diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp | 6275 |
1 files changed, 6275 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp new file mode 100644 index 000000000000..cd9a036179b6 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp @@ -0,0 +1,6275 @@ +//===- InstCombineCompares.cpp --------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitICmp and visitFCmp functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Transforms/InstCombine/InstCombiner.h" + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +// How many times is a select replaced by one of its operands? +STATISTIC(NumSel, "Number of select opts"); + + +/// Compute Result = In1+In2, returning true if the result overflowed for this +/// type. +static bool addWithOverflow(APInt &Result, const APInt &In1, + const APInt &In2, bool IsSigned = false) { + bool Overflow; + if (IsSigned) + Result = In1.sadd_ov(In2, Overflow); + else + Result = In1.uadd_ov(In2, Overflow); + + return Overflow; +} + +/// Compute Result = In1-In2, returning true if the result overflowed for this +/// type. +static bool subWithOverflow(APInt &Result, const APInt &In1, + const APInt &In2, bool IsSigned = false) { + bool Overflow; + if (IsSigned) + Result = In1.ssub_ov(In2, Overflow); + else + Result = In1.usub_ov(In2, Overflow); + + return Overflow; +} + +/// Given an icmp instruction, return true if any use of this comparison is a +/// branch on sign bit comparison. +static bool hasBranchUse(ICmpInst &I) { + for (auto *U : I.users()) + if (isa<BranchInst>(U)) + return true; + return false; +} + +/// Returns true if the exploded icmp can be expressed as a signed comparison +/// to zero and updates the predicate accordingly. +/// The signedness of the comparison is preserved. +/// TODO: Refactor with decomposeBitTestICmp()? +static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) { + if (!ICmpInst::isSigned(Pred)) + return false; + + if (C.isNullValue()) + return ICmpInst::isRelational(Pred); + + if (C.isOneValue()) { + if (Pred == ICmpInst::ICMP_SLT) { + Pred = ICmpInst::ICMP_SLE; + return true; + } + } else if (C.isAllOnesValue()) { + if (Pred == ICmpInst::ICMP_SGT) { + Pred = ICmpInst::ICMP_SGE; + return true; + } + } + + return false; +} + +/// This is called when we see this pattern: +/// cmp pred (load (gep GV, ...)), cmpcst +/// where GV is a global variable with a constant initializer. Try to simplify +/// this into some simple computation that does not need the load. For example +/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". +/// +/// If AndCst is non-null, then the loaded value is masked with that constant +/// before doing the comparison. This handles cases like "A[i]&4 == 0". +Instruction * +InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, + GlobalVariable *GV, CmpInst &ICI, + ConstantInt *AndCst) { + Constant *Init = GV->getInitializer(); + if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) + return nullptr; + + uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); + // Don't blow up on huge arrays. + if (ArrayElementCount > MaxArraySizeForCombine) + return nullptr; + + // There are many forms of this optimization we can handle, for now, just do + // the simple index into a single-dimensional array. + // + // Require: GEP GV, 0, i {{, constant indices}} + if (GEP->getNumOperands() < 3 || + !isa<ConstantInt>(GEP->getOperand(1)) || + !cast<ConstantInt>(GEP->getOperand(1))->isZero() || + isa<Constant>(GEP->getOperand(2))) + return nullptr; + + // Check that indices after the variable are constants and in-range for the + // type they index. Collect the indices. This is typically for arrays of + // structs. + SmallVector<unsigned, 4> LaterIndices; + + Type *EltTy = Init->getType()->getArrayElementType(); + for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { + ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (!Idx) return nullptr; // Variable index. + + uint64_t IdxVal = Idx->getZExtValue(); + if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. + + if (StructType *STy = dyn_cast<StructType>(EltTy)) + EltTy = STy->getElementType(IdxVal); + else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { + if (IdxVal >= ATy->getNumElements()) return nullptr; + EltTy = ATy->getElementType(); + } else { + return nullptr; // Unknown type. + } + + LaterIndices.push_back(IdxVal); + } + + enum { Overdefined = -3, Undefined = -2 }; + + // Variables for our state machines. + + // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form + // "i == 47 | i == 87", where 47 is the first index the condition is true for, + // and 87 is the second (and last) index. FirstTrueElement is -2 when + // undefined, otherwise set to the first true element. SecondTrueElement is + // -2 when undefined, -3 when overdefined and >= 0 when that index is true. + int FirstTrueElement = Undefined, SecondTrueElement = Undefined; + + // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the + // form "i != 47 & i != 87". Same state transitions as for true elements. + int FirstFalseElement = Undefined, SecondFalseElement = Undefined; + + /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these + /// define a state machine that triggers for ranges of values that the index + /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. + /// This is -2 when undefined, -3 when overdefined, and otherwise the last + /// index in the range (inclusive). We use -2 for undefined here because we + /// use relative comparisons and don't want 0-1 to match -1. + int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; + + // MagicBitvector - This is a magic bitvector where we set a bit if the + // comparison is true for element 'i'. If there are 64 elements or less in + // the array, this will fully represent all the comparison results. + uint64_t MagicBitvector = 0; + + // Scan the array and see if one of our patterns matches. + Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); + for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { + Constant *Elt = Init->getAggregateElement(i); + if (!Elt) return nullptr; + + // If this is indexing an array of structures, get the structure element. + if (!LaterIndices.empty()) + Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); + + // If the element is masked, handle it. + if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); + + // Find out if the comparison would be true or false for the i'th element. + Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, + CompareRHS, DL, &TLI); + // If the result is undef for this element, ignore it. + if (isa<UndefValue>(C)) { + // Extend range state machines to cover this element in case there is an + // undef in the middle of the range. + if (TrueRangeEnd == (int)i-1) + TrueRangeEnd = i; + if (FalseRangeEnd == (int)i-1) + FalseRangeEnd = i; + continue; + } + + // If we can't compute the result for any of the elements, we have to give + // up evaluating the entire conditional. + if (!isa<ConstantInt>(C)) return nullptr; + + // Otherwise, we know if the comparison is true or false for this element, + // update our state machines. + bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); + + // State machine for single/double/range index comparison. + if (IsTrueForElt) { + // Update the TrueElement state machine. + if (FirstTrueElement == Undefined) + FirstTrueElement = TrueRangeEnd = i; // First true element. + else { + // Update double-compare state machine. + if (SecondTrueElement == Undefined) + SecondTrueElement = i; + else + SecondTrueElement = Overdefined; + + // Update range state machine. + if (TrueRangeEnd == (int)i-1) + TrueRangeEnd = i; + else + TrueRangeEnd = Overdefined; + } + } else { + // Update the FalseElement state machine. + if (FirstFalseElement == Undefined) + FirstFalseElement = FalseRangeEnd = i; // First false element. + else { + // Update double-compare state machine. + if (SecondFalseElement == Undefined) + SecondFalseElement = i; + else + SecondFalseElement = Overdefined; + + // Update range state machine. + if (FalseRangeEnd == (int)i-1) + FalseRangeEnd = i; + else + FalseRangeEnd = Overdefined; + } + } + + // If this element is in range, update our magic bitvector. + if (i < 64 && IsTrueForElt) + MagicBitvector |= 1ULL << i; + + // If all of our states become overdefined, bail out early. Since the + // predicate is expensive, only check it every 8 elements. This is only + // really useful for really huge arrays. + if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && + SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && + FalseRangeEnd == Overdefined) + return nullptr; + } + + // Now that we've scanned the entire array, emit our new comparison(s). We + // order the state machines in complexity of the generated code. + Value *Idx = GEP->getOperand(2); + + // If the index is larger than the pointer size of the target, truncate the + // index down like the GEP would do implicitly. We don't have to do this for + // an inbounds GEP because the index can't be out of range. + if (!GEP->isInBounds()) { + Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); + unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); + if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize) + Idx = Builder.CreateTrunc(Idx, IntPtrTy); + } + + // If the comparison is only true for one or two elements, emit direct + // comparisons. + if (SecondTrueElement != Overdefined) { + // None true -> false. + if (FirstTrueElement == Undefined) + return replaceInstUsesWith(ICI, Builder.getFalse()); + + Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); + + // True for one element -> 'i == 47'. + if (SecondTrueElement == Undefined) + return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); + + // True for two elements -> 'i == 47 | i == 72'. + Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx); + Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); + Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx); + return BinaryOperator::CreateOr(C1, C2); + } + + // If the comparison is only false for one or two elements, emit direct + // comparisons. + if (SecondFalseElement != Overdefined) { + // None false -> true. + if (FirstFalseElement == Undefined) + return replaceInstUsesWith(ICI, Builder.getTrue()); + + Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); + + // False for one element -> 'i != 47'. + if (SecondFalseElement == Undefined) + return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); + + // False for two elements -> 'i != 47 & i != 72'. + Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx); + Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); + Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx); + return BinaryOperator::CreateAnd(C1, C2); + } + + // If the comparison can be replaced with a range comparison for the elements + // where it is true, emit the range check. + if (TrueRangeEnd != Overdefined) { + assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); + + // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). + if (FirstTrueElement) { + Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); + Idx = Builder.CreateAdd(Idx, Offs); + } + + Value *End = ConstantInt::get(Idx->getType(), + TrueRangeEnd-FirstTrueElement+1); + return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); + } + + // False range check. + if (FalseRangeEnd != Overdefined) { + assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); + // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). + if (FirstFalseElement) { + Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); + Idx = Builder.CreateAdd(Idx, Offs); + } + + Value *End = ConstantInt::get(Idx->getType(), + FalseRangeEnd-FirstFalseElement); + return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); + } + + // If a magic bitvector captures the entire comparison state + // of this load, replace it with computation that does: + // ((magic_cst >> i) & 1) != 0 + { + Type *Ty = nullptr; + + // Look for an appropriate type: + // - The type of Idx if the magic fits + // - The smallest fitting legal type + if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) + Ty = Idx->getType(); + else + Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); + + if (Ty) { + Value *V = Builder.CreateIntCast(Idx, Ty, false); + V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); + V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V); + return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); + } + } + + return nullptr; +} + +/// Return a value that can be used to compare the *offset* implied by a GEP to +/// zero. For example, if we have &A[i], we want to return 'i' for +/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales +/// are involved. The above expression would also be legal to codegen as +/// "icmp ne (i*4), 0" (assuming A is a pointer to i32). +/// This latter form is less amenable to optimization though, and we are allowed +/// to generate the first by knowing that pointer arithmetic doesn't overflow. +/// +/// If we can't emit an optimized form for this expression, this returns null. +/// +static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC, + const DataLayout &DL) { + gep_type_iterator GTI = gep_type_begin(GEP); + + // Check to see if this gep only has a single variable index. If so, and if + // any constant indices are a multiple of its scale, then we can compute this + // in terms of the scale of the variable index. For example, if the GEP + // implies an offset of "12 + i*4", then we can codegen this as "3 + i", + // because the expression will cross zero at the same point. + unsigned i, e = GEP->getNumOperands(); + int64_t Offset = 0; + for (i = 1; i != e; ++i, ++GTI) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { + // Compute the aggregate offset of constant indices. + if (CI->isZero()) continue; + + // Handle a struct index, which adds its field offset to the pointer. + if (StructType *STy = GTI.getStructTypeOrNull()) { + Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); + } else { + uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); + Offset += Size*CI->getSExtValue(); + } + } else { + // Found our variable index. + break; + } + } + + // If there are no variable indices, we must have a constant offset, just + // evaluate it the general way. + if (i == e) return nullptr; + + Value *VariableIdx = GEP->getOperand(i); + // Determine the scale factor of the variable element. For example, this is + // 4 if the variable index is into an array of i32. + uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); + + // Verify that there are no other variable indices. If so, emit the hard way. + for (++i, ++GTI; i != e; ++i, ++GTI) { + ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (!CI) return nullptr; + + // Compute the aggregate offset of constant indices. + if (CI->isZero()) continue; + + // Handle a struct index, which adds its field offset to the pointer. + if (StructType *STy = GTI.getStructTypeOrNull()) { + Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); + } else { + uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); + Offset += Size*CI->getSExtValue(); + } + } + + // Okay, we know we have a single variable index, which must be a + // pointer/array/vector index. If there is no offset, life is simple, return + // the index. + Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); + unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); + if (Offset == 0) { + // Cast to intptrty in case a truncation occurs. If an extension is needed, + // we don't need to bother extending: the extension won't affect where the + // computation crosses zero. + if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() > + IntPtrWidth) { + VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy); + } + return VariableIdx; + } + + // Otherwise, there is an index. The computation we will do will be modulo + // the pointer size. + Offset = SignExtend64(Offset, IntPtrWidth); + VariableScale = SignExtend64(VariableScale, IntPtrWidth); + + // To do this transformation, any constant index must be a multiple of the + // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", + // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a + // multiple of the variable scale. + int64_t NewOffs = Offset / (int64_t)VariableScale; + if (Offset != NewOffs*(int64_t)VariableScale) + return nullptr; + + // Okay, we can do this evaluation. Start by converting the index to intptr. + if (VariableIdx->getType() != IntPtrTy) + VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy, + true /*Signed*/); + Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); + return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset"); +} + +/// Returns true if we can rewrite Start as a GEP with pointer Base +/// and some integer offset. The nodes that need to be re-written +/// for this transformation will be added to Explored. +static bool canRewriteGEPAsOffset(Value *Start, Value *Base, + const DataLayout &DL, + SetVector<Value *> &Explored) { + SmallVector<Value *, 16> WorkList(1, Start); + Explored.insert(Base); + + // The following traversal gives us an order which can be used + // when doing the final transformation. Since in the final + // transformation we create the PHI replacement instructions first, + // we don't have to get them in any particular order. + // + // However, for other instructions we will have to traverse the + // operands of an instruction first, which means that we have to + // do a post-order traversal. + while (!WorkList.empty()) { + SetVector<PHINode *> PHIs; + + while (!WorkList.empty()) { + if (Explored.size() >= 100) + return false; + + Value *V = WorkList.back(); + + if (Explored.contains(V)) { + WorkList.pop_back(); + continue; + } + + if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && + !isa<GetElementPtrInst>(V) && !isa<PHINode>(V)) + // We've found some value that we can't explore which is different from + // the base. Therefore we can't do this transformation. + return false; + + if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { + auto *CI = cast<CastInst>(V); + if (!CI->isNoopCast(DL)) + return false; + + if (Explored.count(CI->getOperand(0)) == 0) + WorkList.push_back(CI->getOperand(0)); + } + + if (auto *GEP = dyn_cast<GEPOperator>(V)) { + // We're limiting the GEP to having one index. This will preserve + // the original pointer type. We could handle more cases in the + // future. + if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || + GEP->getType() != Start->getType()) + return false; + + if (Explored.count(GEP->getOperand(0)) == 0) + WorkList.push_back(GEP->getOperand(0)); + } + + if (WorkList.back() == V) { + WorkList.pop_back(); + // We've finished visiting this node, mark it as such. + Explored.insert(V); + } + + if (auto *PN = dyn_cast<PHINode>(V)) { + // We cannot transform PHIs on unsplittable basic blocks. + if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) + return false; + Explored.insert(PN); + PHIs.insert(PN); + } + } + + // Explore the PHI nodes further. + for (auto *PN : PHIs) + for (Value *Op : PN->incoming_values()) + if (Explored.count(Op) == 0) + WorkList.push_back(Op); + } + + // Make sure that we can do this. Since we can't insert GEPs in a basic + // block before a PHI node, we can't easily do this transformation if + // we have PHI node users of transformed instructions. + for (Value *Val : Explored) { + for (Value *Use : Val->uses()) { + + auto *PHI = dyn_cast<PHINode>(Use); + auto *Inst = dyn_cast<Instruction>(Val); + + if (Inst == Base || Inst == PHI || !Inst || !PHI || + Explored.count(PHI) == 0) + continue; + + if (PHI->getParent() == Inst->getParent()) + return false; + } + } + return true; +} + +// Sets the appropriate insert point on Builder where we can add +// a replacement Instruction for V (if that is possible). +static void setInsertionPoint(IRBuilder<> &Builder, Value *V, + bool Before = true) { + if (auto *PHI = dyn_cast<PHINode>(V)) { + Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); + return; + } + if (auto *I = dyn_cast<Instruction>(V)) { + if (!Before) + I = &*std::next(I->getIterator()); + Builder.SetInsertPoint(I); + return; + } + if (auto *A = dyn_cast<Argument>(V)) { + // Set the insertion point in the entry block. + BasicBlock &Entry = A->getParent()->getEntryBlock(); + Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); + return; + } + // Otherwise, this is a constant and we don't need to set a new + // insertion point. + assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); +} + +/// Returns a re-written value of Start as an indexed GEP using Base as a +/// pointer. +static Value *rewriteGEPAsOffset(Value *Start, Value *Base, + const DataLayout &DL, + SetVector<Value *> &Explored) { + // Perform all the substitutions. This is a bit tricky because we can + // have cycles in our use-def chains. + // 1. Create the PHI nodes without any incoming values. + // 2. Create all the other values. + // 3. Add the edges for the PHI nodes. + // 4. Emit GEPs to get the original pointers. + // 5. Remove the original instructions. + Type *IndexType = IntegerType::get( + Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType())); + + DenseMap<Value *, Value *> NewInsts; + NewInsts[Base] = ConstantInt::getNullValue(IndexType); + + // Create the new PHI nodes, without adding any incoming values. + for (Value *Val : Explored) { + if (Val == Base) + continue; + // Create empty phi nodes. This avoids cyclic dependencies when creating + // the remaining instructions. + if (auto *PHI = dyn_cast<PHINode>(Val)) + NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), + PHI->getName() + ".idx", PHI); + } + IRBuilder<> Builder(Base->getContext()); + + // Create all the other instructions. + for (Value *Val : Explored) { + + if (NewInsts.find(Val) != NewInsts.end()) + continue; + + if (auto *CI = dyn_cast<CastInst>(Val)) { + // Don't get rid of the intermediate variable here; the store can grow + // the map which will invalidate the reference to the input value. + Value *V = NewInsts[CI->getOperand(0)]; + NewInsts[CI] = V; + continue; + } + if (auto *GEP = dyn_cast<GEPOperator>(Val)) { + Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] + : GEP->getOperand(1); + setInsertionPoint(Builder, GEP); + // Indices might need to be sign extended. GEPs will magically do + // this, but we need to do it ourselves here. + if (Index->getType()->getScalarSizeInBits() != + NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { + Index = Builder.CreateSExtOrTrunc( + Index, NewInsts[GEP->getOperand(0)]->getType(), + GEP->getOperand(0)->getName() + ".sext"); + } + + auto *Op = NewInsts[GEP->getOperand(0)]; + if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero()) + NewInsts[GEP] = Index; + else + NewInsts[GEP] = Builder.CreateNSWAdd( + Op, Index, GEP->getOperand(0)->getName() + ".add"); + continue; + } + if (isa<PHINode>(Val)) + continue; + + llvm_unreachable("Unexpected instruction type"); + } + + // Add the incoming values to the PHI nodes. + for (Value *Val : Explored) { + if (Val == Base) + continue; + // All the instructions have been created, we can now add edges to the + // phi nodes. + if (auto *PHI = dyn_cast<PHINode>(Val)) { + PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); + for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { + Value *NewIncoming = PHI->getIncomingValue(I); + + if (NewInsts.find(NewIncoming) != NewInsts.end()) + NewIncoming = NewInsts[NewIncoming]; + + NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); + } + } + } + + for (Value *Val : Explored) { + if (Val == Base) + continue; + + // Depending on the type, for external users we have to emit + // a GEP or a GEP + ptrtoint. + setInsertionPoint(Builder, Val, false); + + // If required, create an inttoptr instruction for Base. + Value *NewBase = Base; + if (!Base->getType()->isPointerTy()) + NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), + Start->getName() + "to.ptr"); + + Value *GEP = Builder.CreateInBoundsGEP( + Start->getType()->getPointerElementType(), NewBase, + makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); + + if (!Val->getType()->isPointerTy()) { + Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), + Val->getName() + ".conv"); + GEP = Cast; + } + Val->replaceAllUsesWith(GEP); + } + + return NewInsts[Start]; +} + +/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express +/// the input Value as a constant indexed GEP. Returns a pair containing +/// the GEPs Pointer and Index. +static std::pair<Value *, Value *> +getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { + Type *IndexType = IntegerType::get(V->getContext(), + DL.getIndexTypeSizeInBits(V->getType())); + + Constant *Index = ConstantInt::getNullValue(IndexType); + while (true) { + if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + // We accept only inbouds GEPs here to exclude the possibility of + // overflow. + if (!GEP->isInBounds()) + break; + if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && + GEP->getType() == V->getType()) { + V = GEP->getOperand(0); + Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); + Index = ConstantExpr::getAdd( + Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); + continue; + } + break; + } + if (auto *CI = dyn_cast<IntToPtrInst>(V)) { + if (!CI->isNoopCast(DL)) + break; + V = CI->getOperand(0); + continue; + } + if (auto *CI = dyn_cast<PtrToIntInst>(V)) { + if (!CI->isNoopCast(DL)) + break; + V = CI->getOperand(0); + continue; + } + break; + } + return {V, Index}; +} + +/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. +/// We can look through PHIs, GEPs and casts in order to determine a common base +/// between GEPLHS and RHS. +static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, + ICmpInst::Predicate Cond, + const DataLayout &DL) { + // FIXME: Support vector of pointers. + if (GEPLHS->getType()->isVectorTy()) + return nullptr; + + if (!GEPLHS->hasAllConstantIndices()) + return nullptr; + + // Make sure the pointers have the same type. + if (GEPLHS->getType() != RHS->getType()) + return nullptr; + + Value *PtrBase, *Index; + std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); + + // The set of nodes that will take part in this transformation. + SetVector<Value *> Nodes; + + if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) + return nullptr; + + // We know we can re-write this as + // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) + // Since we've only looked through inbouds GEPs we know that we + // can't have overflow on either side. We can therefore re-write + // this as: + // OFFSET1 cmp OFFSET2 + Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); + + // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written + // GEP having PtrBase as the pointer base, and has returned in NewRHS the + // offset. Since Index is the offset of LHS to the base pointer, we will now + // compare the offsets instead of comparing the pointers. + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); +} + +/// Fold comparisons between a GEP instruction and something else. At this point +/// we know that the GEP is on the LHS of the comparison. +Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, + ICmpInst::Predicate Cond, + Instruction &I) { + // Don't transform signed compares of GEPs into index compares. Even if the + // GEP is inbounds, the final add of the base pointer can have signed overflow + // and would change the result of the icmp. + // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be + // the maximum signed value for the pointer type. + if (ICmpInst::isSigned(Cond)) + return nullptr; + + // Look through bitcasts and addrspacecasts. We do not however want to remove + // 0 GEPs. + if (!isa<GetElementPtrInst>(RHS)) + RHS = RHS->stripPointerCasts(); + + Value *PtrBase = GEPLHS->getOperand(0); + // FIXME: Support