aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp2216
1 files changed, 2216 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp b/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
new file mode 100644
index 000000000000..cf1ff405c493
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/IPO/WholeProgramDevirt.cpp
@@ -0,0 +1,2216 @@
+//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements whole program optimization of virtual calls in cases
+// where we know (via !type metadata) that the list of callees is fixed. This
+// includes the following:
+// - Single implementation devirtualization: if a virtual call has a single
+// possible callee, replace all calls with a direct call to that callee.
+// - Virtual constant propagation: if the virtual function's return type is an
+// integer <=64 bits and all possible callees are readnone, for each class and
+// each list of constant arguments: evaluate the function, store the return
+// value alongside the virtual table, and rewrite each virtual call as a load
+// from the virtual table.
+// - Uniform return value optimization: if the conditions for virtual constant
+// propagation hold and each function returns the same constant value, replace
+// each virtual call with that constant.
+// - Unique return value optimization for i1 return values: if the conditions
+// for virtual constant propagation hold and a single vtable's function
+// returns 0, or a single vtable's function returns 1, replace each virtual
+// call with a comparison of the vptr against that vtable's address.
+//
+// This pass is intended to be used during the regular and thin LTO pipelines:
+//
+// During regular LTO, the pass determines the best optimization for each
+// virtual call and applies the resolutions directly to virtual calls that are
+// eligible for virtual call optimization (i.e. calls that use either of the
+// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
+//
+// During hybrid Regular/ThinLTO, the pass operates in two phases:
+// - Export phase: this is run during the thin link over a single merged module
+// that contains all vtables with !type metadata that participate in the link.
+// The pass computes a resolution for each virtual call and stores it in the
+// type identifier summary.
+// - Import phase: this is run during the thin backends over the individual
+// modules. The pass applies the resolutions previously computed during the
+// import phase to each eligible virtual call.
+//
+// During ThinLTO, the pass operates in two phases:
+// - Export phase: this is run during the thin link over the index which
+// contains a summary of all vtables with !type metadata that participate in
+// the link. It computes a resolution for each virtual call and stores it in
+// the type identifier summary. Only single implementation devirtualization
+// is supported.
+// - Import phase: (same as with hybrid case above).
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TypeMetadataUtils.h"
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "llvm/Bitcode/BitcodeWriter.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSummaryIndexYAML.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/PassRegistry.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/Error.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/GlobPattern.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/IPO/FunctionAttrs.h"
+#include "llvm/Transforms/Utils/Evaluator.h"
+#include <algorithm>
+#include <cstddef>
+#include <map>
+#include <set>
+#include <string>
+
+using namespace llvm;
+using namespace wholeprogramdevirt;
+
+#define DEBUG_TYPE "wholeprogramdevirt"
+
+static cl::opt<PassSummaryAction> ClSummaryAction(
+ "wholeprogramdevirt-summary-action",
+ cl::desc("What to do with the summary when running this pass"),
+ cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
+ clEnumValN(PassSummaryAction::Import, "import",
+ "Import typeid resolutions from summary and globals"),
+ clEnumValN(PassSummaryAction::Export, "export",
+ "Export typeid resolutions to summary and globals")),
+ cl::Hidden);
+
+static cl::opt<std::string> ClReadSummary(
+ "wholeprogramdevirt-read-summary",
+ cl::desc(
+ "Read summary from given bitcode or YAML file before running pass"),
+ cl::Hidden);
+
+static cl::opt<std::string> ClWriteSummary(
+ "wholeprogramdevirt-write-summary",
+ cl::desc("Write summary to given bitcode or YAML file after running pass. "
+ "Output file format is deduced from extension: *.bc means writing "
+ "bitcode, otherwise YAML"),
+ cl::Hidden);
+
+static cl::opt<unsigned>
+ ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
+ cl::init(10), cl::ZeroOrMore,
+ cl::desc("Maximum number of call targets per "
+ "call site to enable branch funnels"));
+
+static cl::opt<bool>
+ PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
+ cl::init(false), cl::ZeroOrMore,
+ cl::desc("Print index-based devirtualization messages"));
+
+/// Provide a way to force enable whole program visibility in tests.
+/// This is needed to support legacy tests that don't contain
+/// !vcall_visibility metadata (the mere presense of type tests
+/// previously implied hidden visibility).
+cl::opt<bool>
+ WholeProgramVisibility("whole-program-visibility", cl::init(false),
+ cl::Hidden, cl::ZeroOrMore,
+ cl::desc("Enable whole program visibility"));
+
+/// Provide a way to force disable whole program for debugging or workarounds,
+/// when enabled via the linker.
+cl::opt<bool> DisableWholeProgramVisibility(
+ "disable-whole-program-visibility", cl::init(false), cl::Hidden,
+ cl::ZeroOrMore,
+ cl::desc("Disable whole program visibility (overrides enabling options)"));
+
+/// Provide way to prevent certain function from being devirtualized
+cl::list<std::string>
+ SkipFunctionNames("wholeprogramdevirt-skip",
+ cl::desc("Prevent function(s) from being devirtualized"),
+ cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);
+
+namespace {
+struct PatternList {
+ std::vector<GlobPattern> Patterns;
+ template <class T> void init(const T &StringList) {
+ for (const auto &S : StringList)
+ if (Expected<GlobPattern> Pat = GlobPattern::create(S))
+ Patterns.push_back(std::move(*Pat));
+ }
+ bool match(StringRef S) {
+ for (const GlobPattern &P : Patterns)
+ if (P.match(S))
+ return true;
+ return false;
+ }
+};
+} // namespace
+
+// Find the minimum offset that we may store a value of size Size bits at. If
+// IsAfter is set, look for an offset before the object, otherwise look for an
+// offset after the object.
+uint64_t
+wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
+ bool IsAfter, uint64_t Size) {
+ // Find a minimum offset taking into account only vtable sizes.
+ uint64_t MinByte = 0;
+ for (const VirtualCallTarget &Target : Targets) {
+ if (IsAfter)
+ MinByte = std::max(MinByte, Target.minAfterBytes());
+ else
+ MinByte = std::max(MinByte, Target.minBeforeBytes());
+ }
+
+ // Build a vector of arrays of bytes covering, for each target, a slice of the
+ // used region (see AccumBitVector::BytesUsed in
+ // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
+ // this aligns the used regions to start at MinByte.
+ //
+ // In this example, A, B and C are vtables, # is a byte already allocated for
+ // a virtual function pointer, AAAA... (etc.) are the used regions for the
+ // vtables and Offset(X) is the value computed for the Offset variable below
+ // for X.
+ //
+ // Offset(A)
+ // | |
+ // |MinByte
+ // A: ################AAAAAAAA|AAAAAAAA
+ // B: ########BBBBBBBBBBBBBBBB|BBBB
+ // C: ########################|CCCCCCCCCCCCCCCC
+ // | Offset(B) |
+ //
+ // This code produces the slices of A, B and C that appear after the divider
+ // at MinByte.
+ std::vector<ArrayRef<uint8_t>> Used;
+ for (const VirtualCallTarget &Target : Targets) {
+ ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
+ : Target.TM->Bits->Before.BytesUsed;
+ uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
+ : MinByte - Target.minBeforeBytes();
+
+ // Disregard used regions that are smaller than Offset. These are
+ // effectively all-free regions that do not need to be checked.
+ if (VTUsed.size() > Offset)
+ Used.push_back(VTUsed.slice(Offset));
+ }
+
+ if (Size == 1) {
+ // Find a free bit in each member of Used.
+ for (unsigned I = 0;; ++I) {
+ uint8_t BitsUsed = 0;
+ for (auto &&B : Used)
+ if (I < B.size())
+ BitsUsed |= B[I];
+ if (BitsUsed != 0xff)
+ return (MinByte + I) * 8 +
+ countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
+ }
+ } else {
+ // Find a free (Size/8) byte region in each member of Used.
+ // FIXME: see if alignment helps.
+ for (unsigned I = 0;; ++I) {
+ for (auto &&B : Used) {
+ unsigned Byte = 0;
+ while ((I + Byte) < B.size() && Byte < (Size / 8)) {
+ if (B[I + Byte])
+ goto NextI;
+ ++Byte;
+ }
+ }
+ return (MinByte + I) * 8;
+ NextI:;
+ }
+ }
+}
+
+void wholeprogramdevirt::setBeforeReturnValues(
+ MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
+ unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
+ if (BitWidth == 1)
+ OffsetByte = -(AllocBefore / 8 + 1);
+ else
+ OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
+ OffsetBit = AllocBefore % 8;
+
+ for (VirtualCallTarget &Target : Targets) {
+ if (BitWidth == 1)
+ Target.setBeforeBit(AllocBefore);
+ else
+ Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
+ }
+}
+
+void wholeprogramdevirt::setAfterReturnValues(
+ MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
+ unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
+ if (BitWidth == 1)
+ OffsetByte = AllocAfter / 8;
+ else
+ OffsetByte = (AllocAfter + 7) / 8;
+ OffsetBit = AllocAfter % 8;
+
+ for (VirtualCallTarget &Target : Targets) {
+ if (BitWidth == 1)
+ Target.setAfterBit(AllocAfter);
+ else
+ Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
+ }
+}
+
+VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
+ : Fn(Fn), TM(TM),
+ IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
+
+namespace {
+
+// A slot in a set of virtual tables. The TypeID identifies the set of virtual
+// tables, and the ByteOffset is the offset in bytes from the address point to
+// the virtual function pointer.
