aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp2691
1 files changed, 2691 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
new file mode 100644
index 000000000000..3639edb5df4d
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -0,0 +1,2691 @@
+//===- InstCombineCasts.cpp -----------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for cast operations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/KnownBits.h"
+#include <numeric>
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+/// Analyze 'Val', seeing if it is a simple linear expression.
+/// If so, decompose it, returning some value X, such that Val is
+/// X*Scale+Offset.
+///
+static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
+ uint64_t &Offset) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ Offset = CI->getZExtValue();
+ Scale = 0;
+ return ConstantInt::get(Val->getType(), 0);
+ }
+
+ if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
+ // Cannot look past anything that might overflow.
+ OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
+ if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
+ Scale = 1;
+ Offset = 0;
+ return Val;
+ }
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ if (I->getOpcode() == Instruction::Shl) {
+ // This is a value scaled by '1 << the shift amt'.
+ Scale = UINT64_C(1) << RHS->getZExtValue();
+ Offset = 0;
+ return I->getOperand(0);
+ }
+
+ if (I->getOpcode() == Instruction::Mul) {
+ // This value is scaled by 'RHS'.
+ Scale = RHS->getZExtValue();
+ Offset = 0;
+ return I->getOperand(0);
+ }
+
+ if (I->getOpcode() == Instruction::Add) {
+ // We have X+C. Check to see if we really have (X*C2)+C1,
+ // where C1 is divisible by C2.
+ unsigned SubScale;
+ Value *SubVal =
+ decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
+ Offset += RHS->getZExtValue();
+ Scale = SubScale;
+ return SubVal;
+ }
+ }
+ }
+
+ // Otherwise, we can't look past this.
+ Scale = 1;
+ Offset = 0;
+ return Val;
+}
+
+/// If we find a cast of an allocation instruction, try to eliminate the cast by
+/// moving the type information into the alloc.
+Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
+ AllocaInst &AI) {
+ PointerType *PTy = cast<PointerType>(CI.getType());
+
+ IRBuilderBase::InsertPointGuard Guard(Builder);
+ Builder.SetInsertPoint(&AI);
+
+ // Get the type really allocated and the type casted to.
+ Type *AllocElTy = AI.getAllocatedType();
+ Type *CastElTy = PTy->getElementType();
+ if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
+
+ Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
+ Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
+ if (CastElTyAlign < AllocElTyAlign) return nullptr;
+
+ // If the allocation has multiple uses, only promote it if we are strictly
+ // increasing the alignment of the resultant allocation. If we keep it the
+ // same, we open the door to infinite loops of various kinds.
+ if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
+
+ uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
+ uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
+ if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
+
+ // If the allocation has multiple uses, only promote it if we're not
+ // shrinking the amount of memory being allocated.
+ uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
+ uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
+ if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
+
+ // See if we can satisfy the modulus by pulling a scale out of the array
+ // size argument.
+ unsigned ArraySizeScale;
+ uint64_t ArrayOffset;
+ Value *NumElements = // See if the array size is a decomposable linear expr.
+ decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
+
+ // If we can now satisfy the modulus, by using a non-1 scale, we really can
+ // do the xform.
+ if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
+ (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
+
+ unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
+ Value *Amt = nullptr;
+ if (Scale == 1) {
+ Amt = NumElements;
+ } else {
+ Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
+ // Insert before the alloca, not before the cast.
+ Amt = Builder.CreateMul(Amt, NumElements);
+ }
+
+ if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
+ Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
+ Offset, true);
+ Amt = Builder.CreateAdd(Amt, Off);
+ }
+
+ AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
+ New->setAlignment(AI.getAlign());
+ New->takeName(&AI);
+ New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
+
+ // If the allocation has multiple real uses, insert a cast and change all
+ // things that used it to use the new cast. This will also hack on CI, but it
+ // will die soon.
+ if (!AI.hasOneUse()) {
+ // New is the allocation instruction, pointer typed. AI is the original
+ // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
+ Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
+ replaceInstUsesWith(AI, NewCast);
+ eraseInstFromFunction(AI);
+ }
+ return replaceInstUsesWith(CI, New);
+}
+
+/// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
+/// true for, actually insert the code to evaluate the expression.
+Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
+ bool isSigned) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
+ // If we got a constantexpr back, try to simplify it with DL info.
+ return ConstantFoldConstant(C, DL, &TLI);
+ }
+
+ // Otherwise, it must be an instruction.
+ Instruction *I = cast<Instruction>(V);
+ Instruction *Res = nullptr;
+ unsigned Opc = I->getOpcode();
+ switch (Opc) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::AShr:
+ case Instruction::LShr:
+ case Instruction::Shl:
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
+ Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+ Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
+ break;
+ }
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // If the source type of the cast is the type we're trying for then we can
+ // just return the source. There's no need to insert it because it is not
+ // new.
+ if (I->getOperand(0)->getType() == Ty)
+ return I->getOperand(0);
+
+ // Otherwise, must be the same type of cast, so just reinsert a new one.
+ // This also handles the case of zext(trunc(x)) -> zext(x).
+ Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
+ Opc == Instruction::SExt);
+ break;
+ case Instruction::Select: {
+ Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
+ Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
+ Res = SelectInst::Create(I->getOperand(0), True, False);
+ break;
+ }
+ case Instruction::PHI: {
+ PHINode *OPN = cast<PHINode>(I);
+ PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
+ for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
+ Value *V =
+ EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
+ NPN->addIncoming(V, OPN->getIncomingBlock(i));
+ }
+ Res = NPN;
+ break;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ llvm_unreachable("Unreachable!");
+ }
+
+ Res->takeName(I);
+ return InsertNewInstWith(Res, *I);
+}
+
+Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst *CI1,
+ const CastInst *CI2) {
+ Type *SrcTy = CI1->getSrcTy();
+ Type *MidTy = CI1->getDestTy();
+ Type *DstTy = CI2->getDestTy();
+
+ Instruction::CastOps firstOp = CI1->getOpcode();
+ Instruction::CastOps secondOp = CI2->getOpcode();
+ Type *SrcIntPtrTy =
+ SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
+ Type *MidIntPtrTy =
+ MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
+ Type *DstIntPtrTy =
+ DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
+ unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
+ DstTy, SrcIntPtrTy, MidIntPtrTy,
+ DstIntPtrTy);
+
+ // We don't want to form an inttoptr or ptrtoint that converts to an integer
+ // type that differs from the pointer size.
+ if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
+ (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
+ Res = 0;
+
+ return Instruction::CastOps(Res);
+}
+
+/// Implement the transforms common to all CastInst visitors.
+Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
+ Value *Src = CI.getOperand(0);
+
+ // Try to eliminate a cast of a cast.
+ if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
+ if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
+ // The first cast (CSrc) is eliminable so we need to fix up or replace
+ // the second cast (CI). CSrc will then have a good chance of being dead.
+ auto *Ty = CI.getType();
+ auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
+ // Point debug users of the dying cast to the new one.
+ if (CSrc->hasOneUse())
+ replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
+ return Res;
+ }
+ }
+
+ if (auto *Sel = dyn_cast<SelectInst>(Src)) {
+ // We are casting a select. Try to fold the cast into the select if the
+ // select does not have a compare instruction with matching operand types
+ // or the select is likely better done in a narrow type.
+ // Creating a select with operands that are different sizes than its
+ // condition may inhibit other folds and lead to worse codegen.
+ auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
+ if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
+ (CI.getOpcode() == Instruction::Trunc &&
+ shouldChangeType(CI.getSrcTy(), CI.getType()))) {
+ if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
+ replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
+ return NV;
+ }
+ }
+ }
+
+ // If we are casting a PHI, then fold the cast into the PHI.
+ if (auto *PN = dyn_cast<PHINode>(Src)) {
+ // Don't do this if it would create a PHI node with an illegal type from a
+ // legal type.
+ if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
+ shouldChangeType(CI.getSrcTy(), CI.getType()))
+ if (Instruction *NV = foldOpIntoPhi(CI, PN))
+ return NV;
+ }
+
+ return nullptr;
+}
+
+/// Constants and extensions/truncates from the destination type are always
+/// free to be evaluated in that type. This is a helper for canEvaluate*.
+static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
+ if (isa<Constant>(V))
+ return true;
+ Value *X;
+ if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
+ X->getType() == Ty)
+ return true;
+
+ return false;
+}
+
+/// Filter out values that we can not evaluate in the destination type for free.
+/// This is a helper for canEvaluate*.
+static bool canNotEvaluateInType(Value *V, Type *Ty) {
+ assert(!isa<Constant>(V) && "Constant should already be handled.");
+ if (!isa<Instruction>(V))
+ return true;
+ // We don't extend or shrink something that has multiple uses -- doing so
+ // would require duplicating the instruction which isn't profitable.
+ if (!V->hasOneUse())
+ return true;
+
+ return false;
+}
+
+/// Return true if we can evaluate the specified expression tree as type Ty
+/// instead of its larger type, and arrive with the same value.
+/// This is used by code that tries to eliminate truncates.
+///
+/// Ty will always be a type smaller than V. We should return true if trunc(V)
+/// can be computed by computing V in the smaller type. If V is an instruction,
+/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
+/// makes sense if x and y can be efficiently truncated.
+///
+/// This function works on both vectors and scalars.
+///
+static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
+ Instruction *CxtI) {
+ if (canAlwaysEvaluateInType(V, Ty))
+ return true;
+ if (canNotEvaluateInType(V, Ty))
+ return false;
+
+ auto *I = cast<Instruction>(V);
+ Type *OrigTy = V->getType();
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ // These operators can all arbitrarily be extended or truncated.
+ return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
+ canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
+
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // UDiv and URem can be truncated if all the truncated bits are zero.
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
+ APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
+ if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
+ IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
+ return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
+ canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
+ }
+ break;
+ }
+ case Instruction::Shl: {
+ // If we are truncating the result of this SHL, and if it's a shift of an
+ // inrange amount, we can always perform a SHL in a smaller type.
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ KnownBits AmtKnownBits =
+ llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
+ if (AmtKnownBits.getMaxValue().ult(BitWidth))
+ return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
+ canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
+ break;
+ }
+ case Instruction::LShr: {
+ // If this is a truncate of a logical shr, we can truncate it to a smaller
+ // lshr iff we know that the bits we would otherwise be shifting in are
+ // already zeros.
+ // TODO: It is enough to check that the bits we would be shifting in are
+ // zero - use AmtKnownBits.getMaxValue().