vector pointer GEPs. + if (PtrBase == RHS && GEPLHS->isInBounds() && + !GEPLHS->getType()->isVectorTy()) { + // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). + // This transformation (ignoring the base and scales) is valid because we + // know pointers can't overflow since the gep is inbounds. See if we can + // output an optimized form. + Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL); + + // If not, synthesize the offset the hard way. + if (!Offset) + Offset = EmitGEPOffset(GEPLHS); + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, + Constant::getNullValue(Offset->getType())); + } + + if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) && + isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() && + !NullPointerIsDefined(I.getFunction(), + RHS->getType()->getPointerAddressSpace())) { + // For most address spaces, an allocation can't be placed at null, but null + // itself is treated as a 0 size allocation in the in bounds rules. Thus, + // the only valid inbounds address derived from null, is null itself. + // Thus, we have four cases to consider: + // 1) Base == nullptr, Offset == 0 -> inbounds, null + // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds + // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations) + // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison) + // + // (Note if we're indexing a type of size 0, that simply collapses into one + // of the buckets above.) + // + // In general, we're allowed to make values less poison (i.e. remove + // sources of full UB), so in this case, we just select between the two + // non-poison cases (1 and 4 above). + // + // For vectors, we apply the same reasoning on a per-lane basis. + auto *Base = GEPLHS->getPointerOperand(); + if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) { + auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount(); + Base = Builder.CreateVectorSplat(EC, Base); + } + return new ICmpInst(Cond, Base, + ConstantExpr::getPointerBitCastOrAddrSpaceCast( + cast<Constant>(RHS), Base->getType())); + } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { + // If the base pointers are different, but the indices are the same, just + // compare the base pointer. + if (PtrBase != GEPRHS->getOperand(0)) { + bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); + IndicesTheSame &= GEPLHS->getOperand(0)->getType() == + GEPRHS->getOperand(0)->getType(); + if (IndicesTheSame) + for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) + if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { + IndicesTheSame = false; + break; + } + + // If all indices are the same, just compare the base pointers. + Type *BaseType = GEPLHS->getOperand(0)->getType(); + if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType()) + return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); + + // If we're comparing GEPs with two base pointers that only differ in type + // and both GEPs have only constant indices or just one use, then fold + // the compare with the adjusted indices. + // FIXME: Support vector of pointers. + if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && + (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && + (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && + PtrBase->stripPointerCasts() == + GEPRHS->getOperand(0)->stripPointerCasts() && + !GEPLHS->getType()->isVectorTy()) { + Value *LOffset = EmitGEPOffset(GEPLHS); + Value *ROffset = EmitGEPOffset(GEPRHS); + + // If we looked through an addrspacecast between different sized address + // spaces, the LHS and RHS pointers are different sized + // integers. Truncate to the smaller one. + Type *LHSIndexTy = LOffset->getType(); + Type *RHSIndexTy = ROffset->getType(); + if (LHSIndexTy != RHSIndexTy) { + if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() < + RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) { + ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy); + } else + LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy); + } + + Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond), + LOffset, ROffset); + return replaceInstUsesWith(I, Cmp); + } + + // Otherwise, the base pointers are different and the indices are + // different. Try convert this to an indexed compare by looking through + // PHIs/casts. + return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); + } + + // If one of the GEPs has all zero indices, recurse. + // FIXME: Handle vector of pointers. + if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices()) + return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0), + ICmpInst::getSwappedPredicate(Cond), I); + + // If the other GEP has all zero indices, recurse. + // FIXME: Handle vector of pointers. + if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices()) + return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); + + bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); + if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { + // If the GEPs only differ by one index, compare it. + unsigned NumDifferences = 0; // Keep track of # differences. + unsigned DiffOperand = 0; // The operand that differs. + for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) + if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { + Type *LHSType = GEPLHS->getOperand(i)->getType(); + Type *RHSType = GEPRHS->getOperand(i)->getType(); + // FIXME: Better support for vector of pointers. + if (LHSType->getPrimitiveSizeInBits() != + RHSType->getPrimitiveSizeInBits() || + (GEPLHS->getType()->isVectorTy() && + (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) { + // Irreconcilable differences. + NumDifferences = 2; + break; + } + + if (NumDifferences++) break; + DiffOperand = i; + } + + if (NumDifferences == 0) // SAME GEP? + return replaceInstUsesWith(I, // No comparison is needed here. + ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond))); + + else if (NumDifferences == 1 && GEPsInBounds) { + Value *LHSV = GEPLHS->getOperand(DiffOperand); + Value *RHSV = GEPRHS->getOperand(DiffOperand); + // Make sure we do a signed comparison here. + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); + } + } + + // Only lower this if the icmp is the only user of the GEP or if we expect + // the result to fold to a constant! + if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && + (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { + // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) + Value *L = EmitGEPOffset(GEPLHS); + Value *R = EmitGEPOffset(GEPRHS); + return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); + } + } + + // Try convert this to an indexed compare by looking through PHIs/casts as a + // last resort. + return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); +} + +Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI, + const AllocaInst *Alloca, + const Value *Other) { + assert(ICI.isEquality() && "Cannot fold non-equality comparison."); + + // It would be tempting to fold away comparisons between allocas and any + // pointer not based on that alloca (e.g. an argument). However, even + // though such pointers cannot alias, they can still compare equal. + // + // But LLVM doesn't specify where allocas get their memory, so if the alloca + // doesn't escape we can argue that it's impossible to guess its value, and we + // can therefore act as if any such guesses are wrong. + // + // The code below checks that the alloca doesn't escape, and that it's only + // used in a comparison once (the current instruction). The + // single-comparison-use condition ensures that we're trivially folding all + // comparisons against the alloca consistently, and avoids the risk of + // erroneously folding a comparison of the pointer with itself. + + unsigned MaxIter = 32; // Break cycles and bound to constant-time. + + SmallVector<const Use *, 32> Worklist; + for (const Use &U : Alloca->uses()) { + if (Worklist.size() >= MaxIter) + return nullptr; + Worklist.push_back(&U); + } + + unsigned NumCmps = 0; + while (!Worklist.empty()) { + assert(Worklist.size() <= MaxIter); + const Use *U = Worklist.pop_back_val(); + const Value *V = U->getUser(); + --MaxIter; + + if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || + isa<SelectInst>(V)) { + // Track the uses. + } else if (isa<LoadInst>(V)) { + // Loading from the pointer doesn't escape it. + continue; + } else if (const auto *SI = dyn_cast<StoreInst>(V)) { + // Storing *to* the pointer is fine, but storing the pointer escapes it. + if (SI->getValueOperand() == U->get()) + return nullptr; + continue; + } else if (isa<ICmpInst>(V)) { + if (NumCmps++) + return nullptr; // Found more than one cmp. + continue; + } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) { + switch (Intrin->getIntrinsicID()) { + // These intrinsics don't escape or compare the pointer. Memset is safe + // because we don't allow ptrtoint. Memcpy and memmove are safe because + // we don't allow stores, so src cannot point to V. + case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: + case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: + continue; + default: + return nullptr; + } + } else { + return nullptr; + } + for (const Use &U : V->uses()) { + if (Worklist.size() >= MaxIter) + return nullptr; + Worklist.push_back(&U); + } + } + + Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); + return replaceInstUsesWith( + ICI, + ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); +} + +/// Fold "icmp pred (X+C), X". +Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C, + ICmpInst::Predicate Pred) { + // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, + // so the values can never be equal. Similarly for all other "or equals" + // operators. + assert(!!C && "C should not be zero!"); + + // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 + // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 + // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 + if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { + Constant *R = ConstantInt::get(X->getType(), + APInt::getMaxValue(C.getBitWidth()) - C); + return new ICmpInst(ICmpInst::ICMP_UGT, X, R); + } + + // (X+1) >u X --> X <u (0-1) --> X != 255 + // (X+2) >u X --> X <u (0-2) --> X <u 254 + // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 + if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) + return new ICmpInst(ICmpInst::ICMP_ULT, X, + ConstantInt::get(X->getType(), -C)); + + APInt SMax = APInt::getSignedMaxValue(C.getBitWidth()); + + // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 + // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 + // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 + // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 + // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 + // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 + if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) + return new ICmpInst(ICmpInst::ICMP_SGT, X, + ConstantInt::get(X->getType(), SMax - C)); + + // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 + // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 + // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 + // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 + // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 + // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 + + assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); + return new ICmpInst(ICmpInst::ICMP_SLT, X, + ConstantInt::get(X->getType(), SMax - (C - 1))); +} + +/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> +/// (icmp eq/ne A, Log2(AP2/AP1)) -> +/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)). +Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A, + const APInt &AP1, + const APInt &AP2) { + assert(I.isEquality() && "Cannot fold icmp gt/lt"); + + auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { + if (I.getPredicate() == I.ICMP_NE) + Pred = CmpInst::getInversePredicate(Pred); + return new ICmpInst(Pred, LHS, RHS); + }; + + // Don't bother doing any work for cases which InstSimplify handles. + if (AP2.isNullValue()) + return nullptr; + + bool IsAShr = isa<AShrOperator>(I.getOperand(0)); + if (IsAShr) { + if (AP2.isAllOnesValue()) + return nullptr; + if (AP2.isNegative() != AP1.isNegative()) + return nullptr; + if (AP2.sgt(AP1)) + return nullptr; + } + + if (!AP1) + // 'A' must be large enough to shift out the highest set bit. + return getICmp(I.ICMP_UGT, A, + ConstantInt::get(A->getType(), AP2.logBase2())); + + if (AP1 == AP2) + return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); + + int Shift; + if (IsAShr && AP1.isNegative()) + Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); + else + Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); + + if (Shift > 0) { + if (IsAShr && AP1 == AP2.ashr(Shift)) { + // There are multiple solutions if we are comparing against -1 and the LHS + // of the ashr is not a power of two. + if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) + return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); + return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); + } else if (AP1 == AP2.lshr(Shift)) { + return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); + } + } + + // Shifting const2 will never be equal to const1. + // FIXME: This should always be handled by InstSimplify? + auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); + return replaceInstUsesWith(I, TorF); +} + +/// Handle "(icmp eq/ne (shl AP2, A), AP1)" -> +/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)). +Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A, + const APInt &AP1, + const APInt &AP2) { + assert(I.isEquality() && "Cannot fold icmp gt/lt"); + + auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { + if (I.getPredicate() == I.ICMP_NE) + Pred = CmpInst::getInversePredicate(Pred); + return new ICmpInst(Pred, LHS, RHS); + }; + + // Don't bother doing any work for cases which InstSimplify handles. + if (AP2.isNullValue()) + return nullptr; + + unsigned AP2TrailingZeros = AP2.countTrailingZeros(); + + if (!AP1 && AP2TrailingZeros != 0) + return getICmp( + I.ICMP_UGE, A, + ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); + + if (AP1 == AP2) + return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); + + // Get the distance between the lowest bits that are set. + int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; + + if (Shift > 0 && AP2.shl(Shift) == AP1) + return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); + + // Shifting const2 will never be equal to const1. + // FIXME: This should always be handled by InstSimplify? + auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE); + return replaceInstUsesWith(I, TorF); +} + +/// The caller has matched a pattern of the form: +/// I = icmp ugt (add (add A, B), CI2), CI1 +/// If this is of the form: +/// sum = a + b +/// if (sum+128 >u 255) +/// Then replace it with llvm.sadd.with.overflow.i8. +/// +static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, + ConstantInt *CI2, ConstantInt *CI1, + InstCombinerImpl &IC) { + // The transformation we're trying to do here is to transform this into an + // llvm.sadd.with.overflow. To do this, we have to replace the original add + // with a narrower add, and discard the add-with-constant that is part of the + // range check (if we can't eliminate it, this isn't profitable). + + // In order to eliminate the add-with-constant, the compare can be its only + // use. + Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); + if (!AddWithCst->hasOneUse()) + return nullptr; + + // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. + if (!CI2->getValue().isPowerOf2()) + return nullptr; + unsigned NewWidth = CI2->getValue().countTrailingZeros(); + if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) + return nullptr; + + // The width of the new add formed is 1 more than the bias. + ++NewWidth; + + // Check to see that CI1 is an all-ones value with NewWidth bits. + if (CI1->getBitWidth() == NewWidth || + CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) + return nullptr; + + // This is only really a signed overflow check if the inputs have been + // sign-extended; check for that condition. For example, if CI2 is 2^31 and + // the operands of the add are 64 bits wide, we need at least 33 sign bits. + unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; + if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || + IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) + return nullptr; + + // In order to replace the original add with a narrower + // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant + // and truncates that discard the high bits of the add. Verify that this is + // the case. + Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); + for (User *U : OrigAdd->users()) { + if (U == AddWithCst) + continue; + + // Only accept truncates for now. We would really like a nice recursive + // predicate like SimplifyDemandedBits, but which goes downwards the use-def + // chain to see which bits of a value are actually demanded. If the + // original add had another add which was then immediately truncated, we + // could still do the transformation. + TruncInst *TI = dyn_cast<TruncInst>(U); + if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) + return nullptr; + } + + // If the pattern matches, truncate the inputs to the narrower type and + // use the sadd_with_overflow intrinsic to efficiently compute both the + // result and the overflow bit. + Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); + Function *F = Intrinsic::getDeclaration( + I.getModule(), Intrinsic::sadd_with_overflow, NewType); + + InstCombiner::BuilderTy &Builder = IC.Builder; + + // Put the new code above the original add, in case there are any uses of the + // add between the add and the compare. + Builder.SetInsertPoint(OrigAdd); + + Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc"); + Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc"); + CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd"); + Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result"); + Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType()); + + // The inner add was the result of the narrow add, zero extended to the + // wider type. Replace it with the result computed by the intrinsic. + IC.replaceInstUsesWith(*OrigAdd, ZExt); + IC.eraseInstFromFunction(*OrigAdd); + + // The original icmp gets replaced with the overflow value. + return ExtractValueInst::Create(Call, 1, "sadd.overflow"); +} + +/// If we have: +/// icmp eq/ne (urem/srem %x, %y), 0 +/// iff %y is a power-of-two, we can replace this with a bit test: +/// icmp eq/ne (and %x, (add %y, -1)), 0 +Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) { + // This fold is only valid for equality predicates. + if (!I.isEquality()) + return nullptr; + ICmpInst::Predicate Pred; + Value *X, *Y, *Zero; + if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))), + m_CombineAnd(m_Zero(), m_Value(Zero))))) + return nullptr; + if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I)) + return nullptr; + // This may increase instruction count, we don't enforce that Y is a constant. + Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType())); + Value *Masked = Builder.CreateAnd(X, Mask); + return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero); +} + +/// Fold equality-comparison between zero and any (maybe truncated) right-shift +/// by one-less-than-bitwidth into a sign test on the original value. +Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) { + Instruction *Val; + ICmpInst::Predicate Pred; + if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero()))) + return nullptr; + + Value *X; + Type *XTy; + + Constant *C; + if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) { + XTy = X->getType(); + unsigned XBitWidth = XTy->getScalarSizeInBits(); + if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, + APInt(XBitWidth, XBitWidth - 1)))) + return nullptr; + } else if (isa<BinaryOperator>(Val) && + (X = reassociateShiftAmtsOfTwoSameDirectionShifts( + cast<BinaryOperator>(Val), SQ.getWithInstruction(Val), + /*AnalyzeForSignBitExtraction=*/true))) { + XTy = X->getType(); + } else + return nullptr; + + return ICmpInst::Create(Instruction::ICmp, + Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE + : ICmpInst::ICMP_SLT, + X, ConstantInt::getNullValue(XTy)); +} + +// Handle icmp pred X, 0 +Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) { + CmpInst::Predicate Pred = Cmp.getPredicate(); + if (!match(Cmp.getOperand(1), m_Zero())) + return nullptr; + + // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) + if (Pred == ICmpInst::ICMP_SGT) { + Value *A, *B; + SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B); + if (SPR.Flavor == SPF_SMIN) { + if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT)) + return new ICmpInst(Pred, B, Cmp.getOperand(1)); + if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT)) + return new ICmpInst(Pred, A, Cmp.getOperand(1)); + } + } + + if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp)) + return New; + + // Given: + // icmp eq/ne (urem %x, %y), 0 + // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': + // icmp eq/ne %x, 0 + Value *X, *Y; + if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) && + ICmpInst::isEquality(Pred)) { + KnownBits XKnown = computeKnownBits(X, 0, &Cmp); + KnownBits YKnown = computeKnownBits(Y, 0, &Cmp); + if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) + return new ICmpInst(Pred, X, Cmp.getOperand(1)); + } + + return nullptr; +} + +/// Fold icmp Pred X, C. +/// TODO: This code structure does not make sense. The saturating add fold +/// should be moved to some other helper and extended as noted below (it is also +/// possible that code has been made unnecessary - do we canonicalize IR to +/// overflow/saturating intrinsics or not?). +Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) { + // Match the following pattern, which is a common idiom when writing + // overflow-safe integer arithmetic functions. The source performs an addition + // in wider type and explicitly checks for overflow using comparisons against + // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic. + // + // TODO: This could probably be generalized to handle other overflow-safe + // operations if we worked out the formulas to compute the appropriate magic + // constants. + // + // sum = a + b + // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 + CmpInst::Predicate Pred = Cmp.getPredicate(); + Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1); + Value *A, *B; + ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI + if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) && + match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) + if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this)) + return Res; + + // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...). + Constant *C = dyn_cast<Constant>(Op1); + if (!C) + return nullptr; + + if (auto *Phi = dyn_cast<PHINode>(Op0)) + if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) { + Type *Ty = Cmp.getType(); + Builder.SetInsertPoint(Phi); + PHINode *NewPhi = + Builder.CreatePHI(Ty, Phi->getNumOperands()); + for (BasicBlock *Predecessor : predecessors(Phi->getParent())) { + auto *Input = + cast<Constant>(Phi->getIncomingValueForBlock(Predecessor)); + auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C); + NewPhi->addIncoming(BoolInput, Predecessor); + } + NewPhi->takeName(&Cmp); + return replaceInstUsesWith(Cmp, NewPhi); + } + + return nullptr; +} + +/// Canonicalize icmp instructions based on dominating conditions. +Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) { + // This is a cheap/incomplete check for dominance - just match a single + // predecessor with a conditional branch. + BasicBlock *CmpBB = Cmp.getParent(); + BasicBlock *DomBB = CmpBB->getSinglePredecessor(); + if (!DomBB) + return nullptr; + + Value *DomCond; + BasicBlock *TrueBB, *FalseBB; + if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) + return nullptr; + + assert((TrueBB == CmpBB || FalseBB == CmpBB) && + "Predecessor block does not point to successor?"); + + // The branch should get simplified. Don't bother simplifying this condition. + if (TrueBB == FalseBB) + return nullptr; + + // Try to simplify this compare to T/F based on the dominating condition. + Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB); + if (Imp) + return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp)); + + CmpInst::Predicate Pred = Cmp.getPredicate(); + Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1); + ICmpInst::Predicate DomPred; + const APInt *C, *DomC; + if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) && + match(Y, m_APInt(C))) { + // We have 2 compares of a variable with constants. Calculate the constant + // ranges of those compares to see if we can transform the 2nd compare: + // DomBB: + // DomCond = icmp DomPred X, DomC + // br DomCond, CmpBB, FalseBB + // CmpBB: + // Cmp = icmp Pred X, C + ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C); + ConstantRange DominatingCR = + (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC) + : ConstantRange::makeExactICmpRegion( + CmpInst::getInversePredicate(DomPred), *DomC); + ConstantRange Intersection = DominatingCR.intersectWith(CR); + ConstantRange Difference = DominatingCR.difference(CR); + if (Intersection.isEmptySet()) + return replaceInstUsesWith(Cmp, Builder.getFalse()); + if (Difference.isEmptySet()) + return replaceInstUsesWith(Cmp, Builder.getTrue()); + + // Canonicalizing a sign bit comparison that gets used in a branch, + // pessimizes codegen by generating branch on zero instruction instead + // of a test and branch. So we avoid canonicalizing in such situations + // because test and branch instruction has better branch displacement + // than compare and branch instruction. + bool UnusedBit; + bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit); + if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp))) + return nullptr; + + if (const APInt *EqC = Intersection.getSingleElement()) + return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC)); + if (const APInt *NeC = Difference.getSingleElement()) + return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC)); + } + + return nullptr; +} + +/// Fold icmp (trunc X, Y), C. +Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp, + TruncInst *Trunc, + const APInt &C) { + ICmpInst::Predicate Pred = Cmp.getPredicate(); + Value *X = Trunc->getOperand(0); + if (C.isOneValue() && C.getBitWidth() > 1) { + // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 + Value *V = nullptr; + if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V)))) + return new ICmpInst(ICmpInst::ICMP_SLT, V, + ConstantInt::get(V->getType(), 1)); + } + + if (Cmp.isEquality() && Trunc->hasOneUse()) { + // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all + // of the high bits truncated out of x are known. + unsigned DstBits = Trunc->getType()->getScalarSizeInBits(), + SrcBits = X->getType()->getScalarSizeInBits(); + KnownBits Known = computeKnownBits(X, 0, &Cmp); + + // If all the high bits are known, we can do this xform. + if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) { + // Pull in the high bits from known-ones set. + APInt NewRHS = C.zext(SrcBits); + NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits); + return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS)); + } + } + + return nullptr; +} + +/// Fold icmp (xor X, Y), C. +Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp, + BinaryOperator *Xor, + const APInt &C) { + Value *X = Xor->getOperand(0); + Value *Y = Xor->getOperand(1); + const APInt *XorC; + if (!match(Y, m_APInt(XorC))) + return nullptr; + + // If this is a comparison