+struct VTableSlot {
+ Metadata *TypeID;
+ uint64_t ByteOffset;
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+template <> struct DenseMapInfo<VTableSlot> {
+ static VTableSlot getEmptyKey() {
+ return {DenseMapInfo<Metadata *>::getEmptyKey(),
+ DenseMapInfo<uint64_t>::getEmptyKey()};
+ }
+ static VTableSlot getTombstoneKey() {
+ return {DenseMapInfo<Metadata *>::getTombstoneKey(),
+ DenseMapInfo<uint64_t>::getTombstoneKey()};
+ }
+ static unsigned getHashValue(const VTableSlot &I) {
+ return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
+ DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
+ }
+ static bool isEqual(const VTableSlot &LHS,
+ const VTableSlot &RHS) {
+ return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
+ }
+};
+
+template <> struct DenseMapInfo<VTableSlotSummary> {
+ static VTableSlotSummary getEmptyKey() {
+ return {DenseMapInfo<StringRef>::getEmptyKey(),
+ DenseMapInfo<uint64_t>::getEmptyKey()};
+ }
+ static VTableSlotSummary getTombstoneKey() {
+ return {DenseMapInfo<StringRef>::getTombstoneKey(),
+ DenseMapInfo<uint64_t>::getTombstoneKey()};
+ }
+ static unsigned getHashValue(const VTableSlotSummary &I) {
+ return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
+ DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
+ }
+ static bool isEqual(const VTableSlotSummary &LHS,
+ const VTableSlotSummary &RHS) {
+ return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
+ }
+};
+
+} // end namespace llvm
+
+namespace {
+
+// A virtual call site. VTable is the loaded virtual table pointer, and CS is
+// the indirect virtual call.
+struct VirtualCallSite {
+ Value *VTable = nullptr;
+ CallBase &CB;
+
+ // If non-null, this field points to the associated unsafe use count stored in
+ // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
+ // of that field for details.
+ unsigned *NumUnsafeUses = nullptr;
+
+ void
+ emitRemark(const StringRef OptName, const StringRef TargetName,
+ function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
+ Function *F = CB.getCaller();
+ DebugLoc DLoc = CB.getDebugLoc();
+ BasicBlock *Block = CB.getParent();
+
+ using namespace ore;
+ OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
+ << NV("Optimization", OptName)
+ << ": devirtualized a call to "
+ << NV("FunctionName", TargetName));
+ }
+
+ void replaceAndErase(
+ const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
+ function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
+ Value *New) {
+ if (RemarksEnabled)
+ emitRemark(OptName, TargetName, OREGetter);
+ CB.replaceAllUsesWith(New);
+ if (auto *II = dyn_cast<InvokeInst>(&CB)) {
+ BranchInst::Create(II->getNormalDest(), &CB);
+ II->getUnwindDest()->removePredecessor(II->getParent());
+ }
+ CB.eraseFromParent();
+ // This use is no longer unsafe.
+ if (NumUnsafeUses)
+ --*NumUnsafeUses;
+ }
+};
+
+// Call site information collected for a specific VTableSlot and possibly a list
+// of constant integer arguments. The grouping by arguments is handled by the
+// VTableSlotInfo class.
+struct CallSiteInfo {
+ /// The set of call sites for this slot. Used during regular LTO and the
+ /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
+ /// call sites that appear in the merged module itself); in each of these
+ /// cases we are directly operating on the call sites at the IR level.
+ std::vector<VirtualCallSite> CallSites;
+
+ /// Whether all call sites represented by this CallSiteInfo, including those
+ /// in summaries, have been devirtualized. This starts off as true because a
+ /// default constructed CallSiteInfo represents no call sites.
+ bool AllCallSitesDevirted = true;
+
+ // These fields are used during the export phase of ThinLTO and reflect
+ // information collected from function summaries.
+
+ /// Whether any function summary contains an llvm.assume(llvm.type.test) for
+ /// this slot.
+ bool SummaryHasTypeTestAssumeUsers = false;
+
+ /// CFI-specific: a vector containing the list of function summaries that use
+ /// the llvm.type.checked.load intrinsic and therefore will require
+ /// resolutions for llvm.type.test in order to implement CFI checks if
+ /// devirtualization was unsuccessful. If devirtualization was successful, the
+ /// pass will clear this vector by calling markDevirt(). If at the end of the
+ /// pass the vector is non-empty, we will need to add a use of llvm.type.test
+ /// to each of the function summaries in the vector.
+ std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
+ std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
+
+ bool isExported() const {
+ return SummaryHasTypeTestAssumeUsers ||
+ !SummaryTypeCheckedLoadUsers.empty();
+ }
+
+ void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
+ SummaryTypeCheckedLoadUsers.push_back(FS);
+ AllCallSitesDevirted = false;
+ }
+
+ void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
+ SummaryTypeTestAssumeUsers.push_back(FS);
+ SummaryHasTypeTestAssumeUsers = true;
+ AllCallSitesDevirted = false;
+ }
+
+ void markDevirt() {
+ AllCallSitesDevirted = true;
+
+ // As explained in the comment for SummaryTypeCheckedLoadUsers.
+ SummaryTypeCheckedLoadUsers.clear();
+ }
+};
+
+// Call site information collected for a specific VTableSlot.
+struct VTableSlotInfo {
+ // The set of call sites which do not have all constant integer arguments
+ // (excluding "this").
+ CallSiteInfo CSInfo;
+
+ // The set of call sites with all constant integer arguments (excluding
+ // "this"), grouped by argument list.
+ std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
+
+ void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
+
+private:
+ CallSiteInfo &findCallSiteInfo(CallBase &CB);
+};
+
+CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
+ std::vector<uint64_t> Args;
+ auto *CBType = dyn_cast<IntegerType>(CB.getType());
+ if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
+ return CSInfo;
+ for (auto &&Arg : drop_begin(CB.args())) {
+ auto *CI = dyn_cast<ConstantInt>(Arg);
+ if (!CI || CI->getBitWidth() > 64)
+ return CSInfo;
+ Args.push_back(CI->getZExtValue());
+ }
+ return ConstCSInfo[Args];
+}
+
+void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
+ unsigned *NumUnsafeUses) {
+ auto &CSI = findCallSiteInfo(CB);
+ CSI.AllCallSitesDevirted = false;
+ CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
+}
+
+struct DevirtModule {
+ Module &M;
+ function_ref<AAResults &(Function &)> AARGetter;
+ function_ref<DominatorTree &(Function &)> LookupDomTree;
+
+ ModuleSummaryIndex *ExportSummary;
+ const ModuleSummaryIndex *ImportSummary;
+
+ IntegerType *Int8Ty;
+ PointerType *Int8PtrTy;
+ IntegerType *Int32Ty;
+ IntegerType *Int64Ty;
+ IntegerType *IntPtrTy;
+ /// Sizeless array type, used for imported vtables. This provides a signal
+ /// to analyzers that these imports may alias, as they do for example
+ /// when multiple unique return values occur in the same vtable.
+ ArrayType *Int8Arr0Ty;
+
+ bool RemarksEnabled;
+ function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
+
+ MapVector<VTableSlot, VTableSlotInfo> CallSlots;
+
+ // This map keeps track of the number of "unsafe" uses of a loaded function
+ // pointer. The key is the associated llvm.type.test intrinsic call generated
+ // by this pass. An unsafe use is one that calls the loaded function pointer
+ // directly. Every time we eliminate an unsafe use (for example, by
+ // devirtualizing it or by applying virtual constant propagation), we
+ // decrement the value stored in this map. If a value reaches zero, we can
+ // eliminate the type check by RAUWing the associated llvm.type.test call with
+ // true.
