diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp | 2691 | 
1 files changed, 2691 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp new file mode 100644 index 000000000000..3639edb5df4d --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp @@ -0,0 +1,2691 @@ +//===- InstCombineCasts.cpp -----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visit functions for cast operations. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/KnownBits.h" +#include <numeric> +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +/// Analyze 'Val', seeing if it is a simple linear expression. +/// If so, decompose it, returning some value X, such that Val is +/// X*Scale+Offset. +/// +static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale, +                                        uint64_t &Offset) { +  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { +    Offset = CI->getZExtValue(); +    Scale  = 0; +    return ConstantInt::get(Val->getType(), 0); +  } + +  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { +    // Cannot look past anything that might overflow. +    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); +    if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { +      Scale = 1; +      Offset = 0; +      return Val; +    } + +    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { +      if (I->getOpcode() == Instruction::Shl) { +        // This is a value scaled by '1 << the shift amt'. +        Scale = UINT64_C(1) << RHS->getZExtValue(); +        Offset = 0; +        return I->getOperand(0); +      } + +      if (I->getOpcode() == Instruction::Mul) { +        // This value is scaled by 'RHS'. +        Scale = RHS->getZExtValue(); +        Offset = 0; +        return I->getOperand(0); +      } + +      if (I->getOpcode() == Instruction::Add) { +        // We have X+C.  Check to see if we really have (X*C2)+C1, +        // where C1 is divisible by C2. +        unsigned SubScale; +        Value *SubVal = +          decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); +        Offset += RHS->getZExtValue(); +        Scale = SubScale; +        return SubVal; +      } +    } +  } + +  // Otherwise, we can't look past this. +  Scale = 1; +  Offset = 0; +  return Val; +} + +/// If we find a cast of an allocation instruction, try to eliminate the cast by +/// moving the type information into the alloc. +Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, +                                                   AllocaInst &AI) { +  PointerType *PTy = cast<PointerType>(CI.getType()); + +  IRBuilderBase::InsertPointGuard Guard(Builder); +  Builder.SetInsertPoint(&AI); + +  // Get the type really allocated and the type casted to. +  Type *AllocElTy = AI.getAllocatedType(); +  Type *CastElTy = PTy->getElementType(); +  if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; + +  Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy); +  Align CastElTyAlign = DL.getABITypeAlign(CastElTy); +  if (CastElTyAlign < AllocElTyAlign) return nullptr; + +  // If the allocation has multiple uses, only promote it if we are strictly +  // increasing the alignment of the resultant allocation.  If we keep it the +  // same, we open the door to infinite loops of various kinds. +  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; + +  uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy); +  uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy); +  if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; + +  // If the allocation has multiple uses, only promote it if we're not +  // shrinking the amount of memory being allocated. +  uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy); +  uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy); +  if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; + +  // See if we can satisfy the modulus by pulling a scale out of the array +  // size argument. +  unsigned ArraySizeScale; +  uint64_t ArrayOffset; +  Value *NumElements = // See if the array size is a decomposable linear expr. +    decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); + +  // If we can now satisfy the modulus, by using a non-1 scale, we really can +  // do the xform. +  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || +      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr; + +  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; +  Value *Amt = nullptr; +  if (Scale == 1) { +    Amt = NumElements; +  } else { +    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); +    // Insert before the alloca, not before the cast. +    Amt = Builder.CreateMul(Amt, NumElements); +  } + +  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { +    Value *Off = ConstantInt::get(AI.getArraySize()->getType(), +                                  Offset, true); +    Amt = Builder.CreateAdd(Amt, Off); +  } + +  AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt); +  New->setAlignment(AI.getAlign()); +  New->takeName(&AI); +  New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); + +  // If the allocation has multiple real uses, insert a cast and change all +  // things that used it to use the new cast.  This will also hack on CI, but it +  // will die soon. +  if (!AI.hasOneUse()) { +    // New is the allocation instruction, pointer typed. AI is the original +    // allocation instruction, also pointer typed. Thus, cast to use is BitCast. +    Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast"); +    replaceInstUsesWith(AI, NewCast); +    eraseInstFromFunction(AI); +  } +  return replaceInstUsesWith(CI, New); +} + +/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns +/// true for, actually insert the code to evaluate the expression. +Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, +                                             bool isSigned) { +  if (Constant *C = dyn_cast<Constant>(V)) { +    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); +    // If we got a constantexpr back, try to simplify it with DL info. +    return ConstantFoldConstant(C, DL, &TLI); +  } + +  // Otherwise, it must be an instruction. +  Instruction *I = cast<Instruction>(V); +  Instruction *Res = nullptr; +  unsigned Opc = I->getOpcode(); +  switch (Opc) { +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +  case Instruction::AShr: +  case Instruction::LShr: +  case Instruction::Shl: +  case Instruction::UDiv: +  case Instruction::URem: { +    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); +    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); +    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); +    break; +  } +  case Instruction::Trunc: +  case Instruction::ZExt: +  case Instruction::SExt: +    // If the source type of the cast is the type we're trying for then we can +    // just return the source.  There's no need to insert it because it is not +    // new. +    if (I->getOperand(0)->getType() == Ty) +      return I->getOperand(0); + +    // Otherwise, must be the same type of cast, so just reinsert a new one. +    // This also handles the case of zext(trunc(x)) -> zext(x). +    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, +                                      Opc == Instruction::SExt); +    break; +  case Instruction::Select: { +    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); +    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); +    Res = SelectInst::Create(I->getOperand(0), True, False); +    break; +  } +  case Instruction::PHI: { +    PHINode *OPN = cast<PHINode>(I); +    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); +    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { +      Value *V = +          EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); +      NPN->addIncoming(V, OPN->getIncomingBlock(i)); +    } +    Res = NPN; +    break; +  } +  default: +    // TODO: Can handle more cases here. +    llvm_unreachable("Unreachable!"); +  } + +  Res->takeName(I); +  return InsertNewInstWith(Res, *I); +} + +Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1, +                                                        const CastInst *CI2) { +  Type *SrcTy = CI1->getSrcTy(); +  Type *MidTy = CI1->getDestTy(); +  Type *DstTy = CI2->getDestTy(); + +  Instruction::CastOps firstOp = CI1->getOpcode(); +  Instruction::CastOps secondOp = CI2->getOpcode(); +  Type *SrcIntPtrTy = +      SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr; +  Type *MidIntPtrTy = +      MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr; +  Type *DstIntPtrTy = +      DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr; +  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, +                                                DstTy, SrcIntPtrTy, MidIntPtrTy, +                                                DstIntPtrTy); + +  // We don't want to form an inttoptr or ptrtoint that converts to an integer +  // type that differs from the pointer size. +  if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || +      (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) +    Res = 0; + +  return Instruction::CastOps(Res); +} + +/// Implement the transforms common to all CastInst visitors. +Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { +  Value *Src = CI.getOperand(0); + +  // Try to eliminate a cast of a cast. +  if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast +    if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) { +      // The first cast (CSrc) is eliminable so we need to fix up or replace +      // the second cast (CI). CSrc will then have a good chance of being dead. +      auto *Ty = CI.getType(); +      auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty); +      // Point debug users of the dying cast to the new one. +      if (CSrc->hasOneUse()) +        replaceAllDbgUsesWith(*CSrc, *Res, CI, DT); +      return Res; +    } +  } + +  if (auto *Sel = dyn_cast<SelectInst>(Src)) { +    // We are casting a select. Try to fold the cast into the select if the +    // select does not have a compare instruction with matching operand types +    // or the select is likely better done in a narrow type. +    // Creating a select with operands that are different sizes than its +    // condition may inhibit other folds and lead to worse codegen. +    auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition()); +    if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() || +        (CI.getOpcode() == Instruction::Trunc && +         shouldChangeType(CI.getSrcTy(), CI.getType()))) { +      if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) { +        replaceAllDbgUsesWith(*Sel, *NV, CI, DT); +        return NV; +      } +    } +  } + +  // If we are casting a PHI, then fold the cast into the PHI. +  if (auto *PN = dyn_cast<PHINode>(Src)) { +    // Don't do this if it would create a PHI node with an illegal type from a +    // legal type. +    if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() || +        shouldChangeType(CI.getSrcTy(), CI.getType())) +      if (Instruction *NV = foldOpIntoPhi(CI, PN)) +        return NV; +  } + +  return nullptr; +} + +/// Constants and extensions/truncates from the destination type are always +/// free to be evaluated in that type. This is a helper for canEvaluate*. +static bool canAlwaysEvaluateInType(Value *V, Type *Ty) { +  if (isa<Constant>(V)) +    return true; +  Value *X; +  if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) && +      X->getType() == Ty) +    return true; + +  return false; +} + +/// Filter out values that we can not evaluate in the destination type for free. +/// This is a helper for canEvaluate*. +static bool canNotEvaluateInType(Value *V, Type *Ty) { +  assert(!isa<Constant>(V) && "Constant should already be handled."); +  if (!isa<Instruction>(V)) +    return true; +  // We don't extend or shrink something that has multiple uses --  doing so +  // would require duplicating the instruction which isn't profitable. +  if (!V->hasOneUse()) +    return true; + +  return false; +} + +/// Return true if we can evaluate the specified expression tree as type Ty +/// instead of its larger type, and arrive with the same value. +/// This is used by code that tries to eliminate truncates. +/// +/// Ty will always be a type smaller than V.  We should return true if trunc(V) +/// can be computed by computing V in the smaller type.  