that tests the signbit (X < 0) or (x > -1), + // fold the xor. + ICmpInst::Predicate Pred = Cmp.getPredicate(); + bool TrueIfSigned = false; + if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) { + + // If the sign bit of the XorCst is not set, there is no change to + // the operation, just stop using the Xor. + if (!XorC->isNegative()) + return replaceOperand(Cmp, 0, X); + + // Emit the opposite comparison. + if (TrueIfSigned) + return new ICmpInst(ICmpInst::ICMP_SGT, X, + ConstantInt::getAllOnesValue(X->getType())); + else + return new ICmpInst(ICmpInst::ICMP_SLT, X, + ConstantInt::getNullValue(X->getType())); + } + + if (Xor->hasOneUse()) { + // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask)) + if (!Cmp.isEquality() && XorC->isSignMask()) { + Pred = Cmp.getFlippedSignednessPredicate(); + return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); + } + + // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask)) + if (!Cmp.isEquality() && XorC->isMaxSignedValue()) { + Pred = Cmp.getFlippedSignednessPredicate(); + Pred = Cmp.getSwappedPredicate(Pred); + return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC)); + } + } + + // Mask constant magic can eliminate an 'xor' with unsigned compares. + if (Pred == ICmpInst::ICMP_UGT) { + // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2) + if (*XorC == ~C && (C + 1).isPowerOf2()) + return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); + // (xor X, C) >u C --> X >u C (when C+1 is a power of 2) + if (*XorC == C && (C + 1).isPowerOf2()) + return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); + } + if (Pred == ICmpInst::ICMP_ULT) { + // (xor X, -C) <u C --> X >u ~C (when C is a power of 2) + if (*XorC == -C && C.isPowerOf2()) + return new ICmpInst(ICmpInst::ICMP_UGT, X, + ConstantInt::get(X->getType(), ~C)); + // (xor X, C) <u C --> X >u ~C (when -C is a power of 2) + if (*XorC == C && (-C).isPowerOf2()) + return new ICmpInst(ICmpInst::ICMP_UGT, X, + ConstantInt::get(X->getType(), ~C)); + } + return nullptr; +} + +/// Fold icmp (and (sh X, Y), C2), C1. +Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp, + BinaryOperator *And, + const APInt &C1, + const APInt &C2) { + BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0)); + if (!Shift || !Shift->isShift()) + return nullptr; + + // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could + // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in + // code produced by the clang front-end, for bitfield access. + // This seemingly simple opportunity to fold away a shift turns out to be + // rather complicated. See PR17827 for details. + unsigned ShiftOpcode = Shift->getOpcode(); + bool IsShl = ShiftOpcode == Instruction::Shl; + const APInt *C3; + if (match(Shift->getOperand(1), m_APInt(C3))) { + APInt NewAndCst, NewCmpCst; + bool AnyCmpCstBitsShiftedOut; + if (ShiftOpcode == Instruction::Shl) { + // For a left shift, we can fold if the comparison is not signed. We can + // also fold a signed comparison if the mask value and comparison value + // are not negative. These constraints may not be obvious, but we can + // prove that they are correct using an SMT solver. + if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative())) + return nullptr; + + NewCmpCst = C1.lshr(*C3); + NewAndCst = C2.lshr(*C3); + AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1; + } else if (ShiftOpcode == Instruction::LShr) { + // For a logical right shift, we can fold if the comparison is not signed. + // We can also fold a signed comparison if the shifted mask value and the + // shifted comparison value are not negative. These constraints may not be + // obvious, but we can prove that they are correct using an SMT solver. + NewCmpCst = C1.shl(*C3); + NewAndCst = C2.shl(*C3); + AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1; + if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative())) + return nullptr; + } else { + // For an arithmetic shift, check that both constants don't use (in a + // signed sense) the top bits being shifted out. + assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode"); + NewCmpCst = C1.shl(*C3); + NewAndCst = C2.shl(*C3); + AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1; + if (NewAndCst.ashr(*C3) != C2) + return nullptr; + } + + if (AnyCmpCstBitsShiftedOut) { + // If we shifted bits out, the fold is not going to work out. As a + // special case, check to see if this means that the result is always + // true or false now. + if (Cmp.getPredicate() == ICmpInst::ICMP_EQ) + return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType())); + if (Cmp.getPredicate() == ICmpInst::ICMP_NE) + return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType())); + } else { + Value *NewAnd = Builder.CreateAnd( + Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst)); + return new ICmpInst(Cmp.getPredicate(), + NewAnd, ConstantInt::get(And->getType(), NewCmpCst)); + } + } + + // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is + // preferable because it allows the C2 << Y expression to be hoisted out of a + // loop if Y is invariant and X is not. + if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() && + !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) { + // Compute C2 << Y. + Value *NewShift = + IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1)) + : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1)); + + // Compute X & (C2 << Y). + Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift); + return replaceOperand(Cmp, 0, NewAnd); + } + + return nullptr; +} + +/// Fold icmp (and X, C2), C1. +Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp, + BinaryOperator *And, + const APInt &C1) { + bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE; + + // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1 + // TODO: We canonicalize to the longer form for scalars because we have + // better analysis/folds for icmp, and codegen may be better with icmp. + if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() && + match(And->getOperand(1), m_One())) + return new TruncInst(And->getOperand(0), Cmp.getType()); + + const APInt *C2; + Value *X; + if (!match(And, m_And(m_Value(X), m_APInt(C2)))) + return nullptr; + + // Don't perform the following transforms if the AND has multiple uses + if (!And->hasOneUse()) + return nullptr; + + if (Cmp.isEquality() && C1.isNullValue()) { + // Restrict this fold to single-use 'and' (PR10267). + // Replace (and X, (1 << size(X)-1) != 0) with X s< 0 + if (C2->isSignMask()) { + Constant *Zero = Constant::getNullValue(X->getType()); + auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; + return new ICmpInst(NewPred, X, Zero); + } + + // Restrict this fold only for single-use 'and' (PR10267). + // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two. + if ((~(*C2) + 1).isPowerOf2()) { + Constant *NegBOC = + ConstantExpr::getNeg(cast<Constant>(And->getOperand(1))); + auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; + return new ICmpInst(NewPred, X, NegBOC); + } + } + + // If the LHS is an 'and' of a truncate and we can widen the and/compare to + // the input width without changing the value produced, eliminate the cast: + // + // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1' + // + // We can do this transformation if the constants do not have their sign bits + // set or if it is an equality comparison. Extending a relational comparison + // when we're checking the sign bit would not work. + Value *W; + if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) && + (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) { + // TODO: Is this a good transform for vectors? Wider types may reduce + // throughput. Should this transform be limited (even for scalars) by using + // shouldChangeType()? + if (!Cmp.getType()->isVectorTy()) { + Type *WideType = W->getType(); + unsigned WideScalarBits = WideType->getScalarSizeInBits(); + Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits)); + Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits)); + Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName()); + return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1); + } + } + + if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2)) + return I; + + // (icmp pred (and (or (lshr A, B), A), 1), 0) --> + // (icmp pred (and A, (or (shl 1, B), 1), 0)) + // + // iff pred isn't signed + if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() && + match(And->getOperand(1), m_One())) { + Constant *One = cast<Constant>(And->getOperand(1)); + Value *Or = And->getOperand(0); + Value *A, *B, *LShr; + if (match(Or, m_Or(m_Value(LShr), m_Value(A))) && + match(LShr, m_LShr(m_Specific(A), m_Value(B)))) { + unsigned UsesRemoved = 0; + if (And->hasOneUse()) + ++UsesRemoved; + if (Or->hasOneUse()) + ++UsesRemoved; + if (LShr->hasOneUse()) + ++UsesRemoved; + + // Compute A & ((1 << B) | 1) + Value *NewOr = nullptr; + if (auto *C = dyn_cast<Constant>(B)) { + if (UsesRemoved >= 1) + NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); + } else { + if (UsesRemoved >= 3) + NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(), + /*HasNUW=*/true), + One, Or->getName()); + } + if (NewOr) { + Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName()); + return replaceOperand(Cmp, 0, NewAnd); + } + } + } + + return nullptr; +} + +/// Fold icmp (and X, Y), C. +Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp, + BinaryOperator *And, + const APInt &C) { + if (Instruction *I = foldICmpAndConstConst(Cmp, And, C)) + return I; + + // TODO: These all require that Y is constant too, so refactor with the above. + + // Try to optimize things like "A[i] & 42 == 0" to index computations. + Value *X = And->getOperand(0); + Value *Y = And->getOperand(1); + if (auto *LI = dyn_cast<LoadInst>(X)) + if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) + if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) + if (GV->isConstant() && GV->hasDefinitiveInitializer() && + !LI->isVolatile() && isa<ConstantInt>(Y)) { + ConstantInt *C2 = cast<ConstantInt>(Y); + if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2)) + return Res; + } + + if (!Cmp.isEquality()) + return nullptr; + + // X & -C == -C -> X > u ~C + // X & -C != -C -> X <= u ~C + // iff C is a power of 2 + if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) { + auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT + : CmpInst::ICMP_ULE; + return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1)))); + } + + // (X & C2) == 0 -> (trunc X) >= 0 + // (X & C2) != 0 -> (trunc X) < 0 + // iff C2 is a power of 2 and it masks the sign bit of a legal integer type. + const APInt *C2; + if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) { + int32_t ExactLogBase2 = C2->exactLogBase2(); + if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { + Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1); + if (auto *AndVTy = dyn_cast<VectorType>(And->getType())) + NTy = VectorType::get(NTy, AndVTy->getElementCount()); + Value *Trunc = Builder.CreateTrunc(X, NTy); + auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE + : CmpInst::ICMP_SLT; + return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy)); + } + } + + return nullptr; +} + +/// Fold icmp (or X, Y), C. +Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp, + BinaryOperator *Or, + const APInt &C) { + ICmpInst::Predicate Pred = Cmp.getPredicate(); + if (C.isOneValue()) { + // icmp slt signum(V) 1 --> icmp slt V, 1 + Value *V = nullptr; + if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V)))) + return new ICmpInst(ICmpInst::ICMP_SLT, V, + ConstantInt::get(V->getType(), 1)); + } + + Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1); + const APInt *MaskC; + if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) { + if (*MaskC == C && (C + 1).isPowerOf2()) { + // X | C == C --> X <=u C + // X | C != C --> X >u C + // iff C+1 is a power of 2 (C is a bitmask of the low bits) + Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT; + return new ICmpInst(Pred, OrOp0, OrOp1); + } + + // More general: canonicalize 'equality with set bits mask' to + // 'equality with clear bits mask'. + // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC + // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC + if (Or->hasOneUse()) { + Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC)); + Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC)); + return new ICmpInst(Pred, And, NewC); + } + } + + if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse()) + return nullptr; + + Value *P, *Q; + if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { + // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 + // -> and (icmp eq P, null), (icmp eq Q, null). + Value *CmpP = + Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType())); + Value *CmpQ = + Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType())); + auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; + return BinaryOperator::Create(BOpc, CmpP, CmpQ); + } + + // Are we using xors to bitwise check for a pair of (in)equalities? Convert to + // a shorter form that has more potential to be folded even further. + Value *X1, *X2, *X3, *X4; + if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) && + match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) { + // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4) + // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4) + Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2); + Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4); + auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; + return BinaryOperator::Create(BOpc, Cmp12, Cmp34); + } + + return nullptr; +} + +/// Fold icmp (mul X, Y), C. +Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp, + BinaryOperator *Mul, + const APInt &C) { + const APInt *MulC; + if (!match(Mul->getOperand(1), m_APInt(MulC))) + return nullptr; + + // If this is a test of the sign bit and the multiply is sign-preserving with + // a constant operand, use the multiply LHS operand instead. + ICmpInst::Predicate Pred = Cmp.getPredicate(); + if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) { + if (MulC->isNegative()) + Pred = ICmpInst::getSwappedPredicate(Pred); + return new ICmpInst(Pred, Mul->getOperand(0), + Constant::getNullValue(Mul->getType())); + } + + // If the multiply does not wrap, try to divide the compare constant by the + // multiplication factor. + if (Cmp.isEquality() && !MulC->isNullValue()) { + // (mul nsw X, MulC) == C --> X == C /s MulC + if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) { + Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC)); + return new ICmpInst(Pred, Mul->getOperand(0), NewC); + } + // (mul nuw X, MulC) == C --> X == C /u MulC + if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) { + Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC)); + return new ICmpInst(Pred, Mul->getOperand(0), NewC); + } + } + + return nullptr; +} + +/// Fold icmp (shl 1, Y), C. +static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl, + const APInt &C) { + Value *Y; + if (!match(Shl, m_Shl(m_One(), m_Value(Y)))) + return nullptr; + + Type *ShiftType = Shl->getType(); + unsigned TypeBits = C.getBitWidth(); + bool CIsPowerOf2 = C.isPowerOf2(); + ICmpInst::Predicate Pred = Cmp.getPredicate(); + if (Cmp.isUnsigned()) { + // (1 << Y) pred C -> Y pred Log2(C) + if (!CIsPowerOf2) { + // (1 << Y) < 30 -> Y <= 4 + // (1 << Y) <= 30 -> Y <= 4 + // (1 << Y) >= 30 -> Y > 4 + // (1 << Y) > 30 -> Y > 4 + if (Pred == ICmpInst::ICMP_ULT) + Pred = ICmpInst::ICMP_ULE; + else if (Pred == ICmpInst::ICMP_UGE) + Pred = ICmpInst::ICMP_UGT; + } + + // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31 + // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31 + unsigned CLog2 = C.logBase2(); + if (CLog2 == TypeBits - 1) { + if (Pred == ICmpInst::ICMP_UGE) + Pred = ICmpInst::ICMP_EQ; + else if (Pred == ICmpInst::ICMP_ULT) + Pred = ICmpInst::ICMP_NE; + } + return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2)); + } else if (Cmp.isSigned()) { + Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1); + if (C.isAllOnesValue()) { + // (1 << Y) <= -1 -> Y == 31 + if (Pred == ICmpInst::ICMP_SLE) + return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); + + // (1 << Y) > -1 -> Y != 31 + if (Pred == ICmpInst::ICMP_SGT) + return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); + } else if (!C) { + // (1 << Y) < 0 -> Y == 31 + // (1 << Y) <= 0 -> Y == 31 + if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) + return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne); + + // (1 << Y) >= 0 -> Y != 31 + // (1 << Y) > 0 -> Y != 31 + if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) + return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne); + } + } else if (Cmp.isEquality() && CIsPowerOf2) { + return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2())); + } + + return nullptr; +} + +/// Fold icmp (shl X, Y), C. +Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp, + BinaryOperator *Shl, + const APInt &C) { + const APInt *ShiftVal; + if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal))) + return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal); + + const APInt *ShiftAmt; + if (!match(Shl->getOperand(1), m_APInt(ShiftAmt))) + return foldICmpShlOne(Cmp, Shl, C); + + // Check that the shift amount is in range. If not, don't perform undefined + // shifts. When the shift is visited, it will be simplified. + unsigned TypeBits = C.getBitWidth(); + if (ShiftAmt->uge(TypeBits)) + return nullptr; + + ICmpInst::Predicate Pred = Cmp.getPredicate(); + Value *X = Shl->getOperand(0); + Type *ShType = Shl->getType(); + + // NSW guarantees that we are only shifting out sign bits from the high bits, + // so we can ASHR the compare constant without needing a mask and eliminate + // the shift. + if (Shl->hasNoSignedWrap()) { + if (Pred == ICmpInst::ICMP_SGT) { + // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt) + APInt ShiftedC = C.ashr(*ShiftAmt); + return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); + } + if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && + C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) { + APInt ShiftedC = C.ashr(*ShiftAmt); + return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); + } + if (Pred == ICmpInst::ICMP_SLT) { + // SLE is the same as above, but SLE is canonicalized to SLT, so convert: + // (X << S) <=s C is equiv to X <=s (C >> S) for all C + // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX + // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN + assert(!C.isMinSignedValue() && "Unexpected icmp slt"); + APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1; + return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); + } + // If this is a signed comparison to 0 and the shift is sign preserving, + // use the shift LHS operand instead; isSignTest may change 'Pred', so only + // do that if we're sure to not continue on in this function. + if (isSignTest(Pred, C)) + return new ICmpInst(Pred, X, Constant::getNullValue(ShType)); + } + + // NUW guarantees that we are only shifting out zero bits from the high bits, + // so we can LSHR the compare constant without needing a mask and eliminate + // the shift. + if (Shl->hasNoUnsignedWrap()) { + if (Pred == ICmpInst::ICMP_UGT) { + // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt) + APInt ShiftedC = C.lshr(*ShiftAmt); + return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); + } + if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && + C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) { + APInt ShiftedC = C.lshr(*ShiftAmt); + return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); + } + if (Pred == ICmpInst::ICMP_ULT) { + // ULE is the same as above, but ULE is canonicalized to ULT, so convert: + // (X << S) <=u C is equiv to X <=u (C >> S) for all C + // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u + // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0 + assert(C.ugt(0) && "ult 0 should have been eliminated"); + APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1; + return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC)); + } + } + + if (Cmp.isEquality() && Shl->hasOneUse()) { + // Strength-reduce the shift into an 'and'. + Constant *Mask = ConstantInt::get( + ShType, + APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue())); + Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); + Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt)); + return new ICmpInst(Pred, And, LShrC); + } + + // Otherwise, if this is a comparison of the sign bit, simplify to and/test. + bool TrueIfSigned = false; + if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) { + // (X << 31) <s 0 --> (X & 1) != 0 + Constant *Mask = ConstantInt::get( + ShType, + APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1)); + Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask"); + return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, + And, Constant::getNullValue(ShType)); + } + + // Simplify 'shl' inequality test into 'and' equality test. + if (Cmp.isUnsigned() && Shl->hasOneUse()) { + // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0 + if ((C + 1).isPowerOf2() && + (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) { + Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue())); + return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ + : ICmpInst::ICMP_NE, + And, Constant::getNullValue(ShType)); + } + // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0 + if (C.isPowerOf2() && + (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) { + Value *And = + Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue())); + return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ + : ICmpInst::ICMP_NE, + And, Constant::getNullValue(ShType)); + } + } + + // Transform (icmp pred iM (shl iM %v, N), C) + // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N)) + // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N. + // This enables us to get rid of the shift in favor of a trunc that may be + // free on the target. It has the additional benefit of comparing to a + // smaller constant that may be more target-friendly. + unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1); + if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt && + DL.isLegalInteger(TypeBits - Amt)) { + Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt); + if (auto *ShVTy = dyn_cast<VectorType>(ShType)) + TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount()); + Constant *NewC = + ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt)); + return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC); + } + + return nullptr; +} + +/// Fold icmp ({al}shr X, Y), C. +Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp, + BinaryOperator *Shr, + const APInt &C) { + // An exact shr only shifts out zero bits, so: + // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0 + Value *X = Shr->getOperand(0); + CmpInst::Predicate Pred = Cmp.getPredicate(); + if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && + C.isNullValue()) + return new ICmpInst(Pred, X, Cmp.getOperand(1)); + + const APInt *ShiftVal; + if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal))) + return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal); + + const APInt *ShiftAmt; + if (!match(Shr->getOperand(1), m_APInt(ShiftAmt))) + return nullptr; + + // Check that the shift amount is in range. If not, don't perform undefined + // shifts. When the shift is visited it will be simplified. + unsigned TypeBits = C.getBitWidth(); + unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits); + if (ShAmtVal >= TypeBits || ShAmtVal == 0) + return nullptr; + + bool IsAShr = Shr->getOpcode() == Instruction::AShr; + bool IsExact = Shr->isExact(); + Type *ShrTy = Shr->getType(); + // TODO: If we could guarantee that InstSimplify would handle all of the + // constant-value-based preconditions in the folds below, then we could assert + // those conditions rather than checking them. This is difficult because of + // undef/poison (PR34838). + if (IsAShr) { + if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) { + // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC) + // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC) + APInt ShiftedC = C.shl(ShAmtVal); + if (ShiftedC.ashr(ShAmtVal) == C) + return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); + } + if (Pred == CmpInst::ICMP_SGT) { + // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1 + APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; + if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() && + (ShiftedC + 1).ashr(ShAmtVal) == (C + 1)) + return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); + } + + // If the compare constant has significant bits above the lowest sign-bit, + // then convert an unsigned cmp to a test of the sign-bit: + // (ashr X, ShiftC) u> C --> X s< 0 + // (ashr X, ShiftC) u< C --> X s> -1 + if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) { + if (Pred == CmpInst::ICMP_UGT) { + return new ICmpInst(CmpInst::ICMP_SLT, X, + ConstantInt::getNullValue(ShrTy)); + } + if (Pred == CmpInst::ICMP_ULT) { + return new ICmpInst(CmpInst::ICMP_SGT, X, + ConstantInt::getAllOnesValue(ShrTy)); + } + } + } else { + if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) { + // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC) + // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC) + APInt ShiftedC = C.shl(ShAmtVal); + if (ShiftedC.lshr(ShAmtVal) == C) + return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); + } + if (Pred == CmpInst::ICMP_UGT) { + // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1 + APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1; + if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1)) + return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC)); + } + } + + if (!Cmp.isEquality()) + return nullptr; + + // Handle equality comparisons of shift-by-constant. + + // If the comparison constant changes with the shift, the comparison cannot + // succeed (bits of the comparison constant cannot match the shifted value). + // This should be known by InstSimplify and already be folded to true/false. + assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || + (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && + "Expected icmp+shr simplify did not occur."); + + // If the bits shifted out are known zero, compare the unshifted value: + // (X & 4) >> 1 == 2 --> (X & 4) == 4. + if (Shr->isExact()) + return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal)); + + if (Shr->hasOneUse()) { + // Canonicalize the shift into an 'and': + // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt) + APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); + Constant *Mask = ConstantInt::get(ShrTy, Val); + Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask"); + return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal)); + } + + return nullptr; +} + +Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp, + BinaryOperator *SRem, + const APInt &C) { + // Match an 'is positive' or 'is negative' comparison of remainder by a + // constant power-of-2 value: + // (X % pow2C) sgt/slt 0 + const ICmpInst::Predicate Pred = Cmp.getPredicate(); + if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT) + return nullptr; + + // TODO: The one-use check is standard because we do not typically want to + // create longer instruction sequences, but this might be a special-case + // because srem is not good for analysis or codegen. + if (!SRem->hasOneUse()) + return nullptr; + + const APInt *DivisorC; + if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC))) + return nullptr; + + // Mask off the sign