+ std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
+ PatternList FunctionsToSkip;
+
+ DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
+ function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
+ function_ref<DominatorTree &(Function &)> LookupDomTree,
+ ModuleSummaryIndex *ExportSummary,
+ const ModuleSummaryIndex *ImportSummary)
+ : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
+ ExportSummary(ExportSummary), ImportSummary(ImportSummary),
+ Int8Ty(Type::getInt8Ty(M.getContext())),
+ Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
+ Int32Ty(Type::getInt32Ty(M.getContext())),
+ Int64Ty(Type::getInt64Ty(M.getContext())),
+ IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
+ Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
+ RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
+ assert(!(ExportSummary && ImportSummary));
+ FunctionsToSkip.init(SkipFunctionNames);
+ }
+
+ bool areRemarksEnabled();
+
+ void
+ scanTypeTestUsers(Function *TypeTestFunc,
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
+ void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
+
+ void buildTypeIdentifierMap(
+ std::vector<VTableBits> &Bits,
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
+ bool
+ tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
+ const std::set<TypeMemberInfo> &TypeMemberInfos,
+ uint64_t ByteOffset);
+
+ void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
+ bool &IsExported);
+ bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res);
+
+ void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
+ bool &IsExported);
+ void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res, VTableSlot Slot);
+
+ bool tryEvaluateFunctionsWithArgs(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ ArrayRef<uint64_t> Args);
+
+ void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
+ uint64_t TheRetVal);
+ bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ CallSiteInfo &CSInfo,
+ WholeProgramDevirtResolution::ByArg *Res);
+
+ // Returns the global symbol name that is used to export information about the
+ // given vtable slot and list of arguments.
+ std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
+ StringRef Name);
+
+ bool shouldExportConstantsAsAbsoluteSymbols();
+
+ // This function is called during the export phase to create a symbol
+ // definition containing information about the given vtable slot and list of
+ // arguments.
+ void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
+ Constant *C);
+ void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
+ uint32_t Const, uint32_t &Storage);
+
+ // This function is called during the import phase to create a reference to
+ // the symbol definition created during the export phase.
+ Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
+ StringRef Name);
+ Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
+ StringRef Name, IntegerType *IntTy,
+ uint32_t Storage);
+
+ Constant *getMemberAddr(const TypeMemberInfo *M);
+
+ void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
+ Constant *UniqueMemberAddr);
+ bool tryUniqueRetValOpt(unsigned BitWidth,
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ CallSiteInfo &CSInfo,
+ WholeProgramDevirtResolution::ByArg *Res,
+ VTableSlot Slot, ArrayRef<uint64_t> Args);
+
+ void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
+ Constant *Byte, Constant *Bit);
+ bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res, VTableSlot Slot);
+
+ void rebuildGlobal(VTableBits &B);
+
+ // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
+ void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
+
+ // If we were able to eliminate all unsafe uses for a type checked load,
+ // eliminate the associated type tests by replacing them with true.
+ void removeRedundantTypeTests();
+
+ bool run();
+
+ // Lower the module using the action and summary passed as command line
+ // arguments. For testing purposes only.
+ static bool
+ runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
+ function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
+ function_ref<DominatorTree &(Function &)> LookupDomTree);
+};
+
+struct DevirtIndex {
+ ModuleSummaryIndex &ExportSummary;
+ // The set in which to record GUIDs exported from their module by
+ // devirtualization, used by client to ensure they are not internalized.
+ std::set<GlobalValue::GUID> &ExportedGUIDs;
+ // A map in which to record the information necessary to locate the WPD
+ // resolution for local targets in case they are exported by cross module
+ // importing.
+ std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
+
+ MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
+
+ PatternList FunctionsToSkip;
+
+ DevirtIndex(
+ ModuleSummaryIndex &ExportSummary,
+ std::set<GlobalValue::GUID> &ExportedGUIDs,
+ std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
+ : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
+ LocalWPDTargetsMap(LocalWPDTargetsMap) {
+ FunctionsToSkip.init(SkipFunctionNames);
+ }
+
+ bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
+ const TypeIdCompatibleVtableInfo TIdInfo,
+ uint64_t ByteOffset);
+
+ bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
+ VTableSlotSummary &SlotSummary,
+ VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res,
+ std::set<ValueInfo> &DevirtTargets);
+
+ void run();
+};
+
+struct WholeProgramDevirt : public ModulePass {
+ static char ID;
+
+ bool UseCommandLine = false;
+
+ ModuleSummaryIndex *ExportSummary = nullptr;
+ const ModuleSummaryIndex *ImportSummary = nullptr;
+
+ WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
+ initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
+ }
+
+ WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
+ const ModuleSummaryIndex *ImportSummary)
+ : ModulePass(ID), ExportSummary(ExportSummary),
+ ImportSummary(ImportSummary) {
+ initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnModule(Module &M) override {
+ if (skipModule(M))
+ return false;
+
+ // In the new pass manager, we can request the optimization
+ // remark emitter pass on a per-function-basis, which the
+ // OREGetter will do for us.
+ // In the old pass manager, this is harder, so we just build
+ // an optimization remark emitter on the fly, when we need it.
+ std::unique_ptr<OptimizationRemarkEmitter> ORE;
+ auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
+ ORE = std::make_unique<OptimizationRemarkEmitter>(F);
+ return *ORE;
+ };
+
+ auto LookupDomTree = [this](Function &F) -> DominatorTree & {
+ return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
+ };
+
+ if (UseCommandLine)
+ return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
+ LookupDomTree);
+
+ return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
+ ExportSummary, ImportSummary)
+ .run();
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ }
+};
+
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
+ "Whole program devirtualization", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
+ "Whole program devirtualization", false, false)
+char WholeProgramDevirt::ID = 0;
+
+ModulePass *
+llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
+ const ModuleSummaryIndex *ImportSummary) {
+ return new WholeProgramDevirt(ExportSummary, ImportSummary);
+}
+
+PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
+ ModuleAnalysisManager &AM) {
+ auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
+ auto AARGetter = [&](Function &F) -> AAResults & {
+ return FAM.getResult<AAManager>(F);
+ };
+ auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
+ return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
+ };
+ auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
+ return FAM.getResult<DominatorTreeAnalysis>(F);
+ };
+ if (UseCommandLine) {
+ if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
+ return PreservedAnalyses::all();
+ return PreservedAnalyses::none();
+ }
+ if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
+ ImportSummary)
+ .run())
+ return PreservedAnalyses::all();
+ return PreservedAnalyses::none();
+}
+
+// Enable whole program visibility if enabled by client (e.g. linker) or
+// internal option, and not force disabled.
+static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
+ return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
+ !DisableWholeProgramVisibility;
+}
+
+namespace llvm {
+
+/// If whole program visibility asserted, then upgrade all public vcall
+/// visibility metadata on vtable definitions to linkage unit visibility in
+/// Module IR (for regular or hybrid LTO).
+void updateVCallVisibilityInModule(Module &M,
+ bool WholeProgramVisibilityEnabledInLTO) {
+ if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
+ return;
+ for (GlobalVariable &GV : M.globals())
+ // Add linkage unit visibility to any variable with type metadata, which are
+ // the vtable definitions. We won't have an existing vcall_visibility
+ // metadata on vtable definitions with public visibility.
+ if (GV.hasMetadata(LLVMContext::MD_type) &&
+ GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
+ GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
+}
+
+/// If whole program visibility asserted, then upgrade all public vcall
+/// visibility metadata on vtable definition summaries to linkage unit
+/// visibility in Module summary index (for ThinLTO).
+void updateVCallVisibilityInIndex(ModuleSummaryIndex &Index,
+ bool WholeProgramVisibilityEnabledInLTO) {
+ if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
+ return;
+ for (auto &P : Index) {
+ for (auto &S : P.second.SummaryList) {
+ auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
+ if (!GVar || GVar->vTableFuncs().empty() ||
+ GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic)
+ continue;
+ GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
+ }
+ }
+}
+
+void runWholeProgramDevirtOnIndex(
+ ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
+ std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
+ DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
+}
+
+void updateIndexWPDForExports(
+ ModuleSummaryIndex &Summary,
+ function_ref<bool(StringRef, ValueInfo)> isExported,
+ std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
+ for (auto &T : LocalWPDTargetsMap) {
+ auto &VI = T.first;
+ // This was enforced earlier during trySingleImplDevirt.
+ assert(VI.getSummaryList().size() == 1 &&
+ "Devirt of local target has more than one copy");
+ auto &S = VI.getSummaryList()[0];
+ if (!isExported(S->modulePath(), VI))
+ continue;
+
+ // It's been exported by a cross module import.
+ for (auto &SlotSummary : T.second) {
+ auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
+ assert(TIdSum);
+ auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
+ assert(WPDRes != TIdSum->WPDRes.end());
+ WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
+ WPDRes->second.SingleImplName,
+ Summary.getModuleHash(S->modulePath()));
+ }
+ }
+}
+
+} // end namespace llvm
+
+static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
+ // Check that summary index contains regular LTO module when performing
+ // export to prevent occasional use of index from pure ThinLTO compilation
+ // (-fno-split-lto-module). This kind of summary index is passed to
+ // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
+ const auto &ModPaths = Summary->modulePaths();
+ if (ClSummaryAction != PassSummaryAction::Import &&
+ ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
+ ModPaths.end())
+ return createStringError(
+ errc::invalid_argument,
+ "combined summary should contain Regular LTO module");
+ return ErrorSuccess();
+}
+
+bool DevirtModule::runForTesting(
+ Module &M, function_ref<AAResults &(Function &)> AARGetter,
+ function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
+ function_ref<DominatorTree &(Function &)> LookupDomTree) {
+ std::unique_ptr<ModuleSummaryIndex> Summary =
+ std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
+
+ // Handle the command-line summary arguments. This code is for testing
+ // purposes only, so we handle errors directly.
