
+ }
+ }
+ }
+ Instruction *TI = BB->getTerminator();
+ if (TI->getNumSuccessors() == 1)
+ continue;
+ if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
+ continue;
+
+ DebugLoc BranchLoc = TI->getDebugLoc();
+ LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
+ << ((BranchLoc) ? Twine(BranchLoc.getLine())
+ : Twine("<UNKNOWN LOCATION>"))
+ << ".\n");
+ SmallVector<uint32_t, 4> Weights;
+ uint32_t MaxWeight = 0;
+ Instruction *MaxDestInst;
+ for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
+ BasicBlock *Succ = TI->getSuccessor(I);
+ Edge E = std::make_pair(BB, Succ);
+ uint64_t Weight = EdgeWeights[E];
+ LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
+ // Use uint32_t saturated arithmetic to adjust the incoming weights,
+ // if needed. Sample counts in profiles are 64-bit unsigned values,
+ // but internally branch weights are expressed as 32-bit values.
+ if (Weight > std::numeric_limits<uint32_t>::max()) {
+ LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
+ Weight = std::numeric_limits<uint32_t>::max();
+ }
+ // Weight is added by one to avoid propagation errors introduced by
+ // 0 weights.
+ Weights.push_back(static_cast<uint32_t>(Weight + 1));
+ if (Weight != 0) {
+ if (Weight > MaxWeight) {
+ MaxWeight = Weight;
+ MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
+ }
+ }
+ }
+
+ uint64_t TempWeight;
+ // Only set weights if there is at least one non-zero weight.
+ // In any other case, let the analyzer set weights.
+ // Do not set weights if the weights are present. In ThinLTO, the profile
+ // annotation is done twice. If the first annotation already set the
+ // weights, the second pass does not need to set it.
+ if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
+ LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
+ TI->setMetadata(LLVMContext::MD_prof,
+ MDB.createBranchWeights(Weights));
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
+ << "most popular destination for conditional branches at "
+ << ore::NV("CondBranchesLoc", BranchLoc);
+ });
+ } else {
+ LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
+ }
+ }
+}
+
+/// Get the line number for the function header.
+///
+/// This looks up function \p F in the current compilation unit and
+/// retrieves the line number where the function is defined. This is
+/// line 0 for all the samples read from the profile file. Every line
+/// number is relative to this line.
+///
+/// \param F Function object to query.
+///
+/// \returns the line number where \p F is defined. If it returns 0,
+/// it means that there is no debug information available for \p F.
+unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
+ if (DISubprogram *S = F.getSubprogram())
+ return S->getLine();
+
+ if (NoWarnSampleUnused)
+ return 0;
+
+ // If the start of \p F is missing, emit a diagnostic to inform the user
+ // about the missed opportunity.
+ F.getContext().diagnose(DiagnosticInfoSampleProfile(
+ "No debug information found in function " + F.getName() +
+ ": Function profile not used",
+ DS_Warning));
+ return 0;
+}
+
+void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
+ DT.reset(new DominatorTree);
+ DT->recalculate(F);
+
+ PDT.reset(new PostDominatorTree(F));
+
+ LI.reset(new LoopInfo);
+ LI->analyze(*DT);
+}
+
+/// Generate branch weight metadata for all branches in \p F.
+///
+/// Branch weights are computed out of instruction samples using a
+/// propagation heuristic. Propagation proceeds in 3 phases:
+///
+/// 1- Assignment of block weights. All the basic blocks in the function
+/// are initial assigned the same weight as their most frequently
+/// executed instruction.
+///
+/// 2- Creation of equivalence classes. Since samples may be missing from
+/// blocks, we can fill in the gaps by setting the weights of all the
+/// blocks in the same equivalence class to the same weight. To compute
+/// the concept of equivalence, we use dominance and loop information.
+/// Two blocks B1 and B2 are in the same equivalence class if B1
+/// dominates B2, B2 post-dominates B1 and both are in the same loop.
+///
+/// 3- Propagation of block weights into edges. This uses a simple
+/// propagation heuristic. The following rules are applied to every
+/// block BB in the CFG:
+///
+/// - If BB has a single predecessor/successor, then the weight
+/// of that edge is the weight of the block.
+///
+/// - If all the edges are known except one, and the weight of the
+/// block is already known, the weight of the unknown edge will
+/// be the weight of the block minus the sum of all the known
+/// edges. If the sum of all the known edges is larger than BB's weight,
+/// we set the unknown edge weight to zero.
+///
+/// - If there is a self-referential edge, and the weight of the block is
+/// known, the weight for that edge is set to the weight of the block
+/// minus the weight of the other incoming edges to that block (if
+/// known).