If V is an instruction, +/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only +/// makes sense if x and y can be efficiently truncated. +/// +/// This function works on both vectors and scalars. +/// +static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, +                                 Instruction *CxtI) { +  if (canAlwaysEvaluateInType(V, Ty)) +    return true; +  if (canNotEvaluateInType(V, Ty)) +    return false; + +  auto *I = cast<Instruction>(V); +  Type *OrigTy = V->getType(); +  switch (I->getOpcode()) { +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +    // These operators can all arbitrarily be extended or truncated. +    return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && +           canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); + +  case Instruction::UDiv: +  case Instruction::URem: { +    // UDiv and URem can be truncated if all the truncated bits are zero. +    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); +    uint32_t BitWidth = Ty->getScalarSizeInBits(); +    assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!"); +    APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); +    if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && +        IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { +      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && +             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); +    } +    break; +  } +  case Instruction::Shl: { +    // If we are truncating the result of this SHL, and if it's a shift of an +    // inrange amount, we can always perform a SHL in a smaller type. +    uint32_t BitWidth = Ty->getScalarSizeInBits(); +    KnownBits AmtKnownBits = +        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); +    if (AmtKnownBits.getMaxValue().ult(BitWidth)) +      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && +             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); +    break; +  } +  case Instruction::LShr: { +    // If this is a truncate of a logical shr, we can truncate it to a smaller +    // lshr iff we know that the bits we would otherwise be shifting in are +    // already zeros. +    // TODO: It is enough to check that the bits we would be shifting in are +    //       zero - use AmtKnownBits.getMaxValue(). +    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); +    uint32_t BitWidth = Ty->getScalarSizeInBits(); +    KnownBits AmtKnownBits = +        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); +    APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth); +    if (AmtKnownBits.getMaxValue().ult(BitWidth) && +        IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) { +      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && +             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); +    } +    break; +  } +  case Instruction::AShr: { +    // If this is a truncate of an arithmetic shr, we can truncate it to a +    // smaller ashr iff we know that all the bits from the sign bit of the +    // original type and the sign bit of the truncate type are similar. +    // TODO: It is enough to check that the bits we would be shifting in are +    //       similar to sign bit of the truncate type. +    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); +    uint32_t BitWidth = Ty->getScalarSizeInBits(); +    KnownBits AmtKnownBits = +        llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout()); +    unsigned ShiftedBits = OrigBitWidth - BitWidth; +    if (AmtKnownBits.getMaxValue().ult(BitWidth) && +        ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI)) +      return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && +             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); +    break; +  } +  case Instruction::Trunc: +    // trunc(trunc(x)) -> trunc(x) +    return true; +  case Instruction::ZExt: +  case Instruction::SExt: +    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest +    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest +    return true; +  case Instruction::Select: { +    SelectInst *SI = cast<SelectInst>(I); +    return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && +           canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); +  } +  case Instruction::PHI: { +    // We can change a phi if we can change all operands.  Note that we never +    // get into trouble with cyclic PHIs here because we only consider +    // instructions with a single use. +    PHINode *PN = cast<PHINode>(I); +    for (Value *IncValue : PN->incoming_values()) +      if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI)) +        return false; +    return true; +  } +  default: +    // TODO: Can handle more cases here. +    break; +  } + +  return false; +} + +/// Given a vector that is bitcast to an integer, optionally logically +/// right-shifted, and truncated, convert it to an extractelement. +/// Example (big endian): +///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32 +///   ---> +///   extractelement <4 x i32> %X, 1 +static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) { +  Value *TruncOp = Trunc.getOperand(0); +  Type *DestType = Trunc.getType(); +  if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType)) +    return nullptr; + +  Value *VecInput = nullptr; +  ConstantInt *ShiftVal = nullptr; +  if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)), +                                  m_LShr(m_BitCast(m_Value(VecInput)), +                                         m_ConstantInt(ShiftVal)))) || +      !isa<VectorType>(VecInput->getType())) +    return nullptr; + +  VectorType *VecType = cast<VectorType>(VecInput->getType()); +  unsigned VecWidth = VecType->getPrimitiveSizeInBits(); +  unsigned DestWidth = DestType->getPrimitiveSizeInBits(); +  unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0; + +  if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0)) +    return nullptr; + +  // If the element type of the vector doesn't match the result type, +  // bitcast it to a vector type that we can extract from. +  unsigned NumVecElts = VecWidth / DestWidth; +  if (VecType->getElementType() != DestType) { +    VecType = FixedVectorType::get(DestType, NumVecElts); +    VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc"); +  } + +  unsigned Elt = ShiftAmount / DestWidth; +  if (IC.getDataLayout().isBigEndian()) +    Elt = NumVecElts - 1 - Elt; + +  return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt)); +} + +/// Rotate left/right may occur in a wider type than necessary because of type +/// promotion rules. Try to narrow the inputs and convert to funnel shift. +Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) { +  assert((isa<VectorType>(Trunc.getSrcTy()) || +          shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) && +         "Don't narrow to an illegal scalar type"); + +  // Bail out on strange types. It is possible to handle some of these patterns +  // even with non-power-of-2 sizes, but it is not a likely scenario. +  Type *DestTy = Trunc.getType(); +  unsigned NarrowWidth = DestTy->getScalarSizeInBits(); +  if (!isPowerOf2_32(NarrowWidth)) +    return nullptr; + +  // First, find an or'd pair of opposite shifts with the same shifted operand: +  // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1)) +  Value *Or0, *Or1; +  if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) +    return nullptr; + +  Value *ShVal, *ShAmt0, *ShAmt1; +  if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) || +      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1))))) +    return nullptr; + +  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); +  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); +  if (ShiftOpcode0 == ShiftOpcode1) +    return nullptr; + +  // Match the shift amount operands for a rotate pattern. This always matches +  // a subtraction on the R operand. +  auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * { +    // The shift amounts may add up to the narrow bit width: +    // (shl ShVal, L) | (lshr ShVal, Width - L) +    if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) +      return L; + +    // The shift amount may be masked with negation: +    // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) +    Value *X; +    unsigned Mask = Width - 1; +    if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && +        match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) +      return X; + +    // Same as above, but the shift amount may be extended after masking: +    if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && +        match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) +      return X; + +    return nullptr; +  }; + +  Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth); +  bool SubIsOnLHS = false; +  if (!ShAmt) { +    ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth); +    SubIsOnLHS = true; +  } +  if (!ShAmt) +    return nullptr; + +  // The shifted value must have high zeros in the wide type. Typically, this +  // will be a zext, but it could also be the result of an 'and' or 'shift'. +  unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits(); +  APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth); +  if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc)) +    return nullptr; + +  // We have an unnecessarily wide rotate! +  // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt)) +  // Narrow the inputs and convert to funnel shift intrinsic: +  // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt)) +  Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy); +  Value *X = Builder.CreateTrunc(ShVal, DestTy); +  bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) || +                (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl); +  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; +  Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy); +  return IntrinsicInst::Create(F, { X, X, NarrowShAmt }); +} + +/// Try to narrow the width of math or bitwise logic instructions by pulling a +/// truncate ahead of binary operators. +/// TODO: Transforms for truncated shifts should be moved into here. +Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) { +  Type *SrcTy = Trunc.getSrcTy(); +  Type *DestTy = Trunc.getType(); +  if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy)) +    return nullptr; + +  BinaryOperator *BinOp; +  if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp)))) +    return nullptr; + +  Value *BinOp0 = BinOp->getOperand(0); +  Value *BinOp1 = BinOp->getOperand(1); +  switch (BinOp->getOpcode()) { +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: { +    Constant *C; +    if (match(BinOp0, m_Constant(C))) { +      // trunc (binop C, X) --> binop (trunc C', X) +      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); +      Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy); +      return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX); +    } +    if (match(BinOp1, m_Constant(C))) { +      // trunc (binop X, C) --> binop (trunc X, C') +      Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy); +      Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy); +      return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC); +    } +    Value *X; +    if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { +      // trunc (binop (ext X), Y) --> binop X, (trunc Y) +      Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy); +      return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1); +    } +    if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) { +      // trunc (binop Y, (ext X)) --> binop (trunc Y), X +      Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy); +      return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X); +    } +    break; +  } + +  default: break; +  } + +  if (Instruction *NarrowOr = narrowRotate(Trunc)) +    return NarrowOr; + +  return nullptr; +} + +/// Try to narrow the width of a splat shuffle. This could be generalized to any +/// shuffle with a constant operand, but we limit the transform to avoid +/// creating a shuffle type that targets may not be able to lower effectively. +static Instruction *shrinkSplatShuffle(TruncInst &Trunc, +                                       InstCombiner::BuilderTy &Builder) { +  auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0)); +  if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) && +      is_splat(Shuf->getShuffleMask()) && +      Shuf->getType() == Shuf->getOperand(0)->getType()) { +    // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask +    Constant *NarrowUndef = UndefValue::get(Trunc.getType()); +    Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType()); +    return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask()); +  } + +  return nullptr; +} + +/// Try to narrow the width of an insert element. This could be generalized for +/// any vector constant, but we limit the transform to insertion into undef to +/// avoid potential backend problems from unsupported insertion widths. This +/// could also be extended to handle the case of inserting a scalar constant +/// into a vector variable. +static Instruction *shrinkInsertElt(CastInst &Trunc, +                                    InstCombiner::BuilderTy &Builder) { +  Instruction::CastOps Opcode = Trunc.getOpcode(); +  assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) && +         "Unexpected instruction for shrinking"); + +  auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0)); +  if (!InsElt || !InsElt->hasOneUse()) +    return nullptr; + +  Type *DestTy = Trunc.getType(); +  Type *DestScalarTy = DestTy->getScalarType(); +  Value *VecOp = InsElt->getOperand(0); +  Value *ScalarOp = InsElt->getOperand(1); +  Value *Index = InsElt->getOperand(2); + +  if (isa<UndefValue>(VecOp)) { +    // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index +    // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index +    UndefValue *NarrowUndef = UndefValue::get(DestTy); +    Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy); +    return InsertElementInst::Create(NarrowUndef, NarrowOp, Index); +  } + +  return nullptr; +} + +Instruction *InstCombiner::visitTrunc(TruncInst &Trunc) { +  if (Instruction *Result = commonCastTransforms(Trunc)) +    return Result; + +  Value *Src = Trunc.getOperand(0); +  Type *DestTy = Trunc.getType(), *SrcTy = Src->getType(); +  unsigned DestWidth = DestTy->getScalarSizeInBits(); +  unsigned SrcWidth = SrcTy->getScalarSizeInBits(); +  ConstantInt *Cst; + +  // Attempt to truncate the entire input expression tree to the destination +  // type.   