+ if (!ClReadSummary.empty()) {
+ ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
+ ": ");
+ auto ReadSummaryFile =
+ ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
+ if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
+ getModuleSummaryIndex(*ReadSummaryFile)) {
+ Summary = std::move(*SummaryOrErr);
+ ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
+ } else {
+ // Try YAML if we've failed with bitcode.
+ consumeError(SummaryOrErr.takeError());
+ yaml::Input In(ReadSummaryFile->getBuffer());
+ In >> *Summary;
+ ExitOnErr(errorCodeToError(In.error()));
+ }
+ }
+
+ bool Changed =
+ DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
+ ClSummaryAction == PassSummaryAction::Export ? Summary.get()
+ : nullptr,
+ ClSummaryAction == PassSummaryAction::Import ? Summary.get()
+ : nullptr)
+ .run();
+
+ if (!ClWriteSummary.empty()) {
+ ExitOnError ExitOnErr(
+ "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
+ std::error_code EC;
+ if (StringRef(ClWriteSummary).endswith(".bc")) {
+ raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
+ ExitOnErr(errorCodeToError(EC));
+ WriteIndexToFile(*Summary, OS);
+ } else {
+ raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
+ ExitOnErr(errorCodeToError(EC));
+ yaml::Output Out(OS);
+ Out << *Summary;
+ }
+ }
+
+ return Changed;
+}
+
+void DevirtModule::buildTypeIdentifierMap(
+ std::vector<VTableBits> &Bits,
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
+ DenseMap<GlobalVariable *, VTableBits *> GVToBits;
+ Bits.reserve(M.getGlobalList().size());
+ SmallVector<MDNode *, 2> Types;
+ for (GlobalVariable &GV : M.globals()) {
+ Types.clear();
+ GV.getMetadata(LLVMContext::MD_type, Types);
+ if (GV.isDeclaration() || Types.empty())
+ continue;
+
+ VTableBits *&BitsPtr = GVToBits[&GV];
+ if (!BitsPtr) {
+ Bits.emplace_back();
+ Bits.back().GV = &GV;
+ Bits.back().ObjectSize =
+ M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
+ BitsPtr = &Bits.back();
+ }
+
+ for (MDNode *Type : Types) {
+ auto TypeID = Type->getOperand(1).get();
+
+ uint64_t Offset =
+ cast<ConstantInt>(
+ cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
+ ->getZExtValue();
+
+ TypeIdMap[TypeID].insert({BitsPtr, Offset});
+ }
+ }
+}
+
+bool DevirtModule::tryFindVirtualCallTargets(
+ std::vector<VirtualCallTarget> &TargetsForSlot,
+ const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
+ for (const TypeMemberInfo &TM : TypeMemberInfos) {
+ if (!TM.Bits->GV->isConstant())
+ return false;
+
+ // We cannot perform whole program devirtualization analysis on a vtable
+ // with public LTO visibility.
+ if (TM.Bits->GV->getVCallVisibility() ==
+ GlobalObject::VCallVisibilityPublic)
+ return false;
+
+ Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
+ TM.Offset + ByteOffset, M);
+ if (!Ptr)
+ return false;
+
+ auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
+ if (!Fn)
+ return false;
+
+ if (FunctionsToSkip.match(Fn->getName()))
+ return false;
+
+ // We can disregard __cxa_pure_virtual as a possible call target, as
+ // calls to pure virtuals are UB.
+ if (Fn->getName() == "__cxa_pure_virtual")
+ continue;
+
+ TargetsForSlot.push_back({Fn, &TM});
+ }
+
+ // Give up if we couldn't find any targets.
+ return !TargetsForSlot.empty();
+}
+
+bool DevirtIndex::tryFindVirtualCallTargets(
+ std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
+ uint64_t ByteOffset) {
+ for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
+ // Find the first non-available_externally linkage vtable initializer.
+ // We can have multiple available_externally, linkonce_odr and weak_odr
+ // vtable initializers, however we want to skip available_externally as they
+ // do not have type metadata attached, and therefore the summary will not
+ // contain any vtable functions. We can also have multiple external
+ // vtable initializers in the case of comdats, which we cannot check here.
+ // The linker should give an error in this case.
+ //
+ // Also, handle the case of same-named local Vtables with the same path
+ // and therefore the same GUID. This can happen if there isn't enough
+ // distinguishing path when compiling the source file. In that case we
+ // conservatively return false early.
+ const GlobalVarSummary *VS = nullptr;
+ bool LocalFound = false;
+ for (auto &S : P.VTableVI.getSummaryList()) {
+ if (GlobalValue::isLocalLinkage(S->linkage())) {
+ if (LocalFound)
+ return false;
+ LocalFound = true;
+ }
+ if (!GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
+ VS = cast<GlobalVarSummary>(S->getBaseObject());
+ // We cannot perform whole program devirtualization analysis on a vtable
+ // with public LTO visibility.
+ if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
+ return false;
+ }
+ }
+ if (!VS->isLive())
+ continue;
+ for (auto VTP : VS->vTableFuncs()) {
+ if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
+ continue;
+
+ TargetsForSlot.push_back(VTP.FuncVI);
+ }
+ }
+
+ // Give up if we couldn't find any targets.
+ return !TargetsForSlot.empty();
+}
+
+void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
+ Constant *TheFn, bool &IsExported) {
+ // Don't devirtualize function if we're told to skip it
+ // in -wholeprogramdevirt-skip.
+ if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
+ return;
+ auto Apply = [&](CallSiteInfo &CSInfo) {
+ for (auto &&VCallSite : CSInfo.CallSites) {
+ if (RemarksEnabled)
+ VCallSite.emitRemark("single-impl",
+ TheFn->stripPointerCasts()->getName(), OREGetter);
+ VCallSite.CB.setCalledOperand(ConstantExpr::getBitCast(
+ TheFn, VCallSite.CB.getCalledOperand()->getType()));
+ // This use is no longer unsafe.
+ if (VCallSite.NumUnsafeUses)
+ --*VCallSite.NumUnsafeUses;
+ }
+ if (CSInfo.isExported())
+ IsExported = true;
+ CSInfo.markDevirt();
+ };
+ Apply(SlotInfo.CSInfo);
+ for (auto &P : SlotInfo.ConstCSInfo)
+ Apply(P.second);
+}
+
+static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
+ // We can't add calls if we haven't seen a definition
+ if (Callee.getSummaryList().empty())
+ return false;
+
+ // Insert calls into the summary index so that the devirtualized targets
+ // are eligible for import.
+ // FIXME: Annotate type tests with hotness. For now, mark these as hot
+ // to better ensure we have the opportunity to inline them.
+ bool IsExported = false;
+ auto &S = Callee.getSummaryList()[0];
+ CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
+ auto AddCalls = [&](CallSiteInfo &CSInfo) {
+ for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
+ FS->addCall({Callee, CI});
+ IsExported |= S->modulePath() != FS->modulePath();
+ }
+ for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
+ FS->addCall({Callee, CI});
+ IsExported |= S->modulePath() != FS->modulePath();
+ }
+ };
+ AddCalls(SlotInfo.CSInfo);
+ for (auto &P : SlotInfo.ConstCSInfo)
+ AddCalls(P.second);
+ return IsExported;
+}
+
+bool DevirtModule::trySingleImplDevirt(
+ ModuleSummaryIndex *ExportSummary,
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res) {
+ // See if the program contains a single implementation of this virtual
+ // function.
+ Function *TheFn = TargetsForSlot[0].Fn;
+ for (auto &&Target : TargetsForSlot)
+ if (TheFn != Target.Fn)
+ return false;
+
+ // If so, update each call site to call that implementation directly.
+ if (RemarksEnabled)
+ TargetsForSlot[0].WasDevirt = true;
+
+ bool IsExported = false;
+ applySingleImplDevirt(SlotInfo, TheFn, IsExported);
+ if (!IsExported)
+ return false;
+
+ // If the only implementation has local linkage, we must promote to external
+ // to make it visible to thin LTO objects. We can only get here during the
+ // ThinLTO export phase.
+ if (TheFn->hasLocalLinkage()) {
+ std::string NewName = (TheFn->getName() + "$merged").str();
+
+ // Since we are renaming the function, any comdats with the same name must
+ // also be renamed. This is required when targeting COFF, as the comdat name
+ // must match one of the names of the symbols in the comdat.