+///
+/// Since this propagation is not guaranteed to finalize for every CFG, we
+/// only allow it to proceed for a limited number of iterations (controlled
+/// by -sample-profile-max-propagate-iterations).
+///
+/// FIXME: Try to replace this propagation heuristic with a scheme
+/// that is guaranteed to finalize. A work-list approach similar to
+/// the standard value propagation algorithm used by SSA-CCP might
+/// work here.
+///
+/// Once all the branch weights are computed, we emit the MD_prof
+/// metadata on BB using the computed values for each of its branches.
+///
+/// \param F The function to query.
+///
+/// \returns true if \p F was modified. Returns false, otherwise.
+bool SampleProfileLoader::emitAnnotations(Function &F) {
+ bool Changed = false;
+
+ if (FunctionSamples::ProfileIsProbeBased) {
+ if (!ProbeManager->profileIsValid(F, *Samples)) {
+ LLVM_DEBUG(
+ dbgs() << "Profile is invalid due to CFG mismatch for Function "
+ << F.getName());
+ ++NumMismatchedProfile;
+ return false;
+ }
+ ++NumMatchedProfile;
+ } else {
+ if (getFunctionLoc(F) == 0)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
+ << F.getName() << ": " << getFunctionLoc(F) << "\n");
+ }
+
+ DenseSet<GlobalValue::GUID> InlinedGUIDs;
+ if (ProfileIsCS && CallsitePrioritizedInline)
+ Changed |= inlineHotFunctionsWithPriority(F, InlinedGUIDs);
+ else
+ Changed |= inlineHotFunctions(F, InlinedGUIDs);
+
+ // Compute basic block weights.
+ Changed |= computeBlockWeights(F);
+
+ if (Changed) {
+ // Add an entry count to the function using the samples gathered at the
+ // function entry.
+ // Sets the GUIDs that are inlined in the profiled binary. This is used
+ // for ThinLink to make correct liveness analysis, and also make the IR
+ // match the profiled binary before annotation.
+ F.setEntryCount(
+ ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
+ &InlinedGUIDs);
+
+ // Compute dominance and loop info needed for propagation.
+ computeDominanceAndLoopInfo(F);
+
+ // Find equivalence classes.
+ findEquivalenceClasses(F);
+
+ // Propagate weights to all edges.
+ propagateWeights(F);
+ }
+
+ // If coverage checking was requested, compute it now.
+ if (SampleProfileRecordCoverage) {
+ unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
+ unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
+ unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
+ if (Coverage < SampleProfileRecordCoverage) {
+ F.getContext().diagnose(DiagnosticInfoSampleProfile(
+ F.getSubprogram()->getFilename(), getFunctionLoc(F),
+ Twine(Used) + " of " + Twine(Total) + " available profile records (" +
+ Twine(Coverage) + "%) were applied",
+ DS_Warning));
+ }
+ }
+
+ if (SampleProfileSampleCoverage) {
+ uint64_t Used = CoverageTracker.getTotalUsedSamples();
+ uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
+ unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
+ if (Coverage < SampleProfileSampleCoverage) {
+ F.getContext().diagnose(DiagnosticInfoSampleProfile(
+ F.getSubprogram()->getFilename(), getFunctionLoc(F),
+ Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
+ Twine(Coverage) + "%) were applied",
+ DS_Warning));
+ }
+ }
+ return Changed;
+}
+
+char SampleProfileLoaderLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
+ "Sample Profile loader", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
+ "Sample Profile loader", false, false)
+
+// Add inlined profile call edges to the call graph.
+void SampleProfileLoader::addCallGraphEdges(CallGraph &CG,
+ const FunctionSamples &Samples) {
+ Function *Caller = SymbolMap.lookup(Samples.getFuncName());
+ if (!Caller || Caller->isDeclaration())
+ return;
+
+ // Skip non-inlined call edges which are not important since top down inlining
+ // for non-CS profile is to get more precise profile matching, not to enable
+ // more inlining.
+
+ for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
+ for (const auto &InlinedSamples : CallsiteSamples.second) {
+ Function *Callee = SymbolMap.lookup(InlinedSamples.first);
+ if (Callee && !Callee->isDeclaration())
+ CG[Caller]->addCalledFunction(nullptr, CG[Callee]);
+ addCallGraphEdges(CG, InlinedSamples.second);
+ }
+ }
+}
+
+// Replace call graph edges with dynamic call edges from the profile.
+void SampleProfileLoader::replaceCallGraphEdges(
+ CallGraph &CG, StringMap<Function *> &SymbolMap) {
+ // Remove static call edges from the call graph except for the ones from the
+ // root which make the call graph connected.
