aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp549
1 files changed, 549 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp
new file mode 100644
index 000000000000..225b4fe95f67
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp
@@ -0,0 +1,549 @@
+//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/ModuleSummaryAnalysis.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/TypeMetadataUtils.h"
+#include "llvm/Bitcode/BitcodeWriter.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Object/ModuleSymbolTable.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/ScopedPrinter.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/IPO/FunctionAttrs.h"
+#include "llvm/Transforms/IPO/FunctionImport.h"
+#include "llvm/Transforms/IPO/LowerTypeTests.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+using namespace llvm;
+
+namespace {
+
+// Promote each local-linkage entity defined by ExportM and used by ImportM by
+// changing visibility and appending the given ModuleId.
+void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
+ SetVector<GlobalValue *> &PromoteExtra) {
+ DenseMap<const Comdat *, Comdat *> RenamedComdats;
+ for (auto &ExportGV : ExportM.global_values()) {
+ if (!ExportGV.hasLocalLinkage())
+ continue;
+
+ auto Name = ExportGV.getName();
+ GlobalValue *ImportGV = nullptr;
+ if (!PromoteExtra.count(&ExportGV)) {
+ ImportGV = ImportM.getNamedValue(Name);
+ if (!ImportGV)
+ continue;
+ ImportGV->removeDeadConstantUsers();
+ if (ImportGV->use_empty()) {
+ ImportGV->eraseFromParent();
+ continue;
+ }
+ }
+
+ std::string NewName = (Name + ModuleId).str();
+
+ if (const auto *C = ExportGV.getComdat())
+ if (C->getName() == Name)
+ RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
+
+ ExportGV.setName(NewName);
+ ExportGV.setLinkage(GlobalValue::ExternalLinkage);
+ ExportGV.setVisibility(GlobalValue::HiddenVisibility);
+
+ if (ImportGV) {
+ ImportGV->setName(NewName);
+ ImportGV->setVisibility(GlobalValue::HiddenVisibility);
+ }
+ }
+
+ if (!RenamedComdats.empty())
+ for (auto &GO : ExportM.global_objects())
+ if (auto *C = GO.getComdat()) {
+ auto Replacement = RenamedComdats.find(C);
+ if (Replacement != RenamedComdats.end())
+ GO.setComdat(Replacement->second);
+ }
+}
+
+// Promote all internal (i.e. distinct) type ids used by the module by replacing
+// them with external type ids formed using the module id.
+//
+// Note that this needs to be done before we clone the module because each clone
+// will receive its own set of distinct metadata nodes.
+void promoteTypeIds(Module &M, StringRef ModuleId) {
+ DenseMap<Metadata *, Metadata *> LocalToGlobal;
+ auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
+ Metadata *MD =
+ cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
+
+ if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
+ Metadata *&GlobalMD = LocalToGlobal[MD];
+ if (!GlobalMD) {
+ std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
+ GlobalMD = MDString::get(M.getContext(), NewName);
+ }
+
+ CI->setArgOperand(ArgNo,
+ MetadataAsValue::get(M.getContext(), GlobalMD));
+ }
+ };
+
+ if (Function *TypeTestFunc =
+ M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
+ for (const Use &U : TypeTestFunc->uses()) {
+ auto CI = cast<CallInst>(U.getUser());
+ ExternalizeTypeId(CI, 1);
+ }
+ }
+
+ if (Function *TypeCheckedLoadFunc =
+ M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
+ for (const Use &U : TypeCheckedLoadFunc->uses()) {
+ auto CI = cast<CallInst>(U.getUser());
+ ExternalizeTypeId(CI, 2);
+ }
+ }
+
+ for (GlobalObject &GO : M.global_objects()) {
+ SmallVector<MDNode *, 1> MDs;
+ GO.getMetadata(LLVMContext::MD_type, MDs);
+
+ GO.eraseMetadata(LLVMContext::MD_type);
+ for (auto MD : MDs) {
+ auto I = LocalToGlobal.find(MD->getOperand(1));
+ if (I == LocalToGlobal.end()) {
+ GO.addMetadata(LLVMContext::MD_type, *MD);
+ continue;
+ }
+ GO.addMetadata(
+ LLVMContext::MD_type,
+ *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
+ }
+ }
+}
+
+// Drop unused globals, and drop type information from function declarations.
+// FIXME: If we made functions typeless then there would be no need to do this.