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ KnownBits AmtKnownBits =
+ llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
+ APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
+ if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
+ IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
+ return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
+ canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
+ }
+ break;
+ }
+ case Instruction::AShr: {
+ // If this is a truncate of an arithmetic shr, we can truncate it to a
+ // smaller ashr iff we know that all the bits from the sign bit of the
+ // original type and the sign bit of the truncate type are similar.
+ // TODO: It is enough to check that the bits we would be shifting in are
+ // similar to sign bit of the truncate type.
+ uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
+ uint32_t BitWidth = Ty->getScalarSizeInBits();
+ KnownBits AmtKnownBits =
+ llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
+ unsigned ShiftedBits = OrigBitWidth - BitWidth;
+ if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
+ ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
+ return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
+ canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
+ break;
+ }
+ case Instruction::Trunc:
+ // trunc(trunc(x)) -> trunc(x)
+ return true;
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
+ // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
+ return true;
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(I);
+ return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
+ canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
+ }
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (Value *IncValue : PN->incoming_values())
+ if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
+ return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ break;
+ }
+
+ return false;
+}
+
+/// Given a vector that is bitcast to an integer, optionally logically
+/// right-shifted, and truncated, convert it to an extractelement.
+/// Example (big endian):
+/// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
+/// --->
+/// extractelement <4 x i32> %X, 1
+static Instruction *foldVecTruncToExtElt(TruncInst &Trunc, InstCombiner &IC) {
+ Value *TruncOp = Trunc.getOperand(0);
+ Type *DestType = Trunc.getType();
+ if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
+ return nullptr;
+
+ Value *VecInput = nullptr;
+ ConstantInt *ShiftVal = nullptr;
+ if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
+ m_LShr(m_BitCast(m_Value(VecInput)),
+ m_ConstantInt(ShiftVal)))) ||
+ !isa<VectorType>(VecInput->getType()))
+ return nullptr;
+
+ VectorType *VecType = cast<VectorType>(VecInput->getType());
+ unsigned VecWidth = VecType->getPrimitiveSizeInBits();
+ unsigned DestWidth = DestType->getPrimitiveSizeInBits();
+ unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
+
+ if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
+ return nullptr;
+
+ // If the element type of the vector doesn't match the result type,
+ // bitcast it to a vector type that we can extract from.
+ unsigned NumVecElts = VecWidth / DestWidth;
+ if (VecType->getElementType() != DestType) {
+ VecType = FixedVectorType::get(DestType, NumVecElts);
+ VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
+ }
+
+ unsigned Elt = ShiftAmount / DestWidth;
+ if (IC.getDataLayout().isBigEndian())
+ Elt = NumVecElts - 1 - Elt;
+
+ return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
+}
+
+/// Rotate left/right may occur in a wider type than necessary because of type
+/// promotion rules. Try to narrow the inputs and convert to funnel shift.
+Instruction *InstCombiner::narrowRotate(TruncInst &Trunc) {
+ assert((isa<VectorType>(Trunc.getSrcTy()) ||
+ shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
+ "Don't narrow to an illegal scalar type");
+
+ // Bail out on strange types. It is possible to handle some of these patterns
+ // even with non-power-of-2 sizes, but it is not a likely scenario.
+ Type *DestTy = Trunc.getType();
+ unsigned NarrowWidth = DestTy->getScalarSizeInBits();
+ if (!isPowerOf2_32(NarrowWidth))
+ return nullptr;
+
+ // First, find an or'd pair of opposite shifts with the same shifted operand:
+ // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
+ Value *Or0, *Or1;
+ if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
+ return nullptr;
+
+ Value *ShVal, *ShAmt0, *ShAmt1;
+ if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
+ !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
+ return nullptr;
+
+ auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
+ auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
+ if (ShiftOpcode0 == ShiftOpcode1)
+ return nullptr;
+
+ // Match the shift amount operands for a rotate pattern. This always matches
+ // a subtraction on the R operand.
+ auto matchShiftAmount = [](Value *L, Value *R, unsigned Width) -> Value * {
+ // The shift amounts may add up to the narrow bit width:
+ // (shl ShVal, L) | (lshr ShVal, Width - L)
+ if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
+ return L;
+
+ // The shift amount may be masked with negation:
+ // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
+ Value *X;
+ unsigned Mask = Width - 1;
+ if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
+ match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
+ return X;
+
+ // Same as above, but the shift amount may be extended after masking:
+ if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
+ match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
+ return X;
+
+ return nullptr;
+ };
+
+ Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
+ bool SubIsOnLHS = false;
+ if (!ShAmt) {
+ ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
+ SubIsOnLHS = true;
+ }
+ if (!ShAmt)
+ return nullptr;
+
+ // The shifted value must have high zeros in the wide type. Typically, this
+ // will be a zext, but it could also be the result of an 'and' or 'shift'.
+ unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
+ APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
+ if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
+ return nullptr;
+
+ // We have an unnecessarily wide rotate!
+ // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
+ // Narrow the inputs and convert to funnel shift intrinsic:
+ // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
+ Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
+ Value *X = Builder.CreateTrunc(ShVal, DestTy);
+ bool IsFshl = (!SubIsOnLHS && ShiftOpcode0 == BinaryOperator::Shl) ||
+ (SubIsOnLHS && ShiftOpcode1 == BinaryOperator::Shl);
+ Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
+ Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
+ return IntrinsicInst::Create(F, { X, X, NarrowShAmt });
+}
+
+/// Try to narrow the width of math or bitwise logic instructions by pulling a
+/// truncate ahead of binary operators.
+/// TODO: Transforms for truncated shifts should be moved into here.
+Instruction *InstCombiner::narrowBinOp(TruncInst &Trunc) {
+ Type *SrcTy = Trunc.getSrcTy();
+ Type *DestTy = Trunc.getType();
+ if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
+ return nullptr;
+
+ BinaryOperator *BinOp;
+ if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
+ return nullptr;
+
+ Value *BinOp0 = BinOp->getOperand(0);
+ Value *BinOp1 = BinOp->getOperand(1);
+ switch (BinOp->getOpcode()) {
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul: {
+ Constant *C;
+ if (match(BinOp0, m_Constant(C))) {
+ // trunc (binop C, X) --> binop (trunc C', X)
+ Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
+ Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
+ return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
+ }
+ if (match(BinOp1, m_Constant(C))) {
+ // trunc (binop X, C) --> binop (trunc X, C')
+ Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
+ Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
+ return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
+ }
+ Value *X;
+ if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
+ // trunc (binop (ext X), Y) --> binop X, (trunc Y)
+ Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
+ return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
+ }
+ if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
+ // trunc (binop Y, (ext X)) --> binop (trunc Y), X
+ Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
+ return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
+ }
+ break;
+ }
+
+ default: break;
+ }
+
+ if (Instruction *NarrowOr = narrowRotate(Trunc))
+ return NarrowOr;
+
+ return nullptr;
+}
+
+/// Try to narrow the width of a splat shuffle. This could be generalized to any
+/// shuffle with a constant operand, but we limit the transform to avoid
+/// creating a shuffle type that targets may not be able to lower effectively.
+static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
+ InstCombiner::BuilderTy &Builder) {
+ auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
+ if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
+ is_splat(Shuf->getShuffleMask()) &&
+ Shuf->getType() == Shuf->getOperand(0)->getType()) {
+ // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
+ Constant *NarrowUndef = UndefValue::get(Trunc.getType());
+ Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
+ return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
+ }
+
+ return nullptr;
+}
+
+/// Try to narrow the width of an insert element. This could be generalized for
+/// any vector constant, but we limit the transform to insertion into undef to
+/// avoid potential backend problems from unsupported insertion widths. This
+/// could also be extended to handle the case of inserting a scalar constant
+/// into a vector variable.
+static Instruction *shrinkInsertElt(CastInst &Trunc,
+ InstCombiner::BuilderTy &Builder) {
+ Instruction::CastOps Opcode = Trunc.getOpcode();
+ assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
+ "Unexpected instruction for shrinking");
+
+ auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
+ if (!InsElt || !InsElt->hasOneUse())
+ return nullptr;
+
+ Type *DestTy = Trunc.getType();
+ Type *DestScalarTy = DestTy->getScalarType();
+ Value *VecOp = InsElt->getOperand(0);
+ Value *ScalarOp = InsElt->getOperand(1);
+ Value *Index = InsElt->getOperand(2);
+
+ if (isa<UndefValue>(VecOp)) {
+ // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
+ // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
+ UndefValue *NarrowUndef = UndefValue::get(DestTy);
+ Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
+ return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitTrunc(TruncInst &Trunc) {
+ if (Instruction *Result = commonCastTransforms(Trunc))
+ return Result;
+
+ Value *Src = Trunc.getOperand(0);
+ Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
+ unsigned DestWidth = DestTy->getScalarSizeInBits();
+ unsigned SrcWidth = SrcTy->getScalarSizeInBits();
+ ConstantInt *Cst;
+
+ // Attempt to truncate the entire input expression tree to the destination
+ // type. Only do this if the dest type is a simple type, don't convert the
+ // expression tree to something weird like i93 unless the source is also
+ // strange.
+ if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
+ canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
+
+ // If this cast is a truncate, evaluting in a different type always
+ // eliminates the cast, so it is always a win.
+ LLVM_DEBUG(
+ dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid cast: "
+ << Trunc << '\n');
+ Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+ assert(Res->getType() == DestTy);
+ return replaceInstUsesWith(Trunc, Res);
+ }
+
+ // For integer types, check if we can shorten the entire input expression to
+ // DestWidth * 2, which won't allow removing the truncate, but reducing the
+ // width may enable further optimizations, e.g. allowing for larger
+ // vectorization factors.
+ if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
+ if (DestWidth * 2 < SrcWidth) {
+ auto *NewDestTy = DestITy->getExtendedType();
+ if (shouldChangeType(SrcTy, NewDestTy) &&
+ canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
+ LLVM_DEBUG(
+ dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to reduce the width of operand of"
+ << Trunc << '\n');
+ Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
+ return new TruncInst(Res, DestTy);
+ }
+ }
+ }
+
+ // Test if the trunc is the user of a select which is part of a
+ // minimum or maximum operation. If so, don't do any more simplification.
+ // Even simplifying demanded bits can break the canonical form of a
+ // min/max.
+ Value *LHS, *RHS;
+ if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
+ if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
+ return nullptr;
+
+ // See if we can simplify any instructions used by the input whose sole
+ // purpose is to compute bits we don't care about.