+ for (const auto &Node : CG)
+ if (Node.second.get() != CG.getExternalCallingNode())
+ Node.second->removeAllCalledFunctions();
+
+ // Add profile call edges to the call graph.
+ if (ProfileIsCS) {
+ ContextTracker->addCallGraphEdges(CG, SymbolMap);
+ } else {
+ for (const auto &Samples : Reader->getProfiles())
+ addCallGraphEdges(CG, Samples.second);
+ }
+}
+
+std::vector<Function *>
+SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
+ std::vector<Function *> FunctionOrderList;
+ FunctionOrderList.reserve(M.size());
+
+ if (!ProfileTopDownLoad || CG == nullptr) {
+ if (ProfileMergeInlinee) {
+ // Disable ProfileMergeInlinee if profile is not loaded in top down order,
+ // because the profile for a function may be used for the profile
+ // annotation of its outline copy before the profile merging of its
+ // non-inlined inline instances, and that is not the way how
+ // ProfileMergeInlinee is supposed to work.
+ ProfileMergeInlinee = false;
+ }
+
+ for (Function &F : M)
+ if (!F.isDeclaration() && F.hasFnAttribute("use-sample-profile"))
+ FunctionOrderList.push_back(&F);
+ return FunctionOrderList;
+ }
+
+ assert(&CG->getModule() == &M);
+
+ // Add indirect call edges from profile to augment the static call graph.
+ // Functions will be processed in a top-down order defined by the static call
+ // graph. Adjusting the order by considering indirect call edges from the
+ // profile (which don't exist in the static call graph) can enable the
+ // inlining of indirect call targets by processing the caller before them.
+ // TODO: enable this for non-CS profile and fix the counts returning logic to
+ // have a full support for indirect calls.
+ if (UseProfileIndirectCallEdges && ProfileIsCS) {
+ for (auto &Entry : *CG) {
+ const auto *F = Entry.first;
+ if (!F || F->isDeclaration() || !F->hasFnAttribute("use-sample-profile"))
+ continue;
+ auto &AllContexts = ContextTracker->getAllContextSamplesFor(F->getName());
+ if (AllContexts.empty())
+ continue;
+
+ for (const auto &BB : *F) {
+ for (const auto &I : BB.getInstList()) {
+ const auto *CB = dyn_cast<CallBase>(&I);
+ if (!CB || !CB->isIndirectCall())
+ continue;
+ const DebugLoc &DLoc = I.getDebugLoc();
+ if (!DLoc)
+ continue;
+ auto CallSite = FunctionSamples::getCallSiteIdentifier(DLoc);
+ for (FunctionSamples *Samples : AllContexts) {
+ if (auto CallTargets = Samples->findCallTargetMapAt(CallSite)) {
+ for (const auto &Target : CallTargets.get()) {
+ Function *Callee = SymbolMap.lookup(Target.first());
+ if (Callee && !Callee->isDeclaration())
+ Entry.second->addCalledFunction(nullptr, (*CG)[Callee]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Compute a top-down order the profile which is used to sort functions in
+ // one SCC later. The static processing order computed for an SCC may not
+ // reflect the call contexts in the context-sensitive profile, thus may cause
+ // potential inlining to be overlooked. The function order in one SCC is being
+ // adjusted to a top-down order based on the profile to favor more inlining.
+ DenseMap<Function *, uint64_t> ProfileOrderMap;
+ if (UseProfileTopDownOrder ||
+ (ProfileIsCS && !UseProfileTopDownOrder.getNumOccurrences())) {
+ // Create a static call graph. The call edges are not important since they
+ // will be replaced by dynamic edges from the profile.
+ CallGraph ProfileCG(M);
+ replaceCallGraphEdges(ProfileCG, SymbolMap);
+ scc_iterator<CallGraph *> CGI = scc_begin(&ProfileCG);
+ uint64_t I = 0;
+ while (!CGI.isAtEnd()) {
+ for (CallGraphNode *Node : *CGI) {
+ if (auto *F = Node->getFunction())
+ ProfileOrderMap[F] = ++I;
+ }
+ ++CGI;
+ }
+ }
+
+ scc_iterator<CallGraph *> CGI = scc_begin(CG);
+ while (!CGI.isAtEnd()) {
+ uint64_t Start = FunctionOrderList.size();
+ for (CallGraphNode *Node : *CGI) {
+ auto *F = Node->getFunction();
+ if (F && !F->isDeclaration() && F->hasFnAttribute("use-sample-profile"))
+ FunctionOrderList.push_back(F);
+ }
+
+ // Sort nodes in SCC based on the profile top-down order.