+void simplifyExternals(Module &M) {
+ FunctionType *EmptyFT =
+ FunctionType::get(Type::getVoidTy(M.getContext()), false);
+
+ for (auto I = M.begin(), E = M.end(); I != E;) {
+ Function &F = *I++;
+ if (F.isDeclaration() && F.use_empty()) {
+ F.eraseFromParent();
+ continue;
+ }
+
+ if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
+ // Changing the type of an intrinsic may invalidate the IR.
+ F.getName().startswith("llvm."))
+ continue;
+
+ Function *NewF =
+ Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
+ F.getAddressSpace(), "", &M);
+ NewF->setVisibility(F.getVisibility());
+ NewF->takeName(&F);
+ F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
+ F.eraseFromParent();
+ }
+
+ for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
+ GlobalVariable &GV = *I++;
+ if (GV.isDeclaration() && GV.use_empty()) {
+ GV.eraseFromParent();
+ continue;
+ }
+ }
+}
+
+static void
+filterModule(Module *M,
+ function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
+ std::vector<GlobalValue *> V;
+ for (GlobalValue &GV : M->global_values())
+ if (!ShouldKeepDefinition(&GV))
+ V.push_back(&GV);
+
+ for (GlobalValue *GV : V)
+ if (!convertToDeclaration(*GV))
+ GV->eraseFromParent();
+}
+
+void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
+ if (auto *F = dyn_cast<Function>(C))
+ return Fn(F);
+ if (isa<GlobalValue>(C))
+ return;
+ for (Value *Op : C->operands())
+ forEachVirtualFunction(cast<Constant>(Op), Fn);
+}
+
+// If it's possible to split M into regular and thin LTO parts, do so and write
+// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
+// regular LTO bitcode file to OS.
+void splitAndWriteThinLTOBitcode(
+ raw_ostream &OS, raw_ostream *ThinLinkOS,
+ function_ref<AAResults &(Function &)> AARGetter, Module &M) {
+ std::string ModuleId = getUniqueModuleId(&M);
+ if (ModuleId.empty()) {
+ // We couldn't generate a module ID for this module, write it out as a
+ // regular LTO module with an index for summary-based dead stripping.
+ ProfileSummaryInfo PSI(M);
+ M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
+ ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
+ WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
+
+ if (ThinLinkOS)
+ // We don't have a ThinLTO part, but still write the module to the
+ // ThinLinkOS if requested so that the expected output file is produced.
+ WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
+ &Index);
+
+ return;
+ }
+
+ promoteTypeIds(M, ModuleId);
+
+ // Returns whether a global or its associated global has attached type
+ // metadata. The former may participate in CFI or whole-program
+ // devirtualization, so they need to appear in the merged module instead of
+ // the thin LTO module. Similarly, globals that are associated with globals
+ // with type metadata need to appear in the merged module because they will
+ // reference the global's section directly.
+ auto HasTypeMetadata = [](const GlobalObject *GO) {
+ if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
+ if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
+ if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
+ if (AssocGO->hasMetadata(LLVMContext::MD_type))
+ return true;
+ return GO->hasMetadata(LLVMContext::MD_type);
+ };
+
+ // Collect the set of virtual functions that are eligible for virtual constant
+ // propagation. Each eligible function must not access memory, must return
+ // an integer of width <=64 bits, must take at least one argument, must not
+ // use its first argument (assumed to be "this") and all arguments other than
+ // the first one must be of <=64 bit integer type.
+ //
+ // Note that we test whether this copy of the function is readnone, rather
+ // than testing function attributes, which must hold for any copy of the
+ // function, even a less optimized version substituted at link time. This is
+ // sound because the virtual constant propagation optimizations effectively
+ // inline all implementations of the virtual function into each call site,
+ // rather than using function attributes to perform local optimization.
+ DenseSet<const Function *> EligibleVirtualFns;
+ // If any member of a comdat lives in MergedM, put all members of that
+ // comdat in MergedM to keep the comdat together.