+ if (Comdat *C = TheFn->getComdat()) {
+ if (C->getName() == TheFn->getName()) {
+ Comdat *NewC = M.getOrInsertComdat(NewName);
+ NewC->setSelectionKind(C->getSelectionKind());
+ for (GlobalObject &GO : M.global_objects())
+ if (GO.getComdat() == C)
+ GO.setComdat(NewC);
+ }
+ }
+
+ TheFn->setLinkage(GlobalValue::ExternalLinkage);
+ TheFn->setVisibility(GlobalValue::HiddenVisibility);
+ TheFn->setName(NewName);
+ }
+ if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
+ // Any needed promotion of 'TheFn' has already been done during
+ // LTO unit split, so we can ignore return value of AddCalls.
+ AddCalls(SlotInfo, TheFnVI);
+
+ Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
+ Res->SingleImplName = std::string(TheFn->getName());
+
+ return true;
+}
+
+bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
+ VTableSlotSummary &SlotSummary,
+ VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res,
+ std::set<ValueInfo> &DevirtTargets) {
+ // See if the program contains a single implementation of this virtual
+ // function.
+ auto TheFn = TargetsForSlot[0];
+ for (auto &&Target : TargetsForSlot)
+ if (TheFn != Target)
+ return false;
+
+ // Don't devirtualize if we don't have target definition.
+ auto Size = TheFn.getSummaryList().size();
+ if (!Size)
+ return false;
+
+ // Don't devirtualize function if we're told to skip it
+ // in -wholeprogramdevirt-skip.
+ if (FunctionsToSkip.match(TheFn.name()))
+ return false;
+
+ // If the summary list contains multiple summaries where at least one is
+ // a local, give up, as we won't know which (possibly promoted) name to use.
+ for (auto &S : TheFn.getSummaryList())
+ if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
+ return false;
+
+ // Collect functions devirtualized at least for one call site for stats.
+ if (PrintSummaryDevirt)
+ DevirtTargets.insert(TheFn);
+
+ auto &S = TheFn.getSummaryList()[0];
+ bool IsExported = AddCalls(SlotInfo, TheFn);
+ if (IsExported)
+ ExportedGUIDs.insert(TheFn.getGUID());
+
+ // Record in summary for use in devirtualization during the ThinLTO import
+ // step.
+ Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
+ if (GlobalValue::isLocalLinkage(S->linkage())) {
+ if (IsExported)
+ // If target is a local function and we are exporting it by
+ // devirtualizing a call in another module, we need to record the
+ // promoted name.
+ Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
+ TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
+ else {
+ LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
+ Res->SingleImplName = std::string(TheFn.name());
+ }
+ } else
+ Res->SingleImplName = std::string(TheFn.name());
+
+ // Name will be empty if this thin link driven off of serialized combined
+ // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
+ // legacy LTO API anyway.
+ assert(!Res->SingleImplName.empty());
+
+ return true;
+}
+
+void DevirtModule::tryICallBranchFunnel(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res, VTableSlot Slot) {
+ Triple T(M.getTargetTriple());
+ if (T.getArch() != Triple::x86_64)
+ return;
+
+ if (TargetsForSlot.size() > ClThreshold)
+ return;
+
+ bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
+ if (!HasNonDevirt)
+ for (auto &P : SlotInfo.ConstCSInfo)
+ if (!P.second.AllCallSitesDevirted) {
+ HasNonDevirt = true;
+ break;
+ }
+
+ if (!HasNonDevirt)
+ return;
+
+ FunctionType *FT =
+ FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
+ Function *JT;
+ if (isa<MDString>(Slot.TypeID)) {
+ JT = Function::Create(FT, Function::ExternalLinkage,
+ M.getDataLayout().getProgramAddressSpace(),
+ getGlobalName(Slot, {}, "branch_funnel"), &M);
+ JT->setVisibility(GlobalValue::HiddenVisibility);
+ } else {
+ JT = Function::Create(FT, Function::InternalLinkage,
+ M.getDataLayout().getProgramAddressSpace(),
+ "branch_funnel", &M);
+ }
+ JT->addAttribute(1, Attribute::Nest);
+
+ std::vector<Value *> JTArgs;
+ JTArgs.push_back(JT->arg_begin());
+ for (auto &T : TargetsForSlot) {
+ JTArgs.push_back(getMemberAddr(T.TM));
+ JTArgs.push_back(T.Fn);
+ }
+
+ BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
+ Function *Intr =
+ Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
+
+ auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
+ CI->setTailCallKind(CallInst::TCK_MustTail);
+ ReturnInst::Create(M.getContext(), nullptr, BB);
+
+ bool IsExported = false;
+ applyICallBranchFunnel(SlotInfo, JT, IsExported);
+ if (IsExported)
+ Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
+}
+
+void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
+ Constant *JT, bool &IsExported) {
+ auto Apply = [&](CallSiteInfo &CSInfo) {
+ if (CSInfo.isExported())
+ IsExported = true;
+ if (CSInfo.AllCallSitesDevirted)
+ return;
+ for (auto &&VCallSite : CSInfo.CallSites) {
+ CallBase &CB = VCallSite.CB;
+
+ // Jump tables are only profitable if the retpoline mitigation is enabled.
+ Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
+ if (!FSAttr.isValid() ||
+ !FSAttr.getValueAsString().contains("+retpoline"))
+ continue;
+
+ if (RemarksEnabled)
+ VCallSite.emitRemark("branch-funnel",
+ JT->stripPointerCasts()->getName(), OREGetter);
+
+ // Pass the address of the vtable in the nest register, which is r10 on
+ // x86_64.
+ std::vector<Type *> NewArgs;
+ NewArgs.push_back(Int8PtrTy);
+ append_range(NewArgs, CB.getFunctionType()->params());
+ FunctionType *NewFT =
+ FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
+ CB.getFunctionType()->isVarArg());
+ PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
+
+ IRBuilder<> IRB(&CB);
+ std::vector<Value *> Args;
+ Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
+ llvm::append_range(Args, CB.args());
+
+ CallBase *NewCS = nullptr;
+ if (isa<CallInst>(CB))
+ NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
+ else
+ NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
+ cast<InvokeInst>(CB).getNormalDest(),
+ cast<InvokeInst>(CB).getUnwindDest(), Args);
+ NewCS->setCallingConv(CB.getCallingConv());
+
+ AttributeList Attrs = CB.getAttributes();
+ std::vector<AttributeSet> NewArgAttrs;
+ NewArgAttrs.push_back(AttributeSet::get(
+ M.getContext(), ArrayRef<Attribute>{Attribute::get(
+ M.getContext(), Attribute::Nest)}));
+ for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
+ NewArgAttrs.push_back(Attrs.getParamAttributes(I));
+ NewCS->setAttributes(
+ AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
+ Attrs.getRetAttributes(), NewArgAttrs));
+
+ CB.replaceAllUsesWith(NewCS);
+ CB.eraseFromParent();
+
+ // This use is no longer unsafe.
+ if (VCallSite.NumUnsafeUses)
+ --*VCallSite.NumUnsafeUses;
+ }
+ // Don't mark as devirtualized because there may be callers compiled without
+ // retpoline mitigation, which would mean that they are lowered to
+ // llvm.type.test and therefore require an llvm.type.test resolution for the
+ // type identifier.
+ };
+ Apply(SlotInfo.CSInfo);
+ for (auto &P : SlotInfo.ConstCSInfo)
+ Apply(P.second);
+}
+
+bool DevirtModule::tryEvaluateFunctionsWithArgs(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ ArrayRef<uint64_t> Args) {
+ // Evaluate each function and store the result in each target's RetVal
+ // field.
+ for (VirtualCallTarget &Target : TargetsForSlot) {
+ if (Target.Fn->arg_size() != Args.size() + 1)
+ return false;
+
+ Evaluator Eval(M.getDataLayout(), nullptr);
+ SmallVector<Constant *, 2> EvalArgs;
+ EvalArgs.push_back(
+ Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
+ for (unsigned I = 0; I != Args.size(); ++I) {
+ auto *ArgTy = dyn_cast<IntegerType>(
+ Target.Fn->getFunctionType()->getParamType(I + 1));
+ if (!ArgTy)
+ return false;
+ EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
+ }
+
+ Constant *RetVal;
+ if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
+ !isa<ConstantInt>(RetVal))
+ return false;
+ Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
+ }
+ return true;
+}
+
+void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
+ uint64_t TheRetVal) {
+ for (auto Call : CSInfo.CallSites)
+ Call.replaceAndErase(
+ "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
+ ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
+ CSInfo.markDevirt();
+}
+
+bool DevirtModule::tryUniformRetValOpt(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
+ WholeProgramDevirtResolution::ByArg *Res) {
+ // Uniform return value optimization. If all functions return the same
+ // constant, replace all calls with that constant.
