aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp6275
1 files changed, 6275 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
new file mode 100644
index 000000000000..cd9a036179b6
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -0,0 +1,6275 @@
+//===- InstCombineCompares.cpp --------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitICmp and visitFCmp functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Transforms/InstCombine/InstCombiner.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+// How many times is a select replaced by one of its operands?
+STATISTIC(NumSel, "Number of select opts");
+
+
+/// Compute Result = In1+In2, returning true if the result overflowed for this
+/// type.
+static bool addWithOverflow(APInt &Result, const APInt &In1,
+ const APInt &In2, bool IsSigned = false) {
+ bool Overflow;
+ if (IsSigned)
+ Result = In1.sadd_ov(In2, Overflow);
+ else
+ Result = In1.uadd_ov(In2, Overflow);
+
+ return Overflow;
+}
+
+/// Compute Result = In1-In2, returning true if the result overflowed for this
+/// type.
+static bool subWithOverflow(APInt &Result, const APInt &In1,
+ const APInt &In2, bool IsSigned = false) {
+ bool Overflow;
+ if (IsSigned)
+ Result = In1.ssub_ov(In2, Overflow);
+ else
+ Result = In1.usub_ov(In2, Overflow);
+
+ return Overflow;
+}
+
+/// Given an icmp instruction, return true if any use of this comparison is a
+/// branch on sign bit comparison.
+static bool hasBranchUse(ICmpInst &I) {
+ for (auto *U : I.users())
+ if (isa<BranchInst>(U))
+ return true;
+ return false;
+}
+
+/// Returns true if the exploded icmp can be expressed as a signed comparison
+/// to zero and updates the predicate accordingly.
+/// The signedness of the comparison is preserved.
+/// TODO: Refactor with decomposeBitTestICmp()?
+static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
+ if (!ICmpInst::isSigned(Pred))
+ return false;
+
+ if (C.isNullValue())
+ return ICmpInst::isRelational(Pred);
+
+ if (C.isOneValue()) {
+ if (Pred == ICmpInst::ICMP_SLT) {
+ Pred = ICmpInst::ICMP_SLE;
+ return true;
+ }
+ } else if (C.isAllOnesValue()) {
+ if (Pred == ICmpInst::ICMP_SGT) {
+ Pred = ICmpInst::ICMP_SGE;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// This is called when we see this pattern:
+/// cmp pred (load (gep GV, ...)), cmpcst
+/// where GV is a global variable with a constant initializer. Try to simplify
+/// this into some simple computation that does not need the load. For example
+/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
+///
+/// If AndCst is non-null, then the loaded value is masked with that constant
+/// before doing the comparison. This handles cases like "A[i]&4 == 0".
+Instruction *
+InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
+ GlobalVariable *GV, CmpInst &ICI,
+ ConstantInt *AndCst) {
+ Constant *Init = GV->getInitializer();
+ if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
+ return nullptr;
+
+ uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
+ // Don't blow up on huge arrays.
+ if (ArrayElementCount > MaxArraySizeForCombine)
+ return nullptr;
+
+ // There are many forms of this optimization we can handle, for now, just do
+ // the simple index into a single-dimensional array.
+ //
+ // Require: GEP GV, 0, i {{, constant indices}}
+ if (GEP->getNumOperands() < 3 ||
+ !isa<ConstantInt>(GEP->getOperand(1)) ||
+ !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
+ isa<Constant>(GEP->getOperand(2)))
+ return nullptr;
+
+ // Check that indices after the variable are constants and in-range for the
+ // type they index. Collect the indices. This is typically for arrays of
+ // structs.
+ SmallVector<unsigned, 4> LaterIndices;
+
+ Type *EltTy = Init->getType()->getArrayElementType();
+ for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
+ ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (!Idx) return nullptr; // Variable index.
+
+ uint64_t IdxVal = Idx->getZExtValue();
+ if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
+
+ if (StructType *STy = dyn_cast<StructType>(EltTy))
+ EltTy = STy->getElementType(IdxVal);
+ else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
+ if (IdxVal >= ATy->getNumElements()) return nullptr;
+ EltTy = ATy->getElementType();
+ } else {
+ return nullptr; // Unknown type.
+ }
+
+ LaterIndices.push_back(IdxVal);
+ }
+
+ enum { Overdefined = -3, Undefined = -2 };
+
+ // Variables for our state machines.
+
+ // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
+ // "i == 47 | i == 87", where 47 is the first index the condition is true for,
+ // and 87 is the second (and last) index. FirstTrueElement is -2 when
+ // undefined, otherwise set to the first true element. SecondTrueElement is
+ // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
+ int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
+
+ // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
+ // form "i != 47 & i != 87". Same state transitions as for true elements.
+ int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
+
+ /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
+ /// define a state machine that triggers for ranges of values that the index
+ /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
+ /// This is -2 when undefined, -3 when overdefined, and otherwise the last
+ /// index in the range (inclusive). We use -2 for undefined here because we
+ /// use relative comparisons and don't want 0-1 to match -1.
+ int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
+
+ // MagicBitvector - This is a magic bitvector where we set a bit if the
+ // comparison is true for element 'i'. If there are 64 elements or less in
+ // the array, this will fully represent all the comparison results.
+ uint64_t MagicBitvector = 0;
+
+ // Scan the array and see if one of our patterns matches.
+ Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
+ for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
+ Constant *Elt = Init->getAggregateElement(i);
+ if (!Elt) return nullptr;
+
+ // If this is indexing an array of structures, get the structure element.
+ if (!LaterIndices.empty())
+ Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
+
+ // If the element is masked, handle it.
+ if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
+
+ // Find out if the comparison would be true or false for the i'th element.
+ Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
+ CompareRHS, DL, &TLI);
+ // If the result is undef for this element, ignore it.
+ if (isa<UndefValue>(C)) {
+ // Extend range state machines to cover this element in case there is an
+ // undef in the middle of the range.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ continue;
+ }
+
+ // If we can't compute the result for any of the elements, we have to give
+ // up evaluating the entire conditional.
+ if (!isa<ConstantInt>(C)) return nullptr;
+
+ // Otherwise, we know if the comparison is true or false for this element,
+ // update our state machines.
+ bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
+
+ // State machine for single/double/range index comparison.
+ if (IsTrueForElt) {
+ // Update the TrueElement state machine.
+ if (FirstTrueElement == Undefined)
+ FirstTrueElement = TrueRangeEnd = i; // First true element.
+ else {
+ // Update double-compare state machine.
+ if (SecondTrueElement == Undefined)
+ SecondTrueElement = i;
+ else
+ SecondTrueElement = Overdefined;
+
+ // Update range state machine.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ else
+ TrueRangeEnd = Overdefined;
+ }
+ } else {
+ // Update the FalseElement state machine.
+ if (FirstFalseElement == Undefined)
+ FirstFalseElement = FalseRangeEnd = i; // First false element.
+ else {
+ // Update double-compare state machine.
+ if (SecondFalseElement == Undefined)
+ SecondFalseElement = i;
+ else
+ SecondFalseElement = Overdefined;
+
+ // Update range state machine.
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ else
+ FalseRangeEnd = Overdefined;
+ }
+ }
+
+ // If this element is in range, update our magic bitvector.
+ if (i < 64 && IsTrueForElt)
+ MagicBitvector |= 1ULL << i;
+
+ // If all of our states become overdefined, bail out early. Since the
+ // predicate is expensive, only check it every 8 elements. This is only
+ // really useful for really huge arrays.
+ if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
+ SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
+ FalseRangeEnd == Overdefined)
+ return nullptr;
+ }
+
+ // Now that we've scanned the entire array, emit our new comparison(s). We
+ // order the state machines in complexity of the generated code.
+ Value *Idx = GEP->getOperand(2);
+
+ // If the index is larger than the pointer size of the target, truncate the
+ // index down like the GEP would do implicitly. We don't have to do this for
+ // an inbounds GEP because the index can't be out of range.
+ if (!GEP->isInBounds()) {
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
+ unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
+ if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
+ Idx = Builder.CreateTrunc(Idx, IntPtrTy);
+ }
+
+ // If the comparison is only true for one or two elements, emit direct
+ // comparisons.
+ if (SecondTrueElement != Overdefined) {
+ // None true -> false.
+ if (FirstTrueElement == Undefined)
+ return replaceInstUsesWith(ICI, Builder.getFalse());
+
+ Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
+
+ // True for one element -> 'i == 47'.
+ if (SecondTrueElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
+
+ // True for two elements -> 'i == 47 | i == 72'.
+ Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
+ Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
+ Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
+ return BinaryOperator::CreateOr(C1, C2);
+ }
+
+ // If the comparison is only false for one or two elements, emit direct
+ // comparisons.
+ if (SecondFalseElement != Overdefined) {
+ // None false -> true.
+ if (FirstFalseElement == Undefined)
+ return replaceInstUsesWith(ICI, Builder.getTrue());
+
+ Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
+
+ // False for one element -> 'i != 47'.
+ if (SecondFalseElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
+
+ // False for two elements -> 'i != 47 & i != 72'.
+ Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
+ Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
+ Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
+ return BinaryOperator::CreateAnd(C1, C2);
+ }
+
+ // If the comparison can be replaced with a range comparison for the elements
+ // where it is true, emit the range check.
+ if (TrueRangeEnd != Overdefined) {
+ assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
+
+ // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
+ if (FirstTrueElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
+ Idx = Builder.CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ TrueRangeEnd-FirstTrueElement+1);
+ return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
+ }
+
+ // False range check.
+ if (FalseRangeEnd != Overdefined) {
+ assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
+ // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
+ if (FirstFalseElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
+ Idx = Builder.CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ FalseRangeEnd-FirstFalseElement);
+ return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
+ }
+
+ // If a magic bitvector captures the entire comparison state
+ // of this load, replace it with computation that does:
+ // ((magic_cst >> i) & 1) != 0
+ {
+ Type *Ty = nullptr;
+
+ // Look for an appropriate type:
+ // - The type of Idx if the magic fits
+ // - The smallest fitting legal type
+ if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
+ Ty = Idx->getType();
+ else
+ Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
+
+ if (Ty) {
+ Value *V = Builder.CreateIntCast(Idx, Ty, false);
+ V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
+ V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
+ return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
+ }
+ }
+
+ return nullptr;
+}
+
+/// Return a value that can be used to compare the *offset* implied by a GEP to
+/// zero. For example, if we have &A[i], we want to return 'i' for
+/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
+/// are involved. The above expression would also be legal to codegen as
+/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This latter form is less amenable to optimization though, and we are allowed
+/// to generate the first by knowing that pointer arithmetic doesn't overflow.
+///
+/// If we can't emit an optimized form for this expression, this returns null.
+///
+static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
+ const DataLayout &DL) {
+ gep_type_iterator GTI = gep_type_begin(GEP);
+
+ // Check to see if this gep only has a single variable index. If so, and if
+ // any constant indices are a multiple of its scale, then we can compute this
+ // in terms of the scale of the variable index. For example, if the GEP
+ // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
+ // because the expression will cross zero at the same point.
+ unsigned i, e = GEP->getNumOperands();
+ int64_t Offset = 0;
+ for (i = 1; i != e; ++i, ++GTI) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ } else {
+ // Found our variable index.
+ break;
+ }
+ }
+
+ // If there are no variable indices, we must have a constant offset, just
+ // evaluate it the general way.
+ if (i == e) return nullptr;
+
+ Value *VariableIdx = GEP->getOperand(i);
+ // Determine the scale factor of the variable element. For example, this is
+ // 4 if the variable index is into an array of i32.
+ uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
+
+ // Verify that there are no other variable indices. If so, emit the hard way.
+ for (++i, ++GTI; i != e; ++i, ++GTI) {
+ ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (!CI) return nullptr;
+
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ }
+
+ // Okay, we know we have a single variable index, which must be a
+ // pointer/array/vector index. If there is no offset, life is simple, return
+ // the index.
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
+ unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
+ if (Offset == 0) {
+ // Cast to intptrty in case a truncation occurs. If an extension is needed,
+ // we don't need to bother extending: the extension won't affect where the
+ // computation crosses zero.
+ if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
+ IntPtrWidth) {
+ VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
+ }
+ return VariableIdx;
+ }
+
+ // Otherwise, there is an index. The computation we will do will be modulo
+ // the pointer size.
+ Offset = SignExtend64(Offset, IntPtrWidth);
+ VariableScale = SignExtend64(VariableScale, IntPtrWidth);
+
+ // To do this transformation, any constant index must be a multiple of the
+ // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
+ // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
+ // multiple of the variable scale.
+ int64_t NewOffs = Offset / (int64_t)VariableScale;
+ if (Offset != NewOffs*(int64_t)VariableScale)
+ return nullptr;
+
+ // Okay, we can do this evaluation. Start by converting the index to intptr.
+ if (VariableIdx->getType() != IntPtrTy)
+ VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
+ true /*Signed*/);
+ Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
+ return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
+}
+
+/// Returns true if we can rewrite Start as a GEP with pointer Base
+/// and some integer offset. The nodes that need to be re-written
+/// for this transformation will be added to Explored.
+static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
+ const DataLayout &DL,
+ SetVector<Value *> &Explored) {
+ SmallVector<Value *, 16> WorkList(1, Start);
+ Explored.insert(Base);
+
+ // The following traversal gives us an order which can be used
+ // when doing the final transformation. Since in the final
+ // transformation we create the PHI replacement instructions first,
+ // we don't have to get them in any particular order.
+ //
+ // However, for other instructions we will have to traverse the
+ // operands of an instruction first, which means that we have to
+ // do a post-order traversal.