+ if (SimplifyDemandedInstructionBits(Trunc))
+ return &Trunc;
+
+ if (DestWidth == 1) {
+ Value *Zero = Constant::getNullValue(SrcTy);
+ if (DestTy->isIntegerTy()) {
+ // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
+ // TODO: We canonicalize to more instructions here because we are probably
+ // lacking equivalent analysis for trunc relative to icmp. There may also
+ // be codegen concerns. If those trunc limitations were removed, we could
+ // remove this transform.
+ Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
+ return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
+ }
+
+ // For vectors, we do not canonicalize all truncs to icmp, so optimize
+ // patterns that would be covered within visitICmpInst.
+ Value *X;
+ Constant *C;
+ if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
+ // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
+ Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
+ Constant *MaskC = ConstantExpr::getShl(One, C);
+ Value *And = Builder.CreateAnd(X, MaskC);
+ return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
+ }
+ if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
+ m_Deferred(X))))) {
+ // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
+ Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
+ Constant *MaskC = ConstantExpr::getShl(One, C);
+ MaskC = ConstantExpr::getOr(MaskC, One);
+ Value *And = Builder.CreateAnd(X, MaskC);
+ return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
+ }
+ }
+
+ // FIXME: Maybe combine the next two transforms to handle the no cast case
+ // more efficiently. Support vector types. Cleanup code by using m_OneUse.
+
+ // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
+ Value *A = nullptr;
+ if (Src->hasOneUse() &&
+ match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
+ // We have three types to worry about here, the type of A, the source of
+ // the truncate (MidSize), and the destination of the truncate. We know that
+ // ASize < MidSize and MidSize > ResultSize, but don't know the relation
+ // between ASize and ResultSize.
+ unsigned ASize = A->getType()->getPrimitiveSizeInBits();
+
+ // If the shift amount is larger than the size of A, then the result is
+ // known to be zero because all the input bits got shifted out.
+ if (Cst->getZExtValue() >= ASize)
+ return replaceInstUsesWith(Trunc, Constant::getNullValue(DestTy));
+
+ // Since we're doing an lshr and a zero extend, and know that the shift
+ // amount is smaller than ASize, it is always safe to do the shift in A's
+ // type, then zero extend or truncate to the result.
+ Value *Shift = Builder.CreateLShr(A, Cst->getZExtValue());
+ Shift->takeName(Src);
+ return CastInst::CreateIntegerCast(Shift, DestTy, false);
+ }
+
+ const APInt *C;
+ if (match(Src, m_LShr(m_SExt(m_Value(A)), m_APInt(C)))) {
+ unsigned AWidth = A->getType()->getScalarSizeInBits();
+ unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
+
+ // If the shift is small enough, all zero bits created by the shift are
+ // removed by the trunc.
+ if (C->getZExtValue() <= MaxShiftAmt) {
+ // trunc (lshr (sext A), C) --> ashr A, C
+ if (A->getType() == DestTy) {
+ unsigned ShAmt = std::min((unsigned)C->getZExtValue(), DestWidth - 1);
+ return BinaryOperator::CreateAShr(A, ConstantInt::get(DestTy, ShAmt));
+ }
+ // The types are mismatched, so create a cast after shifting:
+ // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
+ if (Src->hasOneUse()) {
+ unsigned ShAmt = std::min((unsigned)C->getZExtValue(), AWidth - 1);
+ Value *Shift = Builder.CreateAShr(A, ShAmt);
+ return CastInst::CreateIntegerCast(Shift, DestTy, true);
+ }
+ }
+ // TODO: Mask high bits with 'and'.
+ }
+
+ if (Instruction *I = narrowBinOp(Trunc))
+ return I;
+
+ if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
+ return I;
+
+ if (Instruction *I = shrinkInsertElt(Trunc, Builder))
+ return I;
+
+ if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
+ shouldChangeType(SrcTy, DestTy)) {
+ // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
+ // dest type is native and cst < dest size.
+ if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
+ !match(A, m_Shr(m_Value(), m_Constant()))) {
+ // Skip shifts of shift by constants. It undoes a combine in
+ // FoldShiftByConstant and is the extend in reg pattern.
+ if (Cst->getValue().ult(DestWidth)) {
+ Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
+
+ return BinaryOperator::Create(
+ Instruction::Shl, NewTrunc,
+ ConstantInt::get(DestTy, Cst->getValue().trunc(DestWidth)));
+ }
+ }
+ }
+
+ if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
+ return I;
+
+ // Whenever an element is extracted from a vector, and then truncated,
+ // canonicalize by converting it to a bitcast followed by an
+ // extractelement.
+ //
+ // Example (little endian):
+ // trunc (extractelement <4 x i64> %X, 0) to i32
+ // --->
+ // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
+ Value *VecOp;
+ if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
+ auto *VecOpTy = cast<VectorType>(VecOp->getType());
+ unsigned VecNumElts = VecOpTy->getNumElements();
+
+ // A badly fit destination size would result in an invalid cast.
+ if (SrcWidth % DestWidth == 0) {
+ uint64_t TruncRatio = SrcWidth / DestWidth;
+ uint64_t BitCastNumElts = VecNumElts * TruncRatio;
+ uint64_t VecOpIdx = Cst->getZExtValue();
+ uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
+ : VecOpIdx * TruncRatio;
+ assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
+ "overflow 32-bits");
+
+ auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts);
+ Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
+ return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
+ bool DoTransform) {
+ // If we are just checking for a icmp eq of a single bit and zext'ing it
+ // to an integer, then shift the bit to the appropriate place and then
+ // cast to integer to avoid the comparison.
+ const APInt *Op1CV;
+ if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
+
+ // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
+ // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
+ if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
+ (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
+ if (!DoTransform) return Cmp;
+
+ Value *In = Cmp->getOperand(0);
+ Value *Sh = ConstantInt::get(In->getType(),
+ In->getType()->getScalarSizeInBits() - 1);
+ In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
+ if (In->getType() != Zext.getType())
+ In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
+
+ if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder.CreateXor(In, One, In->getName() + ".not");
+ }
+
+ return replaceInstUsesWith(Zext, In);
+ }
+
+ // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
+ // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+ // zext (X == 1) to i32 --> X iff X has only the low bit set.
+ // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
+ // zext (X != 0) to i32 --> X iff X has only the low bit set.
+ // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
+ // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
+ // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
+ if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
+ // This only works for EQ and NE
+ Cmp->isEquality()) {
+ // If Op1C some other power of two, convert:
+ KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
+
+ APInt KnownZeroMask(~Known.Zero);
+ if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
+ if (!DoTransform) return Cmp;
+
+ bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
+ if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
+ // (X&4) == 2 --> false
+ // (X&4) != 2 --> true
+ Constant *Res = ConstantInt::get(Zext.getType(), isNE);
+ return replaceInstUsesWith(Zext, Res);
+ }
+
+ uint32_t ShAmt = KnownZeroMask.logBase2();
+ Value *In = Cmp->getOperand(0);
+ if (ShAmt) {
+ // Perform a logical shr by shiftamt.
+ // Insert the shift to put the result in the low bit.
+ In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
+ In->getName() + ".lobit");
+ }
+
+ if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
+ Constant *One = ConstantInt::get(In->getType(), 1);
+ In = Builder.CreateXor(In, One);
+ }
+
+ if (Zext.getType() == In->getType())
+ return replaceInstUsesWith(Zext, In);
+
+ Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
+ return replaceInstUsesWith(Zext, IntCast);
+ }
+ }
+ }
+
+ // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
+ // It is also profitable to transform icmp eq into not(xor(A, B)) because that
+ // may lead to additional simplifications.
+ if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
+ if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
+ Value *LHS = Cmp->getOperand(0);
+ Value *RHS = Cmp->getOperand(1);
+
+ KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
+ KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
+
+ if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
+ APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
+ APInt UnknownBit = ~KnownBits;
+ if (UnknownBit.countPopulation() == 1) {
+ if (!DoTransform) return Cmp;
+
+ Value *Result = Builder.CreateXor(LHS, RHS);
+
+ // Mask off any bits that are set and won't be shifted away.
+ if (KnownLHS.One.uge(UnknownBit))
+ Result = Builder.CreateAnd(Result,
+ ConstantInt::get(ITy, UnknownBit));
+
+ // Shift the bit we're testing down to the lsb.
+ Result = Builder.CreateLShr(
+ Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
+
+ if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
+ Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
+ Result->takeName(Cmp);
+ return replaceInstUsesWith(Zext, Result);
+ }
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+/// Determine if the specified value can be computed in the specified wider type
+/// and produce the same low bits. If not, return false.
+///
+/// If this function returns true, it can also return a non-zero number of bits
+/// (in BitsToClear) which indicates that the value it computes is correct for
+/// the zero extend, but that the additional BitsToClear bits need to be zero'd
+/// out. For example, to promote something like:
+///
+/// %B = trunc i64 %A to i32
+/// %C = lshr i32 %B, 8
+/// %E = zext i32 %C to i64
+///
+/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
+/// set to 8 to indicate that the promoted value needs to have bits 24-31
+/// cleared in addition to bits 32-63. Since an 'and' will be generated to
+/// clear the top bits anyway, doing this has no extra cost.
+///
+/// This function works on both vectors and scalars.
+static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
+ InstCombiner &IC, Instruction *CxtI) {
+ BitsToClear = 0;
+ if (canAlwaysEvaluateInType(V, Ty))
+ return true;
+ if (canNotEvaluateInType(V, Ty))
+ return false;
+
+ auto *I = cast<Instruction>(V);
+ unsigned Tmp;
+ switch (I->getOpcode()) {
+ case Instruction::ZExt: // zext(zext(x)) -> zext(x).
+ case Instruction::SExt: // zext(sext(x)) -> sext(x).
+ case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
+ return true;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
+ !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
+ return false;
+ // These can all be promoted if neither operand has 'bits to clear'.
+ if (BitsToClear == 0 && Tmp == 0)
+ return true;
+
+ // If the operation is an AND/OR/XOR and the bits to clear are zero in the
+ // other side, BitsToClear is ok.
+ if (Tmp == 0 && I->isBitwiseLogicOp()) {
+ // We use MaskedValueIsZero here for generality, but the case we care
+ // about the most is constant RHS.
+ unsigned VSize = V->getType()->getScalarSizeInBits();
+ if (IC.MaskedValueIsZero(I->getOperand(1),
+ APInt::getHighBitsSet(VSize, BitsToClear),
+ 0, CxtI)) {
+ // If this is an And instruction and all of the BitsToClear are
+ // known to be zero we can reset BitsToClear.