bit and the modulo bits (low-bits). + Type *Ty = SRem->getType(); + APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits()); + Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1)); + Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC); + + // For 'is positive?' check that the sign-bit is clear and at least 1 masked + // bit is set. Example: + // (i8 X % 32) s> 0 --> (X & 159) s> 0 + if (Pred == ICmpInst::ICMP_SGT) + return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty)); + + // For 'is negative?' check that the sign-bit is set and at least 1 masked + // bit is set. Example: + // (i16 X % 4) s< 0 --> (X & 32771) u> 32768 + return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask)); +} + +/// Fold icmp (udiv X, Y), C. +Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp, + BinaryOperator *UDiv, + const APInt &C) { + const APInt *C2; + if (!match(UDiv->getOperand(0), m_APInt(C2))) + return nullptr; + + assert(*C2 != 0 && "udiv 0, X should have been simplified already."); + + // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1)) + Value *Y = UDiv->getOperand(1); + if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) { + assert(!C.isMaxValue() && + "icmp ugt X, UINT_MAX should have been simplified already."); + return new ICmpInst(ICmpInst::ICMP_ULE, Y, + ConstantInt::get(Y->getType(), C2->udiv(C + 1))); + } + + // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C) + if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) { + assert(C != 0 && "icmp ult X, 0 should have been simplified already."); + return new ICmpInst(ICmpInst::ICMP_UGT, Y, + ConstantInt::get(Y->getType(), C2->udiv(C))); + } + + return nullptr; +} + +/// Fold icmp ({su}div X, Y), C. +Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp, + BinaryOperator *Div, + const APInt &C) { + // Fold: icmp pred ([us]div X, C2), C -> range test + // Fold this div into the comparison, producing a range check. + // Determine, based on the divide type, what the range is being + // checked. If there is an overflow on the low or high side, remember + // it, otherwise compute the range [low, hi) bounding the new value. + // See: InsertRangeTest above for the kinds of replacements possible. + const APInt *C2; + if (!match(Div->getOperand(1), m_APInt(C2))) + return nullptr; + + // FIXME: If the operand types don't match the type of the divide + // then don't attempt this transform. The code below doesn't have the + // logic to deal with a signed divide and an unsigned compare (and + // vice versa). This is because (x /s C2) <s C produces different + // results than (x /s C2) <u C or (x /u C2) <s C or even + // (x /u C2) <u C. Simply casting the operands and result won't + // work. :( The if statement below tests that condition and bails + // if it finds it. + bool DivIsSigned = Div->getOpcode() == Instruction::SDiv; + if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned()) + return nullptr; + + // The ProdOV computation fails on divide by 0 and divide by -1. Cases with + // INT_MIN will also fail if the divisor is 1. Although folds of all these + // division-by-constant cases should be present, we can not assert that they + // have happened before we reach this icmp instruction. + if (C2->isNullValue() || C2->isOneValue() || + (DivIsSigned && C2->isAllOnesValue())) + return nullptr; + + // Compute Prod = C * C2. We are essentially solving an equation of + // form X / C2 = C. We solve for X by multiplying C2 and C. + // By solving for X, we can turn this into a range check instead of computing + // a divide. + APInt Prod = C * *C2; + + // Determine if the product overflows by seeing if the product is not equal to + // the divide. Make sure we do the same kind of divide as in the LHS + // instruction that we're folding. + bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C; + + ICmpInst::Predicate Pred = Cmp.getPredicate(); + + // If the division is known to be exact, then there is no remainder from the + // divide, so the covered range size is unit, otherwise it is the divisor. + APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2; + + // Figure out the interval that is being checked. For example, a comparison + // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). + // Compute this interval based on the constants involved and the signedness of + // the compare/divide. This computes a half-open interval, keeping track of + // whether either value in the interval overflows. After analysis each + // overflow variable is set to 0 if it's corresponding bound variable is valid + // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. + int LoOverflow = 0, HiOverflow = 0; + APInt LoBound, HiBound; + + if (!DivIsSigned) { // udiv + // e.g. X/5 op 3 --> [15, 20) + LoBound = Prod; + HiOverflow = LoOverflow = ProdOV; + if (!HiOverflow) { + // If this is not an exact divide, then many values in the range collapse + // to the same result value. + HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false); + } + } else if (C2->isStrictlyPositive()) { // Divisor is > 0. + if (C.isNullValue()) { // (X / pos) op 0 + // Can't overflow. e.g. X/2 op 0 --> [-1, 2) + LoBound = -(RangeSize - 1); + HiBound = RangeSize; + } else if (C.isStrictlyPositive()) { // (X / pos) op pos + LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) + HiOverflow = LoOverflow = ProdOV; + if (!HiOverflow) + HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true); + } else { // (X / pos) op neg + // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) + HiBound = Prod + 1; + LoOverflow = HiOverflow = ProdOV ? -1 : 0; + if (!LoOverflow) { + APInt DivNeg = -RangeSize; + LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; + } + } + } else if (C2->isNegative()) { // Divisor is < 0. + if (Div->isExact()) + RangeSize.negate(); + if (C.isNullValue()) { // (X / neg) op 0 + // e.g. X/-5 op 0 --> [-4, 5) + LoBound = RangeSize + 1; + HiBound = -RangeSize; + if (HiBound == *C2) { // -INTMIN = INTMIN + HiOverflow = 1; // [INTMIN+1, overflow) + HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN + } + } else if (C.isStrictlyPositive()) { // (X / neg) op pos + // e.g. X/-5 op 3 --> [-19, -14) + HiBound = Prod + 1; + HiOverflow = LoOverflow = ProdOV ? -1 : 0; + if (!LoOverflow) + LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; + } else { // (X / neg) op neg + LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) + LoOverflow = HiOverflow = ProdOV; + if (!HiOverflow) + HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true); + } + + // Dividing by a negative swaps the condition. LT <-> GT + Pred = ICmpInst::getSwappedPredicate(Pred); + } + + Value *X = Div->getOperand(0); + switch (Pred) { + default: llvm_unreachable("Unhandled icmp opcode!"); + case ICmpInst::ICMP_EQ: + if (LoOverflow && HiOverflow) + return replaceInstUsesWith(Cmp, Builder.getFalse()); + if (HiOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : + ICmpInst::ICMP_UGE, X, + ConstantInt::get(Div->getType(), LoBound)); + if (LoOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : + ICmpInst::ICMP_ULT, X, + ConstantInt::get(Div->getType(), HiBound)); + return replaceInstUsesWith( + Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true)); + case ICmpInst::ICMP_NE: + if (LoOverflow && HiOverflow) + return replaceInstUsesWith(Cmp, Builder.getTrue()); + if (HiOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : + ICmpInst::ICMP_ULT, X, + ConstantInt::get(Div->getType(), LoBound)); + if (LoOverflow) + return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : + ICmpInst::ICMP_UGE, X, + ConstantInt::get(Div->getType(), HiBound)); + return replaceInstUsesWith(Cmp, + insertRangeTest(X, LoBound, HiBound, + DivIsSigned, false)); + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_SLT: + if (LoOverflow == +1) // Low bound is greater than input range. + return replaceInstUsesWith(Cmp, Builder.getTrue()); + if (LoOverflow == -1) // Low bound is less than input range. + return replaceInstUsesWith(Cmp, Builder.getFalse()); + return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound)); + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_SGT: + if (HiOverflow == +1) // High bound greater than input range. + return replaceInstUsesWith(Cmp, Builder.getFalse()); + if (HiOverflow == -1) // High bound less than input range. + return replaceInstUsesWith(Cmp, Builder.getTrue()); + if (Pred == ICmpInst::ICMP_UGT) + return new ICmpInst(ICmpInst::ICMP_UGE, X, + ConstantInt::get(Div->getType(), HiBound)); + return new ICmpInst(ICmpInst::ICMP_SGE, X, + ConstantInt::get(Div->getType(), HiBound)); + } + + return nullptr; +} + +/// Fold icmp (sub X, Y), C. +Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp, + BinaryOperator *Sub, + const APInt &C) { + Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1); + ICmpInst::Predicate Pred = Cmp.getPredicate(); + const APInt *C2; + APInt SubResult; + + // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0 + if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality()) + return new ICmpInst(Cmp.getPredicate(), Y, + ConstantInt::get(Y->getType(), 0)); + + // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C) + if (match(X, m_APInt(C2)) && + ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) || + (Cmp.isSigned() && Sub->hasNoSignedWrap())) && + !subWithOverflow(SubResult, *C2, C, Cmp.isSigned())) + return new ICmpInst(Cmp.getSwappedPredicate(), Y, + ConstantInt::get(Y->getType(), SubResult)); + + // The following transforms are only worth it if the only user of the subtract + // is the icmp. + if (!Sub->hasOneUse()) + return nullptr; + + if (Sub->hasNoSignedWrap()) { + // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y) + if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue()) + return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); + + // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y) + if (Pred == ICmpInst::ICMP_SGT && C.isNullValue()) + return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); + + // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y) + if (Pred == ICmpInst::ICMP_SLT && C.isNullValue()) + return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); + + // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y) + if (Pred == ICmpInst::ICMP_SLT && C.isOneValue()) + return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); + } + + if (!match(X, m_APInt(C2))) + return nullptr; + + // C2 - Y <u C -> (Y | (C - 1)) == C2 + // iff (C2 & (C - 1)) == C - 1 and C is a power of 2 + if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && + (*C2 & (C - 1)) == (C - 1)) + return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X); + + // C2 - Y >u C -> (Y | C) != C2 + // iff C2 & C == C and C + 1 is a power of 2 + if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C) + return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X); + + return nullptr; +} + +/// Fold icmp (add X, Y), C. +Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp, + BinaryOperator *Add, + const APInt &C) { + Value *Y = Add->getOperand(1); + const APInt *C2; + if (Cmp.isEquality() || !match(Y, m_APInt(C2))) + return nullptr; + + // Fold icmp pred (add X, C2), C. + Value *X = Add->getOperand(0); + Type *Ty = Add->getType(); + CmpInst::Predicate Pred = Cmp.getPredicate(); + + // If the add does not wrap, we can always adjust the compare by subtracting + // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE + // are canonicalized to SGT/SLT/UGT/ULT. + if ((Add->hasNoSignedWrap() && + (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) || + (Add->hasNoUnsignedWrap() && + (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) { + bool Overflow; + APInt NewC = + Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow); + // If there is overflow, the result must be true or false. + // TODO: Can we assert there is no overflow because InstSimplify always + // handles those cases? + if (!Overflow) + // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2) + return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC)); + } + + auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2); + const APInt &Upper = CR.getUpper(); + const APInt &Lower = CR.getLower(); + if (Cmp.isSigned()) { + if (Lower.isSignMask()) + return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper)); + if (Upper.isSignMask()) + return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower)); + } else { + if (Lower.isMinValue()) + return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper)); + if (Upper.isMinValue()) + return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower)); + } + + if (!Add->hasOneUse()) + return nullptr; + + // X+C <u C2 -> (X & -C2) == C + // iff C & (C2-1) == 0 + // C2 is a power of 2 + if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0) + return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C), + ConstantExpr::getNeg(cast<Constant>(Y))); + + // X+C >u C2 -> (X & ~C2) != C + // iff C & C2 == 0 + // C2+1 is a power of 2 + if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0) + return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C), + ConstantExpr::getNeg(cast<Constant>(Y))); + + return nullptr; +} + +bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, + Value *&RHS, ConstantInt *&Less, + ConstantInt *&Equal, + ConstantInt *&Greater) { + // TODO: Generalize this to work with other comparison idioms or ensure + // they get canonicalized into this form. + + // select i1 (a == b), + // i32 Equal, + // i32 (select i1 (a < b), i32 Less, i32 Greater) + // where Equal, Less and Greater are placeholders for any three constants. + ICmpInst::Predicate PredA; + if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) || + !ICmpInst::isEquality(PredA)) + return false; + Value *EqualVal = SI->getTrueValue(); + Value *UnequalVal = SI->getFalseValue(); + // We still can get non-canonical predicate here, so canonicalize. + if (PredA == ICmpInst::ICMP_NE) + std::swap(EqualVal, UnequalVal); + if (!match(EqualVal, m_ConstantInt(Equal))) + return false; + ICmpInst::Predicate PredB; + Value *LHS2, *RHS2; + if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)), + m_ConstantInt(Less), m_ConstantInt(Greater)))) + return false; + // We can get predicate mismatch here, so canonicalize if possible: + // First, ensure that 'LHS' match. + if (LHS2 != LHS) { + // x sgt y <--> y slt x + std::swap(LHS2, RHS2); + PredB = ICmpInst::getSwappedPredicate(PredB); + } + if (LHS2 != LHS) + return false; + // We also need to canonicalize 'RHS'. + if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) { + // x sgt C-1 <--> x sge C <--> not(x slt C) + auto FlippedStrictness = + InstCombiner::getFlippedStrictnessPredicateAndConstant( + PredB, cast<Constant>(RHS2)); + if (!FlippedStrictness) + return false; + assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check"); + RHS2 = FlippedStrictness->second; + // And kind-of perform the result swap. + std::swap(Less, Greater); + PredB = ICmpInst::ICMP_SLT; + } + return PredB == ICmpInst::ICMP_SLT && RHS == RHS2; +} + +Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp, + SelectInst *Select, + ConstantInt *C) { + + assert(C && "Cmp RHS should be a constant int!"); + // If we're testing a constant value against the result of a three way + // comparison, the result can be expressed directly in terms of the + // original values being compared. Note: We could possibly be more + // aggressive here and remove the hasOneUse test. The original select is + // really likely to simplify or sink when we remove a test of the result. + Value *OrigLHS, *OrigRHS; + ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan; + if (Cmp.hasOneUse() && + matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal, + C3GreaterThan)) { + assert(C1LessThan && C2Equal && C3GreaterThan); + + bool TrueWhenLessThan = + ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C) + ->isAllOnesValue(); + bool TrueWhenEqual = + ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C) + ->isAllOnesValue(); + bool TrueWhenGreaterThan = + ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C) + ->isAllOnesValue(); + + // This generates the new instruction that will replace the original Cmp + // Instruction. Instead of enumerating the various combinations when + // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus + // false, we rely on chaining of ORs and future passes of InstCombine to + // simplify the OR further (i.e. a s< b || a == b becomes a s<= b). + + // When none of the three constants satisfy the predicate for the RHS (C), + // the entire original Cmp can be simplified to a false. + Value *Cond = Builder.getFalse(); + if (TrueWhenLessThan) + Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT, + OrigLHS, OrigRHS)); + if (TrueWhenEqual) + Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ, + OrigLHS, OrigRHS)); + if (TrueWhenGreaterThan) + Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT, + OrigLHS, OrigRHS)); + + return replaceInstUsesWith(Cmp, Cond); + } + return nullptr; +} + +static Instruction *foldICmpBitCast(ICmpInst &Cmp, + InstCombiner::BuilderTy &Builder) { + auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0)); + if (!Bitcast) + return nullptr; + + ICmpInst::Predicate Pred = Cmp.getPredicate(); + Value *Op1 = Cmp.getOperand(1); + Value *BCSrcOp = Bitcast->getOperand(0); + + // Make sure the bitcast doesn't change the number of vector elements. + if (Bitcast->getSrcTy()->getScalarSizeInBits() == + Bitcast->getDestTy()->getScalarSizeInBits()) { + // Zero-equality and sign-bit checks are preserved through sitofp + bitcast. + Value *X; + if (match(BCSrcOp, m_SIToFP(m_Value(X)))) { + // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0 + // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0 + // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0 + // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0 + if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT || + Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) && + match(Op1, m_Zero())) + return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); + + // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1 + if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One())) + return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1)); + + // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1 + if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes())) + return new ICmpInst(Pred, X, + ConstantInt::getAllOnesValue(X->getType())); + } + + // Zero-equality checks are preserved through unsigned floating-point casts: + // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0 + // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0 + if (match(BCSrcOp, m_UIToFP(m_Value(X)))) + if (Cmp.isEquality() && match(Op1, m_Zero())) + return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType())); + + // If this is a sign-bit test of a bitcast of a casted FP value, eliminate + // the FP extend/truncate because that cast does not change the sign-bit. + // This is true for all standard IEEE-754 types and the X86 80-bit type. + // The sign-bit is always the most significant bit in those types. + const APInt *C; + bool TrueIfSigned; + if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() && + InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) { + if (match(BCSrcOp, m_FPExt(m_Value(X))) || + match(BCSrcOp, m_FPTrunc(m_Value(X)))) { + // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0 + // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1 + Type *XType = X->getType(); + + // We can't currently handle Power style floating point operations here. + if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) { + + Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits()); + if (auto *XVTy = dyn_cast<VectorType>(XType)) + NewType = VectorType::get(NewType, XVTy->getElementCount()); + Value *NewBitcast = Builder.CreateBitCast(X, NewType); + if (TrueIfSigned) + return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast, + ConstantInt::getNullValue(NewType)); + else + return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast, + ConstantInt::getAllOnesValue(NewType)); + } + } + } + } + + // Test to see if the operands of the icmp are casted versions of other + // values. If the ptr->ptr cast can be stripped off both arguments, do so. + if (Bitcast->getType()->isPointerTy() && + (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { + // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast + // so eliminate it as well. + if (auto *BC2 = dyn_cast<BitCastInst>(Op1)) + Op1 = BC2->getOperand(0); + + Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType()); + return new ICmpInst(Pred, BCSrcOp, Op1); + } + + // Folding: icmp <pred> iN X, C + // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN + // and C is a splat of a K-bit pattern + // and SC is a constant vector = <C', C', C', ..., C'> + // Into: + // %E = extractelement <M x iK> %vec, i32 C' + // icmp <pred> iK %E, trunc(C) + const APInt *C; + if (!match(Cmp.getOperand(1), m_APInt(C)) || + !Bitcast->getType()->isIntegerTy() || + !Bitcast->getSrcTy()->isIntOrIntVectorTy()) + return nullptr; + + Value *Vec; + ArrayRef<int> Mask; + if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) { + // Check whether every element of Mask is the same constant + if (is_splat(Mask)) { + auto *VecTy = cast<VectorType>(BCSrcOp->getType()); + auto *EltTy = cast<IntegerType>(VecTy->getElementType()); + if (C->isSplat(EltTy->getBitWidth())) { + // Fold the icmp based on the value of C + // If C is M copies of an iK sized bit pattern, + // then: + // => %E = extractelement <N x iK> %vec, i32 Elem + // icmp <pred> iK %SplatVal, <pattern> + Value *Elem = Builder.getInt32(Mask[0]); + Value *Extract = Builder.CreateExtractElement(Vec, Elem); + Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth())); + return new ICmpInst(Pred, Extract, NewC); + } + } + } + return nullptr; +} + +/// Try to fold integer comparisons with a constant operand: icmp Pred X, C +/// where X is some kind of instruction. +Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) { + const APInt *C; + if (!match(Cmp.getOperand(1), m_APInt(C))) + return nullptr; + + if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) { + switch (BO->getOpcode()) { + case Instruction::Xor: + if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::And: + if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::Or: + if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::Mul: + if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::Shl: + if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::LShr: + case Instruction::AShr: + if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::SRem: + if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::UDiv: + if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C)) + return I; + LLVM_FALLTHROUGH; + case Instruction::SDiv: + if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::Sub: + if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C)) + return I; + break; + case Instruction::Add: + if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C)) + return I; + break; + default: + break; + } + // TODO: These folds could be refactored to be part of the above calls. + if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C)) + return I; + } + + // Match against CmpInst LHS being instructions other than binary operators. + + if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) { + // For now, we only support constant integers while folding the + // ICMP(SELECT)) pattern. We can extend this to support vector of integers + // similar to the cases handled by binary ops above. + if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1))) + if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS)) + return I; + } + + if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) { + if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C)) + return I; + } + + if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0))) + if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C)) + return I; + + return nullptr; +} + +/// Fold an icmp equality instruction with binary operator LHS and constant RHS: +/// icmp eq/ne BO, C. +Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant( + ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) { + // TODO: Some of these folds could work with arbitrary constants, but this + // function is limited to scalar and vector splat constants. + if (!Cmp.isEquality()) + return nullptr; + + ICmpInst::Predicate Pred = Cmp.getPredicate(); + bool isICMP_NE = Pred == ICmpInst::ICMP_NE; + Constant *RHS = cast<Constant>(Cmp.getOperand(1)); + Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); + + switch (BO->getOpcode()) { + case Instruction::SRem: + // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. + if (C.isNullValue() && BO->hasOneUse()) { + const APInt *BOC; + if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) { + Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName()); + return new ICmpInst(Pred, NewRem, + Constant::getNullValue(BO->getType())); + } + } + break; + case Instruction::Add: { + // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. + if (Constant *BOC = dyn_cast<Constant>(BOp1)) { + if (BO->hasOneUse()) + return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC)); + } else if (C.isNullValue()) { + // Replace ((add A, B) != 0) with (A != -B) if A or B is + // efficiently invertible, or if the add has just this one use. + if (Value *NegVal = dyn_castNegVal(BOp1)) + return new ICmpInst(Pred, BOp0, NegVal); + if (Value *NegVal = dyn_castNegVal(BOp0)) + return new ICmpInst(Pred, NegVal, BOp1); + if (BO->hasOneUse()) { + Value *Neg = Builder.CreateNeg(BOp1); + Neg->takeName(BO); + return new ICmpInst(Pred, BOp0, Neg); + } + } + break; + } + case Instruction::Xor: + if (BO->hasOneUse()) { + if (Constant *BOC = dyn_cast<Constant>(BOp1)) { + // For the xor case, we can xor two constants together, eliminating + // the explicit xor. + return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC)); + } else if (C.isNullValue()) { + // Replace ((xor A, B) != 0) with (A != B) + return new ICmpInst(Pred, BOp0, BOp1); + } + } + break; + case Instruction::Sub: + if (BO->hasOneUse()) { + // Only check for constant LHS here, as constant RHS will be canonicalized + // to add and use the fold above. + if (Constant *BOC = dyn_cast<Constant>(BOp0)) { + // Replace ((sub BOC, B) != C) with (B != BOC-C). + return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS)); + } else if (C.isNullValue()) { + // Replace ((sub A, B) != 0) with (A != B). + return new ICmpInst(Pred, BOp0, BOp1); + } + } + break; + case Instruction::Or: { + const APInt *BOC; + if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) { + // Comparing if all bits outside of a constant mask are set? + // Replace (X | C) == -1 with (X & ~C) == ~C. + // This removes the -1 constant. + Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1)); + Value *And = Builder.CreateAnd(BOp0, NotBOC); + return new ICmpInst(Pred, And, NotBOC); + } + break; + } + case Instruction::And: { + const APInt *BOC; + if (match(BOp1, m_APInt(BOC))) { + // If we have ((X & C) == C), turn it into ((X & C) != 0). + if (C == *BOC && C.isPowerOf2()) + return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, + BO, Constant::getNullValue(RHS->getType())); + } + break; + } + case Instruction::UDiv: + if (C.isNullValue()) { + // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) + auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; + return new ICmpInst(NewPred, BOp1, BOp0); + } + break; + default: + break; + } + return nullptr; +} + +/// Fold an equality icmp with LLVM intrinsic and constant operand. +Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant( + ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) { + Type *Ty = II->getType(); + unsigned BitWidth = C.getBitWidth(); + switch (II->getIntrinsicID()) { + case Intrinsic::abs: + // abs(A) == 0 -> A == 0 + // abs(A) == INT_MIN -> A == INT_MIN + if (C.isNullValue() || C.isMinSignedValue()) + return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), + ConstantInt::get(Ty, C)); + break; + + case Intrinsic::bswap: + // bswap(A) == C -> A == bswap(C) + return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), + ConstantInt::get(Ty, C.byteSwap())); + + case Intrinsic::ctlz: + case Intrinsic::cttz: { + // ctz(A) == bitwidth(A) -> A == 0 and likewise for != + if (C == BitWidth) + return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), + ConstantInt::getNullValue(Ty)); + + // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set + // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits. + // Limit to one use to ensure we don't increase instruction count. + unsigned Num = C.getLimitedValue(BitWidth); + if (Num != BitWidth && II->hasOneUse()) { + bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz; + APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1) + : APInt::getHighBitsSet(BitWidth, Num + 1); + APInt Mask2 = IsTrailing + ? APInt::getOneBitSet(BitWidth, Num) + : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); + return new ICmpInst(Cmp.getPredicate(), + Builder.CreateAnd(II->getArgOperand(0), Mask1), + ConstantInt::get(Ty, Mask2)); + } + break; + } + + case Intrinsic::ctpop: { + // popcount(A) == 0 -> A == 0 and likewise for != + // popcount(A) == bitwidth(A) -> A == -1 and likewise for != + bool IsZero = C.isNullValue(); + if (IsZero || C == BitWidth) + return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0), + IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty)); + + break; + } + + case Intrinsic::uadd_sat: { + // uadd.sat(a, b) == 0 -> (a | b) == 0 + if (C.isNullValue()) { + Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1)); + return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty)); + } + break; + } + + case Intrinsic::usub_sat: { + // usub.sat(a, b) == 0 -> a <= b + if (C.isNullValue()) { + ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ + ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT; + return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1)); + } + break; + } + default: + break; + } + + return nullptr; +} + +/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C. +Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp, + IntrinsicInst *II, + const APInt &C) { + if (Cmp.isEquality()) + return foldICmpEqIntrinsicWithConstant(Cmp, II, C); + + Type *Ty = II->getType(); + unsigned BitWidth = C.getBitWidth(); + ICmpInst::Predicate Pred = Cmp.getPredicate(); + switch (II->getIntrinsicID()) { + case Intrinsic::ctpop: { + // (ctpop X > BitWidth - 1) --> X == -1 + Value *X = II->getArgOperand(0); + if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT) + return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X, + ConstantInt::getAllOnesValue(Ty)); + // (ctpop X < BitWidth) --> X != -1 + if (C == BitWidth && Pred == ICmpInst::ICMP_ULT) + return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X, + ConstantInt::getAllOnesValue(Ty)); + break; + } + case Intrinsic::ctlz: { + // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000 + if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { + unsigned Num = C.getLimitedValue(); + APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1); + return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT, + II->getArgOperand(0), ConstantInt::get(Ty, Limit)); + } + + // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111 + if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { + unsigned Num = C.getLimitedValue(); + APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num); + return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT, + II->getArgOperand(0), ConstantInt::get(Ty, Limit)); + } + break; + } + case Intrinsic::cttz: { + // Limit to one use to ensure we don't increase instruction count. + if (!II->hasOneUse()) + return nullptr; + + // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0 + if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) { + APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1); + return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, + Builder.CreateAnd(II->getArgOperand(0), Mask), + ConstantInt::getNullValue(Ty)); + } + + // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0 + if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) { + APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue()); + return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, + Builder.CreateAnd(II->getArgOperand(0), Mask), + ConstantInt::getNullValue(Ty)); + } + break; + } + default: + break; + } + + return nullptr; +} + +/// Handle icmp with constant (but not simple integer constant) RHS. +Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + Constant *RHSC = dyn_cast<Constant>(Op1); + Instruction *LHSI = dyn_cast<Instruction>(Op0); + if (!RHSC || !LHSI) + return nullptr; + + switch (LHSI->getOpcode()) { + case Instruction::GetElementPtr: + // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null + if (RHSC->isNullValue() && + cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) + return new ICmpInst( + I.getPredicate(), LHSI->getOperand(0), + Constant::getNullValue(LHSI->getOperand(0)->getType())); + break; + case Instruction::PHI: + // Only fold icmp into the PHI if the phi and icmp are in the same + // block. If in the same block, we're encouraging jump threading. If + // not, we are just pessimizing the code by making an i1 phi. + if (LHSI->getParent() == I.getParent()) + if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) + return NV; + break; + case Instruction::Select: { + // If either operand of the select is a constant, we can fold the + // comparison into the select arms, which will cause one to be + // constant folded and the select turned into a bitwise or. + Value *Op1 = nullptr, *Op2 = nullptr; + ConstantInt *CI = nullptr; + if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { + Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); + CI = dyn_cast<ConstantInt>(Op1); + } + if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { + Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); + CI = dyn_cast<ConstantInt>(Op2); + } + + // We only want to perform this transformation if it will not lead to + // additional code. This is true if either both sides of the select + // fold to a constant (in which case the icmp is replaced with a select + // which will usually simplify) or this is the only user of the + // select (in which case we are trading a select+icmp for a simpler + // select+icmp) or all uses of the select can be replaced based on + // dominance information ("Global cases"). + bool Transform = false; + if (Op1 && Op2) + Transform = true; + else if (Op1 || Op2) { + // Local case + if (LHSI->hasOneUse()) + Transform = true; + // Global cases + else if (CI && !CI->isZero()) + // When Op1 is constant try replacing select with second operand. + // Otherwise Op2 is constant and try replacing select with first + // operand. + Transform = + replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1); + } + if (Transform) { + if (!Op1) + Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC, + I.getName()); + if (!Op2) + Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC, + I.getName()); + return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); + } + break; + } + case Instruction::IntToPtr: + // icmp pred inttoptr(X), null -> icmp pred X, 0 + if (RHSC->isNullValue() && + DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) + return new ICmpInst( + I.getPredicate(), LHSI->getOperand(0), + Constant::getNullValue(LHSI->getOperand(0)->getType())); + break; + + case Instruction::Load: + // Try to optimize things like "A[i] > 4" to index computations. + if (GetElementPtrInst *GEP = + dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) + if (GV->isConstant() && GV->hasDefinitiveInitializer() && + !cast<LoadInst>(LHSI)->isVolatile()) + if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) + return Res; + } + break; + } + + return nullptr; +} + +/// Some comparisons can be simplified. +/// In this case, we are looking for comparisons that look like +/// a check for a lossy truncation. +/// Folds: +/// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask +/// Where Mask is some pattern that produces all-ones in low bits: +/// (-1 >> y) +/// ((-1 << y) >> y) <- non-canonical, has extra uses +/// ~(-1 << y) +/// ((1 << y) + (-1)) <- non-canonical, has extra uses +/// The Mask can be a constant, too. +/// For some predicates, the operands are commutative. +/// For others, x can only be on a specific side. +static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I, + InstCombiner::BuilderTy &Builder) { + ICmpInst::Predicate SrcPred; + Value *X, *M, *Y; + auto m_VariableMask = m_CombineOr( + m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())), + m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())), + m_CombineOr(m_LShr(m_AllOnes(), m_Value()), + m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y)))); + auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask()); + if (!match(&I, m_c_ICmp(SrcPred, + m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)), + m_Deferred(X)))) + return nullptr; + + ICmpInst::Predicate DstPred; + switch (SrcPred) { + case ICmpInst::Predicate::ICMP_EQ: + // x & (-1 >> y) == x -> x u<= (-1 >> y) + DstPred = ICmpInst::Predicate::ICMP_ULE; + break; + case ICmpInst::Predicate::ICMP_NE: + // x & (-1 >> y) != x -> x u> (-1 >> y) + DstPred = ICmpInst::Predicate::ICMP_UGT; + break; + case ICmpInst::Predicate::ICMP_ULT: + // x & (-1 >> y) u< x -> x u> (-1 >> y) + // x u> x & (-1 >> y) -> x u> (-1 >> y) + DstPred = ICmpInst::Predicate::ICMP_UGT; + break; + case ICmpInst::Predicate::ICMP_UGE: + // x & (-1 >> y) u>= x -> x u<= (-1 >> y) + // x u<= x & (-1 >> y) -> x u<= (-1 >> y) + DstPred = ICmpInst::Predicate::ICMP_ULE; + break; + case ICmpInst::Predicate::ICMP_SLT: + // x & (-1 >> y) s< x -> x s> (-1 >> y) + // x s> x & (-1 >> y) -> x s> (-1 >> y) + if (!match(M, m_Constant())) // Can not do this fold with non-constant. + return nullptr; + if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. + return nullptr; + DstPred = ICmpInst::Predicate::ICMP_SGT; + break; + case ICmpInst::Predicate::ICMP_SGE: + // x & (-1 >> y) s>= x -> x s<= (-1 >> y) + // x s<= x & (-1 >> y) -> x s<= (-1 >> y) + if (!match(M, m_Constant())) // Can not do this fold with non-constant. + return nullptr; + if (!match(M, m_NonNegative())) // Must not have any -1 vector elements. + return nullptr; + DstPred = ICmpInst::Predicate::ICMP_SLE; + break; + case ICmpInst::Predicate::ICMP_SGT: + case ICmpInst::Predicate::ICMP_SLE: + return nullptr; + case ICmpInst::Predicate::ICMP_UGT: + case ICmpInst::Predicate::ICMP_ULE: + llvm_unreachable("Instsimplify took care of commut. variant"); + break; + default: + llvm_unreachable("All possible folds are handled."); + } + + // The mask value may be a vector constant that has undefined elements. But it + // may not be safe to propagate those undefs into the new compare, so replace + // those elements by copying an existing, defined, and safe scalar constant. + Type *OpTy = M->getType(); + auto *VecC = dyn_cast<Constant>(M); + auto *OpVTy = dyn_cast<FixedVectorType>(OpTy); + if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) { + Constant *SafeReplacementConstant = nullptr; + for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) { + if (!isa<UndefValue>(VecC->getAggregateElement(i))) { + SafeReplacementConstant = VecC->getAggregateElement(i); + break; + } + } + assert(SafeReplacementConstant && "Failed to find undef replacement"); + M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant); + } + + return Builder.CreateICmp(DstPred, X, M); +} + +/// Some comparisons can be simplified. +/// In this case, we are looking for comparisons that look like +/// a check for a lossy signed truncation. +/// Folds: (MaskedBits is a constant.) +/// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x +/// Into: +/// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits) +/// Where KeptBits = bitwidth(%x) - MaskedBits +static Value * +foldICmpWithTruncSignExtendedVal(ICmpInst &I, + InstCombiner::BuilderTy &Builder) { + ICmpInst::Predicate SrcPred; + Value *X; + const APInt *C0, *C1; // FIXME: non-splats, potentially with undef. + // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use. + if (!match(&I, m_c_ICmp(SrcPred, + m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)), + m_APInt(C1))), + m_Deferred(X)))) + return nullptr; + + // Potential handling of non-splats: for each element: + // * if both are undef, replace with constant 0. + // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0. + // * if both are not undef, and are different, bailout. + // * else, only one is undef, then pick the non-undef one. + + // The shift amount must be equal. + if (*C0 != *C1) + return nullptr; + const APInt &MaskedBits = *C0; + assert(MaskedBits != 0 && "shift by zero should be folded away already."); + + ICmpInst::Predicate DstPred; + switch (SrcPred) { + case ICmpInst::Predicate::ICMP_EQ: + // ((%x << MaskedBits) a>> MaskedBits) == %x + // => + // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits) + DstPred = ICmpInst::Predicate::ICMP_ULT; + break; + case ICmpInst::Predicate::ICMP_NE: + // ((%x << MaskedBits) a>> MaskedBits) != %x + // => + // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits) + DstPred = ICmpInst::Predicate::ICMP_UGE; + break; + // FIXME: are more folds possible? + default: + return nullptr; + } + + auto *XType = X->getType(); + const unsigned XBitWidth = XType->getScalarSizeInBits(); + const APInt BitWidth = APInt(XBitWidth, XBitWidth); + assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"); + + // KeptBits = bitwidth(%x) - MaskedBits + const APInt KeptBits = BitWidth - MaskedBits; + assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable"); + // ICmpCst = (1 << KeptBits) + const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits); + assert(ICmpCst.isPowerOf2()); + // AddCst = (1 << (KeptBits-1)) + const APInt AddCst = ICmpCst.lshr(1); + assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2()); + + // T0 = add %x, AddCst + Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst)); + // T1 = T0 DstPred ICmpCst + Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst)); + + return T1; +} + +// Given pattern: +// icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 +// we should move shifts to the same hand of 'and', i.e. rewrite as +// icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) +// We are only interested in opposite logical shifts here. +// One of the shifts can be truncated. +// If we can, we want to end up creating 'lshr' shift. +static Value * +foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, + InstCombiner::BuilderTy &Builder) { + if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) || + !I.getOperand(0)->hasOneUse()) + return nullptr; + + auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value()); + + // Look for an 'and' of two logical shifts, one of which may be truncated. + // We use m_TruncOrSelf() on the RHS to correctly handle commutative case. + Instruction *XShift, *MaybeTruncation, *YShift; + if (!match( + I.getOperand(0), + m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)), + m_CombineAnd(m_TruncOrSelf(m_CombineAnd( + m_AnyLogicalShift, m_Instruction(YShift))), + m_Instruction(MaybeTruncation))))) + return nullptr; + + // We potentially looked past 'trunc', but only when matching YShift, + // therefore YShift must have the widest type. + Instruction *WidestShift = YShift; + // Therefore XShift must have the shallowest type. + // Or they both have identical types if there was no truncation. + Instruction *NarrowestShift = XShift; + + Type *WidestTy = WidestShift->getType(); + Type *NarrowestTy = NarrowestShift->getType(); + assert(NarrowestTy == I.getOperand(0)->getType() && + "We did not look past any shifts while matching XShift though."); + bool HadTrunc = WidestTy != I.getOperand(0)->getType(); + + // If YShift is a 'lshr', swap the shifts around. + if (match(YShift, m_LShr(m_Value(), m_Value()))) + std::swap(XShift, YShift); + + // The shifts must be in opposite directions. + auto XShiftOpcode = XShift->getOpcode(); + if (XShiftOpcode == YShift->getOpcode()) + return nullptr; // Do not care about same-direction shifts here. + + Value *X, *XShAmt, *Y, *YShAmt; + match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt)))); + match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt)))); + + // If one of the values being shifted is a constant, then we will end with + // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not, + // however, we will need to ensure that we won't increase instruction count. + if (!isa<Constant>(X) && !isa<Constant>(Y)) { + // At least one of the hands of the 'and' should be one-use shift. + if (!match(I.getOperand(0), + m_c_And(m_OneUse(m_AnyLogicalShift), m_Value()))) + return nullptr; + if (HadTrunc) { + // Due to the 'trunc', we will need to widen X. For that either the old + // 'trunc' or the shift amt in the non-truncated shift should be one-use. + if (!MaybeTruncation->hasOneUse() && + !NarrowestShift->getOperand(1)->hasOneUse()) + return nullptr; + } + } + + // We have two shift amounts from two different shifts. The types of those + // shift amounts may not match. If that's the case let's bailout now. + if (XShAmt->getType() != YShAmt->getType()) + return nullptr; + + // As input, we have the following pattern: + // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0 + // We want to rewrite that as: + // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x) + // While we know that originally (Q+K) would not overflow + // (because 2 * (N-1) u<= iN -1), we have looked past extensions of + // shift amounts. so it may now overflow in smaller bitwidth. + // To ensure that does not happen, we need to ensure that the total maximal + // shift amount is still representable in that smaller bit width. + unsigned MaximalPossibleTotalShiftAmount = + (WidestTy->getScalarSizeInBits() - 1) + + (NarrowestTy->getScalarSizeInBits() - 1); + APInt MaximalRepresentableShiftAmount = + APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits()); + if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount)) + return nullptr; + + // Can we fold (XShAmt+YShAmt) ? + auto *NewShAmt = dyn_cast_or_null<Constant>( + SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false, + /*isNUW=*/false, SQ.getWithInstruction(&I))); + if (!NewShAmt) + return nullptr; + NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy); + unsigned WidestBitWidth = WidestTy->getScalarSizeInBits(); + + // Is the new shift amount smaller than the bit width? + // FIXME: could also rely on ConstantRange. + if (!match(NewShAmt, + m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, + APInt(WidestBitWidth, WidestBitWidth)))) + return nullptr; + + // An extra legality check is needed if we had trunc-of-lshr. + if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) { + auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ, + WidestShift]() { + // It isn't obvious whether it's worth it to analyze non-constants here. + // Also, let's basically give up on non-splat cases, pessimizing vectors. + // If *any* of these preconditions matches we can perform the fold. + Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy() + ? NewShAmt->getSplatValue() + : NewShAmt; + // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold. + if (NewShAmtSplat && + (NewShAmtSplat->isNullValue() || + NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1)) + return true; + // We consider *min* leading zeros so a single outlier + // blocks the transform as opposed to allowing it. + if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) { + KnownBits Known = computeKnownBits(C, SQ.DL); + unsigned MinLeadZero = Known.countMinLeadingZeros(); + // If the value being shifted has at most lowest bit set we can fold. + unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; + if (MaxActiveBits <= 1) + return true; + // Precondition: NewShAmt u<= countLeadingZeros(C) + if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero)) + return true; + } + if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) { + KnownBits Known = computeKnownBits(C, SQ.DL); + unsigned MinLeadZero = Known.countMinLeadingZeros(); + // If the value being shifted has at most lowest bit set we can fold. + unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero; + if (MaxActiveBits <= 1) + return true; + // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C) + if (NewShAmtSplat) { + APInt AdjNewShAmt = + (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger(); + if (AdjNewShAmt.ule(MinLeadZero)) + return true; + } + } + return false; // Can't tell if it's ok. + }; + if (!CanFold()) + return nullptr; + } + + // All good, we can do this fold. + X = Builder.CreateZExt(X, WidestTy); + Y = Builder.CreateZExt(Y, WidestTy); + // The shift is the same that was for X. + Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr + ? Builder.CreateLShr(X, NewShAmt) + : Builder.CreateShl(X, NewShAmt); + Value *T1 = Builder.CreateAnd(T0, Y); + return Builder.CreateICmp(I.getPredicate(), T1, + Constant::getNullValue(WidestTy)); +} + +/// Fold +/// (-1 u/ x) u< y +/// ((x * y) u/ x) != y +/// to +/// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit +/// Note that the comparison is commutative, while inverted (u>=, ==) predicate +/// will mean that we are looking for the opposite answer. +Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) { + ICmpInst::Predicate Pred; + Value *X, *Y; + Instruction *Mul; + bool NeedNegation; + // Look for: (-1 u/ x) u</u>= y + if (!I.isEquality() && + match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))), + m_Value(Y)))) { + Mul = nullptr; + + // Are we checking that overflow does not happen, or does happen? + switch (Pred) { + case ICmpInst::Predicate::ICMP_ULT: + NeedNegation = false; + break; // OK + case ICmpInst::Predicate::ICMP_UGE: + NeedNegation = true; + break; // OK + default: + return nullptr; // Wrong predicate. + } + } else // Look for: ((x * y) u/ x) !=/== y + if (I.isEquality() && + match(&I, m_c_ICmp(Pred, m_Value(Y), + m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y), + m_Value(X)), + m_Instruction(Mul)), + m_Deferred(X)))))) { + NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ; + } else + return nullptr; + + BuilderTy::InsertPointGuard Guard(Builder); + // If the pattern included (x * y), we'll want to insert new instructions + // right before that original multiplication so that we can replace it. + bool MulHadOtherUses = Mul && !Mul->hasOneUse(); + if (MulHadOtherUses) + Builder.SetInsertPoint(Mul); + + Function *F = Intrinsic::getDeclaration( + I.getModule(), Intrinsic::umul_with_overflow, X->getType()); + CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul"); + + // If the multiplication was used elsewhere, to ensure that we don't leave + // "duplicate" instructions, replace uses of that original multiplication + // with the multiplication result from the with.overflow intrinsic. + if (MulHadOtherUses) + replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val")); + + Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov"); + if (NeedNegation) // This technically increases instruction count. + Res = Builder.CreateNot(Res, "umul.not.ov"); + + // If we replaced the mul, erase it. Do this after all uses of Builder, + // as the mul is used as insertion point. + if (MulHadOtherUses) + eraseInstFromFunction(*Mul); + + return Res; +} + +static Instruction *foldICmpXNegX(ICmpInst &I) { + CmpInst::Predicate Pred; + Value *X; + if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X)))) + return nullptr; + + if (ICmpInst::isSigned(Pred)) + Pred = ICmpInst::getSwappedPredicate(Pred); + else if (ICmpInst::isUnsigned(Pred)) + Pred = ICmpInst::getSignedPredicate(Pred); + // else for equality-comparisons just keep the predicate. + + return ICmpInst::Create(Instruction::ICmp, Pred, X, + Constant::getNullValue(X->getType()), I.getName()); +} + +/// Try to fold icmp (binop), X or icmp X, (binop). +/// TODO: A large part of this logic is duplicated in InstSimplify's +/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code +/// duplication. +Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I, + const SimplifyQuery &SQ) { + const SimplifyQuery Q = SQ.getWithInstruction(&I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // Special logic for binary operators. + BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); + BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); + if (!BO0 && !BO1) + return nullptr; + + if (Instruction *NewICmp = foldICmpXNegX(I)) + return NewICmp; + + const CmpInst::Predicate Pred = I.getPredicate(); + Value *X; + + // Convert add-with-unsigned-overflow comparisons into a 'not' with compare. + // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X + if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) && + (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) + return new ICmpInst(Pred, Builder.CreateNot(Op1), X); + // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0 + if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) && + (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) + return new ICmpInst(Pred, X, Builder.CreateNot(Op0)); + + bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; + if (BO0 && isa<OverflowingBinaryOperator>(BO0)) + NoOp0WrapProblem = + ICmpInst::isEquality(Pred) || + (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || + (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); + if (BO1 && isa<OverflowingBinaryOperator>(BO1)) + NoOp1WrapProblem = + ICmpInst::isEquality(Pred) || + (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || + (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); + + // Analyze the case when either Op0 or Op1 is an add instruction. + // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). + Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; + if (BO0 && BO0->getOpcode() == Instruction::Add) { + A = BO0->getOperand(0); + B = BO0->getOperand(1); + } + if (BO1 && BO1->getOpcode() == Instruction::Add) { + C = BO1->getOperand(0); + D = BO1->getOperand(1); + } + + // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow. + // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow. + if ((A == Op1 || B == Op1) && NoOp0WrapProblem) + return new ICmpInst(Pred, A == Op1 ? B : A, + Constant::getNullValue(Op1->getType())); + + // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow. + // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow. + if ((C == Op0 || D == Op0) && NoOp1WrapProblem) + return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), + C == Op0 ? D : C); + + // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow. + if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem && + NoOp1WrapProblem) { + // Determine Y and Z in the form icmp (X+Y), (X+Z). + Value *Y, *Z; + if (A == C) { + // C + B == C + D -> B == D + Y = B; + Z = D; + } else if (A == D) { + // D + B == C + D -> B == C + Y = B; + Z = C; + } else if (B == C) { + // A + C == C + D -> A == D + Y = A; + Z = D; + } else { + assert(B == D); + // A + D == C + D -> A == C + Y = A; + Z = C; + } + return new ICmpInst(Pred, Y, Z); + } + + // icmp slt (A + -1), Op1 -> icmp sle A, Op1 + if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && + match(B, m_AllOnes())) + return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); + + // icmp