+ while (!WorkList.empty()) {
+ SetVector<PHINode *> PHIs;
+
+ while (!WorkList.empty()) {
+ if (Explored.size() >= 100)
+ return false;
+
+ Value *V = WorkList.back();
+
+ if (Explored.contains(V)) {
+ WorkList.pop_back();
+ continue;
+ }
+
+ if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
+ !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
+ // We've found some value that we can't explore which is different from
+ // the base. Therefore we can't do this transformation.
+ return false;
+
+ if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
+ auto *CI = cast<CastInst>(V);
+ if (!CI->isNoopCast(DL))
+ return false;
+
+ if (Explored.count(CI->getOperand(0)) == 0)
+ WorkList.push_back(CI->getOperand(0));
+ }
+
+ if (auto *GEP = dyn_cast<GEPOperator>(V)) {
+ // We're limiting the GEP to having one index. This will preserve
+ // the original pointer type. We could handle more cases in the
+ // future.
+ if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
+ GEP->getType() != Start->getType())
+ return false;
+
+ if (Explored.count(GEP->getOperand(0)) == 0)
+ WorkList.push_back(GEP->getOperand(0));
+ }
+
+ if (WorkList.back() == V) {
+ WorkList.pop_back();
+ // We've finished visiting this node, mark it as such.
+ Explored.insert(V);
+ }
+
+ if (auto *PN = dyn_cast<PHINode>(V)) {
+ // We cannot transform PHIs on unsplittable basic blocks.
+ if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
+ return false;
+ Explored.insert(PN);
+ PHIs.insert(PN);
+ }
+ }
+
+ // Explore the PHI nodes further.
+ for (auto *PN : PHIs)
+ for (Value *Op : PN->incoming_values())
+ if (Explored.count(Op) == 0)
+ WorkList.push_back(Op);
+ }
+
+ // Make sure that we can do this. Since we can't insert GEPs in a basic
+ // block before a PHI node, we can't easily do this transformation if
+ // we have PHI node users of transformed instructions.
+ for (Value *Val : Explored) {
+ for (Value *Use : Val->uses()) {
+
+ auto *PHI = dyn_cast<PHINode>(Use);
+ auto *Inst = dyn_cast<Instruction>(Val);
+
+ if (Inst == Base || Inst == PHI || !Inst || !PHI ||
+ Explored.count(PHI) == 0)
+ continue;
+
+ if (PHI->getParent() == Inst->getParent())
+ return false;
+ }
+ }
+ return true;
+}
+
+// Sets the appropriate insert point on Builder where we can add
+// a replacement Instruction for V (if that is possible).
+static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
+ bool Before = true) {
+ if (auto *PHI = dyn_cast<PHINode>(V)) {
+ Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
+ return;
+ }
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ if (!Before)
+ I = &*std::next(I->getIterator());
+ Builder.SetInsertPoint(I);
+ return;
+ }
+ if (auto *A = dyn_cast<Argument>(V)) {
+ // Set the insertion point in the entry block.
+ BasicBlock &Entry = A->getParent()->getEntryBlock();
+ Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
+ return;
+ }
+ // Otherwise, this is a constant and we don't need to set a new
+ // insertion point.
+ assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
+}
+
+/// Returns a re-written value of Start as an indexed GEP using Base as a
+/// pointer.
+static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
+ const DataLayout &DL,
+ SetVector<Value *> &Explored) {
+ // Perform all the substitutions. This is a bit tricky because we can
+ // have cycles in our use-def chains.
+ // 1. Create the PHI nodes without any incoming values.
+ // 2. Create all the other values.
+ // 3. Add the edges for the PHI nodes.
+ // 4. Emit GEPs to get the original pointers.
+ // 5. Remove the original instructions.
+ Type *IndexType = IntegerType::get(
+ Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
+
+ DenseMap<Value *, Value *> NewInsts;
+ NewInsts[Base] = ConstantInt::getNullValue(IndexType);
+
+ // Create the new PHI nodes, without adding any incoming values.
+ for (Value *Val : Explored) {
+ if (Val == Base)
+ continue;
+ // Create empty phi nodes. This avoids cyclic dependencies when creating
+ // the remaining instructions.
+ if (auto *PHI = dyn_cast<PHINode>(Val))
+ NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
+ PHI->getName() + ".idx", PHI);
+ }
+ IRBuilder<> Builder(Base->getContext());
+
+ // Create all the other instructions.
+ for (Value *Val : Explored) {
+
+ if (NewInsts.find(Val) != NewInsts.end())
+ continue;
+
+ if (auto *CI = dyn_cast<CastInst>(Val)) {
+ // Don't get rid of the intermediate variable here; the store can grow
+ // the map which will invalidate the reference to the input value.
+ Value *V = NewInsts[CI->getOperand(0)];
+ NewInsts[CI] = V;
+ continue;
+ }
+ if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
+ Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
+ : GEP->getOperand(1);
+ setInsertionPoint(Builder, GEP);
+ // Indices might need to be sign extended. GEPs will magically do
+ // this, but we need to do it ourselves here.
+ if (Index->getType()->getScalarSizeInBits() !=
+ NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
+ Index = Builder.CreateSExtOrTrunc(
+ Index, NewInsts[GEP->getOperand(0)]->getType(),
+ GEP->getOperand(0)->getName() + ".sext");
+ }
+
+ auto *Op = NewInsts[GEP->getOperand(0)];
+ if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
+ NewInsts[GEP] = Index;
+ else
+ NewInsts[GEP] = Builder.CreateNSWAdd(
+ Op, Index, GEP->getOperand(0)->getName() + ".add");
+ continue;
+ }
+ if (isa<PHINode>(Val))
+ continue;
+
+ llvm_unreachable("Unexpected instruction type");
+ }
+
+ // Add the incoming values to the PHI nodes.
+ for (Value *Val : Explored) {
+ if (Val == Base)
+ continue;
+ // All the instructions have been created, we can now add edges to the
+ // phi nodes.
+ if (auto *PHI = dyn_cast<PHINode>(Val)) {
+ PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
+ for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
+ Value *NewIncoming = PHI->getIncomingValue(I);
+
+ if (NewInsts.find(NewIncoming) != NewInsts.end())
+ NewIncoming = NewInsts[NewIncoming];
+
+ NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
+ }
+ }
+ }
+
+ for (Value *Val : Explored) {
+ if (Val == Base)
+ continue;
+
+ // Depending on the type, for external users we have to emit
+ // a GEP or a GEP + ptrtoint.
+ setInsertionPoint(Builder, Val, false);
+
+ // If required, create an inttoptr instruction for Base.
+ Value *NewBase = Base;
+ if (!Base->getType()->isPointerTy())
+ NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
+ Start->getName() + "to.ptr");
+
+ Value *GEP = Builder.CreateInBoundsGEP(
+ Start->getType()->getPointerElementType(), NewBase,
+ makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
+
+ if (!Val->getType()->isPointerTy()) {
+ Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
+ Val->getName() + ".conv");
+ GEP = Cast;
+ }
+ Val->replaceAllUsesWith(GEP);
+ }
+
+ return NewInsts[Start];
+}
+
+/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
+/// the input Value as a constant indexed GEP. Returns a pair containing
+/// the GEPs Pointer and Index.
+static std::pair<Value *, Value *>
+getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
+ Type *IndexType = IntegerType::get(V->getContext(),
+ DL.getIndexTypeSizeInBits(V->getType()));
+
+ Constant *Index = ConstantInt::getNullValue(IndexType);
+ while (true) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ // We accept only inbouds GEPs here to exclude the possibility of
+ // overflow.
+ if (!GEP->isInBounds())
+ break;
+ if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
+ GEP->getType() == V->getType()) {
+ V = GEP->getOperand(0);
+ Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
+ Index = ConstantExpr::getAdd(
+ Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
+ continue;
+ }
+ break;
+ }
+ if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
+ if (!CI->isNoopCast(DL))
+ break;
+ V = CI->getOperand(0);
+ continue;
+ }
+ if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
+ if (!CI->isNoopCast(DL))
+ break;
+ V = CI->getOperand(0);
+ continue;
+ }
+ break;
+ }
+ return {V, Index};
+}
+
+/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
+/// We can look through PHIs, GEPs and casts in order to determine a common base
+/// between GEPLHS and RHS.
+static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond,
+ const DataLayout &DL) {
+ // FIXME: Support vector of pointers.
+ if (GEPLHS->getType()->isVectorTy())
+ return nullptr;
+
+ if (!GEPLHS->hasAllConstantIndices())
+ return nullptr;
+
+ // Make sure the pointers have the same type.
+ if (GEPLHS->getType() != RHS->getType())
+ return nullptr;
+
+ Value *PtrBase, *Index;
+ std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
+
+ // The set of nodes that will take part in this transformation.
+ SetVector<Value *> Nodes;
+
+ if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
+ return nullptr;
+
+ // We know we can re-write this as
+ // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
+ // Since we've only looked through inbouds GEPs we know that we
+ // can't have overflow on either side. We can therefore re-write
+ // this as:
+ // OFFSET1 cmp OFFSET2
+ Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
+
+ // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
+ // GEP having PtrBase as the pointer base, and has returned in NewRHS the
+ // offset. Since Index is the offset of LHS to the base pointer, we will now
+ // compare the offsets instead of comparing the pointers.
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
+}
+
+/// Fold comparisons between a GEP instruction and something else. At this point
+/// we know that the GEP is on the LHS of the comparison.
+Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond,
+ Instruction &I) {
+ // Don't transform signed compares of GEPs into index compares. Even if the
+ // GEP is inbounds, the final add of the base pointer can have signed overflow
+ // and would change the result of the icmp.
+ // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
+ // the maximum signed value for the pointer type.
+ if (ICmpInst::isSigned(Cond))
+ return nullptr;
+
+ // Look through bitcasts and addrspacecasts. We do not however want to remove
+ // 0 GEPs.
+ if (!isa<GetElementPtrInst>(RHS))
+ RHS = RHS->stripPointerCasts();
+
+ Value *PtrBase = GEPLHS->getOperand(0);
+ // FIXME: Support vector pointer GEPs.
+ if (PtrBase == RHS && GEPLHS->isInBounds() &&
+ !GEPLHS->getType()->isVectorTy()) {
+ // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
+ // This transformation (ignoring the base and scales) is valid because we
+ // know pointers can't overflow since the gep is inbounds. See if we can
+ // output an optimized form.
+ Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
+
+ // If not, synthesize the offset the hard way.
+ if (!Offset)
+ Offset = EmitGEPOffset(GEPLHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
+ Constant::getNullValue(Offset->getType()));
+ }
+
+ if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
+ isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
+ !NullPointerIsDefined(I.getFunction(),
+ RHS->getType()->getPointerAddressSpace())) {
+ // For most address spaces, an allocation can't be placed at null, but null
+ // itself is treated as a 0 size allocation in the in bounds rules. Thus,
+ // the only valid inbounds address derived from null, is null itself.
+ // Thus, we have four cases to consider:
+ // 1) Base == nullptr, Offset == 0 -> inbounds, null
+ // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
+ // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
+ // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
+ //
+ // (Note if we're indexing a type of size 0, that simply collapses into one
+ // of the buckets above.)
+ //
+ // In general, we're allowed to make values less poison (i.e. remove
+ // sources of full UB), so in this case, we just select between the two
+ // non-poison cases (1 and 4 above).
+ //
+ // For vectors, we apply the same reasoning on a per-lane basis.
+ auto *Base = GEPLHS->getPointerOperand();
+ if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
+ auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
+ Base = Builder.CreateVectorSplat(EC, Base);
+ }
+ return new ICmpInst(Cond, Base,
+ ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ cast<Constant>(RHS), Base->getType()));
+ } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
+ // If the base pointers are different, but the indices are the same, just
+ // compare the base pointer.
+ if (PtrBase != GEPRHS->getOperand(0)) {
+ bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
+ IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
+ GEPRHS->getOperand(0)->getType();
+ if (IndicesTheSame)
+ for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ IndicesTheSame = false;
+ break;
+ }
+
+ // If all indices are the same, just compare the base pointers.
+ Type *BaseType = GEPLHS->getOperand(0)->getType();
+ if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
+ return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
+
+ // If we're comparing GEPs with two base pointers that only differ in type
+ // and both GEPs have only constant indices or just one use, then fold
+ // the compare with the adjusted indices.
+ // FIXME: Support vector of pointers.
+ if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
+ (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
+ (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
+ PtrBase->stripPointerCasts() ==
+ GEPRHS->getOperand(0)->stripPointerCasts() &&
+ !GEPLHS->getType()->isVectorTy()) {
+ Value *LOffset = EmitGEPOffset(GEPLHS);
+ Value *ROffset = EmitGEPOffset(GEPRHS);
+
+ // If we looked through an addrspacecast between different sized address
+ // spaces, the LHS and RHS pointers are different sized
+ // integers. Truncate to the smaller one.
+ Type *LHSIndexTy = LOffset->getType();
+ Type *RHSIndexTy = ROffset->getType();
+ if (LHSIndexTy != RHSIndexTy) {
+ if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
+ RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
+ ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
+ } else
+ LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
+ }
+
+ Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
+ LOffset, ROffset);
+ return replaceInstUsesWith(I, Cmp);
+ }
+
+ // Otherwise, the base pointers are different and the indices are
+ // different. Try convert this to an indexed compare by looking through
+ // PHIs/casts.
+ return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
+ }
+
+ // If one of the GEPs has all zero indices, recurse.
+ // FIXME: Handle vector of pointers.
+ if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
+ return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
+ ICmpInst::getSwappedPredicate(Cond), I);
+
+ // If the other GEP has all zero indices, recurse.
+ // FIXME: Handle vector of pointers.
+ if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
+ return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
+
+ bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
+ if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
+ // If the GEPs only differ by one index, compare it.
+ unsigned NumDifferences = 0; // Keep track of # differences.
+ unsigned DiffOperand = 0; // The operand that differs.