+ if (I->getOpcode() == Instruction::And)
+ BitsToClear = 0;
+ return true;
+ }
+ }
+
+ // Otherwise, we don't know how to analyze this BitsToClear case yet.
+ return false;
+
+ case Instruction::Shl: {
+ // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
+ // upper bits we can reduce BitsToClear by the shift amount.
+ const APInt *Amt;
+ if (match(I->getOperand(1), m_APInt(Amt))) {
+ if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
+ return false;
+ uint64_t ShiftAmt = Amt->getZExtValue();
+ BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
+ return true;
+ }
+ return false;
+ }
+ case Instruction::LShr: {
+ // We can promote lshr(x, cst) if we can promote x. This requires the
+ // ultimate 'and' to clear out the high zero bits we're clearing out though.
+ const APInt *Amt;
+ if (match(I->getOperand(1), m_APInt(Amt))) {
+ if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
+ return false;
+ BitsToClear += Amt->getZExtValue();
+ if (BitsToClear > V->getType()->getScalarSizeInBits())
+ BitsToClear = V->getType()->getScalarSizeInBits();
+ return true;
+ }
+ // Cannot promote variable LSHR.
+ return false;
+ }
+ case Instruction::Select:
+ if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
+ !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
+ // TODO: If important, we could handle the case when the BitsToClear are
+ // known zero in the disagreeing side.
+ Tmp != BitsToClear)
+ return false;
+ return true;
+
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
+ return false;
+ for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
+ // TODO: If important, we could handle the case when the BitsToClear
+ // are known zero in the disagreeing input.
+ Tmp != BitsToClear)
+ return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ return false;
+ }
+}
+
+Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
+ // If this zero extend is only used by a truncate, let the truncate be
+ // eliminated before we try to optimize this zext.
+ if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
+ return nullptr;
+
+ // If one of the common conversion will work, do it.
+ if (Instruction *Result = commonCastTransforms(CI))
+ return Result;
+
+ Value *Src = CI.getOperand(0);
+ Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+
+ // Try to extend the entire expression tree to the wide destination type.
+ unsigned BitsToClear;
+ if (shouldChangeType(SrcTy, DestTy) &&
+ canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
+ assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
+ "Can't clear more bits than in SrcTy");
+
+ // Okay, we can transform this! Insert the new expression now.
+ LLVM_DEBUG(
+ dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid zero extend: "
+ << CI << '\n');
+ Value *Res = EvaluateInDifferentType(Src, DestTy, false);
+ assert(Res->getType() == DestTy);
+
+ // Preserve debug values referring to Src if the zext is its last use.
+ if (auto *SrcOp = dyn_cast<Instruction>(Src))
+ if (SrcOp->hasOneUse())
+ replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
+
+ uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
+ uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+ // If the high bits are already filled with zeros, just replace this
+ // cast with the result.
+ if (MaskedValueIsZero(Res,
+ APInt::getHighBitsSet(DestBitSize,
+ DestBitSize-SrcBitsKept),
+ 0, &CI))
+ return replaceInstUsesWith(CI, Res);
+
+ // We need to emit an AND to clear the high bits.
+ Constant *C = ConstantInt::get(Res->getType(),
+ APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
+ return BinaryOperator::CreateAnd(Res, C);
+ }
+
+ // If this is a TRUNC followed by a ZEXT then we are dealing with integral
+ // types and if the sizes are just right we can convert this into a logical
+ // 'and' which will be much cheaper than the pair of casts.
+ if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
+ // TODO: Subsume this into EvaluateInDifferentType.
+
+ // Get the sizes of the types involved. We know that the intermediate type
+ // will be smaller than A or C, but don't know the relation between A and C.
+ Value *A = CSrc->getOperand(0);
+ unsigned SrcSize = A->getType()->getScalarSizeInBits();
+ unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
+ unsigned DstSize = CI.getType()->getScalarSizeInBits();
+ // If we're actually extending zero bits, then if
+ // SrcSize < DstSize: zext(a & mask)
+ // SrcSize == DstSize: a & mask
+ // SrcSize > DstSize: trunc(a) & mask
+ if (SrcSize < DstSize) {
+ APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+ Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
+ Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
+ return new ZExtInst(And, CI.getType());
+ }
+
+ if (SrcSize == DstSize) {
+ APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
+ return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
+ AndValue));
+ }
+ if (SrcSize > DstSize) {
+ Value *Trunc = Builder.CreateTrunc(A, CI.getType());
+ APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
+ return BinaryOperator::CreateAnd(Trunc,
+ ConstantInt::get(Trunc->getType(),
+ AndValue));
+ }
+ }
+
+ if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
+ return transformZExtICmp(Cmp, CI);
+
+ BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
+ if (SrcI && SrcI->getOpcode() == Instruction::Or) {
+ // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
+ // of the (zext icmp) can be eliminated. If so, immediately perform the
+ // according elimination.
+ ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
+ ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
+ if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
+ (transformZExtICmp(LHS, CI, false) ||
+ transformZExtICmp(RHS, CI, false))) {
+ // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
+ Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
+ Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
+ Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
+ if (auto *OrInst = dyn_cast<Instruction>(Or))
+ Builder.SetInsertPoint(OrInst);
+
+ // Perform the elimination.
+ if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
+ transformZExtICmp(LHS, *LZExt);
+ if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
+ transformZExtICmp(RHS, *RZExt);
+
+ return replaceInstUsesWith(CI, Or);
+ }
+ }
+
+ // zext(trunc(X) & C) -> (X & zext(C)).
+ Constant *C;
+ Value *X;
+ if (SrcI &&
+ match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
+ X->getType() == CI.getType())
+ return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
+
+ // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
+ Value *And;
+ if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
+ match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
+ X->getType() == CI.getType()) {
+ Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
+ return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
+ }
+
+ return nullptr;
+}
+
+/// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
+Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
+ Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+
+ // Don't bother if Op1 isn't of vector or integer type.
+ if (!Op1->getType()->isIntOrIntVectorTy())
+ return nullptr;
+
+ if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
+ (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
+ // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
+ // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
+ Value *Sh = ConstantInt::get(Op0->getType(),
+ Op0->getType()->getScalarSizeInBits() - 1);
+ Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
+ if (In->getType() != CI.getType())
+ In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
+
+ if (Pred == ICmpInst::ICMP_SGT)
+ In = Builder.CreateNot(In, In->getName() + ".not");
+ return replaceInstUsesWith(CI, In);
+ }
+
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ // If we know that only one bit of the LHS of the icmp can be set and we
+ // have an equality comparison with zero or a power of 2, we can transform
+ // the icmp and sext into bitwise/integer operations.
+ if (ICI->hasOneUse() &&
+ ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
+ KnownBits Known = computeKnownBits(Op0, 0, &CI);
+
+ APInt KnownZeroMask(~Known.Zero);
+ if (KnownZeroMask.isPowerOf2()) {
+ Value *In = ICI->getOperand(0);
+
+ // If the icmp tests for a known zero bit we can constant fold it.
+ if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
+ Value *V = Pred == ICmpInst::ICMP_NE ?
+ ConstantInt::getAllOnesValue(CI.getType()) :
+ ConstantInt::getNullValue(CI.getType());
+ return replaceInstUsesWith(CI, V);
+ }
+
+ if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
+ // sext ((x & 2^n) == 0) -> (x >> n) - 1
+ // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
+ unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
+ // Perform a right shift to place the desired bit in the LSB.
+ if (ShiftAmt)
+ In = Builder.CreateLShr(In,
+ ConstantInt::get(In->getType(), ShiftAmt));
+
+ // At this point "In" is either 1 or 0. Subtract 1 to turn
+ // {1, 0} -> {0, -1}.
+ In = Builder.CreateAdd(In,
+ ConstantInt::getAllOnesValue(In->getType()),
+ "sext");
+ } else {
+ // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
+ // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
+ unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
+ // Perform a left shift to place the desired bit in the MSB.
+ if (ShiftAmt)
+ In = Builder.CreateShl(In,
+ ConstantInt::get(In->getType(), ShiftAmt));
+
+ // Distribute the bit over the whole bit width.
+ In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
+ KnownZeroMask.getBitWidth() - 1), "sext");
+ }
+
+ if (CI.getType() == In->getType())
+ return replaceInstUsesWith(CI, In);
+ return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+/// Return true if we can take the specified value and return it as type Ty
+/// without inserting any new casts and without changing the value of the common
+/// low bits. This is used by code that tries to promote integer operations to
+/// a wider types will allow us to eliminate the extension.
+///
+/// This function works on both vectors and scalars.
+///
+static bool canEvaluateSExtd(Value *V, Type *Ty) {
+ assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
+ "Can't sign extend type to a smaller type");
+ if (canAlwaysEvaluateInType(V, Ty))
+ return true;
+ if (canNotEvaluateInType(V, Ty))
+ return false;
+
+ auto *I = cast<Instruction>(V);
+ switch (I->getOpcode()) {
+ case Instruction::SExt: // sext(sext(x)) -> sext(x)
+ case Instruction::ZExt: // sext(zext(x)) -> zext(x)
+ case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
+ return true;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ // These operators can all arbitrarily be extended if their inputs can.
+ return canEvaluateSExtd(I->getOperand(0), Ty) &&
+ canEvaluateSExtd(I->getOperand(1), Ty);
+
+ //case Instruction::Shl: TODO
+ //case Instruction::LShr: TODO
+
+ case Instruction::Select:
+ return canEvaluateSExtd(I->getOperand(1), Ty) &&
+ canEvaluateSExtd(I->getOperand(2), Ty);
+
+ case Instruction::PHI: {
+ // We can change a phi if we can change all operands. Note that we never
+ // get into trouble with cyclic PHIs here because we only consider
+ // instructions with a single use.
+ PHINode *PN = cast<PHINode>(I);
+ for (Value *IncValue : PN->incoming_values())
+ if (!canEvaluateSExtd(IncValue, Ty)) return false;
+ return true;
+ }
+ default:
+ // TODO: Can handle more cases here.
+ break;
+ }
+
+ return false;
+}
+
+Instruction *InstCombiner::visitSExt(SExtInst &CI) {
+ // If this sign extend is only used by a truncate, let the truncate be
+ // eliminated before we try to optimize this sext.
+ if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
+ return nullptr;
+
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ Value *Src = CI.getOperand(0);
+ Type *SrcTy = Src->getType(), *DestTy = CI.getType();
+
+ // If we know that the value being extended is positive, we can use a zext
+ // instead.