Only do this if the dest type is a simple type, don't convert the +  // expression tree to something weird like i93 unless the source is also +  // strange. +  if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) && +      canEvaluateTruncated(Src, DestTy, *this, &Trunc)) { + +    // If this cast is a truncate, evaluting in a different type always +    // eliminates the cast, so it is always a win. +    LLVM_DEBUG( +        dbgs() << "ICE: EvaluateInDifferentType converting expression type" +                  " to avoid cast: " +               << Trunc << '\n'); +    Value *Res = EvaluateInDifferentType(Src, DestTy, false); +    assert(Res->getType() == DestTy); +    return replaceInstUsesWith(Trunc, Res); +  } + +  // For integer types, check if we can shorten the entire input expression to +  // DestWidth * 2, which won't allow removing the truncate, but reducing the +  // width may enable further optimizations, e.g. allowing for larger +  // vectorization factors. +  if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) { +    if (DestWidth * 2 < SrcWidth) { +      auto *NewDestTy = DestITy->getExtendedType(); +      if (shouldChangeType(SrcTy, NewDestTy) && +          canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) { +        LLVM_DEBUG( +            dbgs() << "ICE: EvaluateInDifferentType converting expression type" +                      " to reduce the width of operand of" +                   << Trunc << '\n'); +        Value *Res = EvaluateInDifferentType(Src, NewDestTy, false); +        return new TruncInst(Res, DestTy); +      } +    } +  } + +  // Test if the trunc is the user of a select which is part of a +  // minimum or maximum operation. If so, don't do any more simplification. +  // Even simplifying demanded bits can break the canonical form of a +  // min/max. +  Value *LHS, *RHS; +  if (SelectInst *Sel = dyn_cast<SelectInst>(Src)) +    if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN) +      return nullptr; + +  // See if we can simplify any instructions used by the input whose sole +  // purpose is to compute bits we don't care about. +  if (SimplifyDemandedInstructionBits(Trunc)) +    return &Trunc; + +  if (DestWidth == 1) { +    Value *Zero = Constant::getNullValue(SrcTy); +    if (DestTy->isIntegerTy()) { +      // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only). +      // TODO: We canonicalize to more instructions here because we are probably +      // lacking equivalent analysis for trunc relative to icmp. There may also +      // be codegen concerns. If those trunc limitations were removed, we could +      // remove this transform. +      Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1)); +      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); +    } + +    // For vectors, we do not canonicalize all truncs to icmp, so optimize +    // patterns that would be covered within visitICmpInst. +    Value *X; +    Constant *C; +    if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) { +      // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0 +      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); +      Constant *MaskC = ConstantExpr::getShl(One, C); +      Value *And = Builder.CreateAnd(X, MaskC); +      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); +    } +    if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)), +                                   m_Deferred(X))))) { +      // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0 +      Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1)); +      Constant *MaskC = ConstantExpr::getShl(One, C); +      MaskC = ConstantExpr::getOr(MaskC, One); +      Value *And = Builder.CreateAnd(X, MaskC); +      return new ICmpInst(ICmpInst::ICMP_NE, And, Zero); +    } +  } + +  // FIXME: Maybe combine the next two transforms to handle the no cast case +  // more efficiently. Support vector types. Cleanup code by using m_OneUse. + +  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. +  Value *A = nullptr; +  if (Src->hasOneUse() && +      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { +    // We have three types to worry about here, the type of A, the source of +    // the truncate (MidSize), and the destination of the truncate. We know that +    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation +    // between ASize and ResultSize. +    unsigned ASize = A->getType()->getPrimitiveSizeInBits(); + +    // If the shift amount is larger than the size of A, then the result is +    // known to be zero because all the input bits got shifted out. +    if (Cst->getZExtValue() >= ASize) +      return replaceInstUsesWith(Trunc, Constant::getNullValue(DestTy)); + +    // Since we're doing an lshr and a zero extend, and know that the shift +    // amount is smaller than ASize, it is always safe to do the shift in A's +    // type, then zero extend or truncate to the result. +    Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue()); +    Shift->takeName(Src); +    return CastInst::CreateIntegerCast(Shift, DestTy, false); +  } + +  const APInt *C; +  if (match(Src, m_LShr(m_SExt(m_Value(A)), m_APInt(C)))) { +    unsigned AWidth = A->getType()->getScalarSizeInBits(); +    unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth); + +    // If the shift is small enough, all zero bits created by the shift are +    // removed by the trunc. +    if (C->getZExtValue() <= MaxShiftAmt) { +      // trunc (lshr (sext A), C) --> ashr A, C +      if (A->getType() == DestTy) { +        unsigned ShAmt = std::min((unsigned)C->getZExtValue(), DestWidth - 1); +        return BinaryOperator::CreateAShr(A, ConstantInt::get(DestTy, ShAmt)); +      } +      // The types are mismatched, so create a cast after shifting: +      // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C) +      if (Src->hasOneUse()) { +        unsigned ShAmt = std::min((unsigned)C->getZExtValue(), AWidth - 1); +        Value *Shift = Builder.CreateAShr(A, ShAmt); +        return CastInst::CreateIntegerCast(Shift, DestTy, true); +      } +    } +    // TODO: Mask high bits with 'and'. +  } + +  if (Instruction *I = narrowBinOp(Trunc)) +    return I; + +  if (Instruction *I = shrinkSplatShuffle(Trunc, Builder)) +    return I; + +  if (Instruction *I = shrinkInsertElt(Trunc, Builder)) +    return I; + +  if (Src->hasOneUse() && isa<IntegerType>(SrcTy) && +      shouldChangeType(SrcTy, DestTy)) { +    // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the +    // dest type is native and cst < dest size. +    if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) && +        !match(A, m_Shr(m_Value(), m_Constant()))) { +      // Skip shifts of shift by constants. It undoes a combine in +      // FoldShiftByConstant and is the extend in reg pattern. +      if (Cst->getValue().ult(DestWidth)) { +        Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr"); + +        return BinaryOperator::Create( +          Instruction::Shl, NewTrunc, +          ConstantInt::get(DestTy, Cst->getValue().trunc(DestWidth))); +      } +    } +  } + +  if (Instruction *I = foldVecTruncToExtElt(Trunc, *this)) +    return I; + +  // Whenever an element is extracted from a vector, and then truncated, +  // canonicalize by converting it to a bitcast followed by an +  // extractelement. +  // +  // Example (little endian): +  //   trunc (extractelement <4 x i64> %X, 0) to i32 +  //   ---> +  //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0 +  Value *VecOp; +  if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) { +    auto *VecOpTy = cast<VectorType>(VecOp->getType()); +    unsigned VecNumElts = VecOpTy->getNumElements(); + +    // A badly fit destination size would result in an invalid cast. +    if (SrcWidth % DestWidth == 0) { +      uint64_t TruncRatio = SrcWidth / DestWidth; +      uint64_t BitCastNumElts = VecNumElts * TruncRatio; +      uint64_t VecOpIdx = Cst->getZExtValue(); +      uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1 +                                         : VecOpIdx * TruncRatio; +      assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() && +             "overflow 32-bits"); + +      auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts); +      Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo); +      return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx)); +    } +  } + +  return nullptr; +} + +Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext, +                                             bool DoTransform) { +  // If we are just checking for a icmp eq of a single bit and zext'ing it +  // to an integer, then shift the bit to the appropriate place and then +  // cast to integer to avoid the comparison. +  const APInt *Op1CV; +  if (match(Cmp->getOperand(1), m_APInt(Op1CV))) { + +    // zext (x <s  0) to i32 --> x>>u31      true if signbit set. +    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear. +    if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) || +        (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) { +      if (!DoTransform) return Cmp; + +      Value *In = Cmp->getOperand(0); +      Value *Sh = ConstantInt::get(In->getType(), +                                   In->getType()->getScalarSizeInBits() - 1); +      In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit"); +      if (In->getType() != Zext.getType()) +        In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/); + +      if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) { +        Constant *One = ConstantInt::get(In->getType(), 1); +        In = Builder.CreateXor(In, One, In->getName() + ".not"); +      } + +      return replaceInstUsesWith(Zext, In); +    } + +    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set. +    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. +    // zext (X == 1) to i32 --> X        iff X has only the low bit set. +    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set. +    // zext (X != 0) to i32 --> X        iff X has only the low bit set. +    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set. +    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set. +    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. +    if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) && +        // This only works for EQ and NE +        Cmp->isEquality()) { +      // If Op1C some other power of two, convert: +      KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext); + +      APInt KnownZeroMask(~Known.Zero); +      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? +        if (!DoTransform) return Cmp; + +        bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE; +        if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) { +          // (X&4) == 2 --> false +          // (X&4) != 2 --> true +          Constant *Res = ConstantInt::get(Zext.getType(), isNE); +          return replaceInstUsesWith(Zext, Res); +        } + +        uint32_t ShAmt = KnownZeroMask.logBase2(); +        Value *In = Cmp->getOperand(0); +        if (ShAmt) { +          // Perform a logical shr by shiftamt. +          // Insert the shift to put the result in the low bit. +          In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt), +                                  In->getName() + ".lobit"); +        } + +        if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit. +          Constant *One = ConstantInt::get(In->getType(), 1); +          In = Builder.CreateXor(In, One); +        } + +        if (Zext.getType() == In->getType()) +          return replaceInstUsesWith(Zext, In); + +        Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false); +        return replaceInstUsesWith(Zext, IntCast); +      } +    } +  } + +  // icmp ne A, B is equal to xor A, B when A and B only really have one bit. +  // It is also profitable to transform icmp eq into not(xor(A, B)) because that +  // may lead to additional simplifications. +  if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) { +    if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) { +      Value *LHS = Cmp->getOperand(0); +      Value *RHS = Cmp->getOperand(1); + +      KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext); +      KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext); + +      if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) { +        APInt KnownBits = KnownLHS.Zero | KnownLHS.One; +        APInt UnknownBit = ~KnownBits; +        if (UnknownBit.countPopulation() == 1) { +          if (!DoTransform) return Cmp; + +          Value *Result = Builder.CreateXor(LHS, RHS); + +          // Mask off any bits that are set and won't be shifted away. +          if (KnownLHS.One.uge(UnknownBit)) +            Result = Builder.CreateAnd(Result, +                                        ConstantInt::get(ITy, UnknownBit)); + +          // Shift the bit we're testing down to the lsb. +          Result = Builder.CreateLShr( +               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); + +          if (Cmp->getPredicate() == ICmpInst::ICMP_EQ) +            Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1)); +          Result->takeName(Cmp); +          return replaceInstUsesWith(Zext, Result); +        } +      } +    } +  } + +  return nullptr; +} + +/// Determine if the specified value can be computed in the specified wider type +/// and produce the same low bits. If not, return false. +/// +/// If this function returns true, it can also return a non-zero number of bits +/// (in BitsToClear) which indicates that the value it computes is correct for +/// the zero extend, but that the additional BitsToClear bits need to be zero'd +/// out.  For example, to promote something like: +/// +///   %B = trunc i64 %A to i32 +///   %C = lshr i32 %B, 8 +///   %E = zext i32 %C to i64 +/// +/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be +/// set to 8 to indicate that the promoted value needs to have bits 24-31 +/// cleared in addition to bits 32-63.  