sge (A + -1), Op1 -> icmp sgt A, Op1 + if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && + match(B, m_AllOnes())) + return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); + + // icmp sle (A + 1), Op1 -> icmp slt A, Op1 + if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One())) + return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); + + // icmp sgt (A + 1), Op1 -> icmp sge A, Op1 + if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One())) + return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); + + // icmp sgt Op0, (C + -1) -> icmp sge Op0, C + if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && + match(D, m_AllOnes())) + return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); + + // icmp sle Op0, (C + -1) -> icmp slt Op0, C + if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && + match(D, m_AllOnes())) + return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); + + // icmp sge Op0, (C + 1) -> icmp sgt Op0, C + if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One())) + return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); + + // icmp slt Op0, (C + 1) -> icmp sle Op0, C + if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One())) + return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); + + // TODO: The subtraction-related identities shown below also hold, but + // canonicalization from (X -nuw 1) to (X + -1) means that the combinations + // wouldn't happen even if they were implemented. + // + // icmp ult (A - 1), Op1 -> icmp ule A, Op1 + // icmp uge (A - 1), Op1 -> icmp ugt A, Op1 + // icmp ugt Op0, (C - 1) -> icmp uge Op0, C + // icmp ule Op0, (C - 1) -> icmp ult Op0, C + + // icmp ule (A + 1), Op0 -> icmp ult A, Op1 + if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One())) + return new ICmpInst(CmpInst::ICMP_ULT, A, Op1); + + // icmp ugt (A + 1), Op0 -> icmp uge A, Op1 + if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One())) + return new ICmpInst(CmpInst::ICMP_UGE, A, Op1); + + // icmp uge Op0, (C + 1) -> icmp ugt Op0, C + if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One())) + return new ICmpInst(CmpInst::ICMP_UGT, Op0, C); + + // icmp ult Op0, (C + 1) -> icmp ule Op0, C + if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One())) + return new ICmpInst(CmpInst::ICMP_ULE, Op0, C); + + // if C1 has greater magnitude than C2: + // icmp (A + C1), (C + C2) -> icmp (A + C3), C + // s.t. C3 = C1 - C2 + // + // if C2 has greater magnitude than C1: + // icmp (A + C1), (C + C2) -> icmp A, (C + C3) + // s.t. C3 = C2 - C1 + if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && + (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) + if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) + if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { + const APInt &AP1 = C1->getValue(); + const APInt &AP2 = C2->getValue(); + if (AP1.isNegative() == AP2.isNegative()) { + APInt AP1Abs = C1->getValue().abs(); + APInt AP2Abs = C2->getValue().abs(); + if (AP1Abs.uge(AP2Abs)) { + ConstantInt *C3 = Builder.getInt(AP1 - AP2); + Value *NewAdd = Builder.CreateNSWAdd(A, C3); + return new ICmpInst(Pred, NewAdd, C); + } else { + ConstantInt *C3 = Builder.getInt(AP2 - AP1); + Value *NewAdd = Builder.CreateNSWAdd(C, C3); + return new ICmpInst(Pred, A, NewAdd); + } + } + } + + // Analyze the case when either Op0 or Op1 is a sub instruction. + // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). + A = nullptr; + B = nullptr; + C = nullptr; + D = nullptr; + if (BO0 && BO0->getOpcode() == Instruction::Sub) { + A = BO0->getOperand(0); + B = BO0->getOperand(1); + } + if (BO1 && BO1->getOpcode() == Instruction::Sub) { + C = BO1->getOperand(0); + D = BO1->getOperand(1); + } + + // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow. + if (A == Op1 && NoOp0WrapProblem) + return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); + // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow. + if (C == Op0 && NoOp1WrapProblem) + return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); + + // Convert sub-with-unsigned-overflow comparisons into a comparison of args. + // (A - B) u>/u<= A --> B u>/u<= A + if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE)) + return new ICmpInst(Pred, B, A); + // C u</u>= (C - D) --> C u</u>= D + if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) + return new ICmpInst(Pred, C, D); + // (A - B) u>=/u< A --> B u>/u<= A iff B != 0 + if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) && + isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) + return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A); + // C u<=/u> (C - D) --> C u</u>= D iff B != 0 + if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) && + isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) + return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D); + + // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow. + if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem) + return new ICmpInst(Pred, A, C); + + // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow. + if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem) + return new ICmpInst(Pred, D, B); + + // icmp (0-X) < cst --> x > -cst + if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { + Value *X; + if (match(BO0, m_Neg(m_Value(X)))) + if (Constant *RHSC = dyn_cast<Constant>(Op1)) + if (RHSC->isNotMinSignedValue()) + return new ICmpInst(I.getSwappedPredicate(), X, + ConstantExpr::getNeg(RHSC)); + } + + { + // Try to remove shared constant multiplier from equality comparison: + // X * C == Y * C (with no overflowing/aliasing) --> X == Y + Value *X, *Y; + const APInt *C; + if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 && + match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality()) + if (!C->countTrailingZeros() || + (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) || + (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap())) + return new ICmpInst(Pred, X, Y); + } + + BinaryOperator *SRem = nullptr; + // icmp (srem X, Y), Y + if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1)) + SRem = BO0; + // icmp Y, (srem X, Y) + else if (BO1 && BO1->getOpcode() == Instruction::SRem && + Op0 == BO1->getOperand(1)) + SRem = BO1; + if (SRem) { + // We don't check hasOneUse to avoid increasing register pressure because + // the value we use is the same value this instruction was already using. + switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { + default: + break; + case ICmpInst::ICMP_EQ: + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + case ICmpInst::ICMP_NE: + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: + return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), + Constant::getAllOnesValue(SRem->getType())); + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: + return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), + Constant::getNullValue(SRem->getType())); + } + } + + if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() && + BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) { + switch (BO0->getOpcode()) { + default: + break; + case Instruction::Add: + case Instruction::Sub: + case Instruction::Xor: { + if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b + return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); + + const APInt *C; + if (match(BO0->getOperand(1), m_APInt(C))) { + // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b + if (C->isSignMask()) { + ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); + return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); + } + + // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b + if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) { + ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate(); + NewPred = I.getSwappedPredicate(NewPred); + return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0)); + } + } + break; + } + case Instruction::Mul: { + if (!I.isEquality()) + break; + + const APInt *C; + if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() && + !C->isOneValue()) { + // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask) + // Mask = -1 >> count-trailing-zeros(C). + if (unsigned TZs = C->countTrailingZeros()) { + Constant *Mask = ConstantInt::get( + BO0->getType(), + APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs)); + Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask); + Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask); + return new ICmpInst(Pred, And1, And2); + } + } + break; + } + case Instruction::UDiv: + case Instruction::LShr: + if (I.isSigned() || !BO0->isExact() || !BO1->isExact()) + break; + return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); + + case Instruction::SDiv: + if (!I.isEquality() || !BO0->isExact() || !BO1->isExact()) + break; + return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); + + case Instruction::AShr: + if (!BO0->isExact() || !BO1->isExact()) + break; + return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); + + case Instruction::Shl: { + bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); + bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); + if (!NUW && !NSW) + break; + if (!NSW && I.isSigned()) + break; + return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); + } + } + } + + if (BO0) { + // Transform A & (L - 1) `ult` L --> L != 0 + auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); + auto BitwiseAnd = m_c_And(m_Value(), LSubOne); + + if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) { + auto *Zero = Constant::getNullValue(BO0->getType()); + return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); + } + } + + if (Value *V = foldUnsignedMultiplicationOverflowCheck(I)) + return replaceInstUsesWith(I, V); + + if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder)) + return replaceInstUsesWith(I, V); + + if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder)) + return replaceInstUsesWith(I, V); + + if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder)) + return replaceInstUsesWith(I, V); + + return nullptr; +} + +/// Fold icmp Pred min|max(X, Y), X. +static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) { + ICmpInst::Predicate Pred = Cmp.getPredicate(); + Value *Op0 = Cmp.getOperand(0); + Value *X = Cmp.getOperand(1); + + // Canonicalize minimum or maximum operand to LHS of the icmp. + if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) || + match(X, m_c_SMax(m_Specific(Op0), m_Value())) || + match(X, m_c_UMin(m_Specific(Op0), m_Value())) || + match(X, m_c_UMax(m_Specific(Op0), m_Value()))) { + std::swap(Op0, X); + Pred = Cmp.getSwappedPredicate(); + } + + Value *Y; + if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) { + // smin(X, Y) == X --> X s<= Y + // smin(X, Y) s>= X --> X s<= Y + if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE) + return new ICmpInst(ICmpInst::ICMP_SLE, X, Y); + + // smin(X, Y) != X --> X s> Y + // smin(X, Y) s< X --> X s> Y + if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT) + return new ICmpInst(ICmpInst::ICMP_SGT, X, Y); + + // These cases should be handled in InstSimplify: + // smin(X, Y) s<= X --> true + // smin(X, Y) s> X --> false + return nullptr; + } + + if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) { + // smax(X, Y) == X --> X s>= Y + // smax(X, Y) s<= X --> X s>= Y + if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE) + return new ICmpInst(ICmpInst::ICMP_SGE, X, Y); + + // smax(X, Y) != X --> X s< Y + // smax(X, Y) s> X --> X s< Y + if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT) + return new ICmpInst(ICmpInst::ICMP_SLT, X, Y); + + // These cases should be handled in InstSimplify: + // smax(X, Y) s>= X --> true + // smax(X, Y) s< X --> false + return nullptr; + } + + if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) { + // umin(X, Y) == X --> X u<= Y + // umin(X, Y) u>= X --> X u<= Y + if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE) + return new ICmpInst(ICmpInst::ICMP_ULE, X, Y); + + // umin(X, Y) != X --> X u> Y + // umin(X, Y) u< X --> X u> Y + if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT) + return new ICmpInst(ICmpInst::ICMP_UGT, X, Y); + + // These cases should be handled in InstSimplify: + // umin(X, Y) u<= X --> true + // umin(X, Y) u> X --> false + return nullptr; + } + + if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) { + // umax(X, Y) == X --> X u>= Y + // umax(X, Y) u<= X --> X u>= Y + if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE) + return new ICmpInst(ICmpInst::ICMP_UGE, X, Y); + + // umax(X, Y) != X --> X u< Y + // umax(X, Y) u> X --> X u< Y + if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT) + return new ICmpInst(ICmpInst::ICMP_ULT, X, Y); + + // These cases should be handled in InstSimplify: + // umax(X, Y) u>= X --> true + // umax(X, Y) u< X --> false + return nullptr; + } + + return nullptr; +} + +Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) { + if (!I.isEquality()) + return nullptr; + + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + const CmpInst::Predicate Pred = I.getPredicate(); + Value *A, *B, *C, *D; + if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { + if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 + Value *OtherVal = A == Op1 ? B : A; + return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); + } + + if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { + // A^c1 == C^c2 --> A == C^(c1^c2) + ConstantInt *C1, *C2; + if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) && + Op1->hasOneUse()) { + Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue()); + Value *Xor = Builder.CreateXor(C, NC); + return new ICmpInst(Pred, A, Xor); + } + + // A^B == A^D -> B == D + if (A == C) + return new ICmpInst(Pred, B, D); + if (A == D) + return new ICmpInst(Pred, B, C); + if (B == C) + return new ICmpInst(Pred, A, D); + if (B == D) + return new ICmpInst(Pred, A, C); + } + } + + if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { + // A == (A^B) -> B == 0 + Value *OtherVal = A == Op0 ? B : A; + return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType())); + } + + // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 + if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && + match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { + Value *X = nullptr, *Y = nullptr, *Z = nullptr; + + if (A == C) { + X = B; + Y = D; + Z = A; + } else if (A == D) { + X = B; + Y = C; + Z = A; + } else if (B == C) { + X = A; + Y = D; + Z = B; + } else if (B == D) { + X = A; + Y = C; + Z = B; + } + + if (X) { // Build (X^Y) & Z + Op1 = Builder.CreateXor(X, Y); + Op1 = Builder.CreateAnd(Op1, Z); + return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType())); + } + } + + // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) + // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) + ConstantInt *Cst1; + if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) && + match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || + (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && + match(Op1, m_ZExt(m_Value(A))))) { + APInt Pow2 = Cst1->getValue() + 1; + if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && + Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) + return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType())); + } + + // (A >> C) == (B >> C) --> (A^B) u< (1 << C) + // For lshr and ashr pairs. + if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && + match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || + (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && + match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { + unsigned TypeBits = Cst1->getBitWidth(); + unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); + if (ShAmt < TypeBits && ShAmt != 0) { + ICmpInst::Predicate NewPred = + Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; + Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); + APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); + return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal)); + } + } + + // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 + if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && + match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { + unsigned TypeBits = Cst1->getBitWidth(); + unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); + if (ShAmt < TypeBits && ShAmt != 0) { + Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted"); + APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); + Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal), + I.getName() + ".mask"); + return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType())); + } + } + + // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to + // "icmp (and X, mask), cst" + uint64_t ShAmt = 0; + if (Op0->hasOneUse() && + match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) && + match(Op1, m_ConstantInt(Cst1)) && + // Only do this when A has multiple uses. This is most important to do + // when it exposes other optimizations. + !A->hasOneUse()) { + unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); + + if (ShAmt < ASize) { + APInt MaskV = + APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); + MaskV <<= ShAmt; + + APInt CmpV = Cst1->getValue().zext(ASize); + CmpV <<= ShAmt; + + Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV)); + return new ICmpInst(Pred, Mask, Builder.getInt(CmpV)); + } + } + + // If both operands are byte-swapped or bit-reversed, just compare the + // original values. + // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant() + // and handle more intrinsics. + if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) || + (match(Op0, m_BitReverse(m_Value(A))) && + match(Op1, m_BitReverse(m_Value(B))))) + return new ICmpInst(Pred, A, B); + + // Canonicalize checking for a power-of-2-or-zero value: + // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants) + // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants) + if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()), + m_Deferred(A)))) || + !match(Op1, m_ZeroInt())) + A = nullptr; + + // (A & -A) == A --> ctpop(A) < 2 (four commuted variants) + // (-A & A) != A --> ctpop(A) > 1 (four commuted variants) + if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1))))) + A = Op1; + else if (match(Op1, + m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0))))) + A = Op0; + + if (A) { + Type *Ty = A->getType(); + CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A); + return Pred == ICmpInst::ICMP_EQ + ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2)) + : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1)); + } + + return nullptr; +} + +static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp, + InstCombiner::BuilderTy &Builder) { + assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"); + auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0)); + Value *X; + if (!match(CastOp0, m_ZExtOrSExt(m_Value(X)))) + return nullptr; + + bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt; + bool IsSignedCmp = ICmp.isSigned(); + if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) { + // If the signedness of the two casts doesn't agree (i.e. one is a sext + // and the other is a zext), then we can't handle this. + // TODO: This is too strict. We can handle some predicates (equality?). + if (CastOp0->getOpcode() != CastOp1->getOpcode()) + return nullptr; + + // Not an extension from the same type? + Value *Y = CastOp1->getOperand(0); + Type *XTy = X->getType(), *YTy = Y->getType(); + if (XTy != YTy) { + // One of the casts must have one use because we are creating a new cast. + if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse()) + return nullptr; + // Extend the narrower operand to the type of the wider operand. + if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits()) + X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy); + else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits()) + Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy); + else + return nullptr; + } + + // (zext X) == (zext Y) --> X == Y + // (sext X) == (sext Y) --> X == Y + if (ICmp.isEquality()) + return new ICmpInst(ICmp.getPredicate(), X, Y); + + // A signed comparison of sign extended values simplifies into a + // signed comparison. + if (IsSignedCmp && IsSignedExt) + return new ICmpInst(ICmp.getPredicate(), X, Y); + + // The other three cases all fold into an unsigned comparison. + return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y); + } + + // Below here, we are only folding a compare with constant. + auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); + if (!C) + return nullptr; + + // Compute the constant that would happen if we truncated to SrcTy then + // re-extended to DestTy. + Type *SrcTy = CastOp0->getSrcTy(); + Type *DestTy = CastOp0->getDestTy(); + Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); + Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy); + + // If the re-extended constant didn't change... + if (Res2 == C) { + if (ICmp.isEquality()) + return new ICmpInst(ICmp.getPredicate(), X, Res1); + + // A signed comparison of sign extended values simplifies into a + // signed comparison. + if (IsSignedExt && IsSignedCmp) + return new ICmpInst(ICmp.getPredicate(), X, Res1); + + // The other three cases all fold into an unsigned comparison. + return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1); + } + + // The re-extended constant changed, partly changed (in the case of a vector), + // or could not be determined to be equal (in the case of a constant + // expression), so the constant cannot be represented in the shorter type. + // All the cases that fold to true or false will have already been handled + // by SimplifyICmpInst, so only deal with the tricky case. + if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C)) + return nullptr; + + // Is source op positive? + // icmp ult (sext X), C --> icmp sgt X, -1 + if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) + return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy)); + + // Is source op negative? + // icmp ugt (sext X), C --> icmp slt X, 0 + assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); + return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy)); +} + +/// Handle icmp (cast x), (cast or constant). +Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) { + auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0)); + if (!CastOp0) + return nullptr; + if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1))) + return nullptr; + + Value *Op0Src = CastOp0->getOperand(0); + Type *SrcTy = CastOp0->getSrcTy(); + Type *DestTy = CastOp0->getDestTy(); + + // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the + // integer type is the same size as the pointer type. + auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) { + if (isa<VectorType>(SrcTy)) { + SrcTy = cast<VectorType>(SrcTy)->getElementType(); + DestTy = cast<VectorType>(DestTy)->getElementType(); + } + return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth(); + }; + if (CastOp0->getOpcode() == Instruction::PtrToInt && + CompatibleSizes(SrcTy, DestTy)) { + Value *NewOp1 = nullptr; + if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { + Value *PtrSrc = PtrToIntOp1->getOperand(0); + if (PtrSrc->getType()->getPointerAddressSpace() == + Op0Src->getType()->getPointerAddressSpace()) { + NewOp1 = PtrToIntOp1->getOperand(0); + // If the pointer types don't match, insert a bitcast. + if (Op0Src->getType() != NewOp1->getType()) + NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType()); + } + } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { + NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy); + } + + if (NewOp1) + return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1); + } + + return foldICmpWithZextOrSext(ICmp, Builder); +} + +static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) { + switch (BinaryOp) { + default: + llvm_unreachable("Unsupported binary op"); + case Instruction::Add: + case Instruction::Sub: + return match(RHS, m_Zero()); + case Instruction::Mul: + return match(RHS, m_One()); + } +} + +OverflowResult +InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp, + bool IsSigned, Value *LHS, Value *RHS, + Instruction *CxtI) const { + switch (BinaryOp) { + default: + llvm_unreachable("Unsupported binary op"); + case Instruction::Add: + if (IsSigned) + return computeOverflowForSignedAdd(LHS, RHS, CxtI); + else + return computeOverflowForUnsignedAdd(LHS, RHS, CxtI); + case Instruction::Sub: + if (IsSigned) + return computeOverflowForSignedSub(LHS, RHS, CxtI); + else + return computeOverflowForUnsignedSub(LHS, RHS, CxtI); + case Instruction::Mul: + if (IsSigned) + return computeOverflowForSignedMul(LHS, RHS, CxtI); + else + return computeOverflowForUnsignedMul(LHS, RHS, CxtI); + } +} + +bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, + bool IsSigned, Value *LHS, + Value *RHS, Instruction &OrigI, + Value *&Result, + Constant *&Overflow) { + if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) + std::swap(LHS, RHS); + + // If the overflow check was an add followed by a compare, the insertion point + // may be pointing to the compare. We want to insert the new instructions + // before the add in case there are uses of the add between the add and the + // compare. + Builder.SetInsertPoint(&OrigI); + + Type *OverflowTy = Type::getInt1Ty(LHS->getContext()); + if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType())) + OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount()); + + if (isNeutralValue(BinaryOp, RHS)) { + Result = LHS; + Overflow = ConstantInt::getFalse(OverflowTy); + return true; + } + + switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) { + case OverflowResult::MayOverflow: + return false; + case OverflowResult::AlwaysOverflowsLow: + case OverflowResult::AlwaysOverflowsHigh: + Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); + Result->takeName(&OrigI); + Overflow = ConstantInt::getTrue(OverflowTy); + return true; + case OverflowResult::NeverOverflows: + Result = Builder.CreateBinOp(BinaryOp, LHS, RHS); + Result->takeName(&OrigI); + Overflow = ConstantInt::getFalse(OverflowTy); + if (auto *Inst = dyn_cast<Instruction>(Result)) { + if (IsSigned) + Inst->setHasNoSignedWrap(); + else + Inst->setHasNoUnsignedWrap(); + } + return true; + } + + llvm_unreachable("Unexpected overflow result"); +} + +/// Recognize and process idiom involving test for multiplication +/// overflow. +/// +/// The caller has matched a pattern of the form: +/// I = cmp u (mul(zext A, zext B), V +/// The function checks if this is a test for overflow and if so replaces +/// multiplication with call to 'mul.with.overflow' intrinsic. +/// +/// \param I Compare instruction. +/// \param MulVal Result of 'mult' instruction. It is one of the arguments of +/// the compare instruction. Must be of integer type. +/// \param OtherVal The other argument of compare instruction. +/// \returns Instruction which must replace the compare instruction, NULL if no +/// replacement required. +static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal, + Value *OtherVal, + InstCombinerImpl &IC) { + // Don't bother doing this transformation for pointers, don't do it for + // vectors. + if (!isa<IntegerType>(MulVal->getType())) + return nullptr; + + assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); + assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); + auto *MulInstr = dyn_cast<Instruction>(MulVal); + if (!MulInstr) + return nullptr; + assert(MulInstr->getOpcode() == Instruction::Mul); + + auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), + *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); + assert(LHS->getOpcode() == Instruction::ZExt); + assert(RHS->getOpcode() == Instruction::ZExt); + Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); + + // Calculate