+ KnownBits Known = computeKnownBits(Src, 0, &CI);
+ if (Known.isNonNegative())
+ return CastInst::Create(Instruction::ZExt, Src, DestTy);
+
+ // Try to extend the entire expression tree to the wide destination type.
+ if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
+ // Okay, we can transform this! Insert the new expression now.
+ LLVM_DEBUG(
+ dbgs() << "ICE: EvaluateInDifferentType converting expression type"
+ " to avoid sign extend: "
+ << CI << '\n');
+ Value *Res = EvaluateInDifferentType(Src, DestTy, true);
+ assert(Res->getType() == DestTy);
+
+ uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
+ uint32_t DestBitSize = DestTy->getScalarSizeInBits();
+
+ // If the high bits are already filled with sign bit, just replace this
+ // cast with the result.
+ if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
+ return replaceInstUsesWith(CI, Res);
+
+ // We need to emit a shl + ashr to do the sign extend.
+ Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
+ return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
+ ShAmt);
+ }
+
+ // If the input is a trunc from the destination type, then turn sext(trunc(x))
+ // into shifts.
+ Value *X;
+ if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
+ // sext(trunc(X)) --> ashr(shl(X, C), C)
+ unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
+ unsigned DestBitSize = DestTy->getScalarSizeInBits();
+ Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
+ return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
+ }
+
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
+ return transformSExtICmp(ICI, CI);
+
+ // If the input is a shl/ashr pair of a same constant, then this is a sign
+ // extension from a smaller value. If we could trust arbitrary bitwidth
+ // integers, we could turn this into a truncate to the smaller bit and then
+ // use a sext for the whole extension. Since we don't, look deeper and check
+ // for a truncate. If the source and dest are the same type, eliminate the
+ // trunc and extend and just do shifts. For example, turn:
+ // %a = trunc i32 %i to i8
+ // %b = shl i8 %a, 6
+ // %c = ashr i8 %b, 6
+ // %d = sext i8 %c to i32
+ // into:
+ // %a = shl i32 %i, 30
+ // %d = ashr i32 %a, 30
+ Value *A = nullptr;
+ // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
+ Constant *BA = nullptr, *CA = nullptr;
+ if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
+ m_Constant(CA))) &&
+ BA == CA && A->getType() == CI.getType()) {
+ unsigned MidSize = Src->getType()->getScalarSizeInBits();
+ unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
+ Constant *SizeDiff = ConstantInt::get(CA->getType(), SrcDstSize - MidSize);
+ Constant *ShAmt = ConstantExpr::getAdd(CA, SizeDiff);
+ Constant *ShAmtExt = ConstantExpr::getSExt(ShAmt, CI.getType());
+ A = Builder.CreateShl(A, ShAmtExt, CI.getName());
+ return BinaryOperator::CreateAShr(A, ShAmtExt);
+ }
+
+ return nullptr;
+}
+
+
+/// Return a Constant* for the specified floating-point constant if it fits
+/// in the specified FP type without changing its value.
+static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
+ bool losesInfo;
+ APFloat F = CFP->getValueAPF();
+ (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
+ return !losesInfo;
+}
+
+static Type *shrinkFPConstant(ConstantFP *CFP) {
+ if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
+ return nullptr; // No constant folding of this.
+ // See if the value can be truncated to half and then reextended.
+ if (fitsInFPType(CFP, APFloat::IEEEhalf()))
+ return Type::getHalfTy(CFP->getContext());
+ // See if the value can be truncated to float and then reextended.
+ if (fitsInFPType(CFP, APFloat::IEEEsingle()))
+ return Type::getFloatTy(CFP->getContext());
+ if (CFP->getType()->isDoubleTy())
+ return nullptr; // Won't shrink.
+ if (fitsInFPType(CFP, APFloat::IEEEdouble()))
+ return Type::getDoubleTy(CFP->getContext());
+ // Don't try to shrink to various long double types.
+ return nullptr;
+}
+
+// Determine if this is a vector of ConstantFPs and if so, return the minimal
+// type we can safely truncate all elements to.
+// TODO: Make these support undef elements.
+static Type *shrinkFPConstantVector(Value *V) {
+ auto *CV = dyn_cast<Constant>(V);
+ auto *CVVTy = dyn_cast<VectorType>(V->getType());
+ if (!CV || !CVVTy)
+ return nullptr;
+
+ Type *MinType = nullptr;
+
+ unsigned NumElts = CVVTy->getNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
+ if (!CFP)
+ return nullptr;
+
+ Type *T = shrinkFPConstant(CFP);
+ if (!T)
+ return nullptr;
+
+ // If we haven't found a type yet or this type has a larger mantissa than
+ // our previous type, this is our new minimal type.
+ if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
+ MinType = T;
+ }
+
+ // Make a vector type from the minimal type.
+ return FixedVectorType::get(MinType, NumElts);
+}
+
+/// Find the minimum FP type we can safely truncate to.
+static Type *getMinimumFPType(Value *V) {
+ if (auto *FPExt = dyn_cast<FPExtInst>(V))
+ return FPExt->getOperand(0)->getType();
+
+ // If this value is a constant, return the constant in the smallest FP type
+ // that can accurately represent it. This allows us to turn
+ // (float)((double)X+2.0) into x+2.0f.
+ if (auto *CFP = dyn_cast<ConstantFP>(V))
+ if (Type *T = shrinkFPConstant(CFP))
+ return T;
+
+ // Try to shrink a vector of FP constants.
+ if (Type *T = shrinkFPConstantVector(V))
+ return T;
+
+ return V->getType();
+}
+
+/// Return true if the cast from integer to FP can be proven to be exact for all
+/// possible inputs (the conversion does not lose any precision).
+static bool isKnownExactCastIntToFP(CastInst &I) {
+ CastInst::CastOps Opcode = I.getOpcode();
+ assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
+ "Unexpected cast");
+ Value *Src = I.getOperand(0);
+ Type *SrcTy = Src->getType();
+ Type *FPTy = I.getType();
+ bool IsSigned = Opcode == Instruction::SIToFP;
+ int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
+
+ // Easy case - if the source integer type has less bits than the FP mantissa,
+ // then the cast must be exact.
+ int DestNumSigBits = FPTy->getFPMantissaWidth();
+ if (SrcSize <= DestNumSigBits)
+ return true;
+
+ // Cast from FP to integer and back to FP is independent of the intermediate
+ // integer width because of poison on overflow.
+ Value *F;
+ if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
+ // If this is uitofp (fptosi F), the source needs an extra bit to avoid
+ // potential rounding of negative FP input values.
+ int SrcNumSigBits = F->getType()->getFPMantissaWidth();
+ if (!IsSigned && match(Src, m_FPToSI(m_Value())))
+ SrcNumSigBits++;
+
+ // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
+ // significant bits than the destination (and make sure neither type is
+ // weird -- ppc_fp128).
+ if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
+ SrcNumSigBits <= DestNumSigBits)
+ return true;
+ }
+
+ // TODO:
+ // Try harder to find if the source integer type has less significant bits.
+ // For example, compute number of sign bits or compute low bit mask.
+ return false;
+}
+
+Instruction *InstCombiner::visitFPTrunc(FPTruncInst &FPT) {
+ if (Instruction *I = commonCastTransforms(FPT))
+ return I;
+
+ // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
+ // simplify this expression to avoid one or more of the trunc/extend
+ // operations if we can do so without changing the numerical results.
+ //
+ // The exact manner in which the widths of the operands interact to limit
+ // what we can and cannot do safely varies from operation to operation, and
+ // is explained below in the various case statements.
+ Type *Ty = FPT.getType();
+ auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
+ if (BO && BO->hasOneUse()) {
+ Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
+ Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
+ unsigned OpWidth = BO->getType()->getFPMantissaWidth();
+ unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
+ unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
+ unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
+ unsigned DstWidth = Ty->getFPMantissaWidth();
+ switch (BO->getOpcode()) {
+ default: break;
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ // For addition and subtraction, the infinitely precise result can
+ // essentially be arbitrarily wide; proving that double rounding
+ // will not occur because the result of OpI is exact (as we will for
+ // FMul, for example) is hopeless. However, we *can* nonetheless
+ // frequently know that double rounding cannot occur (or that it is
+ // innocuous) by taking advantage of the specific structure of
+ // infinitely-precise results that admit double rounding.
+ //
+ // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
+ // to represent both sources, we can guarantee that the double
+ // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
+ // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
+ // for proof of this fact).
+ //
+ // Note: Figueroa does not consider the case where DstFormat !=
+ // SrcFormat. It's possible (likely even!) that this analysis
+ // could be tightened for those cases, but they are rare (the main
+ // case of interest here is (float)((double)float + float)).
+ if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
+ Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
+ Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
+ Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
+ RI->copyFastMathFlags(BO);
+ return RI;
+ }
+ break;
+ case Instruction::FMul:
+ // For multiplication, the infinitely precise result has at most
+ // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
+ // that such a value can be exactly represented, then no double
+ // rounding can possibly occur; we can safely perform the operation
+ // in the destination format if it can represent both sources.
+ if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
+ Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
+ Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
+ return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
+ }
+ break;
+ case Instruction::FDiv:
+ // For division, we use again use the bound from Figueroa's
+ // dissertation. I am entirely certain that this bound can be
+ // tightened in the unbalanced operand case by an analysis based on
+ // the diophantine rational approximation bound, but the well-known
+ // condition used here is a good conservative first pass.
+ // TODO: Tighten bound via rigorous analysis of the unbalanced case.
+ if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
+ Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
+ Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
+ return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
+ }
+ break;
+ case Instruction::FRem: {
+ // Remainder is straightforward. Remainder is always exact, so the
+ // type of OpI doesn't enter into things at all. We simply evaluate
+ // in whichever source type is larger, then convert to the
+ // destination type.
+ if (SrcWidth == OpWidth)
+ break;
+ Value *LHS, *RHS;
+ if (LHSWidth == SrcWidth) {
+ LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
+ RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
+ } else {
+ LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
+ RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
+ }
+
+ Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
+ return CastInst::CreateFPCast(ExactResult, Ty);
+ }
+ }
+ }
+
+ // (fptrunc (fneg x)) -> (fneg (fptrunc x))
+ Value *X;
+ Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
+ if (Op && Op->hasOneUse()) {
+ // FIXME: The FMF should propagate from the fptrunc, not the source op.