Since an 'and' will be generated to +/// clear the top bits anyway, doing this has no extra cost. +/// +/// This function works on both vectors and scalars. +static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, +                             InstCombiner &IC, Instruction *CxtI) { +  BitsToClear = 0; +  if (canAlwaysEvaluateInType(V, Ty)) +    return true; +  if (canNotEvaluateInType(V, Ty)) +    return false; + +  auto *I = cast<Instruction>(V); +  unsigned Tmp; +  switch (I->getOpcode()) { +  case Instruction::ZExt:  // zext(zext(x)) -> zext(x). +  case Instruction::SExt:  // zext(sext(x)) -> sext(x). +  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) +    return true; +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: +    if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || +        !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) +      return false; +    // These can all be promoted if neither operand has 'bits to clear'. +    if (BitsToClear == 0 && Tmp == 0) +      return true; + +    // If the operation is an AND/OR/XOR and the bits to clear are zero in the +    // other side, BitsToClear is ok. +    if (Tmp == 0 && I->isBitwiseLogicOp()) { +      // We use MaskedValueIsZero here for generality, but the case we care +      // about the most is constant RHS. +      unsigned VSize = V->getType()->getScalarSizeInBits(); +      if (IC.MaskedValueIsZero(I->getOperand(1), +                               APInt::getHighBitsSet(VSize, BitsToClear), +                               0, CxtI)) { +        // If this is an And instruction and all of the BitsToClear are +        // known to be zero we can reset BitsToClear. +        if (I->getOpcode() == Instruction::And) +          BitsToClear = 0; +        return true; +      } +    } + +    // Otherwise, we don't know how to analyze this BitsToClear case yet. +    return false; + +  case Instruction::Shl: { +    // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the +    // upper bits we can reduce BitsToClear by the shift amount. +    const APInt *Amt; +    if (match(I->getOperand(1), m_APInt(Amt))) { +      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) +        return false; +      uint64_t ShiftAmt = Amt->getZExtValue(); +      BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; +      return true; +    } +    return false; +  } +  case Instruction::LShr: { +    // We can promote lshr(x, cst) if we can promote x.  This requires the +    // ultimate 'and' to clear out the high zero bits we're clearing out though. +    const APInt *Amt; +    if (match(I->getOperand(1), m_APInt(Amt))) { +      if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) +        return false; +      BitsToClear += Amt->getZExtValue(); +      if (BitsToClear > V->getType()->getScalarSizeInBits()) +        BitsToClear = V->getType()->getScalarSizeInBits(); +      return true; +    } +    // Cannot promote variable LSHR. +    return false; +  } +  case Instruction::Select: +    if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || +        !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || +        // TODO: If important, we could handle the case when the BitsToClear are +        // known zero in the disagreeing side. +        Tmp != BitsToClear) +      return false; +    return true; + +  case Instruction::PHI: { +    // We can change a phi if we can change all operands.  Note that we never +    // get into trouble with cyclic PHIs here because we only consider +    // instructions with a single use. +    PHINode *PN = cast<PHINode>(I); +    if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) +      return false; +    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) +      if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || +          // TODO: If important, we could handle the case when the BitsToClear +          // are known zero in the disagreeing input. +          Tmp != BitsToClear) +        return false; +    return true; +  } +  default: +    // TODO: Can handle more cases here. +    return false; +  } +} + +Instruction *InstCombiner::visitZExt(ZExtInst &CI) { +  // If this zero extend is only used by a truncate, let the truncate be +  // eliminated before we try to optimize this zext. +  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) +    return nullptr; + +  // If one of the common conversion will work, do it. +  if (Instruction *Result = commonCastTransforms(CI)) +    return Result; + +  Value *Src = CI.getOperand(0); +  Type *SrcTy = Src->getType(), *DestTy = CI.getType(); + +  // Try to extend the entire expression tree to the wide destination type. +  unsigned BitsToClear; +  if (shouldChangeType(SrcTy, DestTy) && +      canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { +    assert(BitsToClear <= SrcTy->getScalarSizeInBits() && +           "Can't clear more bits than in SrcTy"); + +    // Okay, we can transform this!  Insert the new expression now. +    LLVM_DEBUG( +        dbgs() << "ICE: EvaluateInDifferentType converting expression type" +                  " to avoid zero extend: " +               << CI << '\n'); +    Value *Res = EvaluateInDifferentType(Src, DestTy, false); +    assert(Res->getType() == DestTy); + +    // Preserve debug values referring to Src if the zext is its last use. +    if (auto *SrcOp = dyn_cast<Instruction>(Src)) +      if (SrcOp->hasOneUse()) +        replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT); + +    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; +    uint32_t DestBitSize = DestTy->getScalarSizeInBits(); + +    // If the high bits are already filled with zeros, just replace this +    // cast with the result. +    if (MaskedValueIsZero(Res, +                          APInt::getHighBitsSet(DestBitSize, +                                                DestBitSize-SrcBitsKept), +                             0, &CI)) +      return replaceInstUsesWith(CI, Res); + +    // We need to emit an AND to clear the high bits. +    Constant *C = ConstantInt::get(Res->getType(), +                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); +    return BinaryOperator::CreateAnd(Res, C); +  } + +  // If this is a TRUNC followed by a ZEXT then we are dealing with integral +  // types and if the sizes are just right we can convert this into a logical +  // 'and' which will be much cheaper than the pair of casts. +  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast +    // TODO: Subsume this into EvaluateInDifferentType. + +    // Get the sizes of the types involved.  We know that the intermediate type +    // will be smaller than A or C, but don't know the relation between A and C. +    Value *A = CSrc->getOperand(0); +    unsigned SrcSize = A->getType()->getScalarSizeInBits(); +    unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); +    unsigned DstSize = CI.getType()->getScalarSizeInBits(); +    // If we're actually extending zero bits, then if +    // SrcSize <  DstSize: zext(a & mask) +    // SrcSize == DstSize: a & mask +    // SrcSize  > DstSize: trunc(a) & mask +    if (SrcSize < DstSize) { +      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); +      Constant *AndConst = ConstantInt::get(A->getType(), AndValue); +      Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask"); +      return new ZExtInst(And, CI.getType()); +    } + +    if (SrcSize == DstSize) { +      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); +      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), +                                                           AndValue)); +    } +    if (SrcSize > DstSize) { +      Value *Trunc = Builder.CreateTrunc(A, CI.getType()); +      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); +      return BinaryOperator::CreateAnd(Trunc, +                                       ConstantInt::get(Trunc->getType(), +                                                        AndValue)); +    } +  } + +  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src)) +    return transformZExtICmp(Cmp, CI); + +  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); +  if (SrcI && SrcI->getOpcode() == Instruction::Or) { +    // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one +    // of the (zext icmp) can be eliminated. If so, immediately perform the +    // according elimination. +    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); +    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); +    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && +        (transformZExtICmp(LHS, CI, false) || +         transformZExtICmp(RHS, CI, false))) { +      // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) +      Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName()); +      Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName()); +      Value *Or = Builder.CreateOr(LCast, RCast, CI.getName()); +      if (auto *OrInst = dyn_cast<Instruction>(Or)) +        Builder.SetInsertPoint(OrInst); + +      // Perform the elimination. +      if (auto *LZExt = dyn_cast<ZExtInst>(LCast)) +        transformZExtICmp(LHS, *LZExt); +      if (auto *RZExt = dyn_cast<ZExtInst>(RCast)) +        transformZExtICmp(RHS, *RZExt); + +      return replaceInstUsesWith(CI, Or); +    } +  } + +  // zext(trunc(X) & C) -> (X & zext(C)). +  Constant *C; +  Value *X; +  if (SrcI && +      match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && +      X->getType() == CI.getType()) +    return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); + +  // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). +  Value *And; +  if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && +      match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && +      X->getType() == CI.getType()) { +    Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); +    return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC); +  } + +  return nullptr; +} + +/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp. +Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { +  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); +  ICmpInst::Predicate Pred = ICI->getPredicate(); + +  // Don't bother if Op1 isn't of vector or integer type. +  if (!Op1->getType()->isIntOrIntVectorTy()) +    return nullptr; + +  if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) || +      (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) { +    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative +    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive +    Value *Sh = ConstantInt::get(Op0->getType(), +                                 Op0->getType()->getScalarSizeInBits() - 1); +    Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit"); +    if (In->getType() != CI.getType()) +      In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/); + +    if (Pred == ICmpInst::ICMP_SGT) +      In = Builder.CreateNot(In, In->getName() + ".not"); +    return replaceInstUsesWith(CI, In); +  } + +  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { +    // If we know that only one bit of the LHS of the icmp can be set and we +    // have an equality comparison with zero or a power of 2, we can transform +    // the icmp and sext into bitwise/integer operations. +    if (ICI->hasOneUse() && +        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ +      KnownBits Known = computeKnownBits(Op0, 0, &CI); + +      APInt KnownZeroMask(~Known.Zero); +      if (KnownZeroMask.isPowerOf2()) { +        Value *In = ICI->getOperand(0); + +        // If the icmp tests for a known zero bit we can constant fold it. +        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { +          Value *V = Pred == ICmpInst::ICMP_NE ? +                       ConstantInt::getAllOnesValue(CI.getType()) : +                       ConstantInt::getNullValue(CI.getType()); +          return replaceInstUsesWith(CI, V); +        } + +        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { +          // sext ((x & 2^n) == 0)   -> (x >> n) - 1 +          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 +          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); +          // Perform a right shift to place the desired bit in the LSB. +          if (ShiftAmt) +            In = Builder.CreateLShr(In, +                                    ConstantInt::get(In->getType(), ShiftAmt)); + +          // At this point "In" is either 1 or 0. Subtract 1 to turn +          // {1, 0} -> {0, -1}. +          In = Builder.CreateAdd(In, +                                 ConstantInt::getAllOnesValue(In->getType()), +                                 "sext"); +        } else { +          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1 +          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 +          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); +          // Perform a left shift to place the desired bit in the MSB. +          if (ShiftAmt) +            In = Builder.CreateShl(In, +                                   ConstantInt::get(In->getType(), ShiftAmt)); + +          // Distribute the bit over the whole bit width. +          In = Builder.CreateAShr(In, ConstantInt::get(In->getType(), +                                  KnownZeroMask.getBitWidth() - 1), "sext"); +        } + +        if (CI.getType() == In->getType()) +          return replaceInstUsesWith(CI, In); +        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); +      } +    } +  } + +  return nullptr; +} + +/// Return true if we can take the specified value and return it as type Ty +/// without inserting any new casts and without changing the value of the common +/// low bits.  