+ uint64_t TheRetVal = TargetsForSlot[0].RetVal;
+ for (const VirtualCallTarget &Target : TargetsForSlot)
+ if (Target.RetVal != TheRetVal)
+ return false;
+
+ if (CSInfo.isExported()) {
+ Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
+ Res->Info = TheRetVal;
+ }
+
+ applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
+ if (RemarksEnabled)
+ for (auto &&Target : TargetsForSlot)
+ Target.WasDevirt = true;
+ return true;
+}
+
+std::string DevirtModule::getGlobalName(VTableSlot Slot,
+ ArrayRef<uint64_t> Args,
+ StringRef Name) {
+ std::string FullName = "__typeid_";
+ raw_string_ostream OS(FullName);
+ OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
+ for (uint64_t Arg : Args)
+ OS << '_' << Arg;
+ OS << '_' << Name;
+ return OS.str();
+}
+
+bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
+ Triple T(M.getTargetTriple());
+ return T.isX86() && T.getObjectFormat() == Triple::ELF;
+}
+
+void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
+ StringRef Name, Constant *C) {
+ GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
+ getGlobalName(Slot, Args, Name), C, &M);
+ GA->setVisibility(GlobalValue::HiddenVisibility);
+}
+
+void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
+ StringRef Name, uint32_t Const,
+ uint32_t &Storage) {
+ if (shouldExportConstantsAsAbsoluteSymbols()) {
+ exportGlobal(
+ Slot, Args, Name,
+ ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
+ return;
+ }
+
+ Storage = Const;
+}
+
+Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
+ StringRef Name) {
+ Constant *C =
+ M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
+ auto *GV = dyn_cast<GlobalVariable>(C);
+ if (GV)
+ GV->setVisibility(GlobalValue::HiddenVisibility);
+ return C;
+}
+
+Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
+ StringRef Name, IntegerType *IntTy,
+ uint32_t Storage) {
+ if (!shouldExportConstantsAsAbsoluteSymbols())
+ return ConstantInt::get(IntTy, Storage);
+
+ Constant *C = importGlobal(Slot, Args, Name);
+ auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
+ C = ConstantExpr::getPtrToInt(C, IntTy);
+
+ // We only need to set metadata if the global is newly created, in which
+ // case it would not have hidden visibility.
+ if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
+ return C;
+
+ auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
+ auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
+ auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
+ GV->setMetadata(LLVMContext::MD_absolute_symbol,
+ MDNode::get(M.getContext(), {MinC, MaxC}));
+ };
+ unsigned AbsWidth = IntTy->getBitWidth();
+ if (AbsWidth == IntPtrTy->getBitWidth())
+ SetAbsRange(~0ull, ~0ull); // Full set.
+ else
+ SetAbsRange(0, 1ull << AbsWidth);
+ return C;
+}
+
+void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
+ bool IsOne,
+ Constant *UniqueMemberAddr) {
+ for (auto &&Call : CSInfo.CallSites) {
+ IRBuilder<> B(&Call.CB);
+ Value *Cmp =
+ B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
+ B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
+ Cmp = B.CreateZExt(Cmp, Call.CB.getType());
+ Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
+ Cmp);
+ }
+ CSInfo.markDevirt();
+}
+
+Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
+ Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
+ return ConstantExpr::getGetElementPtr(Int8Ty, C,
+ ConstantInt::get(Int64Ty, M->Offset));
+}
+
+bool DevirtModule::tryUniqueRetValOpt(
+ unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
+ CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
+ VTableSlot Slot, ArrayRef<uint64_t> Args) {
+ // IsOne controls whether we look for a 0 or a 1.
+ auto tryUniqueRetValOptFor = [&](bool IsOne) {
+ const TypeMemberInfo *UniqueMember = nullptr;
+ for (const VirtualCallTarget &Target : TargetsForSlot) {
+ if (Target.RetVal == (IsOne ? 1 : 0)) {
+ if (UniqueMember)
+ return false;
+ UniqueMember = Target.TM;
+ }
+ }
+
+ // We should have found a unique member or bailed out by now. We already
+ // checked for a uniform return value in tryUniformRetValOpt.
+ assert(UniqueMember);
+
+ Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
+ if (CSInfo.isExported()) {
+ Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
+ Res->Info = IsOne;
+
+ exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
+ }
+
+ // Replace each call with the comparison.
+ applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
+ UniqueMemberAddr);
+
+ // Update devirtualization statistics for targets.
+ if (RemarksEnabled)
+ for (auto &&Target : TargetsForSlot)
+ Target.WasDevirt = true;
+
+ return true;
+ };
+
+ if (BitWidth == 1) {
+ if (tryUniqueRetValOptFor(true))
+ return true;
+ if (tryUniqueRetValOptFor(false))
+ return true;
+ }
+ return false;
+}
+
+void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
+ Constant *Byte, Constant *Bit) {
+ for (auto Call : CSInfo.CallSites) {
+ auto *RetType = cast<IntegerType>(Call.CB.getType());
+ IRBuilder<> B(&Call.CB);
+ Value *Addr =
+ B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
+ if (RetType->getBitWidth() == 1) {
+ Value *Bits = B.CreateLoad(Int8Ty, Addr);
+ Value *BitsAndBit = B.CreateAnd(Bits, Bit);
+ auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
+ Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
+ OREGetter, IsBitSet);
+ } else {
+ Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
+ Value *Val = B.CreateLoad(RetType, ValAddr);
+ Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
+ OREGetter, Val);
+ }
+ }
+ CSInfo.markDevirt();
+}
+
+bool DevirtModule::tryVirtualConstProp(
+ MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
+ WholeProgramDevirtResolution *Res, VTableSlot Slot) {
+ // This only works if the function returns an integer.
+ auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
+ if (!RetType)
+ return false;
+ unsigned BitWidth = RetType->getBitWidth();
+ if (BitWidth > 64)
+ return false;
+
+ // Make sure that each function is defined, does not access memory, takes at
+ // least one argument, does not use its first argument (which we assume is
+ // 'this'), and has the same return type.
+ //
+ // Note that we test whether this copy of the function is readnone, rather
+ // than testing function attributes, which must hold for any copy of the
+ // function, even a less optimized version substituted at link time. This is
+ // sound because the virtual constant propagation optimizations effectively
+ // inline all implementations of the virtual function into each call site,
+ // rather than using function attributes to perform local optimization.
+ for (VirtualCallTarget &Target : TargetsForSlot) {
+ if (Target.Fn->isDeclaration() ||
+ computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
+ MAK_ReadNone ||
+ Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
+ Target.Fn->getReturnType() != RetType)
+ return false;
+ }
+
+ for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
+ if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
+ continue;
+
+ WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
+ if (Res)
+ ResByArg = &Res->ResByArg[CSByConstantArg.first];
+
+ if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
+ continue;
+
+ if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
+ ResByArg, Slot, CSByConstantArg.first))
+ continue;
+
+ // Find an allocation offset in bits in all vtables associated with the
+ // type.
+ uint64_t AllocBefore =
+ findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
+ uint64_t AllocAfter =
+ findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
+
+ // Calculate the total amount of padding needed to store a value at both
+ // ends of the object.
+ uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
+ for (auto &&Target : TargetsForSlot) {
+ TotalPaddingBefore += std::max<int64_t>(
+ (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
+ TotalPaddingAfter += std::max<int64_t>(
+ (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
+ }
+
+ // If the amount of padding is too large, give up.
+ // FIXME: do something smarter here.
+ if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
+ continue;
+
+ // Calculate the offset to the value as a (possibly negative) byte offset
+ // and (if applicable) a bit offset, and store the values in the targets.
+ int64_t OffsetByte;
+ uint64_t OffsetBit;
+ if (TotalPaddingBefore <= TotalPaddingAfter)
+ setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
+ OffsetBit);
+ else
+ setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
+ OffsetBit);
+
+ if (RemarksEnabled)
+ for (auto &&Target : TargetsForSlot)
+ Target.WasDevirt = true;
+
+
+ if (CSByConstantArg.second.isExported()) {
+ ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
+ exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
+ ResByArg->Byte);
+ exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
+ ResByArg->Bit);
+ }
+
+ // Rewrite each call to a load from OffsetByte/OffsetBit.
+ Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
+ Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
+ applyVirtualConstProp(CSByConstantArg.second,
+ TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
+ }
+ return true;
+}
+
+void DevirtModule::rebuildGlobal(VTableBits &B) {
+ if (B.Before.Bytes.empty() && B.After.Bytes.empty())
+ return;
+
+ // Align the before byte array to the global's minimum alignment so that we
+ // don't break any alignment requirements on the global.
+ Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
+ B.GV->getAlign(), B.GV->getValueType());
+ B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
+
+ // Before was stored in reverse order; flip it now.
+ for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
+ std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
+
+ // Build an anonymous global containing the before bytes, followed by the
+ // original initializer, followed by the after bytes.