+ if (!ProfileOrderMap.empty()) {
+ std::stable_sort(FunctionOrderList.begin() + Start,
+ FunctionOrderList.end(),
+ [&ProfileOrderMap](Function *Left, Function *Right) {
+ return ProfileOrderMap[Left] < ProfileOrderMap[Right];
+ });
+ }
+
+ ++CGI;
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "Function processing order:\n";
+ for (auto F : reverse(FunctionOrderList)) {
+ dbgs() << F->getName() << "\n";
+ }
+ });
+
+ std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
+ return FunctionOrderList;
+}
+
+bool SampleProfileLoader::doInitialization(Module &M,
+ FunctionAnalysisManager *FAM) {
+ auto &Ctx = M.getContext();
+
+ auto ReaderOrErr =
+ SampleProfileReader::create(Filename, Ctx, RemappingFilename);
+ if (std::error_code EC = ReaderOrErr.getError()) {
+ std::string Msg = "Could not open profile: " + EC.message();
+ Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
+ return false;
+ }
+ Reader = std::move(ReaderOrErr.get());
+ Reader->setSkipFlatProf(LTOPhase == ThinOrFullLTOPhase::ThinLTOPostLink);
+ Reader->collectFuncsFrom(M);
+ if (std::error_code EC = Reader->read()) {
+ std::string Msg = "profile reading failed: " + EC.message();
+ Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
+ return false;
+ }
+
+ PSL = Reader->getProfileSymbolList();
+
+ // While profile-sample-accurate is on, ignore symbol list.
+ ProfAccForSymsInList =
+ ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
+ if (ProfAccForSymsInList) {
+ NamesInProfile.clear();
+ if (auto NameTable = Reader->getNameTable())
+ NamesInProfile.insert(NameTable->begin(), NameTable->end());
+ }
+
+ if (FAM && !ProfileInlineReplayFile.empty()) {
+ ExternalInlineAdvisor = std::make_unique<ReplayInlineAdvisor>(
+ M, *FAM, Ctx, /*OriginalAdvisor=*/nullptr, ProfileInlineReplayFile,
+ /*EmitRemarks=*/false);
+ if (!ExternalInlineAdvisor->areReplayRemarksLoaded())
+ ExternalInlineAdvisor.reset();
+ }
+
+ // Apply tweaks if context-sensitive profile is available.
+ if (Reader->profileIsCS()) {
+ ProfileIsCS = true;
+ FunctionSamples::ProfileIsCS = true;
+
+ // Enable priority-base inliner and size inline by default for CSSPGO.
+ if (!ProfileSizeInline.getNumOccurrences())
+ ProfileSizeInline = true;
+ if (!CallsitePrioritizedInline.getNumOccurrences())
+ CallsitePrioritizedInline = true;
+
+ // Tracker for profiles under different context
+ ContextTracker =
+ std::make_unique<SampleContextTracker>(Reader->getProfiles());
+ }
+
+ // Load pseudo probe descriptors for probe-based function samples.
+ if (Reader->profileIsProbeBased()) {
+ ProbeManager = std::make_unique<PseudoProbeManager>(M);
+ if (!ProbeManager->moduleIsProbed(M)) {
+ const char *Msg =
+ "Pseudo-probe-based profile requires SampleProfileProbePass";
+ Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
+ return false;
+ }
+ }
+
+ return true;
+}
+
+ModulePass *llvm::createSampleProfileLoaderPass() {
+ return new SampleProfileLoaderLegacyPass();
+}
+
+ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
+ return new SampleProfileLoaderLegacyPass(Name);
+}
+
+bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
+ ProfileSummaryInfo *_PSI, CallGraph *CG) {
+ GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
+
+ PSI = _PSI;
+ if (M.getProfileSummary(/* IsCS */ false) == nullptr) {
+ M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
+ ProfileSummary::PSK_Sample);
+ PSI->refresh();
+ }
+ // Compute the total number of samples collected in this profile.
+ for (const auto &I : Reader->getProfiles())
+ TotalCollectedSamples += I.second.getTotalSamples();
+
+ auto Remapper = Reader->getRemapper();
+ // Populate the symbol map.
+ for (const auto &N_F : M.getValueSymbolTable()) {
+ StringRef OrigName = N_F.getKey();
+ Function *F = dyn_cast<Function>(N_F.getValue());
+ if (F == nullptr)
+ continue;
+ SymbolMap[OrigName] = F;
+ auto pos = OrigName.find('.');
+ if (pos != StringRef::npos) {
+ StringRef NewName = OrigName.substr(0, pos);
+ auto r = SymbolMap.insert(std::make_pair(NewName, F));
+ // Failiing to insert means there is already an entry in SymbolMap,
+ // thus there are multiple functions that are mapped to the same
+ // stripped name. In this case of name conflicting, set the value
+ // to nullptr to avoid confusion.