+ DenseSet<const Comdat *> MergedMComdats;
+ for (GlobalVariable &GV : M.globals())
+ if (HasTypeMetadata(&GV)) {
+ if (const auto *C = GV.getComdat())
+ MergedMComdats.insert(C);
+ forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
+ auto *RT = dyn_cast<IntegerType>(F->getReturnType());
+ if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
+ !F->arg_begin()->use_empty())
+ return;
+ for (auto &Arg : drop_begin(F->args())) {
+ auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
+ if (!ArgT || ArgT->getBitWidth() > 64)
+ return;
+ }
+ if (!F->isDeclaration() &&
+ computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
+ EligibleVirtualFns.insert(F);
+ });
+ }
+
+ ValueToValueMapTy VMap;
+ std::unique_ptr<Module> MergedM(
+ CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
+ if (const auto *C = GV->getComdat())
+ if (MergedMComdats.count(C))
+ return true;
+ if (auto *F = dyn_cast<Function>(GV))
+ return EligibleVirtualFns.count(F);
+ if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
+ return HasTypeMetadata(GVar);
+ return false;
+ }));
+ StripDebugInfo(*MergedM);
+ MergedM->setModuleInlineAsm("");
+
+ for (Function &F : *MergedM)
+ if (!F.isDeclaration()) {
+ // Reset the linkage of all functions eligible for virtual constant
+ // propagation. The canonical definitions live in the thin LTO module so
+ // that they can be imported.
+ F.setLinkage(GlobalValue::AvailableExternallyLinkage);
+ F.setComdat(nullptr);
+ }
+
+ SetVector<GlobalValue *> CfiFunctions;
+ for (auto &F : M)
+ if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
+ CfiFunctions.insert(&F);
+
+ // Remove all globals with type metadata, globals with comdats that live in
+ // MergedM, and aliases pointing to such globals from the thin LTO module.
+ filterModule(&M, [&](const GlobalValue *GV) {
+ if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
+ if (HasTypeMetadata(GVar))
+ return false;
+ if (const auto *C = GV->getComdat())
+ if (MergedMComdats.count(C))
+ return false;
+ return true;
+ });
+
+ promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
+ promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
+
+ auto &Ctx = MergedM->getContext();
+ SmallVector<MDNode *, 8> CfiFunctionMDs;
+ for (auto V : CfiFunctions) {
+ Function &F = *cast<Function>(V);
+ SmallVector<MDNode *, 2> Types;
+ F.getMetadata(LLVMContext::MD_type, Types);
+
+ SmallVector<Metadata *, 4> Elts;
+ Elts.push_back(MDString::get(Ctx, F.getName()));
+ CfiFunctionLinkage Linkage;
+ if (lowertypetests::isJumpTableCanonical(&F))
+ Linkage = CFL_Definition;
+ else if (F.hasExternalWeakLinkage())
+ Linkage = CFL_WeakDeclaration;
+ else
+ Linkage = CFL_Declaration;
+ Elts.push_back(ConstantAsMetadata::get(
+ llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
+ append_range(Elts, Types);
+ CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
+ }
+
+ if(!CfiFunctionMDs.empty()) {
+ NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
+ for (auto MD : CfiFunctionMDs)
+ NMD->addOperand(MD);
+ }
+
+ SmallVector<MDNode *, 8> FunctionAliases;
+ for (auto &A : M.aliases()) {
+ if (!isa<Function>(A.getAliasee()))
+ continue;
+
+ auto *F = cast<Function>(A.getAliasee());
+
+ Metadata *Elts[] = {
+ MDString::get(Ctx, A.getName()),
+ MDString::get(Ctx, F->getName()),
+ ConstantAsMetadata::get(
+ ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
+ ConstantAsMetadata::get(
+ ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
+ };
+
+ FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
+ }
+
+ if (!FunctionAliases.empty()) {
+ NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
+ for (auto MD : FunctionAliases)
+ NMD->addOperand(MD);
+ }
+
+ SmallVector<MDNode *, 8> Symvers;
+ ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
+ Function *F = M.getFunction(Name);
+ if (!F || F->use_empty())
+ return;
+
+ Symvers.push_back(MDTuple::get(
+ Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
+ });
+
+ if (!Symvers.empty()) {
+ NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
+ for (auto MD : Symvers)
+ NMD->addOperand(MD);
+ }
+
+ simplifyExternals(*MergedM);
+
+ // FIXME: Try to re-use BSI and PFI from the original module here.
+ ProfileSummaryInfo PSI(M);
+ ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
+
+ // Mark the merged module as requiring full LTO. We still want an index for
+ // it though, so that it can participate in summary-based dead stripping.
+ MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
+ ModuleSummaryIndex MergedMIndex =
+ buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
+
+ SmallVector<char, 0> Buffer;
+
+ BitcodeWriter W(Buffer);
+ // Save the module hash produced for the full bitcode, which will
+ // be used in the backends, and use that in the minimized bitcode
+ // produced for the full link.