type and width of the result produced by mul.with.overflow. + Type *TyA = A->getType(), *TyB = B->getType(); + unsigned WidthA = TyA->getPrimitiveSizeInBits(), + WidthB = TyB->getPrimitiveSizeInBits(); + unsigned MulWidth; + Type *MulType; + if (WidthB > WidthA) { + MulWidth = WidthB; + MulType = TyB; + } else { + MulWidth = WidthA; + MulType = TyA; + } + + // In order to replace the original mul with a narrower mul.with.overflow, + // all uses must ignore upper bits of the product. The number of used low + // bits must be not greater than the width of mul.with.overflow. + if (MulVal->hasNUsesOrMore(2)) + for (User *U : MulVal->users()) { + if (U == &I) + continue; + if (TruncInst *TI = dyn_cast<TruncInst>(U)) { + // Check if truncation ignores bits above MulWidth. + unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); + if (TruncWidth > MulWidth) + return nullptr; + } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { + // Check if AND ignores bits above MulWidth. + if (BO->getOpcode() != Instruction::And) + return nullptr; + if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { + const APInt &CVal = CI->getValue(); + if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) + return nullptr; + } else { + // In this case we could have the operand of the binary operation + // being defined in another block, and performing the replacement + // could break the dominance relation. + return nullptr; + } + } else { + // Other uses prohibit this transformation. + return nullptr; + } + } + + // Recognize patterns + switch (I.getPredicate()) { + case ICmpInst::ICMP_EQ: + case ICmpInst::ICMP_NE: + // Recognize pattern: + // mulval = mul(zext A, zext B) + // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. + ConstantInt *CI; + Value *ValToMask; + if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { + if (ValToMask != MulVal) + return nullptr; + const APInt &CVal = CI->getValue() + 1; + if (CVal.isPowerOf2()) { + unsigned MaskWidth = CVal.logBase2(); + if (MaskWidth == MulWidth) + break; // Recognized + } + } + return nullptr; + + case ICmpInst::ICMP_UGT: + // Recognize pattern: + // mulval = mul(zext A, zext B) + // cmp ugt mulval, max + if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { + APInt MaxVal = APInt::getMaxValue(MulWidth); + MaxVal = MaxVal.zext(CI->getBitWidth()); + if (MaxVal.eq(CI->getValue())) + break; // Recognized + } + return nullptr; + + case ICmpInst::ICMP_UGE: + // Recognize pattern: + // mulval = mul(zext A, zext B) + // cmp uge mulval, max+1 + if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { + APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); + if (MaxVal.eq(CI->getValue())) + break; // Recognized + } + return nullptr; + + case ICmpInst::ICMP_ULE: + // Recognize pattern: + // mulval = mul(zext A, zext B) + // cmp ule mulval, max + if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { + APInt MaxVal = APInt::getMaxValue(MulWidth); + MaxVal = MaxVal.zext(CI->getBitWidth()); + if (MaxVal.eq(CI->getValue())) + break; // Recognized + } + return nullptr; + + case ICmpInst::ICMP_ULT: + // Recognize pattern: + // mulval = mul(zext A, zext B) + // cmp ule mulval, max + 1 + if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { + APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); + if (MaxVal.eq(CI->getValue())) + break; // Recognized + } + return nullptr; + + default: + return nullptr; + } + + InstCombiner::BuilderTy &Builder = IC.Builder; + Builder.SetInsertPoint(MulInstr); + + // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) + Value *MulA = A, *MulB = B; + if (WidthA < MulWidth) + MulA = Builder.CreateZExt(A, MulType); + if (WidthB < MulWidth) + MulB = Builder.CreateZExt(B, MulType); + Function *F = Intrinsic::getDeclaration( + I.getModule(), Intrinsic::umul_with_overflow, MulType); + CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul"); + IC.addToWorklist(MulInstr); + + // If there are uses of mul result other than the comparison, we know that + // they are truncation or binary AND. Change them to use result of + // mul.with.overflow and adjust properly mask/size. + if (MulVal->hasNUsesOrMore(2)) { + Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value"); + for (User *U : make_early_inc_range(MulVal->users())) { + if (U == &I || U == OtherVal) + continue; + if (TruncInst *TI = dyn_cast<TruncInst>(U)) { + if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) + IC.replaceInstUsesWith(*TI, Mul); + else + TI->setOperand(0, Mul); + } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { + assert(BO->getOpcode() == Instruction::And); + // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) + ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); + APInt ShortMask = CI->getValue().trunc(MulWidth); + Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask); + Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType()); + IC.replaceInstUsesWith(*BO, Zext); + } else { + llvm_unreachable("Unexpected Binary operation"); + } + IC.addToWorklist(cast<Instruction>(U)); + } + } + if (isa<Instruction>(OtherVal)) + IC.addToWorklist(cast<Instruction>(OtherVal)); + + // The original icmp gets replaced with the overflow value, maybe inverted + // depending on predicate. + bool Inverse = false; + switch (I.getPredicate()) { + case ICmpInst::ICMP_NE: + break; + case ICmpInst::ICMP_EQ: + Inverse = true; + break; + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: + if (I.getOperand(0) == MulVal) + break; + Inverse = true; + break; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: + if (I.getOperand(1) == MulVal) + break; + Inverse = true; + break; + default: + llvm_unreachable("Unexpected predicate"); + } + if (Inverse) { + Value *Res = Builder.CreateExtractValue(Call, 1); + return BinaryOperator::CreateNot(Res); + } + + return ExtractValueInst::Create(Call, 1); +} + +/// When performing a comparison against a constant, it is possible that not all +/// the bits in the LHS are demanded. This helper method computes the mask that +/// IS demanded. +static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) { + const APInt *RHS; + if (!match(I.getOperand(1), m_APInt(RHS))) + return APInt::getAllOnesValue(BitWidth); + + // If this is a normal comparison, it demands all bits. If it is a sign bit + // comparison, it only demands the sign bit. + bool UnusedBit; + if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit)) + return APInt::getSignMask(BitWidth); + + switch (I.getPredicate()) { + // For a UGT comparison, we don't care about any bits that + // correspond to the trailing ones of the comparand. The value of these + // bits doesn't impact the outcome of the comparison, because any value + // greater than the RHS must differ in a bit higher than these due to carry. + case ICmpInst::ICMP_UGT: + return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes()); + + // Similarly, for a ULT comparison, we don't care about the trailing zeros. + // Any value less than the RHS must differ in a higher bit because of carries. + case ICmpInst::ICMP_ULT: + return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros()); + + default: + return APInt::getAllOnesValue(BitWidth); + } +} + +/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst +/// should be swapped. +/// The decision is based on how many times these two operands are reused +/// as subtract operands and their positions in those instructions. +/// The rationale is that several architectures use the same instruction for +/// both subtract and cmp. Thus, it is better if the order of those operands +/// match. +/// \return true if Op0 and Op1 should be swapped. +static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) { + // Filter out pointer values as those cannot appear directly in subtract. + // FIXME: we may want to go through inttoptrs or bitcasts. + if (Op0->getType()->isPointerTy()) + return false; + // If a subtract already has the same operands as a compare, swapping would be + // bad. If a subtract has the same operands as a compare but in reverse order, + // then swapping is good. + int GoodToSwap = 0; + for (const User *U : Op0->users()) { + if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0)))) + GoodToSwap++; + else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1)))) + GoodToSwap--; + } + return GoodToSwap > 0; +} + +/// Check that one use is in the same block as the definition and all +/// other uses are in blocks dominated by a given block. +/// +/// \param DI Definition +/// \param UI Use +/// \param DB Block that must dominate all uses of \p DI outside +/// the parent block +/// \return true when \p UI is the only use of \p DI in the parent block +/// and all other uses of \p DI are in blocks dominated by \p DB. +/// +bool InstCombinerImpl::dominatesAllUses(const Instruction *DI, + const Instruction *UI, + const BasicBlock *DB) const { + assert(DI && UI && "Instruction not defined\n"); + // Ignore incomplete definitions. + if (!DI->getParent()) + return false; + // DI and UI must be in the same block. + if (DI->getParent() != UI->getParent()) + return false; + // Protect from self-referencing blocks. + if (DI->getParent() == DB) + return false; + for (const User *U : DI->users()) { + auto *Usr = cast<Instruction>(U); + if (Usr != UI && !DT.dominates(DB, Usr->getParent())) + return false; + } + return true; +} + +/// Return true when the instruction sequence within a block is select-cmp-br. +static bool isChainSelectCmpBranch(const SelectInst *SI) { + const BasicBlock *BB = SI->getParent(); + if (!BB) + return false; + auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); + if (!BI || BI->getNumSuccessors() != 2) + return false; + auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); + if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) + return false; + return true; +} + +/// True when a select result is replaced by one of its operands +/// in select-icmp sequence. This will eventually result in the elimination +/// of the select. +/// +/// \param SI Select instruction +/// \param Icmp Compare instruction +/// \param SIOpd Operand that replaces the select +/// +/// Notes: +/// - The replacement is global and requires dominator information +/// - The caller is responsible for the actual replacement +/// +/// Example: +/// +/// entry: +/// %4 = select i1 %3, %C* %0, %C* null +/// %5 = icmp eq %C* %4, null +/// br i1 %5, label %9, label %7 +/// ... +/// ; <label>:7 ; preds = %entry +/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 +/// ... +/// +/// can be transformed to +/// +/// %5 = icmp eq %C* %0, null +/// %6 = select i1 %3, i1 %5, i1 true +/// br i1 %6, label %9, label %7 +/// ... +/// ; <label>:7 ; preds = %entry +/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! +/// +/// Similar when the first operand of the select is a constant or/and +/// the compare is for not equal rather than equal. +/// +/// NOTE: The function is only called when the select and compare constants +/// are equal, the optimization can work only for EQ predicates. This is not a +/// major restriction since a NE compare should be 'normalized' to an equal +/// compare, which usually happens in the combiner and test case +/// select-cmp-br.ll checks for it. +bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI, + const ICmpInst *Icmp, + const unsigned SIOpd) { + assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); + if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { + BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); + // The check for the single predecessor is not the best that can be + // done. But it protects efficiently against cases like when SI's + // home block has two successors, Succ and Succ1, and Succ1 predecessor + // of Succ. Then SI can't be replaced by SIOpd because the use that gets + // replaced can be reached on either path. So the uniqueness check + // guarantees that the path all uses of SI (outside SI's parent) are on + // is disjoint from all other paths out of SI. But that information + // is more expensive to compute, and the trade-off here is in favor + // of compile-time. It should also be noticed that we check for a single + // predecessor and not only uniqueness. This to handle the situation when + // Succ and Succ1 points to the same basic block. + if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { + NumSel++; + SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); + return true; + } + } + return false; +} + +/// Try to fold the comparison based on range information we can get by checking +/// whether bits are known to be zero or one in the inputs. +Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + Type *Ty = Op0->getType(); + ICmpInst::Predicate Pred = I.getPredicate(); + + // Get scalar or pointer size. + unsigned BitWidth = Ty->isIntOrIntVectorTy() + ? Ty->getScalarSizeInBits() + : DL.getPointerTypeSizeInBits(Ty->getScalarType()); + + if (!BitWidth) + return nullptr; + + KnownBits Op0Known(BitWidth); + KnownBits Op1Known(BitWidth); + + if (SimplifyDemandedBits(&I, 0, + getDemandedBitsLHSMask(I, BitWidth), + Op0Known, 0)) + return &I; + + if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth), + Op1Known, 0)) + return &I; + + // Given the known and unknown bits, compute a range that the LHS could be + // in. Compute the Min, Max and RHS values based on the known bits. For the + // EQ and NE we use unsigned values. + APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); + APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); + if (I.isSigned()) { + Op0Min = Op0Known.getSignedMinValue(); + Op0Max = Op0Known.getSignedMaxValue(); + Op1Min = Op1Known.getSignedMinValue(); + Op1Max = Op1Known.getSignedMaxValue(); + } else { + Op0Min = Op0Known.getMinValue(); + Op0Max = Op0Known.getMaxValue(); + Op1Min = Op1Known.getMinValue(); + Op1Max = Op1Known.getMaxValue(); + } + + // If Min and Max are known to be the same, then SimplifyDemandedBits figured + // out that the LHS or RHS is a constant. Constant fold this now, so that + // code below can assume that Min != Max. + if (!isa<Constant>(Op0) && Op0Min == Op0Max) + return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1); + if (!isa<Constant>(Op1) && Op1Min == Op1Max) + return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min)); + + // Based on the range information we know about the LHS, see if we can + // simplify this comparison. For example, (x&4) < 8 is always true. + switch (Pred) { + default: + llvm_unreachable("Unknown icmp opcode!"); + case ICmpInst::ICMP_EQ: + case ICmpInst::ICMP_NE: { + if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) + return replaceInstUsesWith( + I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE)); + + // If all bits are known zero except for one, then we know at most one bit + // is set. If the comparison is against zero, then this is a check to see if + // *that* bit is set. + APInt Op0KnownZeroInverted = ~Op0Known.Zero; + if (Op1Known.isZero()) { + // If the LHS is an AND with the same constant, look through it. + Value *LHS = nullptr; + const APInt *LHSC; + if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) || + *LHSC != Op0KnownZeroInverted) + LHS = Op0; + + Value *X; + if (match(LHS, m_Shl(m_One(), m_Value(X)))) { + APInt ValToCheck = Op0KnownZeroInverted; + Type *XTy = X->getType(); + if (ValToCheck.isPowerOf2()) { + // ((1 << X) & 8) == 0 -> X != 3 + // ((1 << X) & 8) != 0 -> X == 3 + auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); + auto NewPred = ICmpInst::getInversePredicate(Pred); + return new ICmpInst(NewPred, X, CmpC); + } else if ((++ValToCheck).isPowerOf2()) { + // ((1 << X) & 7) == 0 -> X >= 3 + // ((1 << X) & 7) != 0 -> X < 3 + auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros()); + auto NewPred = + Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT; + return new ICmpInst(NewPred, X, CmpC); + } + } + + // Check if the LHS is 8 >>u x and the result is a power of 2 like 1. + const APInt *CI; + if (Op0KnownZeroInverted.isOneValue() && + match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) { + // ((8 >>u X) & 1) == 0 -> X != 3 + // ((8 >>u X) & 1) != 0 -> X == 3 + unsigned CmpVal = CI->countTrailingZeros(); + auto NewPred = ICmpInst::getInversePredicate(Pred); + return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal)); + } + } + break; + } + case ICmpInst::ICMP_ULT: { + if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + + const APInt *CmpC; + if (match(Op1, m_APInt(CmpC))) { + // A <u C -> A == C-1 if min(A)+1 == C + if (*CmpC == Op0Min + 1) + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, + ConstantInt::get(Op1->getType(), *CmpC - 1)); + // X <u C --> X == 0, if the number of zero bits in the bottom of X + // exceeds the log2 of C. + if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2()) + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, + Constant::getNullValue(Op1->getType())); + } + break; + } + case ICmpInst::ICMP_UGT: { + if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + + const APInt *CmpC; + if (match(Op1, m_APInt(CmpC))) { + // A >u C -> A == C+1 if max(a)-1 == C + if (*CmpC == Op0Max - 1) + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, + ConstantInt::get(Op1->getType(), *CmpC + 1)); + // X >u C --> X != 0, if the number of zero bits in the bottom of X + // exceeds the log2 of C. + if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits()) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, + Constant::getNullValue(Op1->getType())); + } + break; + } + case ICmpInst::ICMP_SLT: { + if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + const APInt *CmpC; + if (match(Op1, m_APInt(CmpC))) { + if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, + ConstantInt::get(Op1->getType(), *CmpC - 1)); + } + break; + } + case ICmpInst::ICMP_SGT: { + if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) + return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); + const APInt *CmpC; + if (match(Op1, m_APInt(CmpC))) { + if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, + ConstantInt::get(Op1->getType(), *CmpC + 1)); + } + break; + } + case ICmpInst::ICMP_SGE: + assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); + if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B) + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); + break; + case ICmpInst::ICMP_SLE: + assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); + if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B) + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); + break; + case ICmpInst::ICMP_UGE: + assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); + if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B) + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); + break; + case ICmpInst::ICMP_ULE: + assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); + if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) + return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); + if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) + return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); + if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B) + return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); + break; + } + + // Turn a signed comparison into an unsigned one if both operands are known to + // have the same sign. + if (I.isSigned() && + ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) || + (Op0Known.One.isNegative() && Op1Known.One.isNegative()))) + return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); + + return nullptr; +} + +llvm::Optional<std::pair<CmpInst::Predicate, Constant *>> +InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, + Constant *C) { + assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && + "Only for relational integer predicates."); + + Type *Type = C->getType(); + bool IsSigned = ICmpInst::isSigned(Pred); + + CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred); + bool WillIncrement = + UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT; + + // Check if the constant operand can be safely incremented/decremented + // without overflowing/underflowing. + auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) { + return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned); + }; + + Constant *SafeReplacementConstant = nullptr; + if (auto *CI = dyn_cast<ConstantInt>(C)) { + // Bail out if the constant can't be safely incremented/decremented. + if (!ConstantIsOk(CI)) + return llvm::None; + } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) { + unsigned NumElts = FVTy->getNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + Constant *Elt = C->getAggregateElement(i); + if (!Elt) + return llvm::None; + + if (isa<UndefValue>(Elt)) + continue; + + // Bail out if we can't determine if this constant is min/max or if we + // know that this constant is min/max. + auto *CI = dyn_cast<ConstantInt>(Elt); + if (!CI || !ConstantIsOk(CI)) + return llvm::None; + + if (!SafeReplacementConstant) + SafeReplacementConstant = CI; + } + } else { + // ConstantExpr? + return llvm::None; + } + + // It may not be safe to change a compare predicate in the presence of + // undefined elements, so replace those elements with the first safe constant + // that we found. + // TODO: in case of poison, it is safe; let's replace undefs only. + if (C->containsUndefOrPoisonElement()) { + assert(SafeReplacementConstant && "Replacement constant not set"); + C = Constant::replaceUndefsWith(C, SafeReplacementConstant); + } + + CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred); + + // Increment or decrement the constant. + Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true); + Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne); + + return std::make_pair(NewPred, NewC); +} + +/// If we have an icmp le or icmp ge instruction with a constant operand, turn +/// it into the appropriate icmp lt or icmp gt instruction. This transform +/// allows them to be folded in visitICmpInst. +static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { + ICmpInst::Predicate Pred = I.getPredicate(); + if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) || + InstCombiner::isCanonicalPredicate(Pred)) + return nullptr; + + Value *Op0 = I.getOperand(0); + Value *Op1 = I.getOperand(1); + auto *Op1C = dyn_cast<Constant>(Op1); + if (!Op1C) + return nullptr; + + auto FlippedStrictness = + InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C); + if (!FlippedStrictness) + return nullptr; + + return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second); +} + +/// If we have a comparison with a non-canonical predicate, if we can update +/// all the users, invert the predicate and adjust all the users. +CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) { + // Is the predicate already canonical? + CmpInst::Predicate Pred = I.getPredicate(); + if (InstCombiner::isCanonicalPredicate(Pred)) + return nullptr; + + // Can all users be adjusted to predicate inversion? + if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) + return nullptr; + + // Ok, we can canonicalize comparison! + // Let's first invert the comparison's predicate. + I.setPredicate(CmpInst::getInversePredicate(Pred)); + I.setName(I.getName() + ".not"); + + // And, adapt users. + freelyInvertAllUsersOf(&I); + + return &I; +} + +/// Integer compare with boolean values can always be turned into bitwise ops. +static Instruction *canonicalizeICmpBool(ICmpInst &I, + InstCombiner::BuilderTy &Builder) { + Value *A = I.getOperand(0), *B = I.getOperand(1); + assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only"); + + // A boolean compared to true/false can be simplified to Op0/true/false in + // 14 out of the 20 (10 predicates * 2 constants) possible combinations. + // Cases not handled by InstSimplify are always 'not' of Op0. + if (match(B, m_Zero())) { + switch (I.getPredicate()) { + case CmpInst::ICMP_EQ: // A == 0 -> !A + case CmpInst::ICMP_ULE: // A <=u 0 -> !A + case CmpInst::ICMP_SGE: // A >=s 0 -> !A + return BinaryOperator::CreateNot(A); + default: + llvm_unreachable("ICmp i1 X, C not simplified as expected."); + } + } else if (match(B, m_One())) { + switch (I.getPredicate()) { + case CmpInst::ICMP_NE: // A != 1 -> !A + case CmpInst::ICMP_ULT: // A <u 1 -> !A + case CmpInst::ICMP_SGT: // A >s -1 -> !A + return BinaryOperator::CreateNot(A); + default: + llvm_unreachable("ICmp i1 X, C not simplified as expected."); + } + } + + switch (I.getPredicate()) { + default: + llvm_unreachable("Invalid icmp instruction!"); + case ICmpInst::ICMP_EQ: + // icmp eq i1 A, B -> ~(A ^ B) + return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); + + case ICmpInst::ICMP_NE: + // icmp ne i1 A, B -> A ^ B + return BinaryOperator::CreateXor(A, B); + + case ICmpInst::ICMP_UGT: + // icmp ugt -> icmp ult + std::swap(A, B); + LLVM_FALLTHROUGH; + case ICmpInst::ICMP_ULT: + // icmp ult i1 A, B -> ~A & B + return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); + + case ICmpInst::ICMP_SGT: + // icmp sgt -> icmp slt + std::swap(A, B); + LLVM_FALLTHROUGH; + case ICmpInst::ICMP_SLT: + // icmp slt i1 A, B -> A & ~B + return BinaryOperator::CreateAnd(Builder.CreateNot(B), A); + + case ICmpInst::ICMP_UGE: + // icmp uge -> icmp ule + std::swap(A, B); + LLVM_FALLTHROUGH; + case ICmpInst::ICMP_ULE: + // icmp ule i1 A, B -> ~A | B + return BinaryOperator::CreateOr(Builder.CreateNot(A), B); + + case ICmpInst::ICMP_SGE: + // icmp sge -> icmp sle + std::swap(A, B); + LLVM_FALLTHROUGH; + case ICmpInst::ICMP_SLE: + // icmp sle i1 A, B -> A | ~B + return BinaryOperator::CreateOr(Builder.CreateNot(B), A); + } +} + +// Transform pattern like: +// (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X +// (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X +// Into: +// (X l>> Y) != 0 +// (X l>> Y) == 0 +static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp, + InstCombiner::BuilderTy &Builder) { + ICmpInst::Predicate Pred, NewPred; + Value *X, *Y; + if (match(&Cmp, + m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) { + switch (Pred) { + case ICmpInst::ICMP_ULE: + NewPred = ICmpInst::ICMP_NE; + break; + case ICmpInst::ICMP_UGT: + NewPred = ICmpInst::ICMP_EQ; + break; + default: + return nullptr; + } + } else if (match(&Cmp, m_c_ICmp(Pred, + m_OneUse(m_CombineOr( + m_Not(m_Shl(m_AllOnes(), m_Value(Y))), + m_Add(m_Shl(m_One(), m_Value(Y)), + m_AllOnes()))), + m_Value(X)))) { + // The variant with 'add' is not canonical, (the variant with 'not' is) + // we only get it because it has extra uses, and can't be canonicalized, + + switch (Pred) { + case ICmpInst::ICMP_ULT: + NewPred = ICmpInst::ICMP_NE; + break; + case ICmpInst::ICMP_UGE: + NewPred = ICmpInst::ICMP_EQ; + break; + default: + return nullptr; + } + } else + return nullptr; + + Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits"); + Constant *Zero = Constant::getNullValue(NewX->getType()); + return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero); +} + +static Instruction *foldVectorCmp(CmpInst &Cmp, + InstCombiner::BuilderTy &Builder) { + const CmpInst::Predicate Pred = Cmp.getPredicate(); + Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1); + Value *V1, *V2; + ArrayRef<int> M; + if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M)))) + return nullptr; + + // If both arguments of the cmp are shuffles that use the same mask and + // shuffle within a single vector, move the shuffle after the cmp: + // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M + Type *V1Ty = V1->getType(); + if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) && + V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) { + Value *NewCmp = Builder.CreateCmp(Pred, V1, V2); + return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M); + } + + // Try