This is used by code that tries to promote integer operations to +/// a wider types will allow us to eliminate the extension. +/// +/// This function works on both vectors and scalars. +/// +static bool canEvaluateSExtd(Value *V, Type *Ty) { +  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && +         "Can't sign extend type to a smaller type"); +  if (canAlwaysEvaluateInType(V, Ty)) +    return true; +  if (canNotEvaluateInType(V, Ty)) +    return false; + +  auto *I = cast<Instruction>(V); +  switch (I->getOpcode()) { +  case Instruction::SExt:  // sext(sext(x)) -> sext(x) +  case Instruction::ZExt:  // sext(zext(x)) -> zext(x) +  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) +    return true; +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Mul: +    // These operators can all arbitrarily be extended if their inputs can. +    return canEvaluateSExtd(I->getOperand(0), Ty) && +           canEvaluateSExtd(I->getOperand(1), Ty); + +  //case Instruction::Shl:   TODO +  //case Instruction::LShr:  TODO + +  case Instruction::Select: +    return canEvaluateSExtd(I->getOperand(1), Ty) && +           canEvaluateSExtd(I->getOperand(2), Ty); + +  case Instruction::PHI: { +    // We can change a phi if we can change all operands.  Note that we never +    // get into trouble with cyclic PHIs here because we only consider +    // instructions with a single use. +    PHINode *PN = cast<PHINode>(I); +    for (Value *IncValue : PN->incoming_values()) +      if (!canEvaluateSExtd(IncValue, Ty)) return false; +    return true; +  } +  default: +    // TODO: Can handle more cases here. +    break; +  } + +  return false; +} + +Instruction *InstCombiner::visitSExt(SExtInst &CI) { +  // If this sign extend is only used by a truncate, let the truncate be +  // eliminated before we try to optimize this sext. +  if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) +    return nullptr; + +  if (Instruction *I = commonCastTransforms(CI)) +    return I; + +  Value *Src = CI.getOperand(0); +  Type *SrcTy = Src->getType(), *DestTy = CI.getType(); + +  // If we know that the value being extended is positive, we can use a zext +  // instead. +  KnownBits Known = computeKnownBits(Src, 0, &CI); +  if (Known.isNonNegative()) +    return CastInst::Create(Instruction::ZExt, Src, DestTy); + +  // Try to extend the entire expression tree to the wide destination type. +  if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) { +    // Okay, we can transform this!  Insert the new expression now. +    LLVM_DEBUG( +        dbgs() << "ICE: EvaluateInDifferentType converting expression type" +                  " to avoid sign extend: " +               << CI << '\n'); +    Value *Res = EvaluateInDifferentType(Src, DestTy, true); +    assert(Res->getType() == DestTy); + +    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); +    uint32_t DestBitSize = DestTy->getScalarSizeInBits(); + +    // If the high bits are already filled with sign bit, just replace this +    // cast with the result. +    if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) +      return replaceInstUsesWith(CI, Res); + +    // We need to emit a shl + ashr to do the sign extend. +    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); +    return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"), +                                      ShAmt); +  } + +  // If the input is a trunc from the destination type, then turn sext(trunc(x)) +  // into shifts. +  Value *X; +  if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) { +    // sext(trunc(X)) --> ashr(shl(X, C), C) +    unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); +    unsigned DestBitSize = DestTy->getScalarSizeInBits(); +    Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize); +    return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt); +  } + +  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) +    return transformSExtICmp(ICI, CI); + +  // If the input is a shl/ashr pair of a same constant, then this is a sign +  // extension from a smaller value.  If we could trust arbitrary bitwidth +  // integers, we could turn this into a truncate to the smaller bit and then +  // use a sext for the whole extension.  Since we don't, look deeper and check +  // for a truncate.  If the source and dest are the same type, eliminate the +  // trunc and extend and just do shifts.  For example, turn: +  //   %a = trunc i32 %i to i8 +  //   %b = shl i8 %a, 6 +  //   %c = ashr i8 %b, 6 +  //   %d = sext i8 %c to i32 +  // into: +  //   %a = shl i32 %i, 30 +  //   %d = ashr i32 %a, 30 +  Value *A = nullptr; +  // TODO: Eventually this could be subsumed by EvaluateInDifferentType. +  Constant *BA = nullptr, *CA = nullptr; +  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)), +                        m_Constant(CA))) && +      BA == CA && A->getType() == CI.getType()) { +    unsigned MidSize = Src->getType()->getScalarSizeInBits(); +    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); +    Constant *SizeDiff = ConstantInt::get(CA->getType(), SrcDstSize - MidSize); +    Constant *ShAmt = ConstantExpr::getAdd(CA, SizeDiff); +    Constant *ShAmtExt = ConstantExpr::getSExt(ShAmt, CI.getType()); +    A = Builder.CreateShl(A, ShAmtExt, CI.getName()); +    return BinaryOperator::CreateAShr(A, ShAmtExt); +  } + +  return nullptr; +} + + +/// Return a Constant* for the specified floating-point constant if it fits +/// in the specified FP type without changing its value. +static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { +  bool losesInfo; +  APFloat F = CFP->getValueAPF(); +  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); +  return !losesInfo; +} + +static Type *shrinkFPConstant(ConstantFP *CFP) { +  if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext())) +    return nullptr;  // No constant folding of this. +  // See if the value can be truncated to half and then reextended. +  if (fitsInFPType(CFP, APFloat::IEEEhalf())) +    return Type::getHalfTy(CFP->getContext()); +  // See if the value can be truncated to float and then reextended. +  if (fitsInFPType(CFP, APFloat::IEEEsingle())) +    return Type::getFloatTy(CFP->getContext()); +  if (CFP->getType()->isDoubleTy()) +    return nullptr;  // Won't shrink. +  if (fitsInFPType(CFP, APFloat::IEEEdouble())) +    return Type::getDoubleTy(CFP->getContext()); +  // Don't try to shrink to various long double types. +  return nullptr; +} + +// Determine if this is a vector of ConstantFPs and if so, return the minimal +// type we can safely truncate all elements to. +// TODO: Make these support undef elements. +static Type *shrinkFPConstantVector(Value *V) { +  auto *CV = dyn_cast<Constant>(V); +  auto *CVVTy = dyn_cast<VectorType>(V->getType()); +  if (!CV || !CVVTy) +    return nullptr; + +  Type *MinType = nullptr; + +  unsigned NumElts = CVVTy->getNumElements(); +  for (unsigned i = 0; i != NumElts; ++i) { +    auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); +    if (!CFP) +      return nullptr; + +    Type *T = shrinkFPConstant(CFP); +    if (!T) +      return nullptr; + +    // If we haven't found a type yet or this type has a larger mantissa than +    // our previous type, this is our new minimal type. +    if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth()) +      MinType = T; +  } + +  // Make a vector type from the minimal type. +  return FixedVectorType::get(MinType, NumElts); +} + +/// Find the minimum FP type we can safely truncate to. +static Type *getMinimumFPType(Value *V) { +  if (auto *FPExt = dyn_cast<FPExtInst>(V)) +    return FPExt->getOperand(0)->getType(); + +  // If this value is a constant, return the constant in the smallest FP type +  // that can accurately represent it.  This allows us to turn +  // (float)((double)X+2.0) into x+2.0f. +  if (auto *CFP = dyn_cast<ConstantFP>(V)) +    if (Type *T = shrinkFPConstant(CFP)) +      return T; + +  // Try to shrink a vector of FP constants. +  if (Type *T = shrinkFPConstantVector(V)) +    return T; + +  return V->getType(); +} + +/// Return true if the cast from integer to FP can be proven to be exact for all +/// possible inputs (the conversion does not lose any precision). +static bool isKnownExactCastIntToFP(CastInst &I) { +  CastInst::CastOps Opcode = I.getOpcode(); +  assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) && +         "Unexpected cast"); +  Value *Src = I.getOperand(0); +  Type *SrcTy = Src->getType(); +  Type *FPTy = I.getType(); +  bool IsSigned = Opcode == Instruction::SIToFP; +  int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned; + +  // Easy case - if the source integer type has less bits than the FP mantissa, +  // then the cast must be exact. +  int DestNumSigBits = FPTy->getFPMantissaWidth(); +  if (SrcSize <= DestNumSigBits) +    return true; + +  // Cast from FP to integer and back to FP is independent of the intermediate +  // integer width because of poison on overflow. +  Value *F; +  if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) { +    // If this is uitofp (fptosi F), the source needs an extra bit to avoid +    // potential rounding of negative FP input values. +    int SrcNumSigBits = F->getType()->getFPMantissaWidth(); +    if (!IsSigned && match(Src, m_FPToSI(m_Value()))) +      SrcNumSigBits++; + +    // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal +    // significant bits than the destination (and make sure neither type is +    // weird -- ppc_fp128). +    if (SrcNumSigBits > 0 && DestNumSigBits > 0 && +        SrcNumSigBits <= DestNumSigBits) +      return true; +  } + +  // TODO: +  // Try harder to find if the source integer type has less significant bits. +  // For example, compute number of sign bits or compute low bit mask. +  return false; +} + +Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) { +  if (Instruction *I = commonCastTransforms(FPT)) +    return I; + +  // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to +  // simplify this expression to avoid one or more of the trunc/extend +  // operations if we can do so without changing the numerical results. +  // +  // The exact manner in which the widths of the operands interact to limit +  // what we can and cannot do safely varies from operation to operation, and +  // is explained below in the various case statements. +  Type *Ty = FPT.getType(); +  auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0)); +  if (BO && BO->hasOneUse()) { +    Type *LHSMinType = getMinimumFPType(BO->getOperand(0)); +    Type *RHSMinType = getMinimumFPType(BO->getOperand(1)); +    unsigned OpWidth = BO->getType()->getFPMantissaWidth(); +    unsigned LHSWidth = LHSMinType->getFPMantissaWidth(); +    unsigned RHSWidth = RHSMinType->getFPMantissaWidth(); +    unsigned SrcWidth = std::max(LHSWidth, RHSWidth); +    unsigned DstWidth = Ty->getFPMantissaWidth(); +    switch (BO->getOpcode()) { +      default: break; +      case Instruction::FAdd: +      case Instruction::FSub: +        // For addition and subtraction, the infinitely precise result can +        // essentially be arbitrarily wide; proving that double rounding +        // will not occur because the result of OpI is exact (as we will for +        // FMul, for example) is hopeless.  However, we *can* nonetheless +        // frequently know that double rounding cannot occur (or that it is +        // innocuous) by taking advantage of the specific structure of +        // infinitely-precise results that admit double rounding. +        // +        // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient +        // to represent both sources, we can guarantee that the double +        // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, +        // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." +        // for proof of this fact). +        // +        // Note: Figueroa does not consider the case where DstFormat != +        // SrcFormat.  It's possible (likely even!) that this analysis +        // could be tightened for those cases, but they are rare (the main +        // case of interest here is (float)((double)float + float)). +        if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { +          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); +          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); +          Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS); +          RI->copyFastMathFlags(BO); +          return RI; +        } +        break; +      case Instruction::FMul: +        // For multiplication, the infinitely precise result has at most +        // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient +        // that such a value can be exactly represented, then no double +        // rounding can possibly occur; we can safely perform the operation +        // in the destination format if it can represent both sources. +        if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { +          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); +          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); +          return BinaryOperator::CreateFMulFMF(LHS, RHS, BO); +        } +        break; +      case Instruction::FDiv: +        // For division, we use again use the bound from Figueroa's +        // dissertation.  I am entirely certain that this bound can be +        // tightened in the unbalanced operand case by an analysis based on +        // the diophantine rational approximation bound, but the well-known +        // condition used here is a good conservative first pass. +        // TODO: Tighten bound via rigorous analysis of the unbalanced case. +        if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { +          Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty); +          Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty); +          return BinaryOperator::CreateFDivFMF(LHS, RHS, BO); +        } +        break; +      case Instruction::FRem: { +        // Remainder is straightforward.  