+ IRBuilder<>::FastMathFlagGuard FMFG(Builder);
+ if (isa<FPMathOperator>(Op))
+ Builder.setFastMathFlags(Op->getFastMathFlags());
+
+ if (match(Op, m_FNeg(m_Value(X)))) {
+ Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
+
+ return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
+ }
+
+ // If we are truncating a select that has an extended operand, we can
+ // narrow the other operand and do the select as a narrow op.
+ Value *Cond, *X, *Y;
+ if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
+ X->getType() == Ty) {
+ // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
+ Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
+ Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
+ return replaceInstUsesWith(FPT, Sel);
+ }
+ if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
+ X->getType() == Ty) {
+ // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
+ Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
+ Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
+ return replaceInstUsesWith(FPT, Sel);
+ }
+ }
+
+ if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::ceil:
+ case Intrinsic::fabs:
+ case Intrinsic::floor:
+ case Intrinsic::nearbyint:
+ case Intrinsic::rint:
+ case Intrinsic::round:
+ case Intrinsic::roundeven:
+ case Intrinsic::trunc: {
+ Value *Src = II->getArgOperand(0);
+ if (!Src->hasOneUse())
+ break;
+
+ // Except for fabs, this transformation requires the input of the unary FP
+ // operation to be itself an fpext from the type to which we're
+ // truncating.
+ if (II->getIntrinsicID() != Intrinsic::fabs) {
+ FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
+ if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
+ break;
+ }
+
+ // Do unary FP operation on smaller type.
+ // (fptrunc (fabs x)) -> (fabs (fptrunc x))
+ Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
+ Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
+ II->getIntrinsicID(), Ty);
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ II->getOperandBundlesAsDefs(OpBundles);
+ CallInst *NewCI =
+ CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
+ NewCI->copyFastMathFlags(II);
+ return NewCI;
+ }
+ }
+ }
+
+ if (Instruction *I = shrinkInsertElt(FPT, Builder))
+ return I;
+
+ Value *Src = FPT.getOperand(0);
+ if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
+ auto *FPCast = cast<CastInst>(Src);
+ if (isKnownExactCastIntToFP(*FPCast))
+ return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitFPExt(CastInst &FPExt) {
+ // If the source operand is a cast from integer to FP and known exact, then
+ // cast the integer operand directly to the destination type.
+ Type *Ty = FPExt.getType();
+ Value *Src = FPExt.getOperand(0);
+ if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
+ auto *FPCast = cast<CastInst>(Src);
+ if (isKnownExactCastIntToFP(*FPCast))
+ return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
+ }
+
+ return commonCastTransforms(FPExt);
+}
+
+/// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
+/// This is safe if the intermediate type has enough bits in its mantissa to
+/// accurately represent all values of X. For example, this won't work with
+/// i64 -> float -> i64.
+Instruction *InstCombiner::foldItoFPtoI(CastInst &FI) {
+ if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
+ return nullptr;
+
+ auto *OpI = cast<CastInst>(FI.getOperand(0));
+ Value *X = OpI->getOperand(0);
+ Type *XType = X->getType();
+ Type *DestType = FI.getType();
+ bool IsOutputSigned = isa<FPToSIInst>(FI);
+
+ // Since we can assume the conversion won't overflow, our decision as to
+ // whether the input will fit in the float should depend on the minimum
+ // of the input range and output range.
+
+ // This means this is also safe for a signed input and unsigned output, since
+ // a negative input would lead to undefined behavior.
+ if (!isKnownExactCastIntToFP(*OpI)) {
+ // The first cast may not round exactly based on the source integer width
+ // and FP width, but the overflow UB rules can still allow this to fold.
+ // If the destination type is narrow, that means the intermediate FP value
+ // must be large enough to hold the source value exactly.
+ // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
+ int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
+ if (OutputSize > OpI->getType()->getFPMantissaWidth())
+ return nullptr;
+ }
+
+ if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
+ bool IsInputSigned = isa<SIToFPInst>(OpI);
+ if (IsInputSigned && IsOutputSigned)
+ return new SExtInst(X, DestType);
+ return new ZExtInst(X, DestType);
+ }
+ if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
+ return new TruncInst(X, DestType);
+
+ assert(XType == DestType && "Unexpected types for int to FP to int casts");
+ return replaceInstUsesWith(FI, X);
+}
+
+Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
+ if (Instruction *I = foldItoFPtoI(FI))
+ return I;
+
+ return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
+ if (Instruction *I = foldItoFPtoI(FI))
+ return I;
+
+ return commonCastTransforms(FI);
+}
+
+Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
+ // If the source integer type is not the intptr_t type for this target, do a
+ // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
+ // cast to be exposed to other transforms.
+ unsigned AS = CI.getAddressSpace();
+ if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
+ DL.getPointerSizeInBits(AS)) {
+ Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
+ // Handle vectors of pointers.
+ if (auto *CIVTy = dyn_cast<VectorType>(CI.getType()))
+ Ty = VectorType::get(Ty, CIVTy->getElementCount());
+
+ Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
+ return new IntToPtrInst(P, CI.getType());
+ }
+
+ if (Instruction *I = commonCastTransforms(CI))
+ return I;
+
+ return nullptr;
+}
+
+/// Implement the transforms for cast of pointer (bitcast/ptrtoint)
+Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
+ Value *Src = CI.getOperand(0);
+
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
+ // If casting the result of a getelementptr instruction with no offset, turn
+ // this into a cast of the original pointer!
+ if (GEP->hasAllZeroIndices() &&
+ // If CI is an addrspacecast and GEP changes the poiner type, merging
+ // GEP into CI would undo canonicalizing addrspacecast with different
+ // pointer types, causing infinite loops.
+ (!isa<AddrSpaceCastInst>(CI) ||
+ GEP->getType() == GEP->getPointerOperandType())) {
+ // Changing the cast operand is usually not a good idea but it is safe
+ // here because the pointer operand is being replaced with another
+ // pointer operand so the opcode doesn't need to change.
+ return replaceOperand(CI, 0, GEP->getOperand(0));
+ }
+ }
+
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
+ // If the destination integer type is not the intptr_t type for this target,
+ // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
+ // to be exposed to other transforms.
+
+ Type *Ty = CI.getType();
+ unsigned AS = CI.getPointerAddressSpace();
+
+ if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
+ return commonPointerCastTransforms(CI);
+
+ Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
+ if (auto *VTy = dyn_cast<VectorType>(Ty)) {
+ // Handle vectors of pointers.
+ // FIXME: what should happen for scalable vectors?
+ PtrTy = FixedVectorType::get(PtrTy, VTy->getNumElements());
+ }
+
+ Value *P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
+ return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
+}
+
+/// This input value (which is known to have vector type) is being zero extended
+/// or truncated to the specified vector type. Since the zext/trunc is done
+/// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
+/// endianness will impact which end of the vector that is extended or
+/// truncated.
+///
+/// A vector is always stored with index 0 at the lowest address, which
+/// corresponds to the most significant bits for a big endian stored integer and
+/// the least significant bits for little endian. A trunc/zext of an integer
+/// impacts the big end of the integer. Thus, we need to add/remove elements at
+/// the front of the vector for big endian targets, and the back of the vector
+/// for little endian targets.
+///
+/// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
+///
+/// The source and destination vector types may have different element types.
+static Instruction *optimizeVectorResizeWithIntegerBitCasts(Value *InVal,
+ VectorType *DestTy,
+ InstCombiner &IC) {
+ // We can only do this optimization if the output is a multiple of the input
+ // element size, or the input is a multiple of the output element size.
+ // Convert the input type to have the same element type as the output.
+ VectorType *SrcTy = cast<VectorType>(InVal->getType());
+
+ if (SrcTy->getElementType() != DestTy->getElementType()) {
+ // The input types don't need to be identical, but for now they must be the
+ // same size. There is no specific reason we couldn't handle things like
+ // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
+ // there yet.
+ if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
+ DestTy->getElementType()->getPrimitiveSizeInBits())
+ return nullptr;
+
+ SrcTy =
+ FixedVectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
+ InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
+ }
+
+ bool IsBigEndian = IC.getDataLayout().isBigEndian();
+ unsigned SrcElts = SrcTy->getNumElements();
+ unsigned DestElts = DestTy->getNumElements();
+
+ assert(SrcElts != DestElts && "Element counts should be different.");
+
+ // Now that the element types match, get the shuffle mask and RHS of the
+ // shuffle to use, which depends on whether we're increasing or decreasing the
+ // size of the input.
+ SmallVector<int, 16> ShuffleMaskStorage;
+ ArrayRef<int> ShuffleMask;
+ Value *V2;
+
+ // Produce an identify shuffle mask for the src vector.
+ ShuffleMaskStorage.resize(SrcElts);
+ std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
+
+ if (SrcElts > DestElts) {
+ // If we're shrinking the number of elements (rewriting an integer
+ // truncate), just shuffle in the elements corresponding to the least
+ // significant bits from the input and use undef as the second shuffle
+ // input.
+ V2 = UndefValue::get(SrcTy);
+ // Make sure the shuffle mask selects the "least significant bits" by
+ // keeping elements from back of the src vector for big endian, and from the
+ // front for little endian.
+ ShuffleMask = ShuffleMaskStorage;
+ if (IsBigEndian)
+ ShuffleMask = ShuffleMask.take_back(DestElts);
+ else
+ ShuffleMask = ShuffleMask.take_front(DestElts);
+ } else {
+ // If we're increasing the number of elements (rewriting an integer zext),
+ // shuffle in all of the elements from InVal. Fill the rest of the result
+ // elements with zeros from a constant zero.
+ V2 = Constant::getNullValue(SrcTy);
+ // Use first elt from V2 when indicating zero in the shuffle mask.
+ uint32_t NullElt = SrcElts;
+ // Extend with null values in the "most significant bits" by adding elements
+ // in front of the src vector for big endian, and at the back for little
+ // endian.
+ unsigned DeltaElts = DestElts - SrcElts;
+ if (IsBigEndian)
+ ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
+ else
+ ShuffleMaskStorage.append(DeltaElts, NullElt);
+ ShuffleMask = ShuffleMaskStorage;
+ }
+
+ return new ShuffleVectorInst(InVal, V2, ShuffleMask);
+}
+
+static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
+ return Value % Ty->getPrimitiveSizeInBits() == 0;
+}
+
+static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
+ return Value / Ty->getPrimitiveSizeInBits();
+}
+
+/// V is a value which is inserted into a vector of VecEltTy.
+/// Look through the value to see if we can decompose it into
+/// insertions into the vector. See the example in the comment for
+/// OptimizeIntegerToVectorInsertions for the pattern this handles.