+ ModuleHash ModHash = {{0}};
+ W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
+ /*GenerateHash=*/true, &ModHash);
+ W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
+ W.writeSymtab();
+ W.writeStrtab();
+ OS << Buffer;
+
+ // If a minimized bitcode module was requested for the thin link, only
+ // the information that is needed by thin link will be written in the
+ // given OS (the merged module will be written as usual).
+ if (ThinLinkOS) {
+ Buffer.clear();
+ BitcodeWriter W2(Buffer);
+ StripDebugInfo(M);
+ W2.writeThinLinkBitcode(M, Index, ModHash);
+ W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
+ &MergedMIndex);
+ W2.writeSymtab();
+ W2.writeStrtab();
+ *ThinLinkOS << Buffer;
+ }
+}
+
+// Check if the LTO Unit splitting has been enabled.
+bool enableSplitLTOUnit(Module &M) {
+ bool EnableSplitLTOUnit = false;
+ if (auto *MD = mdconst::extract_or_null<ConstantInt>(
+ M.getModuleFlag("EnableSplitLTOUnit")))
+ EnableSplitLTOUnit = MD->getZExtValue();
+ return EnableSplitLTOUnit;
+}
+
+// Returns whether this module needs to be split because it uses type metadata.
+bool hasTypeMetadata(Module &M) {
+ for (auto &GO : M.global_objects()) {
+ if (GO.hasMetadata(LLVMContext::MD_type))
+ return true;
+ }
+ return false;
+}
+
+void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
+ function_ref<AAResults &(Function &)> AARGetter,
+ Module &M, const ModuleSummaryIndex *Index) {
+ std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
+ // See if this module has any type metadata. If so, we try to split it
+ // or at least promote type ids to enable WPD.
+ if (hasTypeMetadata(M)) {
+ if (enableSplitLTOUnit(M))
+ return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
+ // Promote type ids as needed for index-based WPD.
+ std::string ModuleId = getUniqueModuleId(&M);
+ if (!ModuleId.empty()) {
+ promoteTypeIds(M, ModuleId);
+ // Need to rebuild the index so that it contains type metadata
+ // for the newly promoted type ids.
+ // FIXME: Probably should not bother building the index at all
+ // in the caller of writeThinLTOBitcode (which does so via the
+ // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
+ // anyway whenever there is type metadata (here or in
+ // splitAndWriteThinLTOBitcode). Just always build it once via the
+ // buildModuleSummaryIndex when Module(s) are ready.
+ ProfileSummaryInfo PSI(M);
+ NewIndex = std::make_unique<ModuleSummaryIndex>(
+ buildModuleSummaryIndex(M, nullptr, &PSI));
+ Index = NewIndex.get();
+ }
+ }
+
+ // Write it out as an unsplit ThinLTO module.
+
+ // Save the module hash produced for the full bitcode, which will
+ // be used in the backends, and use that in the minimized bitcode
+ // produced for the full link.
+ ModuleHash ModHash = {{0}};
+ WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
+ /*GenerateHash=*/true, &ModHash);
+ // If a minimized bitcode module was requested for the thin link, only
+ // the information that is needed by thin link will be written in the
+ // given OS.
+ if (ThinLinkOS && Index)
+ WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
+}
+
+class WriteThinLTOBitcode : public ModulePass {
+ raw_ostream &OS; // raw_ostream to print on
+ // The output stream on which to emit a minimized module for use
+ // just in the thin link, if requested.
+ raw_ostream *ThinLinkOS;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+ WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
+ initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
+ }
+
+ explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
+ : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
+ initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
+
+ bool runOnModule(Module &M) override {
+ const ModuleSummaryIndex *Index =
+ &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
+ writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
+ return true;
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<ModuleSummaryIndexWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ }
+};
+} // anonymous namespace
+
+char WriteThinLTOBitcode::ID = 0;
+INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
+ "Write ThinLTO Bitcode", false, true)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
+ "Write ThinLTO Bitcode", false, true)
+
+ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
+ raw_ostream *ThinLinkOS) {
+ return new WriteThinLTOBitcode(Str, ThinLinkOS);
+}
+
+PreservedAnalyses
+llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
+ FunctionAnalysisManager &FAM =
+ AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
+ writeThinLTOBitcode(OS, ThinLinkOS,
+ [&FAM](Function &F) -> AAResults & {
+ return FAM.getResult<AAManager>(F);
+ },
+ M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
+ return PreservedAnalyses::all();
+}