+ auto NewInit = ConstantStruct::getAnon(
+ {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
+ B.GV->getInitializer(),
+ ConstantDataArray::get(M.getContext(), B.After.Bytes)});
+ auto NewGV =
+ new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
+ GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
+ NewGV->setSection(B.GV->getSection());
+ NewGV->setComdat(B.GV->getComdat());
+ NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
+
+ // Copy the original vtable's metadata to the anonymous global, adjusting
+ // offsets as required.
+ NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
+
+ // Build an alias named after the original global, pointing at the second
+ // element (the original initializer).
+ auto Alias = GlobalAlias::create(
+ B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
+ ConstantExpr::getGetElementPtr(
+ NewInit->getType(), NewGV,
+ ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
+ ConstantInt::get(Int32Ty, 1)}),
+ &M);
+ Alias->setVisibility(B.GV->getVisibility());
+ Alias->takeName(B.GV);
+
+ B.GV->replaceAllUsesWith(Alias);
+ B.GV->eraseFromParent();
+}
+
+bool DevirtModule::areRemarksEnabled() {
+ const auto &FL = M.getFunctionList();
+ for (const Function &Fn : FL) {
+ const auto &BBL = Fn.getBasicBlockList();
+ if (BBL.empty())
+ continue;
+ auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
+ return DI.isEnabled();
+ }
+ return false;
+}
+
+void DevirtModule::scanTypeTestUsers(
+ Function *TypeTestFunc,
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
+ // Find all virtual calls via a virtual table pointer %p under an assumption
+ // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
+ // points to a member of the type identifier %md. Group calls by (type ID,
+ // offset) pair (effectively the identity of the virtual function) and store
+ // to CallSlots.
+ for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
+ I != E;) {
+ auto CI = dyn_cast<CallInst>(I->getUser());
+ ++I;
+ if (!CI)
+ continue;
+
+ // Search for virtual calls based on %p and add them to DevirtCalls.
+ SmallVector<DevirtCallSite, 1> DevirtCalls;
+ SmallVector<CallInst *, 1> Assumes;
+ auto &DT = LookupDomTree(*CI->getFunction());
+ findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
+
+ Metadata *TypeId =
+ cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
+ // If we found any, add them to CallSlots.
+ if (!Assumes.empty()) {
+ Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
+ for (DevirtCallSite Call : DevirtCalls)
+ CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
+ }
+
+ auto RemoveTypeTestAssumes = [&]() {
+ // We no longer need the assumes or the type test.
+ for (auto Assume : Assumes)
+ Assume->eraseFromParent();
+ // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
+ // may use the vtable argument later.
+ if (CI->use_empty())
+ CI->eraseFromParent();
+ };
+
+ // At this point we could remove all type test assume sequences, as they
+ // were originally inserted for WPD. However, we can keep these in the
+ // code stream for later analysis (e.g. to help drive more efficient ICP
+ // sequences). They will eventually be removed by a second LowerTypeTests
+ // invocation that cleans them up. In order to do this correctly, the first
+ // LowerTypeTests invocation needs to know that they have "Unknown" type
+ // test resolution, so that they aren't treated as Unsat and lowered to
+ // False, which will break any uses on assumes. Below we remove any type
+ // test assumes that will not be treated as Unknown by LTT.
+
+ // The type test assumes will be treated by LTT as Unsat if the type id is
+ // not used on a global (in which case it has no entry in the TypeIdMap).
+ if (!TypeIdMap.count(TypeId))
+ RemoveTypeTestAssumes();
+
+ // For ThinLTO importing, we need to remove the type test assumes if this is
+ // an MDString type id without a corresponding TypeIdSummary. Any
+ // non-MDString type ids are ignored and treated as Unknown by LTT, so their
+ // type test assumes can be kept. If the MDString type id is missing a
+ // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
+ // exporting phase of WPD from analyzing it), then it would be treated as
+ // Unsat by LTT and we need to remove its type test assumes here. If not
+ // used on a vcall we don't need them for later optimization use in any
+ // case.
+ else if (ImportSummary && isa<MDString>(TypeId)) {
+ const TypeIdSummary *TidSummary =
+ ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
+ if (!TidSummary)
+ RemoveTypeTestAssumes();
+ else
+ // If one was created it should not be Unsat, because if we reached here
+ // the type id was used on a global.
+ assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
+ }
+ }
+}
+
+void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
+ Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
+
+ for (auto I = TypeCheckedLoadFunc->use_begin(),
+ E = TypeCheckedLoadFunc->use_end();
+ I != E;) {
+ auto CI = dyn_cast<CallInst>(I->getUser());
+ ++I;
+ if (!CI)
+ continue;
+
+ Value *Ptr = CI->getArgOperand(0);
+ Value *Offset = CI->getArgOperand(1);
+ Value *TypeIdValue = CI->getArgOperand(2);
+ Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
+
+ SmallVector<DevirtCallSite, 1> DevirtCalls;
+ SmallVector<Instruction *, 1> LoadedPtrs;
+ SmallVector<Instruction *, 1> Preds;
+ bool HasNonCallUses = false;
+ auto &DT = LookupDomTree(*CI->getFunction());
+ findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
+ HasNonCallUses, CI, DT);
+
+ // Start by generating "pessimistic" code that explicitly loads the function
+ // pointer from the vtable and performs the type check. If possible, we will
+ // eliminate the load and the type check later.
+
+ // If possible, only generate the load at the point where it is used.
+ // This helps avoid unnecessary spills.
+ IRBuilder<> LoadB(
+ (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
+ Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
+ Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
+ Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
+
+ for (Instruction *LoadedPtr : LoadedPtrs) {
+ LoadedPtr->replaceAllUsesWith(LoadedValue);
+ LoadedPtr->eraseFromParent();
+ }
+
+ // Likewise for the type test.
+ IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
+ CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
+
+ for (Instruction *Pred : Preds) {
+ Pred->replaceAllUsesWith(TypeTestCall);
+ Pred->eraseFromParent();
+ }
+
+ // We have already erased any extractvalue instructions that refer to the
+ // intrinsic call, but the intrinsic may have other non-extractvalue uses
+ // (although this is unlikely). In that case, explicitly build a pair and
+ // RAUW it.
+ if (!CI->use_empty()) {
+ Value *Pair = UndefValue::get(CI->getType());
+ IRBuilder<> B(CI);
+ Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
+ Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
+ CI->replaceAllUsesWith(Pair);
+ }
+
+ // The number of unsafe uses is initially the number of uses.
+ auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
+ NumUnsafeUses = DevirtCalls.size();
+
+ // If the function pointer has a non-call user, we cannot eliminate the type
+ // check, as one of those users may eventually call the pointer. Increment
+ // the unsafe use count to make sure it cannot reach zero.
+ if (HasNonCallUses)
+ ++NumUnsafeUses;
+ for (DevirtCallSite Call : DevirtCalls) {
+ CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
+ &NumUnsafeUses);
+ }
+
+ CI->eraseFromParent();
+ }
+}
+
+void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
+ auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
+ if (!TypeId)
+ return;
+ const TypeIdSummary *TidSummary =
+ ImportSummary->getTypeIdSummary(TypeId->getString());
+ if (!TidSummary)
+ return;
+ auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
+ if (ResI == TidSummary->WPDRes.end())
+ return;
+ const WholeProgramDevirtResolution &Res = ResI->second;
+
+ if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
+ assert(!Res.SingleImplName.empty());
+ // The type of the function in the declaration is irrelevant because every
+ // call site will cast it to the correct type.
+ Constant *SingleImpl =
+ cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
+ Type::getVoidTy(M.getContext()))
+ .getCallee());
+
+ // This is the import phase so we should not be exporting anything.
+ bool IsExported = false;
+ applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
+ assert(!IsExported);
+ }
+
+ for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
+ auto I = Res.ResByArg.find(CSByConstantArg.first);
+ if (I == Res.ResByArg.end())
+ continue;
+ auto &ResByArg = I->second;
+ // FIXME: We should figure out what to do about the "function name" argument
+ // to the apply* functions, as the function names are unavailable during the
+ // importing phase. For now we just pass the empty string. This does not
+ // impact correctness because the function names are just used for remarks.
+ switch (ResByArg.TheKind) {
+ case WholeProgramDevirtResolution::ByArg::UniformRetVal:
+ applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
+ break;
+ case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
+ Constant *UniqueMemberAddr =
+ importGlobal(Slot, CSByConstantArg.first, "unique_member");
+ applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
+ UniqueMemberAddr);
+ break;
+ }
+ case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
+ Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
+ Int32Ty, ResByArg.Byte);
+ Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
+ ResByArg.Bit);
+ applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
+ break;
+ }
+ default:
+ break;
+ }
+ }
+
+ if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
+ // The type of the function is irrelevant, because it's bitcast at calls
+ // anyhow.