Remainder is always exact, so the +        // type of OpI doesn't enter into things at all.  We simply evaluate +        // in whichever source type is larger, then convert to the +        // destination type. +        if (SrcWidth == OpWidth) +          break; +        Value *LHS, *RHS; +        if (LHSWidth == SrcWidth) { +           LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType); +           RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType); +        } else { +           LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType); +           RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType); +        } + +        Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO); +        return CastInst::CreateFPCast(ExactResult, Ty); +      } +    } +  } + +  // (fptrunc (fneg x)) -> (fneg (fptrunc x)) +  Value *X; +  Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0)); +  if (Op && Op->hasOneUse()) { +    // FIXME: The FMF should propagate from the fptrunc, not the source op. +    IRBuilder<>::FastMathFlagGuard FMFG(Builder); +    if (isa<FPMathOperator>(Op)) +      Builder.setFastMathFlags(Op->getFastMathFlags()); + +    if (match(Op, m_FNeg(m_Value(X)))) { +      Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty); + +      return UnaryOperator::CreateFNegFMF(InnerTrunc, Op); +    } + +    // If we are truncating a select that has an extended operand, we can +    // narrow the other operand and do the select as a narrow op. +    Value *Cond, *X, *Y; +    if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) && +        X->getType() == Ty) { +      // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y) +      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); +      Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op); +      return replaceInstUsesWith(FPT, Sel); +    } +    if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) && +        X->getType() == Ty) { +      // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X +      Value *NarrowY = Builder.CreateFPTrunc(Y, Ty); +      Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op); +      return replaceInstUsesWith(FPT, Sel); +    } +  } + +  if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) { +    switch (II->getIntrinsicID()) { +    default: break; +    case Intrinsic::ceil: +    case Intrinsic::fabs: +    case Intrinsic::floor: +    case Intrinsic::nearbyint: +    case Intrinsic::rint: +    case Intrinsic::round: +    case Intrinsic::roundeven: +    case Intrinsic::trunc: { +      Value *Src = II->getArgOperand(0); +      if (!Src->hasOneUse()) +        break; + +      // Except for fabs, this transformation requires the input of the unary FP +      // operation to be itself an fpext from the type to which we're +      // truncating. +      if (II->getIntrinsicID() != Intrinsic::fabs) { +        FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src); +        if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty) +          break; +      } + +      // Do unary FP operation on smaller type. +      // (fptrunc (fabs x)) -> (fabs (fptrunc x)) +      Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty); +      Function *Overload = Intrinsic::getDeclaration(FPT.getModule(), +                                                     II->getIntrinsicID(), Ty); +      SmallVector<OperandBundleDef, 1> OpBundles; +      II->getOperandBundlesAsDefs(OpBundles); +      CallInst *NewCI = +          CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName()); +      NewCI->copyFastMathFlags(II); +      return NewCI; +    } +    } +  } + +  if (Instruction *I = shrinkInsertElt(FPT, Builder)) +    return I; + +  Value *Src = FPT.getOperand(0); +  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { +    auto *FPCast = cast<CastInst>(Src); +    if (isKnownExactCastIntToFP(*FPCast)) +      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); +  } + +  return nullptr; +} + +Instruction *InstCombiner::visitFPExt(CastInst &FPExt) { +  // If the source operand is a cast from integer to FP and known exact, then +  // cast the integer operand directly to the destination type. +  Type *Ty = FPExt.getType(); +  Value *Src = FPExt.getOperand(0); +  if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) { +    auto *FPCast = cast<CastInst>(Src); +    if (isKnownExactCastIntToFP(*FPCast)) +      return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty); +  } + +  return commonCastTransforms(FPExt); +} + +/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X) +/// This is safe if the intermediate type has enough bits in its mantissa to +/// accurately represent all values of X.  For example, this won't work with +/// i64 -> float -> i64. +Instruction *InstCombiner::foldItoFPtoI(CastInst &FI) { +  if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0))) +    return nullptr; + +  auto *OpI = cast<CastInst>(FI.getOperand(0)); +  Value *X = OpI->getOperand(0); +  Type *XType = X->getType(); +  Type *DestType = FI.getType(); +  bool IsOutputSigned = isa<FPToSIInst>(FI); + +  // Since we can assume the conversion won't overflow, our decision as to +  // whether the input will fit in the float should depend on the minimum +  // of the input range and output range. + +  // This means this is also safe for a signed input and unsigned output, since +  // a negative input would lead to undefined behavior. +  if (!isKnownExactCastIntToFP(*OpI)) { +    // The first cast may not round exactly based on the source integer width +    // and FP width, but the overflow UB rules can still allow this to fold. +    // If the destination type is narrow, that means the intermediate FP value +    // must be large enough to hold the source value exactly. +    // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior. +    int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned; +    if (OutputSize > OpI->getType()->getFPMantissaWidth()) +      return nullptr; +  } + +  if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) { +    bool IsInputSigned = isa<SIToFPInst>(OpI); +    if (IsInputSigned && IsOutputSigned) +      return new SExtInst(X, DestType); +    return new ZExtInst(X, DestType); +  } +  if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits()) +    return new TruncInst(X, DestType); + +  assert(XType == DestType && "Unexpected types for int to FP to int casts"); +  return replaceInstUsesWith(FI, X); +} + +Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { +  if (Instruction *I = foldItoFPtoI(FI)) +    return I; + +  return commonCastTransforms(FI); +} + +Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { +  if (Instruction *I = foldItoFPtoI(FI)) +    return I; + +  return commonCastTransforms(FI); +} + +Instruction *InstCombiner::visitUIToFP(CastInst &CI) { +  return commonCastTransforms(CI); +} + +Instruction *InstCombiner::visitSIToFP(CastInst &CI) { +  return commonCastTransforms(CI); +} + +Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { +  // If the source integer type is not the intptr_t type for this target, do a +  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the +  // cast to be exposed to other transforms. +  unsigned AS = CI.getAddressSpace(); +  if (CI.getOperand(0)->getType()->getScalarSizeInBits() != +      DL.getPointerSizeInBits(AS)) { +    Type *Ty = DL.getIntPtrType(CI.getContext(), AS); +    // Handle vectors of pointers. +    if (auto *CIVTy = dyn_cast<VectorType>(CI.getType())) +      Ty = VectorType::get(Ty, CIVTy->getElementCount()); + +    Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty); +    return new IntToPtrInst(P, CI.getType()); +  } + +  if (Instruction *I = commonCastTransforms(CI)) +    return I; + +  return nullptr; +} + +/// Implement the transforms for cast of pointer (bitcast/ptrtoint) +Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { +  Value *Src = CI.getOperand(0); + +  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { +    // If casting the result of a getelementptr instruction with no offset, turn +    // this into a cast of the original pointer! +    if (GEP->hasAllZeroIndices() && +        // If CI is an addrspacecast and GEP changes the poiner type, merging +        // GEP into CI would undo canonicalizing addrspacecast with different +        // pointer types, causing infinite loops. +        (!isa<AddrSpaceCastInst>(CI) || +         GEP->getType() == GEP->getPointerOperandType())) { +      // Changing the cast operand is usually not a good idea but it is safe +      // here because the pointer operand is being replaced with another +      // pointer operand so the opcode doesn't need to change. +      return replaceOperand(CI, 0, GEP->getOperand(0)); +    } +  } + +  return commonCastTransforms(CI); +} + +Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { +  // If the destination integer type is not the intptr_t type for this target, +  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast +  // to be exposed to other transforms. + +  Type *Ty = CI.getType(); +  unsigned AS = CI.getPointerAddressSpace(); + +  if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) +    return commonPointerCastTransforms(CI); + +  Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS); +  if (auto *VTy = dyn_cast<VectorType>(Ty)) { +    // Handle vectors of pointers. +    // FIXME: what should happen for scalable vectors? +    PtrTy = FixedVectorType::get(PtrTy, VTy->getNumElements()); +  } + +  Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy); +  return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); +} + +/// This input value (which is known to have vector type) is being zero extended +/// or truncated to the specified vector type. Since the zext/trunc is done +/// using an integer type, we have a (bitcast(cast(bitcast))) pattern, +/// endianness will impact which end of the vector that is extended or +/// truncated. +/// +/// A vector is always stored with index 0 at the lowest address, which +/// corresponds to the most significant bits for a big endian stored integer and +/// the least significant bits for little endian. A trunc/zext of an integer +/// impacts the big end of the integer. Thus, we need to add/remove elements at +/// the front of the vector for big endian targets, and the back of the vector +/// for little endian targets. +/// +/// Try to replace it with a shuffle (and vector/vector bitcast) if possible. +/// +/// The source and destination vector types may have different element types. +static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal, +                                                            VectorType *DestTy, +                                                            InstCombiner &IC) { +  // We can only do this optimization if the output is a multiple of the input +  // element size, or the input is a multiple of the output element size. +  // Convert the input type to have the same element type as the output. +  VectorType *SrcTy = cast<VectorType>(InVal->getType()); + +  if (SrcTy->getElementType() != DestTy->getElementType()) { +    // The input types don't need to be identical, but for now they must be the +    // same size.  There is no specific reason we couldn't handle things like +    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten +    // there yet. +    if (SrcTy->getElementType()->getPrimitiveSizeInBits() != +        DestTy->getElementType()->getPrimitiveSizeInBits()) +      return nullptr; + +    SrcTy = +        FixedVectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); +    InVal = IC.Builder.CreateBitCast(InVal, SrcTy); +  } + +  bool IsBigEndian = IC.getDataLayout().isBigEndian(); +  unsigned SrcElts = SrcTy->getNumElements(); +  unsigned DestElts = DestTy->getNumElements(); + +  assert(SrcElts != DestElts && "Element counts should be different."); + +  // Now that the element types match, get the shuffle mask and RHS of the +  // shuffle to use, which depends on whether we're increasing or decreasing the +  // size of the input. +  SmallVector<int, 16> ShuffleMaskStorage; +  ArrayRef<int> ShuffleMask; +  Value *V2; + +  // Produce an identify shuffle mask for the src vector. +  ShuffleMaskStorage.resize(SrcElts); +  std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0); + +  if (SrcElts > DestElts) { +    // If we're shrinking the number of elements (rewriting an integer +    // truncate), just shuffle in the elements corresponding to the least +    // significant bits from the input and use undef as the second shuffle +    // input. +    V2 = UndefValue::get(SrcTy); +    // Make sure the shuffle mask selects the "least significant bits" by +    // keeping elements from back of the src vector for big endian, and from the +    // front for little endian. +    ShuffleMask = ShuffleMaskStorage; +    if (IsBigEndian) +      ShuffleMask = ShuffleMask.take_back(DestElts); +    else +      ShuffleMask = ShuffleMask.take_front(DestElts); +  } else { +    // If we're increasing the number of elements (rewriting an integer zext), +    // shuffle in all of the elements from InVal. Fill the rest of the result +    // elements with zeros from a constant zero. +    V2 = Constant::getNullValue(SrcTy); +    // Use first elt from V2 when indicating zero in the shuffle mask. +    uint32_t NullElt = SrcElts; +    // Extend with null values in the "most significant bits" by adding elements +    // in front of the src vector for big endian, and at the back for little +    // endian. +    unsigned DeltaElts = DestElts - SrcElts; +    if (IsBigEndian) +      ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt); +    else +      ShuffleMaskStorage.append(DeltaElts, NullElt); +    ShuffleMask = ShuffleMaskStorage; +  } + +  return new ShuffleVectorInst(InVal, V2, ShuffleMask); +} + +static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { +  return Value % Ty->getPrimitiveSizeInBits() == 0; +} + +static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { +  return Value / Ty->getPrimitiveSizeInBits(); +} + +/// V is a value which is inserted into a vector of VecEltTy. +/// Look through the value to see if we can decompose it into +/// insertions into the vector.  