+ for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ Type *LHSType = GEPLHS->getOperand(i)->getType();
+ Type *RHSType = GEPRHS->getOperand(i)->getType();
+ // FIXME: Better support for vector of pointers.
+ if (LHSType->getPrimitiveSizeInBits() !=
+ RHSType->getPrimitiveSizeInBits() ||
+ (GEPLHS->getType()->isVectorTy() &&
+ (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
+ // Irreconcilable differences.
+ NumDifferences = 2;
+ break;
+ }
+
+ if (NumDifferences++) break;
+ DiffOperand = i;
+ }
+
+ if (NumDifferences == 0) // SAME GEP?
+ return replaceInstUsesWith(I, // No comparison is needed here.
+ ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
+
+ else if (NumDifferences == 1 && GEPsInBounds) {
+ Value *LHSV = GEPLHS->getOperand(DiffOperand);
+ Value *RHSV = GEPRHS->getOperand(DiffOperand);
+ // Make sure we do a signed comparison here.
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
+ }
+ }
+
+ // Only lower this if the icmp is the only user of the GEP or if we expect
+ // the result to fold to a constant!
+ if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+ (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
+ // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
+ Value *L = EmitGEPOffset(GEPLHS);
+ Value *R = EmitGEPOffset(GEPRHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
+ }
+ }
+
+ // Try convert this to an indexed compare by looking through PHIs/casts as a
+ // last resort.
+ return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
+}
+
+Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
+ const AllocaInst *Alloca,
+ const Value *Other) {
+ assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
+
+ // It would be tempting to fold away comparisons between allocas and any
+ // pointer not based on that alloca (e.g. an argument). However, even
+ // though such pointers cannot alias, they can still compare equal.
+ //
+ // But LLVM doesn't specify where allocas get their memory, so if the alloca
+ // doesn't escape we can argue that it's impossible to guess its value, and we
+ // can therefore act as if any such guesses are wrong.
+ //
+ // The code below checks that the alloca doesn't escape, and that it's only
+ // used in a comparison once (the current instruction). The
+ // single-comparison-use condition ensures that we're trivially folding all
+ // comparisons against the alloca consistently, and avoids the risk of
+ // erroneously folding a comparison of the pointer with itself.
+
+ unsigned MaxIter = 32; // Break cycles and bound to constant-time.
+
+ SmallVector<const Use *, 32> Worklist;
+ for (const Use &U : Alloca->uses()) {
+ if (Worklist.size() >= MaxIter)
+ return nullptr;
+ Worklist.push_back(&U);
+ }
+
+ unsigned NumCmps = 0;
+ while (!Worklist.empty()) {
+ assert(Worklist.size() <= MaxIter);
+ const Use *U = Worklist.pop_back_val();
+ const Value *V = U->getUser();
+ --MaxIter;
+
+ if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
+ isa<SelectInst>(V)) {
+ // Track the uses.
+ } else if (isa<LoadInst>(V)) {
+ // Loading from the pointer doesn't escape it.
+ continue;
+ } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
+ // Storing *to* the pointer is fine, but storing the pointer escapes it.
+ if (SI->getValueOperand() == U->get())
+ return nullptr;
+ continue;
+ } else if (isa<ICmpInst>(V)) {
+ if (NumCmps++)
+ return nullptr; // Found more than one cmp.
+ continue;
+ } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
+ switch (Intrin->getIntrinsicID()) {
+ // These intrinsics don't escape or compare the pointer. Memset is safe
+ // because we don't allow ptrtoint. Memcpy and memmove are safe because
+ // we don't allow stores, so src cannot point to V.
+ case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
+ case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
+ continue;
+ default:
+ return nullptr;
+ }
+ } else {
+ return nullptr;
+ }
+ for (const Use &U : V->uses()) {
+ if (Worklist.size() >= MaxIter)
+ return nullptr;
+ Worklist.push_back(&U);
+ }
+ }
+
+ Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
+ return replaceInstUsesWith(
+ ICI,
+ ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
+}
+
+/// Fold "icmp pred (X+C), X".
+Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
+ ICmpInst::Predicate Pred) {
+ // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
+ // so the values can never be equal. Similarly for all other "or equals"
+ // operators.
+ assert(!!C && "C should not be zero!");
+
+ // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
+ // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
+ // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
+ Constant *R = ConstantInt::get(X->getType(),
+ APInt::getMaxValue(C.getBitWidth()) - C);
+ return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
+ }
+
+ // (X+1) >u X --> X <u (0-1) --> X != 255
+ // (X+2) >u X --> X <u (0-2) --> X <u 254
+ // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
+ return new ICmpInst(ICmpInst::ICMP_ULT, X,
+ ConstantInt::get(X->getType(), -C));
+
+ APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
+
+ // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
+ // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
+ // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
+ // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
+ // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
+ // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_SGT, X,
+ ConstantInt::get(X->getType(), SMax - C));
+
+ // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
+ // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
+ // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
+ // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
+ // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
+ // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
+
+ assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
+ return new ICmpInst(ICmpInst::ICMP_SLT, X,
+ ConstantInt::get(X->getType(), SMax - (C - 1)));
+}
+
+/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
+/// (icmp eq/ne A, Log2(AP2/AP1)) ->
+/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
+Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
+ const APInt &AP1,
+ const APInt &AP2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2.isNullValue())
+ return nullptr;
+
+ bool IsAShr = isa<AShrOperator>(I.getOperand(0));
+ if (IsAShr) {
+ if (AP2.isAllOnesValue())
+ return nullptr;
+ if (AP2.isNegative() != AP1.isNegative())
+ return nullptr;
+ if (AP2.sgt(AP1))
+ return nullptr;
+ }
+
+ if (!AP1)
+ // 'A' must be large enough to shift out the highest set bit.
+ return getICmp(I.ICMP_UGT, A,
+ ConstantInt::get(A->getType(), AP2.logBase2()));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ int Shift;
+ if (IsAShr && AP1.isNegative())
+ Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
+ else
+ Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
+
+ if (Shift > 0) {
+ if (IsAShr && AP1 == AP2.ashr(Shift)) {
+ // There are multiple solutions if we are comparing against -1 and the LHS
+ // of the ashr is not a power of two.
+ if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
+ return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+ } else if (AP1 == AP2.lshr(Shift)) {
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+ }
+ }
+
+ // Shifting const2 will never be equal to const1.
+ // FIXME: This should always be handled by InstSimplify?
+ auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
+ return replaceInstUsesWith(I, TorF);
+}
+
+/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
+/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
+Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
+ const APInt &AP1,
+ const APInt &AP2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2.isNullValue())
+ return nullptr;
+
+ unsigned AP2TrailingZeros = AP2.countTrailingZeros();
+
+ if (!AP1 && AP2TrailingZeros != 0)
+ return getICmp(
+ I.ICMP_UGE, A,
+ ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ // Get the distance between the lowest bits that are set.
+ int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
+
+ if (Shift > 0 && AP2.shl(Shift) == AP1)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+
+ // Shifting const2 will never be equal to const1.
+ // FIXME: This should always be handled by InstSimplify?
+ auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
+ return replaceInstUsesWith(I, TorF);
+}
+
+/// The caller has matched a pattern of the form:
+/// I = icmp ugt (add (add A, B), CI2), CI1
+/// If this is of the form:
+/// sum = a + b
+/// if (sum+128 >u 255)
+/// Then replace it with llvm.sadd.with.overflow.i8.
+///
+static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
+ ConstantInt *CI2, ConstantInt *CI1,
+ InstCombinerImpl &IC) {
+ // The transformation we're trying to do here is to transform this into an
+ // llvm.sadd.with.overflow. To do this, we have to replace the original add
+ // with a narrower add, and discard the add-with-constant that is part of the
+ // range check (if we can't eliminate it, this isn't profitable).
+
+ // In order to eliminate the add-with-constant, the compare can be its only
+ // use.
+ Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
+ if (!AddWithCst->hasOneUse())
+ return nullptr;
+
+ // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
+ if (!CI2->getValue().isPowerOf2())
+ return nullptr;
+ unsigned NewWidth = CI2->getValue().countTrailingZeros();
+ if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
+ return nullptr;
+
+ // The width of the new add formed is 1 more than the bias.
+ ++NewWidth;
+
+ // Check to see that CI1 is an all-ones value with NewWidth bits.
+ if (CI1->getBitWidth() == NewWidth ||
+ CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
+ return nullptr;
+
+ // This is only really a signed overflow check if the inputs have been
+ // sign-extended; check for that condition. For example, if CI2 is 2^31 and
+ // the operands of the add are 64 bits wide, we need at least 33 sign bits.
+ unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
+ if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
+ IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
+ return nullptr;
+
+ // In order to replace the original add with a narrower
+ // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
+ // and truncates that discard the high bits of the add. Verify that this is
+ // the case.
+ Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
+ for (User *U : OrigAdd->users()) {
+ if (U == AddWithCst)
+ continue;
+
+ // Only accept truncates for now. We would really like a nice recursive
+ // predicate like SimplifyDemandedBits, but which goes downwards the use-def
+ // chain to see which bits of a value are actually demanded. If the
+ // original add had another add which was then immediately truncated, we
+ // could still do the transformation.
+ TruncInst *TI = dyn_cast<TruncInst>(U);
+ if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
+ return nullptr;
+ }
+
+ // If the pattern matches, truncate the inputs to the narrower type and
+ // use the sadd_with_overflow intrinsic to efficiently compute both the
+ // result and the overflow bit.
+ Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
+ Function *F = Intrinsic::getDeclaration(
+ I.getModule(), Intrinsic::sadd_with_overflow, NewType);
+
+ InstCombiner::BuilderTy &Builder = IC.Builder;
+
+ // Put the new code above the original add, in case there are any uses of the
+ // add between the add and the compare.
+ Builder.SetInsertPoint(OrigAdd);
+
+ Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
+ Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
+ CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
+ Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
+ Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
+
+ // The inner add was the result of the narrow add, zero extended to the
+ // wider type. Replace it with the result computed by the intrinsic.
+ IC.replaceInstUsesWith(*OrigAdd, ZExt);
+ IC.eraseInstFromFunction(*OrigAdd);
+
+ // The original icmp gets replaced with the overflow value.
+ return ExtractValueInst::Create(Call, 1, "sadd.overflow");
+}
+
+/// If we have:
+/// icmp eq/ne (urem/srem %x, %y), 0
+/// iff %y is a power-of-two, we can replace this with a bit test:
+/// icmp eq/ne (and %x, (add %y, -1)), 0
+Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
+ // This fold is only valid for equality predicates.
+ if (!I.isEquality())
+ return nullptr;
+ ICmpInst::Predicate Pred;
+ Value *X, *Y, *Zero;
+ if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
+ m_CombineAnd(m_Zero(), m_Value(Zero)))))
+ return nullptr;
+ if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
+ return nullptr;
+ // This may increase instruction count, we don't enforce that Y is a constant.
+ Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
+ Value *Masked = Builder.CreateAnd(X, Mask);
+ return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
+}
+
+/// Fold equality-comparison between zero and any (maybe truncated) right-shift
+/// by one-less-than-bitwidth into a sign test on the original value.
+Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
+ Instruction *Val;
+ ICmpInst::Predicate Pred;
+ if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
+ return nullptr;
+
+ Value *X;
+ Type *XTy;
+
+ Constant *C;
+ if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
+ XTy = X->getType();
+ unsigned XBitWidth = XTy->getScalarSizeInBits();
+ if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
+ APInt(XBitWidth, XBitWidth - 1))))
+ return nullptr;
+ } else if (isa<BinaryOperator>(Val) &&
+ (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
+ cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
+ /*AnalyzeForSignBitExtraction=*/true))) {
+ XTy = X->getType();
+ } else
+ return nullptr;
+
+ return ICmpInst::Create(Instruction::ICmp,
+ Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
+ : ICmpInst::ICMP_SLT,
+ X, ConstantInt::getNullValue(XTy));
+}
+
+// Handle icmp pred X, 0
+Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+ if (!match(Cmp.getOperand(1), m_Zero()))
+ return nullptr;
+
+ // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
+ if (Pred == ICmpInst::ICMP_SGT) {
+ Value *A, *B;
+ SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
+ if (SPR.Flavor == SPF_SMIN) {
+ if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
+ return new ICmpInst(Pred, B, Cmp.getOperand(1));
+ if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
+ return new ICmpInst(Pred, A, Cmp.getOperand(1));
+ }
+ }
+
+ if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
+ return New;
+
+ // Given:
+ // icmp eq/ne (urem %x, %y), 0
+ // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
+ // icmp eq/ne %x, 0
+ Value *X, *Y;
+ if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
+ ICmpInst::isEquality(Pred)) {
+ KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
+ KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
+ if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
+ return new ICmpInst(Pred, X, Cmp.getOperand(1));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp Pred X, C.
+/// TODO: This code structure does not make sense. The saturating add fold
+/// should be moved to some other helper and extended as noted below (it is also
+/// possible that code has been made unnecessary - do we canonicalize IR to
+/// overflow/saturating intrinsics or not?).
+Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
+ // Match the following pattern, which is a common idiom when writing
+ // overflow-safe integer arithmetic functions. The source performs an addition
+ // in wider type and explicitly checks for overflow using comparisons against
+ // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
+ //
+ // TODO: This could probably be generalized to handle other overflow-safe
+ // operations if we worked out the formulas to compute the appropriate magic
+ // constants.
+ //
+ // sum = a + b
+ // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
+ Value *A, *B;
+ ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
+ if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
+ match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
+ if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
+ return Res;
+
+ // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
+ Constant *C = dyn_cast<Constant>(Op1);
+ if (!C)
+ return nullptr;
+
+ if (auto *Phi = dyn_cast<PHINode>(Op0))
+ if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
+ Type *Ty = Cmp.getType();
+ Builder.SetInsertPoint(Phi);
+ PHINode *NewPhi =
+ Builder.CreatePHI(Ty, Phi->getNumOperands());
+ for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
+ auto *Input =
+ cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
+ auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
+ NewPhi->addIncoming(BoolInput, Predecessor);
+ }
+ NewPhi->takeName(&Cmp);
+ return replaceInstUsesWith(Cmp, NewPhi);
+ }
+
+ return nullptr;
+}
+
+/// Canonicalize icmp instructions based on dominating conditions.
+Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
+ // This is a cheap/incomplete check for dominance - just match a single
+ // predecessor with a conditional branch.
+ BasicBlock *CmpBB = Cmp.getParent();
+ BasicBlock *DomBB = CmpBB->getSinglePredecessor();
+ if (!DomBB)
+ return nullptr;
+
+ Value *DomCond;
+ BasicBlock *TrueBB, *FalseBB;
+ if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
+ return nullptr;
+
+ assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
+ "Predecessor block does not point to successor?");
+
+ // The branch should get simplified. Don't bother simplifying this condition.
+ if (TrueBB == FalseBB)
+ return nullptr;
+
+ // Try to simplify this compare to T/F based on the dominating condition.
+ Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
+ if (Imp)
+ return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
+
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
+ ICmpInst::Predicate DomPred;
+ const APInt *C, *DomC;
+ if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
+ match(Y, m_APInt(C))) {
+ // We have 2 compares of a variable with constants. Calculate the constant
+ // ranges of those compares to see if we can transform the 2nd compare:
+ // DomBB:
+ // DomCond = icmp DomPred X, DomC
+ // br DomCond, CmpBB, FalseBB
+ // CmpBB:
+ // Cmp = icmp Pred X, C
+ ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
+ ConstantRange DominatingCR =
+ (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
+ : ConstantRange::makeExactICmpRegion(
+ CmpInst::getInversePredicate(DomPred), *DomC);
+ ConstantRange Intersection = DominatingCR.intersectWith(CR);
+ ConstantRange Difference = DominatingCR.difference(CR);
+ if (Intersection.isEmptySet())
+ return replaceInstUsesWith(Cmp, Builder.getFalse());
+ if (Difference.isEmptySet())
+ return replaceInstUsesWith(Cmp, Builder.getTrue());
+
+ // Canonicalizing a sign bit comparison that gets used in a branch,
+ // pessimizes codegen by generating branch on zero instruction instead
+ // of a test and branch. So we avoid canonicalizing in such situations
+ // because test and branch instruction has better branch displacement
+ // than compare and branch instruction.
+ bool UnusedBit;
+ bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
+ if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
+ return nullptr;
+
+ if (const APInt *EqC = Intersection.getSingleElement())
+ return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
+ if (const APInt *NeC = Difference.getSingleElement())
+ return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (trunc X, Y), C.
+Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
+ TruncInst *Trunc,
+ const APInt &C) {
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *X = Trunc->getOperand(0);
+ if (C.isOneValue() && C.getBitWidth() > 1) {
+ // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
+ Value *V = nullptr;
+ if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
+ return new ICmpInst(ICmpInst::ICMP_SLT, V,
+ ConstantInt::get(V->getType(), 1));
+ }
+
+ if (Cmp.isEquality() && Trunc->hasOneUse()) {
+ // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
+ // of the high bits truncated out of x are known.
+ unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
+ SrcBits = X->getType()->getScalarSizeInBits();
+ KnownBits Known = computeKnownBits(X, 0, &Cmp);
+
+ // If all the high bits are known, we can do this xform.
+ if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
+ // Pull in the high bits from known-ones set.
+ APInt NewRHS = C.zext(SrcBits);
+ NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (xor X, Y), C.
+Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
+ BinaryOperator *Xor,
+ const APInt &C) {
+ Value *X = Xor->getOperand(0);
+ Value *Y = Xor->getOperand(1);
+ const APInt *XorC;
+ if (!match(Y, m_APInt(XorC)))
+ return nullptr;
+
+ // If this is a comparison that tests the signbit (X < 0) or (x > -1),
+ // fold the xor.
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ bool TrueIfSigned = false;
+ if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
+
+ // If the sign bit of the XorCst is not set, there is no change to
+ // the operation, just stop using the Xor.
+ if (!XorC->isNegative())
+ return replaceOperand(Cmp, 0, X);
+
+ // Emit the opposite comparison.
+ if (TrueIfSigned)
+ return new ICmpInst(ICmpInst::ICMP_SGT, X,
+ ConstantInt::getAllOnesValue(X->getType()));
+ else
+ return new ICmpInst(ICmpInst::ICMP_SLT, X,
+ ConstantInt::getNullValue(X->getType()));
+ }
+
+ if (Xor->hasOneUse()) {
+ // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
+ if (!Cmp.isEquality() && XorC->isSignMask()) {
+ Pred = Cmp.getFlippedSignednessPredicate();
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
+ }
+
+ // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
+ if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
+ Pred = Cmp.getFlippedSignednessPredicate();
+ Pred = Cmp.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
+ }
+ }
+
+ // Mask constant magic can eliminate an 'xor' with unsigned compares.
+ if (Pred == ICmpInst::ICMP_UGT) {
+ // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
+ if (*XorC == ~C && (C + 1).isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
+ // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
+ if (*XorC == C && (C + 1).isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
+ }
+ if (Pred == ICmpInst::ICMP_ULT) {
+ // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
+ if (*XorC == -C && C.isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_UGT, X,
+ ConstantInt::get(X->getType(), ~C));
+ // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
+ if (*XorC == C && (-C).isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_UGT, X,
+ ConstantInt::get(X->getType(), ~C));
+ }
+ return nullptr;
+}
+
+/// Fold icmp (and (sh X, Y), C2), C1.
+Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
+ BinaryOperator *And,
+ const APInt &C1,
+ const APInt &C2) {
+ BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
+ if (!Shift || !Shift->isShift())
+ return nullptr;
+
+ // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
+ // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
+ // code produced by the clang front-end, for bitfield access.
+ // This seemingly simple opportunity to fold away a shift turns out to be
+ // rather complicated. See PR17827 for details.
+ unsigned ShiftOpcode = Shift->getOpcode();
+ bool IsShl = ShiftOpcode == Instruction::Shl;
+ const APInt *C3;
+ if (match(Shift->getOperand(1), m_APInt(C3))) {
+ APInt NewAndCst, NewCmpCst;
+ bool AnyCmpCstBitsShiftedOut;
+ if (ShiftOpcode == Instruction::Shl) {
+ // For a left shift, we can fold if the comparison is not signed. We can
+ // also fold a signed comparison if the mask value and comparison value
+ // are not negative. These constraints may not be obvious, but we can
+ // prove that they are correct using an SMT solver.
+ if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
+ return nullptr;
+
+ NewCmpCst = C1.lshr(*C3);
+ NewAndCst = C2.lshr(*C3);
+ AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
+ } else if (ShiftOpcode == Instruction::LShr) {
+ // For a logical right shift, we can fold if the comparison is not signed.
+ // We can also fold a signed comparison if the shifted mask value and the
+ // shifted comparison value are not negative. These constraints may not be
+ // obvious, but we can prove that they are correct using an SMT solver.
+ NewCmpCst = C1.shl(*C3);
+ NewAndCst = C2.shl(*C3);
+ AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
+ if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
+ return nullptr;
+ } else {
+ // For an arithmetic shift, check that both constants don't use (in a
+ // signed sense) the top bits being shifted out.
+ assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
+ NewCmpCst = C1.shl(*C3);
+ NewAndCst = C2.shl(*C3);
+ AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
+ if (NewAndCst.ashr(*C3) != C2)
+ return nullptr;
+ }
+
+ if (AnyCmpCstBitsShiftedOut) {
+ // If we shifted bits out, the fold is not going to work out. As a
+ // special case, check to see if this means that the result is always
+ // true or false now.
+ if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
+ return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
+ if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
+ return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
+ } else {
+ Value *NewAnd = Builder.CreateAnd(
+ Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
+ return new ICmpInst(Cmp.getPredicate(),
+ NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
+ }
+ }
+
+ // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
+ // preferable because it allows the C2 << Y expression to be hoisted out of a
+ // loop if Y is invariant and X is not.
+ if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
+ !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
+ // Compute C2 << Y.
+ Value *NewShift =
+ IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
+ : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
+
+ // Compute X & (C2 << Y).
+ Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
+ return replaceOperand(Cmp, 0, NewAnd);
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (and X, C2), C1.
+Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
+ BinaryOperator *And,
+ const APInt &C1) {
+ bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
+
+ // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
+ // TODO: We canonicalize to the longer form for scalars because we have
+ // better analysis/folds for icmp, and codegen may be better with icmp.
+ if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
+ match(And->getOperand(1), m_One()))
+ return new TruncInst(And->getOperand(0), Cmp.getType());
+
+ const APInt *C2;
+ Value *X;
+ if (!match(And, m_And(m_Value(X), m_APInt(C2))))
+ return nullptr;
+
+ // Don't perform the following transforms if the AND has multiple uses
+ if (!And->hasOneUse())
+ return nullptr;
+
+ if (Cmp.isEquality() && C1.isNullValue()) {
+ // Restrict this fold to single-use 'and' (PR10267).
+ // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
+ if (C2->isSignMask()) {
+ Constant *Zero = Constant::getNullValue(X->getType());
+ auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
+ return new ICmpInst(NewPred, X, Zero);
+ }
+
+ // Restrict this fold only for single-use 'and' (PR10267).
+ // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
+ if ((~(*C2) + 1).isPowerOf2()) {
+ Constant *NegBOC =
+ ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
+ auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
+ return new ICmpInst(NewPred, X, NegBOC);
+ }
+ }
+
+ // If the LHS is an 'and' of a truncate and we can widen the and/compare to
+ // the input width without changing the value produced, eliminate the cast:
+ //
+ // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
+ //
+ // We can do this transformation if the constants do not have their sign bits
+ // set or if it is an equality comparison. Extending a relational comparison
+ // when we're checking the sign bit would not work.
+ Value *W;
+ if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
+ (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
+ // TODO: Is this a good transform for vectors? Wider types may reduce
+ // throughput. Should this transform be limited (even for scalars) by using
+ // shouldChangeType()?
+ if (!Cmp.getType()->isVectorTy()) {
+ Type *WideType = W->getType();
+ unsigned WideScalarBits = WideType->getScalarSizeInBits();
+ Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
+ Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
+ Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
+ return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
+ }
+ }
+
+ if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
+ return I;
+
+ // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
+ // (icmp pred (and A, (or (shl 1, B), 1), 0))
+ //
+ // iff pred isn't signed
+ if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
+ match(And->getOperand(1), m_One())) {
+ Constant *One = cast<Constant>(And->getOperand(1));
+ Value *Or = And->getOperand(0);
+ Value *A, *B, *LShr;
+ if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
+ match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
+ unsigned UsesRemoved = 0;
+ if (And->hasOneUse())
+ ++UsesRemoved;
+ if (Or->hasOneUse())
+ ++UsesRemoved;
+ if (LShr->hasOneUse())
+ ++UsesRemoved;
+
+ // Compute A & ((1 << B) | 1)
+ Value *NewOr = nullptr;
+ if (auto *C = dyn_cast<Constant>(B)) {
+ if (UsesRemoved >= 1)
+ NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
+ } else {
+ if (UsesRemoved >= 3)
+ NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
+ /*HasNUW=*/true),
+ One, Or->getName());
+ }
+ if (NewOr) {
+ Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
+ return replaceOperand(Cmp, 0, NewAnd);
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (and X, Y), C.
+Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
+ BinaryOperator *And,
+ const APInt &C) {
+ if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
+ return I;
+
+ // TODO: These all require that Y is constant too, so refactor with the above.
+
+ // Try to optimize things like "A[i] & 42 == 0" to index computations.
+ Value *X = And->getOperand(0);
+ Value *Y = And->getOperand(1);
+ if (auto *LI = dyn_cast<LoadInst>(X))
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
+ if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !LI->isVolatile() && isa<ConstantInt>(Y)) {
+ ConstantInt *C2 = cast<ConstantInt>(Y);
+ if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
+ return Res;
+ }
+
+ if (!Cmp.isEquality())
+ return nullptr;
+
+ // X & -C == -C -> X > u ~C
+ // X & -C != -C -> X <= u ~C
+ // iff C is a power of 2
+ if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
+ auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
+ : CmpInst::ICMP_ULE;
+ return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
+ }
+
+ // (X & C2) == 0 -> (trunc X) >= 0
+ // (X & C2) != 0 -> (trunc X) < 0
+ // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
+ const APInt *C2;
+ if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
+ int32_t ExactLogBase2 = C2->exactLogBase2();
+ if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
+ Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
+ if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
+ NTy = VectorType::get(NTy, AndVTy->getElementCount());
+ Value *Trunc = Builder.CreateTrunc(X, NTy);
+ auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
+ : CmpInst::ICMP_SLT;
+ return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (or X, Y), C.
+Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
+ BinaryOperator *Or,
+ const APInt &C) {
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if (C.isOneValue()) {
+ // icmp slt signum(V) 1 --> icmp slt V, 1
+ Value *V = nullptr;
+ if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
+ return new ICmpInst(ICmpInst::ICMP_SLT, V,
+ ConstantInt::get(V->getType(), 1));
+ }
+
+ Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
+ const APInt *MaskC;
+ if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
+ if (*MaskC == C && (C + 1).isPowerOf2()) {
+ // X | C == C --> X <=u C
+ // X | C != C --> X >u C
+ // iff C+1 is a power of 2 (C is a bitmask of the low bits)
+ Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
+ return new ICmpInst(Pred, OrOp0, OrOp1);
+ }
+
+ // More general: canonicalize 'equality with set bits mask' to
+ // 'equality with clear bits mask'.
+ // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
+ // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
+ if (Or->hasOneUse()) {
+ Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
+ Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
+ return new ICmpInst(Pred, And, NewC);
+ }
+ }
+
+ if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
+ return nullptr;
+
+ Value *P, *Q;
+ if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
+ // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
+ // -> and (icmp eq P, null), (icmp eq Q, null).
+ Value *CmpP =
+ Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
+ Value *CmpQ =
+ Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
+ auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
+ return BinaryOperator::Create(BOpc, CmpP, CmpQ);
+ }
+
+ // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
+ // a shorter form that has more potential to be folded even further.
+ Value *X1, *X2, *X3, *X4;
+ if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
+ match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
+ // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
+ // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
+ Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
+ Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
+ auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
+ return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (mul X, Y), C.
+Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
+ BinaryOperator *Mul,
+ const APInt &C) {
+ const APInt *MulC;
+ if (!match(Mul->getOperand(1), m_APInt(MulC)))
+ return nullptr;
+
+ // If this is a test of the sign bit and the multiply is sign-preserving with
+ // a constant operand, use the multiply LHS operand instead.
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
+ if (MulC->isNegative())
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, Mul->getOperand(0),
+ Constant::getNullValue(Mul->getType()));
+ }
+
+ // If the multiply does not wrap, try to divide the compare constant by the
+ // multiplication factor.
+ if (Cmp.isEquality() && !MulC->isNullValue()) {
+ // (mul nsw X, MulC) == C --> X == C /s MulC
+ if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
+ Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
+ return new ICmpInst(Pred, Mul->getOperand(0), NewC);
+ }
+ // (mul nuw X, MulC) == C --> X == C /u MulC
+ if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
+ Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
+ return new ICmpInst(Pred, Mul->getOperand(0), NewC);
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (shl 1, Y), C.
+static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
+ const APInt &C) {
+ Value *Y;
+ if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
+ return nullptr;
+
+ Type *ShiftType = Shl->getType();
+ unsigned TypeBits = C.getBitWidth();
+ bool CIsPowerOf2 = C.isPowerOf2();
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if (Cmp.isUnsigned()) {
+ // (1 << Y) pred C -> Y pred Log2(C)
+ if (!CIsPowerOf2) {
+ // (1 << Y) < 30 -> Y <= 4
+ // (1 << Y) <= 30 -> Y <= 4
+ // (1 << Y) >= 30 -> Y > 4
+ // (1 << Y) > 30 -> Y > 4
+ if (Pred == ICmpInst::ICMP_ULT)
+ Pred = ICmpInst::ICMP_ULE;
+ else if (Pred == ICmpInst::ICMP_UGE)
+ Pred = ICmpInst::ICMP_UGT;
+ }
+
+ // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
+ // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
+ unsigned CLog2 = C.logBase2();
+ if (CLog2 == TypeBits - 1) {
+ if (Pred == ICmpInst::ICMP_UGE)
+ Pred = ICmpInst::ICMP_EQ;
+ else if (Pred == ICmpInst::ICMP_ULT)
+ Pred = ICmpInst::ICMP_NE;
+ }
+ return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
+ } else if (Cmp.isSigned()) {
+ Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
+ if (C.isAllOnesValue()) {
+ // (1 << Y) <= -1 -> Y == 31
+ if (Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
+
+ // (1 << Y) > -1 -> Y != 31
+ if (Pred == ICmpInst::ICMP_SGT)
+ return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
+ } else if (!C) {
+ // (1 << Y) < 0 -> Y == 31
+ // (1 << Y) <= 0 -> Y == 31
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
+
+ // (1 << Y) >= 0 -> Y != 31
+ // (1 << Y) > 0 -> Y != 31
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
+ return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
+ }
+ } else if (Cmp.isEquality() && CIsPowerOf2) {
+ return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (shl X, Y), C.
+Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
+ BinaryOperator *Shl,
+ const APInt &C) {
+ const APInt *ShiftVal;
+ if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
+ return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
+
+ const APInt *ShiftAmt;
+ if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
+ return foldICmpShlOne(Cmp, Shl, C);
+
+ // Check that the shift amount is in range. If not, don't perform undefined
+ // shifts. When the shift is visited, it will be simplified.
+ unsigned TypeBits = C.getBitWidth();
+ if (ShiftAmt->uge(TypeBits))
+ return nullptr;
+
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *X = Shl->getOperand(0);
+ Type *ShType = Shl->getType();
+
+ // NSW guarantees that we are only shifting out sign bits from the high bits,
+ // so we can ASHR the compare constant without needing a mask and eliminate
+ // the shift.
+ if (Shl->hasNoSignedWrap()) {
+ if (Pred == ICmpInst::ICMP_SGT) {
+ // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
+ APInt ShiftedC = C.ashr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
+ C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
+ APInt ShiftedC = C.ashr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if (Pred == ICmpInst::ICMP_SLT) {
+ // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
+ // (X << S) <=s C is equiv to X <=s (C >> S) for all C
+ // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
+ // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
+ assert(!C.isMinSignedValue() && "Unexpected icmp slt");
+ APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ // If this is a signed comparison to 0 and the shift is sign preserving,
+ // use the shift LHS operand instead; isSignTest may change 'Pred', so only
+ // do that if we're sure to not continue on in this function.
+ if (isSignTest(Pred, C))
+ return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
+ }
+
+ // NUW guarantees that we are only shifting out zero bits from the high bits,
+ // so we can LSHR the compare constant without needing a mask and eliminate
+ // the shift.
+ if (Shl->hasNoUnsignedWrap()) {
+ if (Pred == ICmpInst::ICMP_UGT) {
+ // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
+ APInt ShiftedC = C.lshr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
+ C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
+ APInt ShiftedC = C.lshr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if (Pred == ICmpInst::ICMP_ULT) {
+ // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
+ // (X << S) <=u C is equiv to X <=u (C >> S) for all C
+ // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
+ // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
+ assert(C.ugt(0) && "ult 0 should have been eliminated");
+ APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ }
+
+ if (Cmp.isEquality() && Shl->hasOneUse()) {
+ // Strength-reduce the shift into an 'and'.
+ Constant *Mask = ConstantInt::get(
+ ShType,
+ APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
+ Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
+ Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
+ return new ICmpInst(Pred, And, LShrC);
+ }
+
+ // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
+ bool TrueIfSigned = false;
+ if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
+ // (X << 31) <s 0 --> (X & 1) != 0
+ Constant *Mask = ConstantInt::get(
+ ShType,
+ APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
+ Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
+ return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
+ And, Constant::getNullValue(ShType));
+ }
+
+ // Simplify 'shl' inequality test into 'and' equality test.
+ if (Cmp.isUnsigned() && Shl->hasOneUse()) {
+ // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
+ if ((C + 1).isPowerOf2() &&
+ (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
+ Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
+ return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
+ : ICmpInst::ICMP_NE,
+ And, Constant::getNullValue(ShType));
+ }
+ // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
+ if (C.isPowerOf2() &&
+ (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
+ Value *And =
+ Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
+ return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
+ : ICmpInst::ICMP_NE,
+ And, Constant::getNullValue(ShType));
+ }
+ }
+
+ // Transform (icmp pred iM (shl iM %v, N), C)
+ // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
+ // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
+ // This enables us to get rid of the shift in favor of a trunc that may be
+ // free on the target. It has the additional benefit of comparing to a
+ // smaller constant that may be more target-friendly.
+ unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
+ if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
+ DL.isLegalInteger(TypeBits - Amt)) {
+ Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
+ if (auto *ShVTy = dyn_cast<VectorType>(ShType))
+ TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
+ Constant *NewC =
+ ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
+ return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp ({al}shr X, Y), C.
+Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
+ BinaryOperator *Shr,
+ const APInt &C) {
+ // An exact shr only shifts out zero bits, so:
+ // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
+ Value *X = Shr->getOperand(0);
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+ if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
+ C.isNullValue())
+ return new ICmpInst(Pred, X, Cmp.getOperand(1));
+
+ const APInt *ShiftVal;
+ if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
+ return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
+
+ const APInt *ShiftAmt;
+ if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
+ return nullptr;
+
+ // Check that the shift amount is in range. If not, don't perform undefined
+ // shifts. When the shift is visited it will be simplified.
+ unsigned TypeBits = C.getBitWidth();
+ unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
+ if (ShAmtVal >= TypeBits || ShAmtVal == 0)
+ return nullptr;
+
+ bool IsAShr = Shr->getOpcode() == Instruction::AShr;
+ bool IsExact = Shr->isExact();
+ Type *ShrTy = Shr->getType();
+ // TODO: If we could guarantee that InstSimplify would handle all of the
+ // constant-value-based preconditions in the folds below, then we could assert
+ // those conditions rather than checking them. This is difficult because of
+ // undef/poison (PR34838).
+ if (IsAShr) {
+ if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
+ // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
+ // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
+ APInt ShiftedC = C.shl(ShAmtVal);
+ if (ShiftedC.ashr(ShAmtVal) == C)
+ return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
+ }
+ if (Pred == CmpInst::ICMP_SGT) {
+ // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
+ APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
+ if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
+ (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
+ return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
+ }
+
+ // If the compare constant has significant bits above the lowest sign-bit,
+ // then convert an unsigned cmp to a test of the sign-bit:
+ // (ashr X, ShiftC) u> C --> X s< 0
+ // (ashr X, ShiftC) u< C --> X s> -1
+ if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
+ if (Pred == CmpInst::ICMP_UGT) {
+ return new ICmpInst(CmpInst::ICMP_SLT, X,
+ ConstantInt::getNullValue(ShrTy));
+ }
+ if (Pred == CmpInst::ICMP_ULT) {
+ return new ICmpInst(CmpInst::ICMP_SGT, X,
+ ConstantInt::getAllOnesValue(ShrTy));
+ }
+ }
+ } else {
+ if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
+ // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
+ // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
+ APInt ShiftedC = C.shl(ShAmtVal);
+ if (ShiftedC.lshr(ShAmtVal) == C)
+ return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
+ }
+ if (Pred == CmpInst::ICMP_UGT) {
+ // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
+ APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
+ if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
+ return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
+ }
+ }
+
+ if (!Cmp.isEquality())
+ return nullptr;
+
+ // Handle equality comparisons of shift-by-constant.
+
+ // If the comparison constant changes with the shift, the comparison cannot
+ // succeed (bits of the comparison constant cannot match the shifted value).
+ // This should be known by InstSimplify and already be folded to true/false.
+ assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
+ (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
+ "Expected icmp+shr simplify did not occur.");
+
+ // If the bits shifted out are known zero, compare the unshifted value:
+ // (X & 4) >> 1 == 2 --> (X & 4) == 4.
+ if (Shr->isExact())
+ return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
+
+ if (Shr->hasOneUse()) {
+ // Canonicalize the shift into an 'and':
+ // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
+ APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
+ Constant *Mask = ConstantInt::get(ShrTy, Val);
+ Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
+ return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
+ BinaryOperator *SRem,
+ const APInt &C) {
+ // Match an 'is positive' or 'is negative' comparison of remainder by a
+ // constant power-of-2 value:
+ // (X % pow2C) sgt/slt 0
+ const ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
+ return nullptr;
+
+ // TODO: The one-use check is standard because we do not typically want to
+ // create longer instruction sequences, but this might be a special-case
+ // because srem is not good for analysis or codegen.
+ if (!SRem->hasOneUse())
+ return nullptr;
+
+ const APInt *DivisorC;
+ if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
+ return nullptr;
+
+ // Mask off the sign bit and the modulo bits (low-bits).
+ Type *Ty = SRem->getType();
+ APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
+ Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
+ Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
+
+ // For 'is positive?' check that the sign-bit is clear and at least 1 masked
+ // bit is set. Example:
+ // (i8 X % 32) s> 0 --> (X & 159) s> 0
+ if (Pred == ICmpInst::ICMP_SGT)
+ return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
+
+ // For 'is negative?' check that the sign-bit is set and at least 1 masked
+ // bit is set. Example:
+ // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
+ return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
+}
+
+/// Fold icmp (udiv X, Y), C.
+Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
+ BinaryOperator *UDiv,
+ const APInt &C) {
+ const APInt *C2;
+ if (!match(UDiv->getOperand(0), m_APInt(C2)))
+ return nullptr;
+
+ assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
+
+ // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
+ Value *Y = UDiv->getOperand(1);
+ if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
+ assert(!C.isMaxValue() &&
+ "icmp ugt X, UINT_MAX should have been simplified already.");
+ return new ICmpInst(ICmpInst::ICMP_ULE, Y,
+ ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
+ }
+
+ // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
+ if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
+ assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
+ return new ICmpInst(ICmpInst::ICMP_UGT, Y,
+ ConstantInt::get(Y->getType(), C2->udiv(C)));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp ({su}div X, Y), C.
+Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
+ BinaryOperator *Div,
+ const APInt &C) {
+ // Fold: icmp pred ([us]div X, C2), C -> range test
+ // Fold this div into the comparison, producing a range check.
+ // Determine, based on the divide type, what the range is being
+ // checked. If there is an overflow on the low or high side, remember
+ // it, otherwise compute the range [low, hi) bounding the new value.
+ // See: InsertRangeTest above for the kinds of replacements possible.
+ const APInt *C2;
+ if (!match(Div->getOperand(1), m_APInt(C2)))
+ return nullptr;
+
+ // FIXME: If the operand types don't match the type of the divide
+ // then don't attempt this transform. The code below doesn't have the
+ // logic to deal with a signed divide and an unsigned compare (and
+ // vice versa). This is because (x /s C2) <s C produces different
+ // results than (x /s C2) <u C or (x /u C2) <s C or even
+ // (x /u C2) <u C. Simply casting the operands and result won't
+ // work. :( The if statement below tests that condition and bails
+ // if it finds it.
+ bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
+ if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
+ return nullptr;
+
+ // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
+ // INT_MIN will also fail if the divisor is 1. Although folds of all these
+ // division-by-constant cases should be present, we can not assert that they
+ // have happened before we reach this icmp instruction.
+ if (C2->isNullValue() || C2->isOneValue() ||
+ (DivIsSigned && C2->isAllOnesValue()))
+ return nullptr;
+
+ // Compute Prod = C * C2. We are essentially solving an equation of
+ // form X / C2 = C. We solve for X by multiplying C2 and C.
+ // By solving for X, we can turn this into a range check instead of computing
+ // a divide.
+ APInt Prod = C * *C2;
+
+ // Determine if the product overflows by seeing if the product is not equal to
+ // the divide. Make sure we do the same kind of divide as in the LHS
+ // instruction that we're folding.
+ bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
+
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+
+ // If the division is known to be exact, then there is no remainder from the
+ // divide, so the covered range size is unit, otherwise it is the divisor.
+ APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
+
+ // Figure out the interval that is being checked. For example, a comparison
+ // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
+ // Compute this interval based on the constants involved and the signedness of
+ // the compare/divide. This computes a half-open interval, keeping track of
+ // whether either value in the interval overflows. After analysis each
+ // overflow variable is set to 0 if it's corresponding bound variable is valid
+ // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
+ int LoOverflow = 0, HiOverflow = 0;
+ APInt LoBound, HiBound;
+
+ if (!DivIsSigned) { // udiv
+ // e.g. X/5 op 3 --> [15, 20)
+ LoBound = Prod;
+ HiOverflow = LoOverflow = ProdOV;
+ if (!HiOverflow) {
+ // If this is not an exact divide, then many values in the range collapse
+ // to the same result value.
+ HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
+ }
+ } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
+ if (C.isNullValue()) { // (X / pos) op 0
+ // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
+ LoBound = -(RangeSize - 1);
+ HiBound = RangeSize;
+ } else if (C.isStrictlyPositive()) { // (X / pos) op pos
+ LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
+ HiOverflow = LoOverflow = ProdOV;
+ if (!HiOverflow)
+ HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
+ } else { // (X / pos) op neg
+ // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
+ HiBound = Prod + 1;
+ LoOverflow = HiOverflow = ProdOV ? -1 : 0;
+ if (!LoOverflow) {
+ APInt DivNeg = -RangeSize;
+ LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
+ }
+ }
+ } else if (C2->isNegative()) { // Divisor is < 0.
+ if (Div->isExact())
+ RangeSize.negate();
+ if (C.isNullValue()) { // (X / neg) op 0
+ // e.g. X/-5 op 0 --> [-4, 5)
+ LoBound = RangeSize + 1;
+ HiBound = -RangeSize;
+ if (HiBound == *C2) { // -INTMIN = INTMIN
+ HiOverflow = 1; // [INTMIN+1, overflow)
+ HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
+ }
+ } else if (C.isStrictlyPositive()) { // (X / neg) op pos
+ // e.g. X/-5 op 3 --> [-19, -14)
+ HiBound = Prod + 1;
+ HiOverflow = LoOverflow = ProdOV ? -1 : 0;
+ if (!LoOverflow)
+ LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
+ } else { // (X / neg) op neg
+ LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
+ LoOverflow = HiOverflow = ProdOV;
+ if (!HiOverflow)
+ HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
+ }
+
+ // Dividing by a negative swaps the condition. LT <-> GT
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ Value *X = Div->getOperand(0);
+ switch (Pred) {
+ default: llvm_unreachable("Unhandled icmp opcode!");
+ case ICmpInst::ICMP_EQ:
+ if (LoOverflow && HiOverflow)
+ return replaceInstUsesWith(Cmp, Builder.getFalse());
+ if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X,
+ ConstantInt::get(Div->getType(), LoBound));
+ if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X,
+ ConstantInt::get(Div->getType(), HiBound));
+ return replaceInstUsesWith(
+ Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
+ case ICmpInst::ICMP_NE:
+ if (LoOverflow && HiOverflow)
+ return replaceInstUsesWith(Cmp, Builder.getTrue());
+ if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X,
+ ConstantInt::get(Div->getType(), LoBound));
+ if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X,
+ ConstantInt::get(Div->getType(), HiBound));
+ return replaceInstUsesWith(Cmp,
+ insertRangeTest(X, LoBound, HiBound,
+ DivIsSigned, false));
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ if (LoOverflow == +1) // Low bound is greater than input range.
+ return replaceInstUsesWith(Cmp, Builder.getTrue());
+ if (LoOverflow == -1) // Low bound is less than input range.
+ return replaceInstUsesWith(Cmp, Builder.getFalse());
+ return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ if (HiOverflow == +1) // High bound greater than input range.
+ return replaceInstUsesWith(Cmp, Builder.getFalse());
+ if (HiOverflow == -1) // High bound less than input range.
+ return replaceInstUsesWith(Cmp, Builder.getTrue());
+ if (Pred == ICmpInst::ICMP_UGT)
+ return new ICmpInst(ICmpInst::ICMP_UGE, X,
+ ConstantInt::get(Div->getType(), HiBound));
+ return new ICmpInst(ICmpInst::ICMP_SGE, X,
+ ConstantInt::get(Div->getType(), HiBound));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (sub X, Y), C.
+Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
+ BinaryOperator *Sub,
+ const APInt &C) {
+ Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ const APInt *C2;
+ APInt SubResult;
+
+ // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
+ if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
+ return new ICmpInst(Cmp.getPredicate(), Y,
+ ConstantInt::get(Y->getType(), 0));
+
+ // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
+ if (match(X, m_APInt(C2)) &&
+ ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
+ (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
+ !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
+ return new ICmpInst(Cmp.getSwappedPredicate(), Y,
+ ConstantInt::get(Y->getType(), SubResult));
+
+ // The following transforms are only worth it if the only user of the subtract
+ // is the icmp.
+ if (!Sub->hasOneUse())
+ return nullptr;
+
+ if (Sub->hasNoSignedWrap()) {
+ // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
+ if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
+
+ // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
+ if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
+
+ // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
+ if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
+
+ // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
+ if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
+ return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
+ }
+
+ if (!match(X, m_APInt(C2)))
+ return nullptr;
+
+ // C2 - Y <u C -> (Y | (C - 1)) == C2
+ // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
+ if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
+ (*C2 & (C - 1)) == (C - 1))
+ return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
+
+ // C2 - Y >u C -> (Y | C) != C2
+ // iff C2 & C == C and C + 1 is a power of 2
+ if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
+ return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
+
+ return nullptr;
+}
+
+/// Fold icmp (add X, Y), C.
+Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
+ BinaryOperator *Add,
+ const APInt &C) {
+ Value *Y = Add->getOperand(1);
+ const APInt *C2;
+ if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
+ return nullptr;
+
+ // Fold icmp pred (add X, C2), C.
+ Value *X = Add->getOperand(0);
+ Type *Ty = Add->getType();
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+
+ // If the add does not wrap, we can always adjust the compare by subtracting
+ // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
+ // are canonicalized to SGT/SLT/UGT/ULT.
+ if ((Add->hasNoSignedWrap() &&
+ (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
+ (Add->hasNoUnsignedWrap() &&
+ (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
+ bool Overflow;
+ APInt NewC =
+ Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
+ // If there is overflow, the result must be true or false.
+ // TODO: Can we assert there is no overflow because InstSimplify always
+ // handles those cases?
+ if (!Overflow)
+ // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
+ return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
+ }
+
+ auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
+ const APInt &Upper = CR.getUpper();
+ const APInt &Lower = CR.getLower();
+ if (Cmp.isSigned()) {
+ if (Lower.isSignMask())
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
+ if (Upper.isSignMask())
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
+ } else {
+ if (Lower.isMinValue())
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
+ if (Upper.isMinValue())
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
+ }
+
+ if (!Add->hasOneUse())
+ return nullptr;
+
+ // X+C <u C2 -> (X & -C2) == C
+ // iff C & (C2-1) == 0
+ // C2 is a power of 2
+ if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
+ ConstantExpr::getNeg(cast<Constant>(Y)));
+
+ // X+C >u C2 -> (X & ~C2) != C
+ // iff C & C2 == 0
+ // C2+1 is a power of 2
+ if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
+ return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
+ ConstantExpr::getNeg(cast<Constant>(Y)));
+
+ return nullptr;
+}
+
+bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
+ Value *&RHS, ConstantInt *&Less,
+ ConstantInt *&Equal,
+ ConstantInt *&Greater) {
+ // TODO: Generalize this to work with other comparison idioms or ensure
+ // they get canonicalized into this form.
+
+ // select i1 (a == b),
+ // i32 Equal,
+ // i32 (select i1 (a < b), i32 Less, i32 Greater)
+ // where Equal, Less and Greater are placeholders for any three constants.
+ ICmpInst::Predicate PredA;
+ if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
+ !ICmpInst::isEquality(PredA))
+ return false;
+ Value *EqualVal = SI->getTrueValue();
+ Value *UnequalVal = SI->getFalseValue();
+ // We still can get non-canonical predicate here, so canonicalize.
+ if (PredA == ICmpInst::ICMP_NE)
+ std::swap(EqualVal, UnequalVal);
+ if (!match(EqualVal, m_ConstantInt(Equal)))
+ return false;
+ ICmpInst::Predicate PredB;
+ Value *LHS2, *RHS2;
+ if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
+ m_ConstantInt(Less), m_ConstantInt(Greater))))
+ return false;
+ // We can get predicate mismatch here, so canonicalize if possible:
+ // First, ensure that 'LHS' match.
+ if (LHS2 != LHS) {
+ // x sgt y <--> y slt x
+ std::swap(LHS2, RHS2);
+ PredB = ICmpInst::getSwappedPredicate(PredB);
+ }
+ if (LHS2 != LHS)
+ return false;
+ // We also need to canonicalize 'RHS'.
+ if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
+ // x sgt C-1 <--> x sge C <--> not(x slt C)
+ auto FlippedStrictness =
+ InstCombiner::getFlippedStrictnessPredicateAndConstant(
+ PredB, cast<Constant>(RHS2));
+ if (!FlippedStrictness)
+ return false;
+ assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
+ RHS2 = FlippedStrictness->second;
+ // And kind-of perform the result swap.
+ std::swap(Less, Greater);
+ PredB = ICmpInst::ICMP_SLT;
+ }
+ return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
+}
+
+Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
+ SelectInst *Select,
+ ConstantInt *C) {
+
+ assert(C && "Cmp RHS should be a constant int!");
+ // If we're testing a constant value against the result of a three way
+ // comparison, the result can be expressed directly in terms of the
+ // original values being compared. Note: We could possibly be more
+ // aggressive here and remove the hasOneUse test. The original select is
+ // really likely to simplify or sink when we remove a test of the result.
+ Value *OrigLHS, *OrigRHS;
+ ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
+ if (Cmp.hasOneUse() &&
+ matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
+ C3GreaterThan)) {
+ assert(C1LessThan && C2Equal && C3GreaterThan);
+
+ bool TrueWhenLessThan =
+ ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
+ ->isAllOnesValue();
+ bool TrueWhenEqual =
+ ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
+ ->isAllOnesValue();
+ bool TrueWhenGreaterThan =
+ ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
+ ->isAllOnesValue();
+
+ // This generates the new instruction that will replace the original Cmp
+ // Instruction. Instead of enumerating the various combinations when
+ // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
+ // false, we rely on chaining of ORs and future passes of InstCombine to
+ // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
+
+ // When none of the three constants satisfy the predicate for the RHS (C),
+ // the entire original Cmp can be simplified to a false.
+ Value *Cond = Builder.getFalse();
+ if (TrueWhenLessThan)
+ Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
+ OrigLHS, OrigRHS));
+ if (TrueWhenEqual)
+ Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
+ OrigLHS, OrigRHS));
+ if (TrueWhenGreaterThan)
+ Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
+ OrigLHS, OrigRHS));
+
+ return replaceInstUsesWith(Cmp, Cond);
+ }
+ return nullptr;
+}
+
+static Instruction *foldICmpBitCast(ICmpInst &Cmp,
+ InstCombiner::BuilderTy &Builder) {
+ auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
+ if (!Bitcast)
+ return nullptr;
+
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *Op1 = Cmp.getOperand(1);
+ Value *BCSrcOp = Bitcast->getOperand(0);
+
+ // Make sure the bitcast doesn't change the number of vector elements.
+ if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
+ Bitcast->getDestTy()->getScalarSizeInBits()) {
+ // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
+ Value *X;
+ if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
+ // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
+ // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
+ // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
+ // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
+ if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
+ Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
+ match(Op1, m_Zero()))
+ return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
+
+ // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
+ if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
+
+ // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
+ if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
+ return new ICmpInst(Pred, X,
+ ConstantInt::getAllOnesValue(X->getType()));
+ }
+
+ // Zero-equality checks are preserved through unsigned floating-point casts:
+ // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
+ // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
+ if (match(BCSrcOp, m_UIToFP(m_Value(X))))
+ if (Cmp.isEquality() && match(Op1, m_Zero()))
+ return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
+
+ // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
+ // the FP extend/truncate because that cast does not change the sign-bit.
+ // This is true for all standard IEEE-754 types and the X86 80-bit type.
+ // The sign-bit is always the most significant bit in those types.
+ const APInt *C;
+ bool TrueIfSigned;
+ if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
+ InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
+ if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
+ match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
+ // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
+ // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
+ Type *XType = X->getType();
+
+ // We can't currently handle Power style floating point operations here.