+ if (!r.second)
+ r.first->second = nullptr;
+ OrigName = NewName;
+ }
+ // Insert the remapped names into SymbolMap.
+ if (Remapper) {
+ if (auto MapName = Remapper->lookUpNameInProfile(OrigName)) {
+ if (*MapName == OrigName)
+ continue;
+ SymbolMap.insert(std::make_pair(*MapName, F));
+ }
+ }
+ }
+
+ bool retval = false;
+ for (auto F : buildFunctionOrder(M, CG)) {
+ assert(!F->isDeclaration());
+ clearFunctionData();
+ retval |= runOnFunction(*F, AM);
+ }
+
+ // Account for cold calls not inlined....
+ if (!ProfileIsCS)
+ for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
+ notInlinedCallInfo)
+ updateProfileCallee(pair.first, pair.second.entryCount);
+
+ return retval;
+}
+
+bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
+ ACT = &getAnalysis<AssumptionCacheTracker>();
+ TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
+ TLIWP = &getAnalysis<TargetLibraryInfoWrapperPass>();
+ ProfileSummaryInfo *PSI =
+ &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
+}
+
+bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
+ LLVM_DEBUG(dbgs() << "\n\nProcessing Function " << F.getName() << "\n");
+ DILocation2SampleMap.clear();
+ // By default the entry count is initialized to -1, which will be treated
+ // conservatively by getEntryCount as the same as unknown (None). This is
+ // to avoid newly added code to be treated as cold. If we have samples
+ // this will be overwritten in emitAnnotations.
+ uint64_t initialEntryCount = -1;
+
+ ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
+ if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
+ // initialize all the function entry counts to 0. It means all the
+ // functions without profile will be regarded as cold.
+ initialEntryCount = 0;
+ // profile-sample-accurate is a user assertion which has a higher precedence
+ // than symbol list. When profile-sample-accurate is on, ignore symbol list.
+ ProfAccForSymsInList = false;
+ }
+
+ // PSL -- profile symbol list include all the symbols in sampled binary.
+ // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
+ // old functions without samples being cold, without having to worry
+ // about new and hot functions being mistakenly treated as cold.
+ if (ProfAccForSymsInList) {
+ // Initialize the entry count to 0 for functions in the list.
+ if (PSL->contains(F.getName()))
+ initialEntryCount = 0;
+
+ // Function in the symbol list but without sample will be regarded as
+ // cold. To minimize the potential negative performance impact it could
+ // have, we want to be a little conservative here saying if a function
+ // shows up in the profile, no matter as outline function, inline instance
+ // or call targets, treat the function as not being cold. This will handle
+ // the cases such as most callsites of a function are inlined in sampled
+ // binary but not inlined in current build (because of source code drift,
+ // imprecise debug information, or the callsites are all cold individually
+ // but not cold accumulatively...), so the outline function showing up as
+ // cold in sampled binary will actually not be cold after current build.
+ StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
+ if (NamesInProfile.count(CanonName))
+ initialEntryCount = -1;
+ }
+
+ // Initialize entry count when the function has no existing entry
+ // count value.
+ if (!F.getEntryCount().hasValue())
+ F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
+ std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
+ if (AM) {
+ auto &FAM =
+ AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
+ .getManager();
+ ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
+ } else {
+ OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
+ ORE = OwnedORE.get();
+ }
+
+ if (ProfileIsCS)
+ Samples = ContextTracker->getBaseSamplesFor(F);
+ else
+ Samples = Reader->getSamplesFor(F);
+
+ if (Samples && !Samples->empty())
+ return emitAnnotations(F);
+ return false;
+}
+
+PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ FunctionAnalysisManager &FAM =
+ AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
+
+ auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
+ return FAM.getResult<AssumptionAnalysis>(F);
+ };
+ auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
+ return FAM.getResult<TargetIRAnalysis>(F);
+ };
+ auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
+ return FAM.getResult<TargetLibraryAnalysis>(F);
+ };
+
+ SampleProfileLoader SampleLoader(
+ ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
+ ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
+ : ProfileRemappingFileName,
+ LTOPhase, GetAssumptionCache, GetTTI, GetTLI);
+
+ if (!SampleLoader.doInitialization(M, &FAM))
+ return PreservedAnalyses::all();
+
+ ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
+ CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
+ if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
+ return PreservedAnalyses::all();
+
+ return PreservedAnalyses::none();
+}