See the example in the comment for +/// OptimizeIntegerToVectorInsertions for the pattern this handles. +/// The type of V is always a non-zero multiple of VecEltTy's size. +/// Shift is the number of bits between the lsb of V and the lsb of +/// the vector. +/// +/// This returns false if the pattern can't be matched or true if it can, +/// filling in Elements with the elements found here. +static bool collectInsertionElements(Value *V, unsigned Shift, +                                     SmallVectorImpl<Value *> &Elements, +                                     Type *VecEltTy, bool isBigEndian) { +  assert(isMultipleOfTypeSize(Shift, VecEltTy) && +         "Shift should be a multiple of the element type size"); + +  // Undef values never contribute useful bits to the result. +  if (isa<UndefValue>(V)) return true; + +  // If we got down to a value of the right type, we win, try inserting into the +  // right element. +  if (V->getType() == VecEltTy) { +    // Inserting null doesn't actually insert any elements. +    if (Constant *C = dyn_cast<Constant>(V)) +      if (C->isNullValue()) +        return true; + +    unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); +    if (isBigEndian) +      ElementIndex = Elements.size() - ElementIndex - 1; + +    // Fail if multiple elements are inserted into this slot. +    if (Elements[ElementIndex]) +      return false; + +    Elements[ElementIndex] = V; +    return true; +  } + +  if (Constant *C = dyn_cast<Constant>(V)) { +    // Figure out the # elements this provides, and bitcast it or slice it up +    // as required. +    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), +                                        VecEltTy); +    // If the constant is the size of a vector element, we just need to bitcast +    // it to the right type so it gets properly inserted. +    if (NumElts == 1) +      return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), +                                      Shift, Elements, VecEltTy, isBigEndian); + +    // Okay, this is a constant that covers multiple elements.  Slice it up into +    // pieces and insert each element-sized piece into the vector. +    if (!isa<IntegerType>(C->getType())) +      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), +                                       C->getType()->getPrimitiveSizeInBits())); +    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); +    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); + +    for (unsigned i = 0; i != NumElts; ++i) { +      unsigned ShiftI = Shift+i*ElementSize; +      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), +                                                                  ShiftI)); +      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); +      if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy, +                                    isBigEndian)) +        return false; +    } +    return true; +  } + +  if (!V->hasOneUse()) return false; + +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I) return false; +  switch (I->getOpcode()) { +  default: return false; // Unhandled case. +  case Instruction::BitCast: +    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, +                                    isBigEndian); +  case Instruction::ZExt: +    if (!isMultipleOfTypeSize( +                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(), +                              VecEltTy)) +      return false; +    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, +                                    isBigEndian); +  case Instruction::Or: +    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, +                                    isBigEndian) && +           collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy, +                                    isBigEndian); +  case Instruction::Shl: { +    // Must be shifting by a constant that is a multiple of the element size. +    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); +    if (!CI) return false; +    Shift += CI->getZExtValue(); +    if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; +    return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy, +                                    isBigEndian); +  } + +  } +} + + +/// If the input is an 'or' instruction, we may be doing shifts and ors to +/// assemble the elements of the vector manually. +/// Try to rip the code out and replace it with insertelements.  This is to +/// optimize code like this: +/// +///    %tmp37 = bitcast float %inc to i32 +///    %tmp38 = zext i32 %tmp37 to i64 +///    %tmp31 = bitcast float %inc5 to i32 +///    %tmp32 = zext i32 %tmp31 to i64 +///    %tmp33 = shl i64 %tmp32, 32 +///    %ins35 = or i64 %tmp33, %tmp38 +///    %tmp43 = bitcast i64 %ins35 to <2 x float> +/// +/// Into two insertelements that do "buildvector{%inc, %inc5}". +static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI, +                                                InstCombiner &IC) { +  VectorType *DestVecTy = cast<VectorType>(CI.getType()); +  Value *IntInput = CI.getOperand(0); + +  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); +  if (!collectInsertionElements(IntInput, 0, Elements, +                                DestVecTy->getElementType(), +                                IC.getDataLayout().isBigEndian())) +    return nullptr; + +  // If we succeeded, we know that all of the element are specified by Elements +  // or are zero if Elements has a null entry.  Recast this as a set of +  // insertions. +  Value *Result = Constant::getNullValue(CI.getType()); +  for (unsigned i = 0, e = Elements.size(); i != e; ++i) { +    if (!Elements[i]) continue;  // Unset element. + +    Result = IC.Builder.CreateInsertElement(Result, Elements[i], +                                            IC.Builder.getInt32(i)); +  } + +  return Result; +} + +/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the +/// vector followed by extract element. The backend tends to handle bitcasts of +/// vectors better than bitcasts of scalars because vector registers are +/// usually not type-specific like scalar integer or scalar floating-point. +static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast, +                                              InstCombiner &IC) { +  // TODO: Create and use a pattern matcher for ExtractElementInst. +  auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0)); +  if (!ExtElt || !ExtElt->hasOneUse()) +    return nullptr; + +  // The bitcast must be to a vectorizable type, otherwise we can't make a new +  // type to extract from. +  Type *DestType = BitCast.getType(); +  if (!VectorType::isValidElementType(DestType)) +    return nullptr; + +  unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements(); +  auto *NewVecType = FixedVectorType::get(DestType, NumElts); +  auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(), +                                         NewVecType, "bc"); +  return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand()); +} + +/// Change the type of a bitwise logic operation if we can eliminate a bitcast. +static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast, +                                            InstCombiner::BuilderTy &Builder) { +  Type *DestTy = BitCast.getType(); +  BinaryOperator *BO; +  if (!DestTy->isIntOrIntVectorTy() || +      !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) || +      !BO->isBitwiseLogicOp()) +    return nullptr; + +  // FIXME: This transform is restricted to vector types to avoid backend +  // problems caused by creating potentially illegal operations. If a fix-up is +  // added to handle that situation, we can remove this check. +  if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy()) +    return nullptr; + +  Value *X; +  if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) && +      X->getType() == DestTy && !isa<Constant>(X)) { +    // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y)) +    Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy); +    return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1); +  } + +  if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) && +      X->getType() == DestTy && !isa<Constant>(X)) { +    // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X) +    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); +    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X); +  } + +  // Canonicalize vector bitcasts to come before vector bitwise logic with a +  // constant. This eases recognition of special constants for later ops. +  // Example: +  // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b +  Constant *C; +  if (match(BO->getOperand(1), m_Constant(C))) { +    // bitcast (logic X, C) --> logic (bitcast X, C') +    Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy); +    Value *CastedC = Builder.CreateBitCast(C, DestTy); +    return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC); +  } + +  return nullptr; +} + +/// Change the type of a select if we can eliminate a bitcast. +static Instruction *foldBitCastSelect(BitCastInst &BitCast, +                                      InstCombiner::BuilderTy &Builder) { +  Value *Cond, *TVal, *FVal; +  if (!match(BitCast.getOperand(0), +             m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) +    return nullptr; + +  // A vector select must maintain the same number of elements in its operands. +  Type *CondTy = Cond->getType(); +  Type *DestTy = BitCast.getType(); +  if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { +    if (!DestTy->isVectorTy()) +      return nullptr; +    if (cast<VectorType>(DestTy)->getNumElements() != CondVTy->getNumElements()) +      return nullptr; +  } + +  // FIXME: This transform is restricted from changing the select between +  // scalars and vectors to avoid backend problems caused by creating +  // potentially illegal operations. If a fix-up is added to handle that +  // situation, we can remove this check. +  if (DestTy->isVectorTy() != TVal->getType()->isVectorTy()) +    return nullptr; + +  auto *Sel = cast<Instruction>(BitCast.getOperand(0)); +  Value *X; +  if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && +      !isa<Constant>(X)) { +    // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y)) +    Value *CastedVal = Builder.CreateBitCast(FVal, DestTy); +    return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel); +  } + +  if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy && +      !isa<Constant>(X)) { +    // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X) +    Value *CastedVal = Builder.CreateBitCast(TVal, DestTy); +    return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel); +  } + +  return nullptr; +} + +/// Check if all users of CI are StoreInsts. +static bool hasStoreUsersOnly(CastInst &CI) { +  for (User *U : CI.users()) { +    if (!isa<StoreInst>(U)) +      return false; +  } +  return true; +} + +/// This function handles following case +/// +///     A  ->  B    cast +///     PHI +///     B  ->  A    cast +/// +/// All the related PHI nodes can be replaced by new PHI nodes with type A. +/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN. +Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) { +  // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp. +  if (hasStoreUsersOnly(CI)) +    return nullptr; + +  Value *Src = CI.getOperand(0); +  Type *SrcTy = Src->getType();         // Type B +  Type *DestTy = CI.getType();          // Type A + +  SmallVector<PHINode *, 4> PhiWorklist; +  SmallSetVector<PHINode *, 4> OldPhiNodes; + +  // Find all of the A->B casts and PHI nodes. +  // We need to inspect all related PHI nodes, but PHIs can be cyclic, so +  // OldPhiNodes is used to track all known PHI nodes, before adding a new +  // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first. +  PhiWorklist.push_back(PN); +  OldPhiNodes.insert(PN); +  while (!PhiWorklist.empty()) { +    auto *OldPN = PhiWorklist.pop_back_val(); +    for (Value *IncValue : OldPN->incoming_values()) { +      if (isa<Constant>(IncValue)) +        continue; + +      if (auto *LI = dyn_cast<LoadInst>(IncValue)) { +        // If there is a sequence of one or more load instructions, each loaded +        // value is used as address of later load instruction, bitcast is +        // necessary to change the value type, don't optimize it. For +        // simplicity we give up if the load address comes from another load. +        Value *Addr = LI->getOperand(0); +        if (Addr == &CI || isa<LoadInst>(Addr)) +          return nullptr; +        if (LI->hasOneUse() && LI->isSimple()) +          continue; +        // If a LoadInst has more than one use, changing the type of loaded +        // value may create another bitcast. +        return nullptr; +      } + +      if (auto *PNode = dyn_cast<PHINode>(IncValue)) { +        if (OldPhiNodes.insert(PNode)) +          PhiWorklist.push_back(PNode); +        continue; +      } + +      auto *BCI = dyn_cast<BitCastInst>(IncValue); +      // We can't handle other instructions. +      if (!BCI) +        return nullptr; + +      // Verify it's a A->B cast. +      Type *TyA = BCI->getOperand(0)->getType(); +      Type *TyB = BCI->getType(); +      if (TyA != DestTy || TyB != SrcTy) +        return nullptr; +    } +  } + +  // Check that each user of each old PHI node is something that we can +  // rewrite, so that all of the old PHI nodes can be cleaned up afterwards. +  for (auto *OldPN : OldPhiNodes) { +    for (User *V : OldPN->users()) { +      if (auto *SI = dyn_cast<StoreInst>(V)) { +        if (!SI->isSimple() || SI->getOperand(0) != OldPN) +          return nullptr; +      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { +        // Verify it's a B->A cast. +        Type *TyB = BCI->getOperand(0)->getType(); +        Type *TyA = BCI->getType(); +        if (TyA != DestTy || TyB != SrcTy) +          return nullptr; +      } else if (auto *PHI = dyn_cast<PHINode>(V)) { +        // As long as the user is another old PHI node, then even if we don't +        // rewrite it, the PHI web we're considering won't have any users +        // outside itself, so it'll be dead. +        if (OldPhiNodes.count(PHI) == 0) +          return nullptr; +      } else { +        return nullptr; +      } +    } +  } + +  // For each old PHI node, create a corresponding new PHI node with a type A. +  SmallDenseMap<PHINode *, PHINode *> NewPNodes; +  for (auto *OldPN : OldPhiNodes) { +    Builder.SetInsertPoint(OldPN); +    PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands()); +    NewPNodes[OldPN] = NewPN; +  } + +  // Fill in the operands of new PHI nodes. +  for (auto *OldPN : OldPhiNodes) { +    PHINode *NewPN = NewPNodes[OldPN]; +    for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) { +      Value *V = OldPN->getOperand(j); +      Value *NewV = nullptr; +      if (auto *C = dyn_cast<Constant>(V)) { +        NewV = ConstantExpr::getBitCast(C, DestTy); +      } else if (auto *LI = dyn_cast<LoadInst>(V)) { +        // Explicitly perform load combine to make sure no opposing transform +        // can remove the bitcast in the meantime and trigger an infinite loop. +        Builder.SetInsertPoint(LI); +        NewV = combineLoadToNewType(*LI, DestTy); +        // Remove the old load and its use in the old phi, which itself becomes +        // dead once the whole transform finishes. +        replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); +        eraseInstFromFunction(*LI); +      } else if (auto *BCI = dyn_cast<BitCastInst>(V)) { +        NewV = BCI->getOperand(0); +      } else if (auto *PrevPN = dyn_cast<PHINode>(V)) { +        NewV = NewPNodes[PrevPN]; +      } +      assert(NewV); +      NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j)); +    } +  } + +  // Traverse all accumulated PHI nodes and process its users, +  // which are Stores and BitcCasts. Without this processing +  // NewPHI nodes could be replicated and could lead to extra +  // moves generated after DeSSA. +  // If there is a store with type B, change it to type A. + + +  // Replace users of BitCast B->A with NewPHI. These will help +  // later to get rid off a closure formed by OldPHI nodes. +  Instruction *RetVal = nullptr; +  for (auto *OldPN : OldPhiNodes) { +    PHINode *NewPN = NewPNodes[OldPN]; +    for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) { +      User *V = *It; +      // We may remove this user, advance to avoid iterator invalidation. +      ++It; +      if (auto *SI = dyn_cast<StoreInst>(V)) { +        assert(SI->isSimple() && SI->getOperand(0) == OldPN); +        Builder.SetInsertPoint(SI); +        auto *NewBC = +          cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy)); +        SI->setOperand(0, NewBC); +        Worklist.push(SI); +        assert(hasStoreUsersOnly(*NewBC)); +      } +      else if (auto *BCI = dyn_cast<BitCastInst>(V)) { +        Type *TyB = BCI->getOperand(0)->getType(); +        Type *TyA = BCI->getType(); +        assert(TyA == DestTy && TyB == SrcTy); +        (void) TyA; +        (void) TyB; +        Instruction *I = replaceInstUsesWith(*BCI, NewPN); +        if (BCI == &CI) +          RetVal = I; +      } else if (auto *PHI = dyn_cast<PHINode>(V)) { +        assert(OldPhiNodes.count(PHI) > 0); +        (void) PHI; +      } else { +        llvm_unreachable("all uses should be handled"); +      } +    } +  } + +  return RetVal; +} + +Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { +  // If the operands are integer typed then apply the integer transforms, +  // otherwise just apply the common ones. +  Value *Src = CI.getOperand(0); +  Type *SrcTy = Src->getType(); +  Type *DestTy = CI.getType(); + +  // Get rid of casts from one type to the same type. These are useless and can +  // be replaced by the operand. +  if (DestTy == Src->getType()) +    return replaceInstUsesWith(CI, Src); + +  if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) { +    PointerType *SrcPTy = cast<PointerType>(SrcTy); +    PointerType *DstPTy = cast<PointerType>(DestTy); +    Type *DstElTy = DstPTy->getElementType(); +    Type *SrcElTy = SrcPTy->getElementType(); + +    // Casting pointers between the same type, but with different address spaces +    // is an addrspace cast rather than a bitcast. +    if ((DstElTy == SrcElTy) && +        (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace())) +      return new AddrSpaceCastInst(Src, DestTy); + +    // If we are casting a alloca to a pointer to a type of the same +    // size, rewrite the allocation instruction to allocate the "right" type. +    // There is no need to modify malloc calls because it is their bitcast that +    // needs to be cleaned up. +    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) +      if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) +        return V; + +    // When the type pointed to is not sized the cast cannot be +    // turned into a gep. +    Type *PointeeType = +        cast<PointerType>(Src->getType()->getScalarType())->getElementType(); +    if (!PointeeType->isSized()) +      return nullptr; + +    // If the source and destination are pointers, and this cast is equivalent +    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep. +    // This can enhance SROA and other transforms that want type-safe pointers. +    unsigned NumZeros = 0; +    while (SrcElTy && SrcElTy != DstElTy) { +      SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0); +      ++NumZeros; +    } + +    // If we found a path from the src to dest, create the getelementptr now. +    if (SrcElTy == DstElTy) { +      SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0)); +      GetElementPtrInst *GEP = +          GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs); + +      // If the source pointer is dereferenceable, then assume it points to an +      // allocated object and apply "inbounds" to the GEP. +      bool CanBeNull; +      if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) { +        // In a non-default address space (not 0), a null pointer can not be +        // assumed inbounds, so ignore that case (dereferenceable_or_null). +        // The reason is that 'null' is not treated differently in these address +        // spaces, and we consequently ignore the 'gep inbounds' special case +        // for 'null' which allows 'inbounds' on 'null' if the indices are +        // zeros. +        if (SrcPTy->getAddressSpace() == 0 || !CanBeNull) +          GEP->setIsInBounds(); +      } +      return GEP; +    } +  } + +  if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) { +    // Beware: messing with this target-specific oddity may cause trouble. +    if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) { +      Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType()); +      return InsertElementInst::Create(UndefValue::get(DestTy), Elem, +                     Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); +    } + +    if (isa<IntegerType>(SrcTy)) { +      // If this is a cast from an integer to vector, check to see if the input +      // is a trunc or zext of a bitcast from vector.  If so, we can replace all +      // the casts with a shuffle and (potentially) a bitcast. +      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { +        CastInst *SrcCast = cast<CastInst>(Src); +        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) +          if (isa<VectorType>(BCIn->getOperand(0)->getType())) +            if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts( +                    BCIn->getOperand(0), cast<VectorType>(DestTy), *this)) +              return I; +      } + +      // If the input is an 'or' instruction, we may be doing shifts and ors to +      // assemble the elements of the vector manually.  Try to rip the code out +      // and replace it with insertelements. +      if (Value *V = optimizeIntegerToVectorInsertions(CI, *this)) +        return replaceInstUsesWith(CI, V); +    } +  } + +  if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) { +    if (SrcVTy->getNumElements() == 1) { +      // If our destination is not a vector, then make this a straight +      // scalar-scalar cast. +      if (!DestTy->isVectorTy()) { +        Value *Elem = +          Builder.CreateExtractElement(Src, +                     Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); +        return CastInst::Create(Instruction::BitCast, Elem, DestTy); +      } + +      // Otherwise, see if our source is an insert. If so, then use the scalar +      // component directly: +      // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m> +      if (auto *InsElt = dyn_cast<InsertElementInst>(Src)) +        return new BitCastInst(InsElt->getOperand(1), DestTy); +    } +  } + +  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) { +    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is +    // a bitcast to a vector with the same # elts. +    Value *ShufOp0 = Shuf->getOperand(0); +    Value *ShufOp1 = Shuf->getOperand(1); +    unsigned NumShufElts = Shuf->getType()->getNumElements(); +    unsigned NumSrcVecElts = +        cast<VectorType>(ShufOp0->getType())->getNumElements(); +    if (Shuf->hasOneUse() && DestTy->isVectorTy() && +        cast<VectorType>(DestTy)->getNumElements() == NumShufElts && +        NumShufElts == NumSrcVecElts) { +      BitCastInst *Tmp; +      // If either of the operands is a cast from CI.getType(), then +      // evaluating the shuffle in the casted destination's type will allow +      // us to eliminate at least one cast. +      if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) && +           Tmp->getOperand(0)->getType() == DestTy) || +          ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) && +           Tmp->getOperand(0)->getType() == DestTy)) { +        Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy); +        Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy); +        // Return a new shuffle vector.  Use the same element ID's, as we +        // know the vector types match #elts. +        return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask()); +      } +    } + +    // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as +    // a byte-swap: +    // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X) +    // TODO: We should match the related pattern for bitreverse. +    if (DestTy->isIntegerTy() && +        DL.isLegalInteger(DestTy->getScalarSizeInBits()) && +        SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 && +        Shuf->hasOneUse() && Shuf->isReverse()) { +      assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask"); +      assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op"); +      Function *Bswap = +          Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy); +      Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy); +      return IntrinsicInst::Create(Bswap, { ScalarX }); +    } +  } + +  // Handle the A->B->A cast, and there is an intervening PHI node. +  if (PHINode *PN = dyn_cast<PHINode>(Src)) +    if (Instruction *I = optimizeBitCastFromPhi(CI, PN)) +      return I; + +  if (Instruction *I = canonicalizeBitCastExtElt(CI, *this)) +    return I; + +  if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder)) +    return I; + +  if (Instruction *I = foldBitCastSelect(CI, Builder)) +    return I; + +  if (SrcTy->isPointerTy()) +    return commonPointerCastTransforms(CI); +  return commonCastTransforms(CI); +} + +Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { +  // If the destination pointer element type is not the same as the source's +  // first do a bitcast to the destination type, and then the addrspacecast. +  // This allows the cast to be exposed to other transforms. +  Value *Src = CI.getOperand(0); +  PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); +  PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); + +  Type *DestElemTy = DestTy->getElementType(); +  if (SrcTy->getElementType() != DestElemTy) { +    Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); +    if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { +      // Handle vectors of pointers. +      // FIXME: what should happen for scalable vectors? +      MidTy = FixedVectorType::get(MidTy, VT->getNumElements()); +    } + +    Value *NewBitCast = Builder.CreateBitCast(Src, MidTy); +    return new AddrSpaceCastInst(NewBitCast, CI.getType()); +  } + +  return commonPointerCastTransforms(CI); +}  | 