+/// The type of V is always a non-zero multiple of VecEltTy's size.
+/// Shift is the number of bits between the lsb of V and the lsb of
+/// the vector.
+///
+/// This returns false if the pattern can't be matched or true if it can,
+/// filling in Elements with the elements found here.
+static bool collectInsertionElements(Value *V, unsigned Shift,
+ SmallVectorImpl<Value *> &Elements,
+ Type *VecEltTy, bool isBigEndian) {
+ assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
+ "Shift should be a multiple of the element type size");
+
+ // Undef values never contribute useful bits to the result.
+ if (isa<UndefValue>(V)) return true;
+
+ // If we got down to a value of the right type, we win, try inserting into the
+ // right element.
+ if (V->getType() == VecEltTy) {
+ // Inserting null doesn't actually insert any elements.
+ if (Constant *C = dyn_cast<Constant>(V))
+ if (C->isNullValue())
+ return true;
+
+ unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
+ if (isBigEndian)
+ ElementIndex = Elements.size() - ElementIndex - 1;
+
+ // Fail if multiple elements are inserted into this slot.
+ if (Elements[ElementIndex])
+ return false;
+
+ Elements[ElementIndex] = V;
+ return true;
+ }
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ // Figure out the # elements this provides, and bitcast it or slice it up
+ // as required.
+ unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
+ VecEltTy);
+ // If the constant is the size of a vector element, we just need to bitcast
+ // it to the right type so it gets properly inserted.
+ if (NumElts == 1)
+ return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
+ Shift, Elements, VecEltTy, isBigEndian);
+
+ // Okay, this is a constant that covers multiple elements. Slice it up into
+ // pieces and insert each element-sized piece into the vector.
+ if (!isa<IntegerType>(C->getType()))
+ C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
+ C->getType()->getPrimitiveSizeInBits()));
+ unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
+ Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ unsigned ShiftI = Shift+i*ElementSize;
+ Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
+ ShiftI));
+ Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
+ if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
+ isBigEndian))
+ return false;
+ }
+ return true;
+ }
+
+ if (!V->hasOneUse()) return false;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return false;
+ switch (I->getOpcode()) {
+ default: return false; // Unhandled case.
+ case Instruction::BitCast:
+ return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian);
+ case Instruction::ZExt:
+ if (!isMultipleOfTypeSize(
+ I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
+ VecEltTy))
+ return false;
+ return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian);
+ case Instruction::Or:
+ return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian) &&
+ collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
+ isBigEndian);
+ case Instruction::Shl: {
+ // Must be shifting by a constant that is a multiple of the element size.
+ ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
+ if (!CI) return false;
+ Shift += CI->getZExtValue();
+ if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
+ return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
+ isBigEndian);
+ }
+
+ }
+}
+
+
+/// If the input is an 'or' instruction, we may be doing shifts and ors to
+/// assemble the elements of the vector manually.
+/// Try to rip the code out and replace it with insertelements. This is to
+/// optimize code like this:
+///
+/// %tmp37 = bitcast float %inc to i32
+/// %tmp38 = zext i32 %tmp37 to i64
+/// %tmp31 = bitcast float %inc5 to i32
+/// %tmp32 = zext i32 %tmp31 to i64
+/// %tmp33 = shl i64 %tmp32, 32
+/// %ins35 = or i64 %tmp33, %tmp38
+/// %tmp43 = bitcast i64 %ins35 to <2 x float>
+///
+/// Into two insertelements that do "buildvector{%inc, %inc5}".
+static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
+ InstCombiner &IC) {
+ VectorType *DestVecTy = cast<VectorType>(CI.getType());
+ Value *IntInput = CI.getOperand(0);
+
+ SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
+ if (!collectInsertionElements(IntInput, 0, Elements,
+ DestVecTy->getElementType(),
+ IC.getDataLayout().isBigEndian()))
+ return nullptr;
+
+ // If we succeeded, we know that all of the element are specified by Elements
+ // or are zero if Elements has a null entry. Recast this as a set of
+ // insertions.
+ Value *Result = Constant::getNullValue(CI.getType());
+ for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
+ if (!Elements[i]) continue; // Unset element.
+
+ Result = IC.Builder.CreateInsertElement(Result, Elements[i],
+ IC.Builder.getInt32(i));
+ }
+
+ return Result;
+}
+
+/// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
+/// vector followed by extract element. The backend tends to handle bitcasts of
+/// vectors better than bitcasts of scalars because vector registers are
+/// usually not type-specific like scalar integer or scalar floating-point.
+static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
+ InstCombiner &IC) {
+ // TODO: Create and use a pattern matcher for ExtractElementInst.
+ auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
+ if (!ExtElt || !ExtElt->hasOneUse())
+ return nullptr;
+
+ // The bitcast must be to a vectorizable type, otherwise we can't make a new
+ // type to extract from.
+ Type *DestType = BitCast.getType();
+ if (!VectorType::isValidElementType(DestType))
+ return nullptr;
+
+ unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
+ auto *NewVecType = FixedVectorType::get(DestType, NumElts);
+ auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
+ NewVecType, "bc");
+ return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
+}
+
+/// Change the type of a bitwise logic operation if we can eliminate a bitcast.
+static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
+ InstCombiner::BuilderTy &Builder) {
+ Type *DestTy = BitCast.getType();
+ BinaryOperator *BO;
+ if (!DestTy->isIntOrIntVectorTy() ||
+ !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
+ !BO->isBitwiseLogicOp())
+ return nullptr;
+
+ // FIXME: This transform is restricted to vector types to avoid backend
+ // problems caused by creating potentially illegal operations. If a fix-up is
+ // added to handle that situation, we can remove this check.
+ if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
+ return nullptr;
+
+ Value *X;
+ if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
+ X->getType() == DestTy && !isa<Constant>(X)) {
+ // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
+ Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
+ return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
+ }
+
+ if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
+ X->getType() == DestTy && !isa<Constant>(X)) {
+ // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
+ Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
+ return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
+ }
+
+ // Canonicalize vector bitcasts to come before vector bitwise logic with a
+ // constant. This eases recognition of special constants for later ops.
+ // Example:
+ // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
+ Constant *C;
+ if (match(BO->getOperand(1), m_Constant(C))) {
+ // bitcast (logic X, C) --> logic (bitcast X, C')
+ Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
+ Value *CastedC = Builder.CreateBitCast(C, DestTy);
+ return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
+ }
+
+ return nullptr;
+}
+
+/// Change the type of a select if we can eliminate a bitcast.
+static Instruction *foldBitCastSelect(BitCastInst &BitCast,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Cond, *TVal, *FVal;
+ if (!match(BitCast.getOperand(0),
+ m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
+ return nullptr;
+
+ // A vector select must maintain the same number of elements in its operands.
+ Type *CondTy = Cond->getType();
+ Type *DestTy = BitCast.getType();
+ if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
+ if (!DestTy->isVectorTy())
+ return nullptr;
+ if (cast<VectorType>(DestTy)->getNumElements() != CondVTy->getNumElements())
+ return nullptr;
+ }
+
+ // FIXME: This transform is restricted from changing the select between
+ // scalars and vectors to avoid backend problems caused by creating
+ // potentially illegal operations. If a fix-up is added to handle that
+ // situation, we can remove this check.
+ if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
+ return nullptr;
+
+ auto *Sel = cast<Instruction>(BitCast.getOperand(0));
+ Value *X;
+ if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
+ !isa<Constant>(X)) {
+ // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
+ Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
+ return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
+ }
+
+ if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
+ !isa<Constant>(X)) {
+ // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
+ Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
+ return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
+ }
+
+ return nullptr;
+}
+
+/// Check if all users of CI are StoreInsts.
+static bool hasStoreUsersOnly(CastInst &CI) {
+ for (User *U : CI.users()) {
+ if (!isa<StoreInst>(U))
+ return false;
+ }
+ return true;
+}
+
+/// This function handles following case
+///
+/// A -> B cast
+/// PHI
+/// B -> A cast
+///
+/// All the related PHI nodes can be replaced by new PHI nodes with type A.
+/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
+Instruction *InstCombiner::optimizeBitCastFromPhi(CastInst &CI, PHINode *PN) {
+ // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
+ if (hasStoreUsersOnly(CI))
+ return nullptr;
+
+ Value *Src = CI.getOperand(0);
+ Type *SrcTy = Src->getType(); // Type B
+ Type *DestTy = CI.getType(); // Type A
+
+ SmallVector<PHINode *, 4> PhiWorklist;
+ SmallSetVector<PHINode *, 4> OldPhiNodes;
+
+ // Find all of the A->B casts and PHI nodes.
+ // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
+ // OldPhiNodes is used to track all known PHI nodes, before adding a new
+ // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
+ PhiWorklist.push_back(PN);
+ OldPhiNodes.insert(PN);
+ while (!PhiWorklist.empty()) {
+ auto *OldPN = PhiWorklist.pop_back_val();
+ for (Value *IncValue : OldPN->incoming_values()) {
+ if (isa<Constant>(IncValue))
+ continue;
+
+ if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
+ // If there is a sequence of one or more load instructions, each loaded
+ // value is used as address of later load instruction, bitcast is
+ // necessary to change the value type, don't optimize it. For
+ // simplicity we give up if the load address comes from another load.
+ Value *Addr = LI->getOperand(0);
+ if (Addr == &CI || isa<LoadInst>(Addr))
+ return nullptr;
+ if (LI->hasOneUse() && LI->isSimple())
+ continue;
+ // If a LoadInst has more than one use, changing the type of loaded
+ // value may create another bitcast.
+ return nullptr;
+ }
+
+ if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
+ if (OldPhiNodes.insert(PNode))
+ PhiWorklist.push_back(PNode);
+ continue;
+ }
+
+ auto *BCI = dyn_cast<BitCastInst>(IncValue);
+ // We can't handle other instructions.
+ if (!BCI)
+ return nullptr;
+
+ // Verify it's a A->B cast.
+ Type *TyA = BCI->getOperand(0)->getType();
+ Type *TyB = BCI->getType();
+ if (TyA != DestTy || TyB != SrcTy)
+ return nullptr;
+ }
+ }
+
+ // Check that each user of each old PHI node is something that we can
+ // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
+ for (auto *OldPN : OldPhiNodes) {
+ for (User *V : OldPN->users()) {
+ if (auto *SI = dyn_cast<StoreInst>(V)) {
+ if (!SI->isSimple() || SI->getOperand(0) != OldPN)
+ return nullptr;
+ } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
+ // Verify it's a B->A cast.