to canonicalize compare with splatted operand and splat constant. + // TODO: We could generalize this for more than splats. See/use the code in + // InstCombiner::foldVectorBinop(). + Constant *C; + if (!LHS->hasOneUse() || !match(RHS, m_Constant(C))) + return nullptr; + + // Length-changing splats are ok, so adjust the constants as needed: + // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M + Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true); + int MaskSplatIndex; + if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) { + // We allow undefs in matching, but this transform removes those for safety. + // Demanded elements analysis should be able to recover some/all of that. + C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(), + ScalarC); + SmallVector<int, 8> NewM(M.size(), MaskSplatIndex); + Value *NewCmp = Builder.CreateCmp(Pred, V1, C); + return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), + NewM); + } + + return nullptr; +} + +// extract(uadd.with.overflow(A, B), 0) ult A +// -> extract(uadd.with.overflow(A, B), 1) +static Instruction *foldICmpOfUAddOv(ICmpInst &I) { + CmpInst::Predicate Pred = I.getPredicate(); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + Value *UAddOv; + Value *A, *B; + auto UAddOvResultPat = m_ExtractValue<0>( + m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B))); + if (match(Op0, UAddOvResultPat) && + ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) || + (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) && + (match(A, m_One()) || match(B, m_One()))) || + (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) && + (match(A, m_AllOnes()) || match(B, m_AllOnes()))))) + // extract(uadd.with.overflow(A, B), 0) < A + // extract(uadd.with.overflow(A, 1), 0) == 0 + // extract(uadd.with.overflow(A, -1), 0) != -1 + UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand(); + else if (match(Op1, UAddOvResultPat) && + Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B)) + // A > extract(uadd.with.overflow(A, B), 0) + UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand(); + else + return nullptr; + + return ExtractValueInst::Create(UAddOv, 1); +} + +Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) { + bool Changed = false; + const SimplifyQuery Q = SQ.getWithInstruction(&I); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + unsigned Op0Cplxity = getComplexity(Op0); + unsigned Op1Cplxity = getComplexity(Op1); + + /// Orders the operands of the compare so that they are listed from most + /// complex to least complex. This puts constants before unary operators, + /// before binary operators. + if (Op0Cplxity < Op1Cplxity || + (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { + I.swapOperands(); + std::swap(Op0, Op1); + Changed = true; + } + + if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q)) + return replaceInstUsesWith(I, V); + + // Comparing -val or val with non-zero is the same as just comparing val + // ie, abs(val) != 0 -> val != 0 + if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { + Value *Cond, *SelectTrue, *SelectFalse; + if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), + m_Value(SelectFalse)))) { + if (Value *V = dyn_castNegVal(SelectTrue)) { + if (V == SelectFalse) + return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); + } + else if (Value *V = dyn_castNegVal(SelectFalse)) { + if (V == SelectTrue) + return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); + } + } + } + + if (Op0->getType()->isIntOrIntVectorTy(1)) + if (Instruction *Res = canonicalizeICmpBool(I, Builder)) + return Res; + + if (Instruction *Res = canonicalizeCmpWithConstant(I)) + return Res; + + if (Instruction *Res = canonicalizeICmpPredicate(I)) + return Res; + + if (Instruction *Res = foldICmpWithConstant(I)) + return Res; + + if (Instruction *Res = foldICmpWithDominatingICmp(I)) + return Res; + + if (Instruction *Res = foldICmpBinOp(I, Q)) + return Res; + + if (Instruction *Res = foldICmpUsingKnownBits(I)) + return Res; + + // Test if the ICmpInst instruction is used exclusively by a select as + // part of a minimum or maximum operation. If so, refrain from doing + // any other folding. This helps out other analyses which understand + // non-obfuscated minimum and maximum idioms, such as ScalarEvolution + // and CodeGen. And in this case, at least one of the comparison + // operands has at least one user besides the compare (the select), + // which would often largely negate the benefit of folding anyway. + // + // Do the same for the other patterns recognized by matchSelectPattern. + if (I.hasOneUse()) + if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { + Value *A, *B; + SelectPatternResult SPR = matchSelectPattern(SI, A, B); + if (SPR.Flavor != SPF_UNKNOWN) + return nullptr; + } + + // Do this after checking for min/max to prevent infinite looping. + if (Instruction *Res = foldICmpWithZero(I)) + return Res; + + // FIXME: We only do this after checking for min/max to prevent infinite + // looping caused by a reverse canonicalization of these patterns for min/max. + // FIXME: The organization of folds is a mess. These would naturally go into + // canonicalizeCmpWithConstant(), but we can't move all of the above folds + // down here after the min/max restriction. + ICmpInst::Predicate Pred = I.getPredicate(); + const APInt *C; + if (match(Op1, m_APInt(C))) { + // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set + if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) { + Constant *Zero = Constant::getNullValue(Op0->getType()); + return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero); + } + + // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear + if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) { + Constant *AllOnes = Constant::getAllOnesValue(Op0->getType()); + return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes); + } + } + + if (Instruction *Res = foldICmpInstWithConstant(I)) + return Res; + + // Try to match comparison as a sign bit test. Intentionally do this after + // foldICmpInstWithConstant() to potentially let other folds to happen first. + if (Instruction *New = foldSignBitTest(I)) + return New; + + if (Instruction *Res = foldICmpInstWithConstantNotInt(I)) + return Res; + + // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. + if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) + if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I)) + return NI; + if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) + if (Instruction *NI = foldGEPICmp(GEP, Op0, + ICmpInst::getSwappedPredicate(I.getPredicate()), I)) + return NI; + + // Try to optimize equality comparisons against alloca-based pointers. + if (Op0->getType()->isPointerTy() && I.isEquality()) { + assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); + if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0))) + if (Instruction *New = foldAllocaCmp(I, Alloca, Op1)) + return New; + if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1))) + if (Instruction *New = foldAllocaCmp(I, Alloca, Op0)) + return New; + } + + if (Instruction *Res = foldICmpBitCast(I, Builder)) + return Res; + + // TODO: Hoist this above the min/max bailout. + if (Instruction *R = foldICmpWithCastOp(I)) + return R; + + if (Instruction *Res = foldICmpWithMinMax(I)) + return Res; + + { + Value *A, *B; + // Transform (A & ~B) == 0 --> (A & B) != 0 + // and (A & ~B) != 0 --> (A & B) == 0 + // if A is a power of 2. + if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && + match(Op1, m_Zero()) && + isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality()) + return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B), + Op1); + + // ~X < ~Y --> Y < X + // ~X < C --> X > ~C + if (match(Op0, m_Not(m_Value(A)))) { + if (match(Op1, m_Not(m_Value(B)))) + return new ICmpInst(I.getPredicate(), B, A); + + const APInt *C; + if (match(Op1, m_APInt(C))) + return new ICmpInst(I.getSwappedPredicate(), A, + ConstantInt::get(Op1->getType(), ~(*C))); + } + + Instruction *AddI = nullptr; + if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), + m_Instruction(AddI))) && + isa<IntegerType>(A->getType())) { + Value *Result; + Constant *Overflow; + // m_UAddWithOverflow can match patterns that do not include an explicit + // "add" instruction, so check the opcode of the matched op. + if (AddI->getOpcode() == Instruction::Add && + OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI, + Result, Overflow)) { + replaceInstUsesWith(*AddI, Result); + eraseInstFromFunction(*AddI); + return replaceInstUsesWith(I, Overflow); + } + } + + // (zext a) * (zext b) --> llvm.umul.with.overflow. + if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { + if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this)) + return R; + } + if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { + if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this)) + return R; + } + } + + if (Instruction *Res = foldICmpEquality(I)) + return Res; + + if (Instruction *Res = foldICmpOfUAddOv(I)) + return Res; + + // The 'cmpxchg' instruction returns an aggregate containing the old value and + // an i1 which indicates whether or not we successfully did the swap. + // + // Replace comparisons between the old value and the expected value with the + // indicator that 'cmpxchg' returns. + // + // N.B. This transform is only valid when the 'cmpxchg' is not permitted to + // spuriously fail. In those cases, the old value may equal the expected + // value but it is possible for the swap to not occur. + if (I.getPredicate() == ICmpInst::ICMP_EQ) + if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) + if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) + if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && + !ACXI->isWeak()) + return ExtractValueInst::Create(ACXI, 1); + + { + Value *X; + const APInt *C; + // icmp X+Cst, X + if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X) + return foldICmpAddOpConst(X, *C, I.getPredicate()); + + // icmp X, X+Cst + if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X) + return foldICmpAddOpConst(X, *C, I.getSwappedPredicate()); + } + + if (Instruction *Res = foldICmpWithHighBitMask(I, Builder)) + return Res; + + if (I.getType()->isVectorTy()) + if (Instruction *Res = foldVectorCmp(I, Builder)) + return Res; + + return Changed ? &I : nullptr; +} + +/// Fold fcmp ([us]itofp x, cst) if possible. +Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I, + Instruction *LHSI, + Constant *RHSC) { + if (!isa<ConstantFP>(RHSC)) return nullptr; + const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); + + // Get the width of the mantissa. We don't want to hack on conversions that + // might lose information from the integer, e.g. "i64 -> float" + int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); + if (MantissaWidth == -1) return nullptr; // Unknown. + + IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); + + bool LHSUnsigned = isa<UIToFPInst>(LHSI); + + if (I.isEquality()) { + FCmpInst::Predicate P = I.getPredicate(); + bool IsExact = false; + APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); + RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); + + // If the floating point constant isn't an integer value, we know if we will + // ever compare equal / not equal to it. + if (!IsExact) { + // TODO: Can never be -0.0 and other non-representable values + APFloat RHSRoundInt(RHS); + RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); + if (RHS != RHSRoundInt) { + if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) + return replaceInstUsesWith(I, Builder.getFalse()); + + assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); + return replaceInstUsesWith(I, Builder.getTrue()); + } + } + + // TODO: If the constant is exactly representable, is it always OK to do + // equality compares as integer? + } + + // Check to see that the input is converted from an integer type that is small + // enough that preserves all bits. TODO: check here for "known" sign bits. + // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. + unsigned InputSize = IntTy->getScalarSizeInBits(); + + // Following test does NOT adjust InputSize downwards for signed inputs, + // because the most negative value still requires all the mantissa bits + // to distinguish it from one less than that value. + if ((int)InputSize > MantissaWidth) { + // Conversion would lose accuracy. Check if loss can impact comparison. + int Exp = ilogb(RHS); + if (Exp == APFloat::IEK_Inf) { + int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); + if (MaxExponent < (int)InputSize - !LHSUnsigned) + // Conversion could create infinity. + return nullptr; + } else { + // Note that if RHS is zero or NaN, then Exp is negative + // and first condition is trivially false. + if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) + // Conversion could affect comparison. + return nullptr; + } + } + + // Otherwise, we can potentially simplify the comparison. We know that it + // will always come through as an integer value and we know the constant is + // not a NAN (it would have been previously simplified). + assert(!RHS.isNaN() && "NaN comparison not already folded!"); + + ICmpInst::Predicate Pred; + switch (I.getPredicate()) { + default: llvm_unreachable("Unexpected predicate!"); + case FCmpInst::FCMP_UEQ: + case FCmpInst::FCMP_OEQ: + Pred = ICmpInst::ICMP_EQ; + break; + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_OGT: + Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; + break; + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_OGE: + Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; + break; + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_OLT: + Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; + break; + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_OLE: + Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; + break; + case FCmpInst::FCMP_UNE: + case FCmpInst::FCMP_ONE: + Pred = ICmpInst::ICMP_NE; + break; + case FCmpInst::FCMP_ORD: + return replaceInstUsesWith(I, Builder.getTrue()); + case FCmpInst::FCMP_UNO: + return replaceInstUsesWith(I, Builder.getFalse()); + } + + // Now we know that the APFloat is a normal number, zero or inf. + + // See if the FP constant is too large for the integer. For example, + // comparing an i8 to 300.0. + unsigned IntWidth = IntTy->getScalarSizeInBits(); + + if (!LHSUnsigned) { + // If the RHS value is > SignedMax, fold the comparison. This handles +INF + // and large values. + APFloat SMax(RHS.getSemantics()); + SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, + APFloat::rmNearestTiesToEven); + if (SMax < RHS) { // smax < 13123.0 + if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || + Pred == ICmpInst::ICMP_SLE) + return replaceInstUsesWith(I, Builder.getTrue()); + return replaceInstUsesWith(I, Builder.getFalse()); + } + } else { + // If the RHS value is > UnsignedMax, fold the comparison. This handles + // +INF and large values. + APFloat UMax(RHS.getSemantics()); + UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, + APFloat::rmNearestTiesToEven); + if (UMax < RHS) { // umax < 13123.0 + if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || + Pred == ICmpInst::ICMP_ULE) + return replaceInstUsesWith(I, Builder.getTrue()); + return replaceInstUsesWith(I, Builder.getFalse()); + } + } + + if (!LHSUnsigned) { + // See if the RHS value is < SignedMin. + APFloat SMin(RHS.getSemantics()); + SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, + APFloat::rmNearestTiesToEven); + if (SMin > RHS) { // smin > 12312.0 + if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || + Pred == ICmpInst::ICMP_SGE) + return replaceInstUsesWith(I, Builder.getTrue()); + return replaceInstUsesWith(I, Builder.getFalse()); + } + } else { + // See if the RHS value is < UnsignedMin. + APFloat UMin(RHS.getSemantics()); + UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false, + APFloat::rmNearestTiesToEven); + if (UMin > RHS) { // umin > 12312.0 + if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || + Pred == ICmpInst::ICMP_UGE) + return replaceInstUsesWith(I, Builder.getTrue()); + return replaceInstUsesWith(I, Builder.getFalse()); + } + } + + // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or + // [0, UMAX], but it may still be fractional. See if it is fractional by + // casting the FP value to the integer value and back, checking for equality. + // Don't do this for zero, because -0.0 is not fractional. + Constant *RHSInt = LHSUnsigned + ? ConstantExpr::getFPToUI(RHSC, IntTy) + : ConstantExpr::getFPToSI(RHSC, IntTy); + if (!RHS.isZero()) { + bool Equal = LHSUnsigned + ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC + : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; + if (!Equal) { + // If we had a comparison against a fractional value, we have to adjust + // the compare predicate and sometimes the value. RHSC is rounded towards + // zero at this point. + switch (Pred) { + default: llvm_unreachable("Unexpected integer comparison!"); + case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true + return replaceInstUsesWith(I, Builder.getTrue()); + case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false + return replaceInstUsesWith(I, Builder.getFalse()); + case ICmpInst::ICMP_ULE: + // (float)int <= 4.4 --> int <= 4 + // (float)int <= -4.4 --> false + if (RHS.isNegative()) + return replaceInstUsesWith(I, Builder.getFalse()); + break; + case ICmpInst::ICMP_SLE: + // (float)int <= 4.4 --> int <= 4 + // (float)int <= -4.4 --> int < -4 + if (RHS.isNegative()) + Pred = ICmpInst::ICMP_SLT; + break; + case ICmpInst::ICMP_ULT: + // (float)int < -4.4 --> false + // (float)int < 4.4 --> int <= 4 + if (RHS.isNegative()) + return replaceInstUsesWith(I, Builder.getFalse()); + Pred = ICmpInst::ICMP_ULE; + break; + case ICmpInst::ICMP_SLT: + // (float)int < -4.4 --> int < -4 + // (float)int < 4.4 --> int <= 4 + if (!RHS.isNegative()) + Pred = ICmpInst::ICMP_SLE; + break; + case ICmpInst::ICMP_UGT: + // (float)int > 4.4 --> int > 4 + // (float)int > -4.4 --> true + if (RHS.isNegative()) + return replaceInstUsesWith(I, Builder.getTrue()); + break; + case ICmpInst::ICMP_SGT: + // (float)int > 4.4 --> int > 4 + // (float)int > -4.4 --> int >= -4 + if (RHS.isNegative()) + Pred = ICmpInst::ICMP_SGE; + break; + case ICmpInst::ICMP_UGE: + // (float)int >= -4.4 --> true + // (float)int >= 4.4 --> int > 4 + if (RHS.isNegative()) + return replaceInstUsesWith(I, Builder.getTrue()); + Pred = ICmpInst::ICMP_UGT; + break; + case ICmpInst::ICMP_SGE: + // (float)int >= -4.4 --> int >= -4 + // (float)int >= 4.4 --> int > 4 + if (!RHS.isNegative()) + Pred = ICmpInst::ICMP_SGT; + break; + } + } + } + + // Lower this FP comparison into an appropriate integer version of the + // comparison. + return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); +} + +/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary. +static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, + Constant *RHSC) { + // When C is not 0.0 and infinities are not allowed: + // (C / X) < 0.0 is a sign-bit test of X + // (C / X) < 0.0 --> X < 0.0 (if C is positive) + // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate) + // + // Proof: + // Multiply (C / X) < 0.0 by X * X / C. + // - X is non zero, if it is the flag 'ninf' is violated. + // - C defines the sign of X * X * C. Thus it also defines whether to swap + // the predicate. C is also non zero by definition. + // + // Thus X * X / C is non zero and the transformation is valid. [qed] + + FCmpInst::Predicate Pred = I.getPredicate(); + + // Check that predicates are valid. + if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) && + (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE)) + return nullptr; + + // Check that RHS operand is zero. + if (!match(RHSC, m_AnyZeroFP())) + return nullptr; + + // Check fastmath flags ('ninf'). + if (!LHSI->hasNoInfs() || !I.hasNoInfs()) + return nullptr; + + // Check the properties of the dividend. It must not be zero to avoid a + // division by zero (see Proof). + const APFloat *C; + if (!match(LHSI->getOperand(0), m_APFloat(C))) + return nullptr; + + if (C->isZero()) + return nullptr; + + // Get swapped predicate if necessary. + if (C->isNegative()) + Pred = I.getSwappedPredicate(); + + return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I); +} + +/// Optimize fabs(X) compared with zero. +static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) { + Value *X; + if (!match(I.getOperand(0), m_FAbs(m_Value(X))) || + !match(I.getOperand(1), m_PosZeroFP())) + return nullptr; + + auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) { + I->setPredicate(P); + return IC.replaceOperand(*I, 0, X); + }; + + switch (I.getPredicate()) { + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_OLT: + // fabs(X) >= 0.0 --> true + // fabs(X) < 0.0 --> false + llvm_unreachable("fcmp should have simplified"); + + case FCmpInst::FCMP_OGT: + // fabs(X) > 0.0 --> X != 0.0 + return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X); + + case FCmpInst::FCMP_UGT: + // fabs(X) u> 0.0 --> X u!= 0.0 + return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X); + + case FCmpInst::FCMP_OLE: + // fabs(X) <= 0.0 --> X == 0.0 + return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X); + + case FCmpInst::FCMP_ULE: + // fabs(X) u<= 0.0 --> X u== 0.0 + return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X); + + case FCmpInst::FCMP_OGE: + // fabs(X) >= 0.0 --> !isnan(X) + assert(!I.hasNoNaNs() && "fcmp should have simplified"); + return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X); + + case FCmpInst::FCMP_ULT: + // fabs(X) u< 0.0 --> isnan(X) + assert(!I.hasNoNaNs() && "fcmp should have simplified"); + return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X); + + case FCmpInst::FCMP_OEQ: + case FCmpInst::FCMP_UEQ: + case FCmpInst::FCMP_ONE: + case FCmpInst::FCMP_UNE: + case FCmpInst::FCMP_ORD: + case FCmpInst::FCMP_UNO: + // Look through the fabs() because it doesn't change anything but the sign. + // fabs(X) == 0.0 --> X == 0.0, + // fabs(X) != 0.0 --> X != 0.0 + // isnan(fabs(X)) --> isnan(X) + // !isnan(fabs(X) --> !isnan(X) + return replacePredAndOp0(&I, I.getPredicate(), X); + + default: + return nullptr; + } +} + +Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) { + bool Changed = false; + + /// Orders the operands of the compare so that they are listed from most + /// complex to least complex. This puts constants before unary operators, + /// before binary operators. + if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { + I.swapOperands(); + Changed = true; + } + + const CmpInst::Predicate Pred = I.getPredicate(); + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(), + SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + // Simplify 'fcmp pred X, X' + Type *OpType = Op0->getType(); + assert(OpType == Op1->getType() && "fcmp with different-typed operands?"); + if (Op0 == Op1) { + switch (Pred) { + default: break; + case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) + case FCmpInst::FCMP_ULT: // True if unordered or less than + case FCmpInst::FCMP_UGT: // True if unordered or greater than + case FCmpInst::FCMP_UNE: // True if unordered or not equal + // Canonicalize these to be 'fcmp uno %X, 0.0'. + I.setPredicate(FCmpInst::FCMP_UNO); + I.setOperand(1, Constant::getNullValue(OpType)); + return &I; + + case FCmpInst::FCMP_ORD: // True if ordered (no nans) + case FCmpInst::FCMP_OEQ: // True if ordered and equal + case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal + case FCmpInst::FCMP_OLE: // True if ordered and less than or equal + // Canonicalize these to be 'fcmp ord %X, 0.0'. + I.setPredicate(FCmpInst::FCMP_ORD); + I.setOperand(1, Constant::getNullValue(OpType)); + return &I; + } + } + + // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand, + // then canonicalize the operand to 0.0. + if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) { + if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI)) + return replaceOperand(I, 0, ConstantFP::getNullValue(OpType)); + + if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI)) + return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); + } + + // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y + Value *X, *Y; + if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) + return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I); + + // Test if the FCmpInst instruction is used exclusively by a select as + // part of a minimum or maximum operation. If so, refrain from doing + // any other folding. This helps out other analyses which understand + // non-obfuscated minimum and maximum idioms, such as ScalarEvolution + // and CodeGen. And in this case, at least one of the comparison + // operands has at least one user besides the compare (the select), + // which would often largely negate the benefit of folding anyway. + if (I.hasOneUse()) + if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) { + Value *A, *B; + SelectPatternResult SPR = matchSelectPattern(SI, A, B); + if (SPR.Flavor != SPF_UNKNOWN) + return nullptr; + } + + // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0: + // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0 + if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP())) + return replaceOperand(I, 1, ConstantFP::getNullValue(OpType)); + + // Handle fcmp with instruction LHS and constant RHS. + Instruction *LHSI; + Constant *RHSC; + if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) { + switch (LHSI->getOpcode()) { + case Instruction::PHI: + // Only fold fcmp into the PHI if the phi and fcmp are in the same + // block. If in the same block, we're encouraging jump threading. If + // not, we are just pessimizing the code by making an i1 phi. + if (LHSI->getParent() == I.getParent()) + if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI))) + return NV; + break; + case Instruction::SIToFP: + case Instruction::UIToFP: + if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC)) + return NV; + break; + case Instruction::FDiv: + if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC)) + return NV; + break; + case Instruction::Load: + if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) + if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) + if (GV->isConstant() && GV->hasDefinitiveInitializer() && + !cast<LoadInst>(LHSI)->isVolatile()) + if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I)) + return Res; + break; + } + } + + if (Instruction *R = foldFabsWithFcmpZero(I, *this)) + return R; + + if (match(Op0, m_FNeg(m_Value(X)))) { + // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C + Constant *C; + if (match(Op1, m_Constant(C))) { + Constant *NegC = ConstantExpr::getFNeg(C); + return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I); + } + } + + if (match(Op0, m_FPExt(m_Value(X)))) { + // fcmp (fpext X), (fpext Y) -> fcmp X, Y + if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType()) + return new FCmpInst(Pred, X, Y, "", &I); + + // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless + const APFloat *C; + if (match(Op1, m_APFloat(C))) { + const fltSemantics &FPSem = + X->getType()->getScalarType()->getFltSemantics(); + bool Lossy; + APFloat TruncC = *C; + TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy); + + // Avoid lossy conversions and denormals. + // Zero is a special case that's OK to convert. + APFloat Fabs = TruncC; + Fabs.clearSign(); + if (!Lossy && + (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) { + Constant *NewC = ConstantFP::get(X->getType(), TruncC); + return new FCmpInst(Pred, X, NewC, "", &I); + } + } + } + + if (I.getType()->isVectorTy()) + if (Instruction *Res = foldVectorCmp(I, Builder)) + return Res; + + return Changed ? &I : nullptr; +} |