+ if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
+
+ Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
+ if (auto *XVTy = dyn_cast<VectorType>(XType))
+ NewType = VectorType::get(NewType, XVTy->getElementCount());
+ Value *NewBitcast = Builder.CreateBitCast(X, NewType);
+ if (TrueIfSigned)
+ return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
+ ConstantInt::getNullValue(NewType));
+ else
+ return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
+ ConstantInt::getAllOnesValue(NewType));
+ }
+ }
+ }
+ }
+
+ // Test to see if the operands of the icmp are casted versions of other
+ // values. If the ptr->ptr cast can be stripped off both arguments, do so.
+ if (Bitcast->getType()->isPointerTy() &&
+ (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
+ // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
+ // so eliminate it as well.
+ if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
+ Op1 = BC2->getOperand(0);
+
+ Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
+ return new ICmpInst(Pred, BCSrcOp, Op1);
+ }
+
+ // Folding: icmp <pred> iN X, C
+ // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
+ // and C is a splat of a K-bit pattern
+ // and SC is a constant vector = <C', C', C', ..., C'>
+ // Into:
+ // %E = extractelement <M x iK> %vec, i32 C'
+ // icmp <pred> iK %E, trunc(C)
+ const APInt *C;
+ if (!match(Cmp.getOperand(1), m_APInt(C)) ||
+ !Bitcast->getType()->isIntegerTy() ||
+ !Bitcast->getSrcTy()->isIntOrIntVectorTy())
+ return nullptr;
+
+ Value *Vec;
+ ArrayRef<int> Mask;
+ if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
+ // Check whether every element of Mask is the same constant
+ if (is_splat(Mask)) {
+ auto *VecTy = cast<VectorType>(BCSrcOp->getType());
+ auto *EltTy = cast<IntegerType>(VecTy->getElementType());
+ if (C->isSplat(EltTy->getBitWidth())) {
+ // Fold the icmp based on the value of C
+ // If C is M copies of an iK sized bit pattern,
+ // then:
+ // => %E = extractelement <N x iK> %vec, i32 Elem
+ // icmp <pred> iK %SplatVal, <pattern>
+ Value *Elem = Builder.getInt32(Mask[0]);
+ Value *Extract = Builder.CreateExtractElement(Vec, Elem);
+ Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
+ return new ICmpInst(Pred, Extract, NewC);
+ }
+ }
+ }
+ return nullptr;
+}
+
+/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
+/// where X is some kind of instruction.
+Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
+ const APInt *C;
+ if (!match(Cmp.getOperand(1), m_APInt(C)))
+ return nullptr;
+
+ if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
+ switch (BO->getOpcode()) {
+ case Instruction::Xor:
+ if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::And:
+ if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::Or:
+ if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::Mul:
+ if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::Shl:
+ if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::SRem:
+ if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::UDiv:
+ if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
+ return I;
+ LLVM_FALLTHROUGH;
+ case Instruction::SDiv:
+ if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::Sub:
+ if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
+ return I;
+ break;
+ case Instruction::Add:
+ if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
+ return I;
+ break;
+ default:
+ break;
+ }
+ // TODO: These folds could be refactored to be part of the above calls.
+ if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
+ return I;
+ }
+
+ // Match against CmpInst LHS being instructions other than binary operators.
+
+ if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
+ // For now, we only support constant integers while folding the
+ // ICMP(SELECT)) pattern. We can extend this to support vector of integers
+ // similar to the cases handled by binary ops above.
+ if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
+ if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
+ return I;
+ }
+
+ if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
+ if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
+ return I;
+ }
+
+ if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
+ if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
+ return I;
+
+ return nullptr;
+}
+
+/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
+/// icmp eq/ne BO, C.
+Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
+ ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
+ // TODO: Some of these folds could work with arbitrary constants, but this
+ // function is limited to scalar and vector splat constants.
+ if (!Cmp.isEquality())
+ return nullptr;
+
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
+ Constant *RHS = cast<Constant>(Cmp.getOperand(1));
+ Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
+
+ switch (BO->getOpcode()) {
+ case Instruction::SRem:
+ // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
+ if (C.isNullValue() && BO->hasOneUse()) {
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
+ Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
+ return new ICmpInst(Pred, NewRem,
+ Constant::getNullValue(BO->getType()));
+ }
+ }
+ break;
+ case Instruction::Add: {
+ // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
+ if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
+ if (BO->hasOneUse())
+ return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
+ } else if (C.isNullValue()) {
+ // Replace ((add A, B) != 0) with (A != -B) if A or B is
+ // efficiently invertible, or if the add has just this one use.
+ if (Value *NegVal = dyn_castNegVal(BOp1))
+ return new ICmpInst(Pred, BOp0, NegVal);
+ if (Value *NegVal = dyn_castNegVal(BOp0))
+ return new ICmpInst(Pred, NegVal, BOp1);
+ if (BO->hasOneUse()) {
+ Value *Neg = Builder.CreateNeg(BOp1);
+ Neg->takeName(BO);
+ return new ICmpInst(Pred, BOp0, Neg);
+ }
+ }
+ break;
+ }
+ case Instruction::Xor:
+ if (BO->hasOneUse()) {
+ if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
+ // For the xor case, we can xor two constants together, eliminating
+ // the explicit xor.
+ return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
+ } else if (C.isNullValue()) {
+ // Replace ((xor A, B) != 0) with (A != B)
+ return new ICmpInst(Pred, BOp0, BOp1);
+ }
+ }
+ break;
+ case Instruction::Sub:
+ if (BO->hasOneUse()) {
+ // Only check for constant LHS here, as constant RHS will be canonicalized
+ // to add and use the fold above.
+ if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
+ // Replace ((sub BOC, B) != C) with (B != BOC-C).
+ return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
+ } else if (C.isNullValue()) {
+ // Replace ((sub A, B) != 0) with (A != B).
+ return new ICmpInst(Pred, BOp0, BOp1);
+ }
+ }
+ break;
+ case Instruction::Or: {
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
+ // Comparing if all bits outside of a constant mask are set?
+ // Replace (X | C) == -1 with (X & ~C) == ~C.
+ // This removes the -1 constant.
+ Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
+ Value *And = Builder.CreateAnd(BOp0, NotBOC);
+ return new ICmpInst(Pred, And, NotBOC);
+ }
+ break;
+ }
+ case Instruction::And: {
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC))) {
+ // If we have ((X & C) == C), turn it into ((X & C) != 0).
+ if (C == *BOC && C.isPowerOf2())
+ return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
+ BO, Constant::getNullValue(RHS->getType()));
+ }
+ break;
+ }
+ case Instruction::UDiv:
+ if (C.isNullValue()) {
+ // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
+ auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
+ return new ICmpInst(NewPred, BOp1, BOp0);
+ }
+ break;
+ default:
+ break;
+ }
+ return nullptr;
+}
+
+/// Fold an equality icmp with LLVM intrinsic and constant operand.
+Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
+ ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
+ Type *Ty = II->getType();
+ unsigned BitWidth = C.getBitWidth();
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::abs:
+ // abs(A) == 0 -> A == 0
+ // abs(A) == INT_MIN -> A == INT_MIN
+ if (C.isNullValue() || C.isMinSignedValue())
+ return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
+ ConstantInt::get(Ty, C));
+ break;
+
+ case Intrinsic::bswap:
+ // bswap(A) == C -> A == bswap(C)
+ return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
+ ConstantInt::get(Ty, C.byteSwap()));
+
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz: {
+ // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
+ if (C == BitWidth)
+ return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
+ ConstantInt::getNullValue(Ty));
+
+ // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
+ // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
+ // Limit to one use to ensure we don't increase instruction count.
+ unsigned Num = C.getLimitedValue(BitWidth);
+ if (Num != BitWidth && II->hasOneUse()) {
+ bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
+ APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
+ : APInt::getHighBitsSet(BitWidth, Num + 1);
+ APInt Mask2 = IsTrailing
+ ? APInt::getOneBitSet(BitWidth, Num)
+ : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
+ return new ICmpInst(Cmp.getPredicate(),
+ Builder.CreateAnd(II->getArgOperand(0), Mask1),
+ ConstantInt::get(Ty, Mask2));
+ }
+ break;
+ }
+
+ case Intrinsic::ctpop: {
+ // popcount(A) == 0 -> A == 0 and likewise for !=
+ // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
+ bool IsZero = C.isNullValue();
+ if (IsZero || C == BitWidth)
+ return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
+ IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
+
+ break;
+ }
+
+ case Intrinsic::uadd_sat: {
+ // uadd.sat(a, b) == 0 -> (a | b) == 0
+ if (C.isNullValue()) {
+ Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
+ return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
+ }
+ break;
+ }
+
+ case Intrinsic::usub_sat: {
+ // usub.sat(a, b) == 0 -> a <= b
+ if (C.isNullValue()) {
+ ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
+ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
+ return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ return nullptr;
+}
+
+/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
+Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
+ IntrinsicInst *II,
+ const APInt &C) {
+ if (Cmp.isEquality())
+ return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
+
+ Type *Ty = II->getType();
+ unsigned BitWidth = C.getBitWidth();
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::ctpop: {
+ // (ctpop X > BitWidth - 1) --> X == -1
+ Value *X = II->getArgOperand(0);
+ if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
+ return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
+ ConstantInt::getAllOnesValue(Ty));
+ // (ctpop X < BitWidth) --> X != -1
+ if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
+ return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
+ ConstantInt::getAllOnesValue(Ty));
+ break;
+ }
+ case Intrinsic::ctlz: {
+ // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
+ if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
+ unsigned Num = C.getLimitedValue();
+ APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
+ return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
+ II->getArgOperand(0), ConstantInt::get(Ty, Limit));
+ }
+
+ // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
+ if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
+ unsigned Num = C.getLimitedValue();
+ APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
+ return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
+ II->getArgOperand(0), ConstantInt::get(Ty, Limit));
+ }
+ break;
+ }
+ case Intrinsic::cttz: {
+ // Limit to one use to ensure we don't increase instruction count.
+ if (!II->hasOneUse())
+ return nullptr;
+
+ // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
+ if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
+ APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
+ return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
+ Builder.CreateAnd(II->getArgOperand(0), Mask),
+ ConstantInt::getNullValue(Ty));
+ }
+
+ // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
+ if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
+ APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
+ return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
+ Builder.CreateAnd(II->getArgOperand(0), Mask),
+ ConstantInt::getNullValue(Ty));
+ }
+ break;
+ }
+ default:
+ break;
+ }
+
+ return nullptr;
+}
+
+/// Handle icmp with constant (but not simple integer constant) RHS.
+Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Constant *RHSC = dyn_cast<Constant>(Op1);
+ Instruction *LHSI = dyn_cast<Instruction>(Op0);
+ if (!RHSC || !LHSI)
+ return nullptr;
+
+ switch (LHSI->getOpcode()) {
+ case Instruction::GetElementPtr:
+ // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
+ if (RHSC->isNullValue() &&
+ cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
+ return new ICmpInst(
+ I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
+ case Instruction::PHI:
+ // Only fold icmp into the PHI if the phi and icmp are in the same
+ // block. If in the same block, we're encouraging jump threading. If
+ // not, we are just pessimizing the code by making an i1 phi.
+ if (LHSI->getParent() == I.getParent())
+ if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
+ return NV;
+ break;
+ case Instruction::Select: {
+ // If either operand of the select is a constant, we can fold the
+ // comparison into the select arms, which will cause one to be
+ // constant folded and the select turned into a bitwise or.
+ Value *Op1 = nullptr, *Op2 = nullptr;
+ ConstantInt *CI = nullptr;
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
+ Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ CI = dyn_cast<ConstantInt>(Op1);
+ }
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
+ Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ CI = dyn_cast<ConstantInt>(Op2);
+ }
+
+ // We only want to perform this transformation if it will not lead to
+ // additional code. This is true if either both sides of the select
+ // fold to a constant (in which case the icmp is replaced with a select
+ // which will usually simplify) or this is the only user of the
+ // select (in which case we are trading a select+icmp for a simpler
+ // select+icmp) or all uses of the select can be replaced based on
+ // dominance information ("Global cases").
+ bool Transform = false;
+ if (Op1 && Op2)
+ Transform = true;
+ else if (Op1 || Op2) {
+ // Local case
+ if (LHSI->hasOneUse())
+ Transform = true;
+ // Global cases
+ else if (CI && !CI->isZero())
+ // When Op1 is constant try replacing select with second operand.
+ // Otherwise Op2 is constant and try replacing select with first
+ // operand.
+ Transform =
+ replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
+ }
+ if (Transform) {
+ if (!Op1)
+ Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
+ I.getName());
+ if (!Op2)
+ Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
+ I.getName());
+ return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
+ }
+ break;
+ }
+ case Instruction::IntToPtr:
+ // icmp pred inttoptr(X), null -> icmp pred X, 0
+ if (RHSC->isNullValue() &&
+ DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
+ return new ICmpInst(
+ I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
+
+ case Instruction::Load:
+ // Try to optimize things like "A[i] > 4" to index computations.
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !cast<LoadInst>(LHSI)->isVolatile())
+ if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ return Res;
+ }
+ break;
+ }
+
+ return nullptr;
+}
+
+/// Some comparisons can be simplified.
+/// In this case, we are looking for comparisons that look like
+/// a check for a lossy truncation.
+/// Folds:
+/// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
+/// Where Mask is some pattern that produces all-ones in low bits:
+/// (-1 >> y)
+/// ((-1 << y) >> y) <- non-canonical, has extra uses
+/// ~(-1 << y)
+/// ((1 << y) + (-1)) <- non-canonical, has extra uses
+/// The Mask can be a constant, too.
+/// For some predicates, the operands are commutative.
+/// For others, x can only be on a specific side.