+ Type *TyB = BCI->getOperand(0)->getType();
+ Type *TyA = BCI->getType();
+ if (TyA != DestTy || TyB != SrcTy)
+ return nullptr;
+ } else if (auto *PHI = dyn_cast<PHINode>(V)) {
+ // As long as the user is another old PHI node, then even if we don't
+ // rewrite it, the PHI web we're considering won't have any users
+ // outside itself, so it'll be dead.
+ if (OldPhiNodes.count(PHI) == 0)
+ return nullptr;
+ } else {
+ return nullptr;
+ }
+ }
+ }
+
+ // For each old PHI node, create a corresponding new PHI node with a type A.
+ SmallDenseMap<PHINode *, PHINode *> NewPNodes;
+ for (auto *OldPN : OldPhiNodes) {
+ Builder.SetInsertPoint(OldPN);
+ PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
+ NewPNodes[OldPN] = NewPN;
+ }
+
+ // Fill in the operands of new PHI nodes.
+ for (auto *OldPN : OldPhiNodes) {
+ PHINode *NewPN = NewPNodes[OldPN];
+ for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
+ Value *V = OldPN->getOperand(j);
+ Value *NewV = nullptr;
+ if (auto *C = dyn_cast<Constant>(V)) {
+ NewV = ConstantExpr::getBitCast(C, DestTy);
+ } else if (auto *LI = dyn_cast<LoadInst>(V)) {
+ // Explicitly perform load combine to make sure no opposing transform
+ // can remove the bitcast in the meantime and trigger an infinite loop.
+ Builder.SetInsertPoint(LI);
+ NewV = combineLoadToNewType(*LI, DestTy);
+ // Remove the old load and its use in the old phi, which itself becomes
+ // dead once the whole transform finishes.
+ replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
+ eraseInstFromFunction(*LI);
+ } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
+ NewV = BCI->getOperand(0);
+ } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
+ NewV = NewPNodes[PrevPN];
+ }
+ assert(NewV);
+ NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
+ }
+ }
+
+ // Traverse all accumulated PHI nodes and process its users,
+ // which are Stores and BitcCasts. Without this processing
+ // NewPHI nodes could be replicated and could lead to extra
+ // moves generated after DeSSA.
+ // If there is a store with type B, change it to type A.
+
+
+ // Replace users of BitCast B->A with NewPHI. These will help
+ // later to get rid off a closure formed by OldPHI nodes.
+ Instruction *RetVal = nullptr;
+ for (auto *OldPN : OldPhiNodes) {
+ PHINode *NewPN = NewPNodes[OldPN];
+ for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) {
+ User *V = *It;
+ // We may remove this user, advance to avoid iterator invalidation.
+ ++It;
+ if (auto *SI = dyn_cast<StoreInst>(V)) {
+ assert(SI->isSimple() && SI->getOperand(0) == OldPN);
+ Builder.SetInsertPoint(SI);
+ auto *NewBC =
+ cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
+ SI->setOperand(0, NewBC);
+ Worklist.push(SI);
+ assert(hasStoreUsersOnly(*NewBC));
+ }
+ else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
+ Type *TyB = BCI->getOperand(0)->getType();
+ Type *TyA = BCI->getType();
+ assert(TyA == DestTy && TyB == SrcTy);
+ (void) TyA;
+ (void) TyB;
+ Instruction *I = replaceInstUsesWith(*BCI, NewPN);
+ if (BCI == &CI)
+ RetVal = I;
+ } else if (auto *PHI = dyn_cast<PHINode>(V)) {
+ assert(OldPhiNodes.count(PHI) > 0);
+ (void) PHI;
+ } else {
+ llvm_unreachable("all uses should be handled");
+ }
+ }
+ }
+
+ return RetVal;
+}
+
+Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
+ // If the operands are integer typed then apply the integer transforms,
+ // otherwise just apply the common ones.
+ Value *Src = CI.getOperand(0);
+ Type *SrcTy = Src->getType();
+ Type *DestTy = CI.getType();
+
+ // Get rid of casts from one type to the same type. These are useless and can
+ // be replaced by the operand.
+ if (DestTy == Src->getType())
+ return replaceInstUsesWith(CI, Src);
+
+ if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
+ PointerType *SrcPTy = cast<PointerType>(SrcTy);
+ PointerType *DstPTy = cast<PointerType>(DestTy);
+ Type *DstElTy = DstPTy->getElementType();
+ Type *SrcElTy = SrcPTy->getElementType();
+
+ // Casting pointers between the same type, but with different address spaces
+ // is an addrspace cast rather than a bitcast.
+ if ((DstElTy == SrcElTy) &&
+ (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
+ return new AddrSpaceCastInst(Src, DestTy);
+
+ // If we are casting a alloca to a pointer to a type of the same
+ // size, rewrite the allocation instruction to allocate the "right" type.
+ // There is no need to modify malloc calls because it is their bitcast that
+ // needs to be cleaned up.
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
+ if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
+ return V;
+
+ // When the type pointed to is not sized the cast cannot be
+ // turned into a gep.
+ Type *PointeeType =
+ cast<PointerType>(Src->getType()->getScalarType())->getElementType();
+ if (!PointeeType->isSized())
+ return nullptr;
+
+ // If the source and destination are pointers, and this cast is equivalent
+ // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
+ // This can enhance SROA and other transforms that want type-safe pointers.
+ unsigned NumZeros = 0;
+ while (SrcElTy && SrcElTy != DstElTy) {
+ SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
+ ++NumZeros;
+ }
+
+ // If we found a path from the src to dest, create the getelementptr now.
+ if (SrcElTy == DstElTy) {
+ SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
+ GetElementPtrInst *GEP =
+ GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
+
+ // If the source pointer is dereferenceable, then assume it points to an
+ // allocated object and apply "inbounds" to the GEP.
+ bool CanBeNull;
+ if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
+ // In a non-default address space (not 0), a null pointer can not be
+ // assumed inbounds, so ignore that case (dereferenceable_or_null).
+ // The reason is that 'null' is not treated differently in these address
+ // spaces, and we consequently ignore the 'gep inbounds' special case
+ // for 'null' which allows 'inbounds' on 'null' if the indices are
+ // zeros.
+ if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
+ GEP->setIsInBounds();
+ }
+ return GEP;
+ }
+ }
+
+ if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
+ // Beware: messing with this target-specific oddity may cause trouble.
+ if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
+ Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
+ return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ }
+
+ if (isa<IntegerType>(SrcTy)) {
+ // If this is a cast from an integer to vector, check to see if the input
+ // is a trunc or zext of a bitcast from vector. If so, we can replace all
+ // the casts with a shuffle and (potentially) a bitcast.
+ if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
+ CastInst *SrcCast = cast<CastInst>(Src);
+ if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
+ if (isa<VectorType>(BCIn->getOperand(0)->getType()))
+ if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
+ BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
+ return I;
+ }
+
+ // If the input is an 'or' instruction, we may be doing shifts and ors to
+ // assemble the elements of the vector manually. Try to rip the code out
+ // and replace it with insertelements.
+ if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
+ return replaceInstUsesWith(CI, V);
+ }
+ }
+
+ if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
+ if (SrcVTy->getNumElements() == 1) {
+ // If our destination is not a vector, then make this a straight
+ // scalar-scalar cast.
+ if (!DestTy->isVectorTy()) {
+ Value *Elem =
+ Builder.CreateExtractElement(Src,
+ Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
+ return CastInst::Create(Instruction::BitCast, Elem, DestTy);
+ }
+
+ // Otherwise, see if our source is an insert. If so, then use the scalar
+ // component directly:
+ // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
+ if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
+ return new BitCastInst(InsElt->getOperand(1), DestTy);
+ }
+ }
+
+ if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
+ // Okay, we have (bitcast (shuffle ..)). Check to see if this is
+ // a bitcast to a vector with the same # elts.
+ Value *ShufOp0 = Shuf->getOperand(0);
+ Value *ShufOp1 = Shuf->getOperand(1);
+ unsigned NumShufElts = Shuf->getType()->getNumElements();
+ unsigned NumSrcVecElts =
+ cast<VectorType>(ShufOp0->getType())->getNumElements();
+ if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
+ cast<VectorType>(DestTy)->getNumElements() == NumShufElts &&
+ NumShufElts == NumSrcVecElts) {
+ BitCastInst *Tmp;
+ // If either of the operands is a cast from CI.getType(), then
+ // evaluating the shuffle in the casted destination's type will allow
+ // us to eliminate at least one cast.
+ if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
+ Tmp->getOperand(0)->getType() == DestTy) ||
+ ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
+ Tmp->getOperand(0)->getType() == DestTy)) {
+ Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
+ Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
+ // Return a new shuffle vector. Use the same element ID's, as we
+ // know the vector types match #elts.
+ return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
+ }
+ }
+
+ // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
+ // a byte-swap:
+ // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
+ // TODO: We should match the related pattern for bitreverse.
+ if (DestTy->isIntegerTy() &&
+ DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
+ SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
+ Shuf->hasOneUse() && Shuf->isReverse()) {
+ assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
+ assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
+ Function *Bswap =
+ Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
+ Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
+ return IntrinsicInst::Create(Bswap, { ScalarX });
+ }
+ }
+
+ // Handle the A->B->A cast, and there is an intervening PHI node.
+ if (PHINode *PN = dyn_cast<PHINode>(Src))
+ if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
+ return I;
+
+ if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
+ return I;
+
+ if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
+ return I;
+
+ if (Instruction *I = foldBitCastSelect(CI, Builder))
+ return I;
+
+ if (SrcTy->isPointerTy())
+ return commonPointerCastTransforms(CI);
+ return commonCastTransforms(CI);
+}
+
+Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
+ // If the destination pointer element type is not the same as the source's
+ // first do a bitcast to the destination type, and then the addrspacecast.
+ // This allows the cast to be exposed to other transforms.
+ Value *Src = CI.getOperand(0);
+ PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
+ PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
+
+ Type *DestElemTy = DestTy->getElementType();
+ if (SrcTy->getElementType() != DestElemTy) {
+ Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
+ if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
+ // Handle vectors of pointers.
+ // FIXME: what should happen for scalable vectors?
+ MidTy = FixedVectorType::get(MidTy, VT->getNumElements());
+ }
+
+ Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
+ return new AddrSpaceCastInst(NewBitCast, CI.getType());
+ }
+
+ return commonPointerCastTransforms(CI);
+}