+ Constant *JT = cast<Constant>(
+ M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
+ Type::getVoidTy(M.getContext()))
+ .getCallee());
+ bool IsExported = false;
+ applyICallBranchFunnel(SlotInfo, JT, IsExported);
+ assert(!IsExported);
+ }
+}
+
+void DevirtModule::removeRedundantTypeTests() {
+ auto True = ConstantInt::getTrue(M.getContext());
+ for (auto &&U : NumUnsafeUsesForTypeTest) {
+ if (U.second == 0) {
+ U.first->replaceAllUsesWith(True);
+ U.first->eraseFromParent();
+ }
+ }
+}
+
+bool DevirtModule::run() {
+ // If only some of the modules were split, we cannot correctly perform
+ // this transformation. We already checked for the presense of type tests
+ // with partially split modules during the thin link, and would have emitted
+ // an error if any were found, so here we can simply return.
+ if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
+ (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
+ return false;
+
+ Function *TypeTestFunc =
+ M.getFunction(Intrinsic::getName(Intrinsic::type_test));
+ Function *TypeCheckedLoadFunc =
+ M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
+ Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
+
+ // Normally if there are no users of the devirtualization intrinsics in the
+ // module, this pass has nothing to do. But if we are exporting, we also need
+ // to handle any users that appear only in the function summaries.
+ if (!ExportSummary &&
+ (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
+ AssumeFunc->use_empty()) &&
+ (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
+ return false;
+
+ // Rebuild type metadata into a map for easy lookup.
+ std::vector<VTableBits> Bits;
+ DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
+ buildTypeIdentifierMap(Bits, TypeIdMap);
+
+ if (TypeTestFunc && AssumeFunc)
+ scanTypeTestUsers(TypeTestFunc, TypeIdMap);
+
+ if (TypeCheckedLoadFunc)
+ scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
+
+ if (ImportSummary) {
+ for (auto &S : CallSlots)
+ importResolution(S.first, S.second);
+
+ removeRedundantTypeTests();
+
+ // We have lowered or deleted the type instrinsics, so we will no
+ // longer have enough information to reason about the liveness of virtual
+ // function pointers in GlobalDCE.
+ for (GlobalVariable &GV : M.globals())
+ GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
+
+ // The rest of the code is only necessary when exporting or during regular
+ // LTO, so we are done.
+ return true;
+ }
+
+ if (TypeIdMap.empty())
+ return true;
+
+ // Collect information from summary about which calls to try to devirtualize.
+ if (ExportSummary) {
+ DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
+ for (auto &P : TypeIdMap) {
+ if (auto *TypeId = dyn_cast<MDString>(P.first))
+ MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
+ TypeId);
+ }
+
+ for (auto &P : *ExportSummary) {
+ for (auto &S : P.second.SummaryList) {
+ auto *FS = dyn_cast<FunctionSummary>(S.get());
+ if (!FS)
+ continue;
+ // FIXME: Only add live functions.
+ for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
+ for (Metadata *MD : MetadataByGUID[VF.GUID]) {
+ CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
+ }
+ }
+ for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
+ for (Metadata *MD : MetadataByGUID[VF.GUID]) {
+ CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
+ }
+ }
+ for (const FunctionSummary::ConstVCall &VC :
+ FS->type_test_assume_const_vcalls()) {
+ for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
+ CallSlots[{MD, VC.VFunc.Offset}]
+ .ConstCSInfo[VC.Args]
+ .addSummaryTypeTestAssumeUser(FS);
+ }
+ }
+ for (const FunctionSummary::ConstVCall &VC :
+ FS->type_checked_load_const_vcalls()) {
+ for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
+ CallSlots[{MD, VC.VFunc.Offset}]
+ .ConstCSInfo[VC.Args]
+ .addSummaryTypeCheckedLoadUser(FS);
+ }
+ }
+ }
+ }
+ }
+
+ // For each (type, offset) pair:
+ bool DidVirtualConstProp = false;
+ std::map<std::string, Function*> DevirtTargets;
+ for (auto &S : CallSlots) {
+ // Search each of the members of the type identifier for the virtual
+ // function implementation at offset S.first.ByteOffset, and add to
+ // TargetsForSlot.
+ std::vector<VirtualCallTarget> TargetsForSlot;
+ WholeProgramDevirtResolution *Res = nullptr;
+ const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
+ if (ExportSummary && isa<MDString>(S.first.TypeID) &&
+ TypeMemberInfos.size())
+ // For any type id used on a global's type metadata, create the type id
+ // summary resolution regardless of whether we can devirtualize, so that
+ // lower type tests knows the type id is not Unsat. If it was not used on
+ // a global's type metadata, the TypeIdMap entry set will be empty, and
+ // we don't want to create an entry (with the default Unknown type
+ // resolution), which can prevent detection of the Unsat.
+ Res = &ExportSummary
+ ->getOrInsertTypeIdSummary(
+ cast<MDString>(S.first.TypeID)->getString())
+ .WPDRes[S.first.ByteOffset];
+ if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
+ S.first.ByteOffset)) {
+
+ if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
+ DidVirtualConstProp |=
+ tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
+
+ tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
+ }
+
+ // Collect functions devirtualized at least for one call site for stats.
+ if (RemarksEnabled)
+ for (const auto &T : TargetsForSlot)
+ if (T.WasDevirt)
+ DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
+ }
+
+ // CFI-specific: if we are exporting and any llvm.type.checked.load
+ // intrinsics were *not* devirtualized, we need to add the resulting
+ // llvm.type.test intrinsics to the function summaries so that the
+ // LowerTypeTests pass will export them.
+ if (ExportSummary && isa<MDString>(S.first.TypeID)) {
+ auto GUID =
+ GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
+ for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
+ FS->addTypeTest(GUID);
+ for (auto &CCS : S.second.ConstCSInfo)
+ for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
+ FS->addTypeTest(GUID);
+ }
+ }
+
+ if (RemarksEnabled) {
+ // Generate remarks for each devirtualized function.
+ for (const auto &DT : DevirtTargets) {
+ Function *F = DT.second;
+
+ using namespace ore;
+ OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
+ << "devirtualized "
+ << NV("FunctionName", DT.first));
+ }
+ }
+
+ removeRedundantTypeTests();
+
+ // Rebuild each global we touched as part of virtual constant propagation to
+ // include the before and after bytes.
+ if (DidVirtualConstProp)
+ for (VTableBits &B : Bits)
+ rebuildGlobal(B);
+
+ // We have lowered or deleted the type instrinsics, so we will no
+ // longer have enough information to reason about the liveness of virtual
+ // function pointers in GlobalDCE.
+ for (GlobalVariable &GV : M.globals())
+ GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
+
+ return true;
+}
+
+void DevirtIndex::run() {
+ if (ExportSummary.typeIdCompatibleVtableMap().empty())
+ return;
+
+ DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
+ for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
+ NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
+ }
+
+ // Collect information from summary about which calls to try to devirtualize.
+ for (auto &P : ExportSummary) {
+ for (auto &S : P.second.SummaryList) {
+ auto *FS = dyn_cast<FunctionSummary>(S.get());
+ if (!FS)
+ continue;
+ // FIXME: Only add live functions.
+ for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
+ for (StringRef Name : NameByGUID[VF.GUID]) {
+ CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
+ }
+ }
+ for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
+ for (StringRef Name : NameByGUID[VF.GUID]) {
+ CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
+ }
+ }
+ for (const FunctionSummary::ConstVCall &VC :
+ FS->type_test_assume_const_vcalls()) {
+ for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
+ CallSlots[{Name, VC.VFunc.Offset}]
+ .ConstCSInfo[VC.Args]
+ .addSummaryTypeTestAssumeUser(FS);
+ }
+ }
+ for (const FunctionSummary::ConstVCall &VC :
+ FS->type_checked_load_const_vcalls()) {
+ for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
+ CallSlots[{Name, VC.VFunc.Offset}]
+ .ConstCSInfo[VC.Args]
+ .addSummaryTypeCheckedLoadUser(FS);
+ }
+ }
+ }
+ }
+
+ std::set<ValueInfo> DevirtTargets;
+ // For each (type, offset) pair:
+ for (auto &S : CallSlots) {
+ // Search each of the members of the type identifier for the virtual
+ // function implementation at offset S.first.ByteOffset, and add to
+ // TargetsForSlot.
+ std::vector<ValueInfo> TargetsForSlot;
+ auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
+ assert(TidSummary);
+ // Create the type id summary resolution regardlness of whether we can
+ // devirtualize, so that lower type tests knows the type id is used on
+ // a global and not Unsat.
+ WholeProgramDevirtResolution *Res =
+ &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
+ .WPDRes[S.first.ByteOffset];
+ if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
+ S.first.ByteOffset)) {
+
+ if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
+ DevirtTargets))
+ continue;
+ }
+ }
+
+ // Optionally have the thin link print message for each devirtualized
+ // function.
+ if (PrintSummaryDevirt)
+ for (const auto &DT : DevirtTargets)
+ errs() << "Devirtualized call to " << DT << "\n";
+}