+static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
+ InstCombiner::BuilderTy &Builder) {
+ ICmpInst::Predicate SrcPred;
+ Value *X, *M, *Y;
+ auto m_VariableMask = m_CombineOr(
+ m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
+ m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
+ m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
+ m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
+ auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
+ if (!match(&I, m_c_ICmp(SrcPred,
+ m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
+ m_Deferred(X))))
+ return nullptr;
+
+ ICmpInst::Predicate DstPred;
+ switch (SrcPred) {
+ case ICmpInst::Predicate::ICMP_EQ:
+ // x & (-1 >> y) == x -> x u<= (-1 >> y)
+ DstPred = ICmpInst::Predicate::ICMP_ULE;
+ break;
+ case ICmpInst::Predicate::ICMP_NE:
+ // x & (-1 >> y) != x -> x u> (-1 >> y)
+ DstPred = ICmpInst::Predicate::ICMP_UGT;
+ break;
+ case ICmpInst::Predicate::ICMP_ULT:
+ // x & (-1 >> y) u< x -> x u> (-1 >> y)
+ // x u> x & (-1 >> y) -> x u> (-1 >> y)
+ DstPred = ICmpInst::Predicate::ICMP_UGT;
+ break;
+ case ICmpInst::Predicate::ICMP_UGE:
+ // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
+ // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
+ DstPred = ICmpInst::Predicate::ICMP_ULE;
+ break;
+ case ICmpInst::Predicate::ICMP_SLT:
+ // x & (-1 >> y) s< x -> x s> (-1 >> y)
+ // x s> x & (-1 >> y) -> x s> (-1 >> y)
+ if (!match(M, m_Constant())) // Can not do this fold with non-constant.
+ return nullptr;
+ if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
+ return nullptr;
+ DstPred = ICmpInst::Predicate::ICMP_SGT;
+ break;
+ case ICmpInst::Predicate::ICMP_SGE:
+ // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
+ // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
+ if (!match(M, m_Constant())) // Can not do this fold with non-constant.
+ return nullptr;
+ if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
+ return nullptr;
+ DstPred = ICmpInst::Predicate::ICMP_SLE;
+ break;
+ case ICmpInst::Predicate::ICMP_SGT:
+ case ICmpInst::Predicate::ICMP_SLE:
+ return nullptr;
+ case ICmpInst::Predicate::ICMP_UGT:
+ case ICmpInst::Predicate::ICMP_ULE:
+ llvm_unreachable("Instsimplify took care of commut. variant");
+ break;
+ default:
+ llvm_unreachable("All possible folds are handled.");
+ }
+
+ // The mask value may be a vector constant that has undefined elements. But it
+ // may not be safe to propagate those undefs into the new compare, so replace
+ // those elements by copying an existing, defined, and safe scalar constant.
+ Type *OpTy = M->getType();
+ auto *VecC = dyn_cast<Constant>(M);
+ auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
+ if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
+ Constant *SafeReplacementConstant = nullptr;
+ for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
+ if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
+ SafeReplacementConstant = VecC->getAggregateElement(i);
+ break;
+ }
+ }
+ assert(SafeReplacementConstant && "Failed to find undef replacement");
+ M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
+ }
+
+ return Builder.CreateICmp(DstPred, X, M);
+}
+
+/// Some comparisons can be simplified.
+/// In this case, we are looking for comparisons that look like
+/// a check for a lossy signed truncation.
+/// Folds: (MaskedBits is a constant.)
+/// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
+/// Into:
+/// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
+/// Where KeptBits = bitwidth(%x) - MaskedBits
+static Value *
+foldICmpWithTruncSignExtendedVal(ICmpInst &I,
+ InstCombiner::BuilderTy &Builder) {
+ ICmpInst::Predicate SrcPred;
+ Value *X;
+ const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
+ // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
+ if (!match(&I, m_c_ICmp(SrcPred,
+ m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
+ m_APInt(C1))),
+ m_Deferred(X))))
+ return nullptr;
+
+ // Potential handling of non-splats: for each element:
+ // * if both are undef, replace with constant 0.
+ // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
+ // * if both are not undef, and are different, bailout.
+ // * else, only one is undef, then pick the non-undef one.
+
+ // The shift amount must be equal.
+ if (*C0 != *C1)
+ return nullptr;
+ const APInt &MaskedBits = *C0;
+ assert(MaskedBits != 0 && "shift by zero should be folded away already.");
+
+ ICmpInst::Predicate DstPred;
+ switch (SrcPred) {
+ case ICmpInst::Predicate::ICMP_EQ:
+ // ((%x << MaskedBits) a>> MaskedBits) == %x
+ // =>
+ // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
+ DstPred = ICmpInst::Predicate::ICMP_ULT;
+ break;
+ case ICmpInst::Predicate::ICMP_NE:
+ // ((%x << MaskedBits) a>> MaskedBits) != %x
+ // =>
+ // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
+ DstPred = ICmpInst::Predicate::ICMP_UGE;
+ break;
+ // FIXME: are more folds possible?
+ default:
+ return nullptr;
+ }
+
+ auto *XType = X->getType();
+ const unsigned XBitWidth = XType->getScalarSizeInBits();
+ const APInt BitWidth = APInt(XBitWidth, XBitWidth);
+ assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
+
+ // KeptBits = bitwidth(%x) - MaskedBits
+ const APInt KeptBits = BitWidth - MaskedBits;
+ assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
+ // ICmpCst = (1 << KeptBits)
+ const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
+ assert(ICmpCst.isPowerOf2());
+ // AddCst = (1 << (KeptBits-1))
+ const APInt AddCst = ICmpCst.lshr(1);
+ assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
+
+ // T0 = add %x, AddCst
+ Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
+ // T1 = T0 DstPred ICmpCst
+ Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
+
+ return T1;
+}
+
+// Given pattern:
+// icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
+// we should move shifts to the same hand of 'and', i.e. rewrite as
+// icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
+// We are only interested in opposite logical shifts here.
+// One of the shifts can be truncated.
+// If we can, we want to end up creating 'lshr' shift.
+static Value *
+foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
+ InstCombiner::BuilderTy &Builder) {
+ if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
+ !I.getOperand(0)->hasOneUse())
+ return nullptr;
+
+ auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
+
+ // Look for an 'and' of two logical shifts, one of which may be truncated.
+ // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
+ Instruction *XShift, *MaybeTruncation, *YShift;
+ if (!match(
+ I.getOperand(0),
+ m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
+ m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
+ m_AnyLogicalShift, m_Instruction(YShift))),
+ m_Instruction(MaybeTruncation)))))
+ return nullptr;
+
+ // We potentially looked past 'trunc', but only when matching YShift,
+ // therefore YShift must have the widest type.
+ Instruction *WidestShift = YShift;
+ // Therefore XShift must have the shallowest type.
+ // Or they both have identical types if there was no truncation.
+ Instruction *NarrowestShift = XShift;
+
+ Type *WidestTy = WidestShift->getType();
+ Type *NarrowestTy = NarrowestShift->getType();
+ assert(NarrowestTy == I.getOperand(0)->getType() &&
+ "We did not look past any shifts while matching XShift though.");
+ bool HadTrunc = WidestTy != I.getOperand(0)->getType();
+
+ // If YShift is a 'lshr', swap the shifts around.
+ if (match(YShift, m_LShr(m_Value(), m_Value())))
+ std::swap(XShift, YShift);
+
+ // The shifts must be in opposite directions.
+ auto XShiftOpcode = XShift->getOpcode();
+ if (XShiftOpcode == YShift->getOpcode())
+ return nullptr; // Do not care about same-direction shifts here.
+
+ Value *X, *XShAmt, *Y, *YShAmt;
+ match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
+ match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
+
+ // If one of the values being shifted is a constant, then we will end with
+ // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
+ // however, we will need to ensure that we won't increase instruction count.
+ if (!isa<Constant>(X) && !isa<Constant>(Y)) {
+ // At least one of the hands of the 'and' should be one-use shift.
+ if (!match(I.getOperand(0),
+ m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
+ return nullptr;
+ if (HadTrunc) {
+ // Due to the 'trunc', we will need to widen X. For that either the old
+ // 'trunc' or the shift amt in the non-truncated shift should be one-use.
+ if (!MaybeTruncation->hasOneUse() &&
+ !NarrowestShift->getOperand(1)->hasOneUse())
+ return nullptr;
+ }
+ }
+
+ // We have two shift amounts from two different shifts. The types of those
+ // shift amounts may not match. If that's the case let's bailout now.
+ if (XShAmt->getType() != YShAmt->getType())
+ return nullptr;
+
+ // As input, we have the following pattern:
+ // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
+ // We want to rewrite that as:
+ // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
+ // While we know that originally (Q+K) would not overflow
+ // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
+ // shift amounts. so it may now overflow in smaller bitwidth.
+ // To ensure that does not happen, we need to ensure that the total maximal
+ // shift amount is still representable in that smaller bit width.
+ unsigned MaximalPossibleTotalShiftAmount =
+ (WidestTy->getScalarSizeInBits() - 1) +
+ (NarrowestTy->getScalarSizeInBits() - 1);
+ APInt MaximalRepresentableShiftAmount =
+ APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
+ if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
+ return nullptr;
+
+ // Can we fold (XShAmt+YShAmt) ?
+ auto *NewShAmt = dyn_cast_or_null<Constant>(
+ SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
+ /*isNUW=*/false, SQ.getWithInstruction(&I)));
+ if (!NewShAmt)
+ return nullptr;
+ NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
+ unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
+
+ // Is the new shift amount smaller than the bit width?
+ // FIXME: could also rely on ConstantRange.
+ if (!match(NewShAmt,
+ m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
+ APInt(WidestBitWidth, WidestBitWidth))))
+ return nullptr;
+
+ // An extra legality check is needed if we had trunc-of-lshr.
+ if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
+ auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
+ WidestShift]() {
+ // It isn't obvious whether it's worth it to analyze non-constants here.
+ // Also, let's basically give up on non-splat cases, pessimizing vectors.
+ // If *any* of these preconditions matches we can perform the fold.
+ Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
+ ? NewShAmt->getSplatValue()
+ : NewShAmt;
+ // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
+ if (NewShAmtSplat &&
+ (NewShAmtSplat->isNullValue() ||
+ NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
+ return true;
+ // We consider *min* leading zeros so a single outlier
+ // blocks the transform as opposed to allowing it.
+ if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
+ KnownBits Known = computeKnownBits(C, SQ.DL);
+ unsigned MinLeadZero = Known.countMinLeadingZeros();
+ // If the value being shifted has at most lowest bit set we can fold.
+ unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
+ if (MaxActiveBits <= 1)
+ return true;
+ // Precondition: NewShAmt u<= countLeadingZeros(C)
+ if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
+ return true;
+ }
+ if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
+ KnownBits Known = computeKnownBits(C, SQ.DL);
+ unsigned MinLeadZero = Known.countMinLeadingZeros();
+ // If the value being shifted has at most lowest bit set we can fold.
+ unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
+ if (MaxActiveBits <= 1)
+ return true;
+ // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
+ if (NewShAmtSplat) {
+ APInt AdjNewShAmt =
+ (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
+ if (AdjNewShAmt.ule(MinLeadZero))
+ return true;
+ }
+ }
+ return false; // Can't tell if it's ok.
+ };
+ if (!CanFold())
+ return nullptr;
+ }
+
+ // All good, we can do this fold.
+ X = Builder.CreateZExt(X, WidestTy);
+ Y = Builder.CreateZExt(Y, WidestTy);
+ // The shift is the same that was for X.
+ Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
+ ? Builder.CreateLShr(X, NewShAmt)
+ : Builder.CreateShl(X, NewShAmt);
+ Value *T1 = Builder.CreateAnd(T0, Y);
+ return Builder.CreateICmp(I.getPredicate(), T1,
+ Constant::getNullValue(WidestTy));
+}
+
+/// Fold
+/// (-1 u/ x) u< y
+/// ((x * y) u/ x) != y
+/// to
+/// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
+/// Note that the comparison is commutative, while inverted (u>=, ==) predicate
+/// will mean that we are looking for the opposite answer.
+Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
+ ICmpInst::Predicate Pred;
+ Value *X, *Y;
+ Instruction *Mul;
+ bool NeedNegation;
+ // Look for: (-1 u/ x) u</u>= y
+ if (!I.isEquality() &&
+ match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
+ m_Value(Y)))) {
+ Mul = nullptr;
+
+ // Are we checking that overflow does not happen, or does happen?
+ switch (Pred) {
+ case ICmpInst::Predicate::ICMP_ULT:
+ NeedNegation = false;
+ break; // OK
+ case ICmpInst::Predicate::ICMP_UGE:
+ NeedNegation = true;
+ break; // OK
+ default:
+ return nullptr; // Wrong predicate.
+ }
+ } else // Look for: ((x * y) u/ x) !=/== y
+ if (I.isEquality() &&
+ match(&I, m_c_ICmp(Pred, m_Value(Y),
+ m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
+ m_Value(X)),
+ m_Instruction(Mul)),
+ m_Deferred(X)))))) {
+ NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
+ } else
+ return nullptr;
+
+ BuilderTy::InsertPointGuard Guard(Builder);
+ // If the pattern included (x * y), we'll want to insert new instructions
+ // right before that original multiplication so that we can replace it.
+ bool MulHadOtherUses = Mul && !Mul->hasOneUse();
+ if (MulHadOtherUses)
+ Builder.SetInsertPoint(Mul);
+
+ Function *F = Intrinsic::getDeclaration(
+ I.getModule(), Intrinsic::umul_with_overflow, X->getType());
+ CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
+
+ // If the multiplication was used elsewhere, to ensure that we don't leave
+ // "duplicate" instructions, replace uses of that original multiplication
+ // with the multiplication result from the with.overflow intrinsic.
+ if (MulHadOtherUses)
+ replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
+
+ Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
+ if (NeedNegation) // This technically increases instruction count.
+ Res = Builder.CreateNot(Res, "umul.not.ov");
+
+ // If we replaced the mul, erase it. Do this after all uses of Builder,
+ // as the mul is used as insertion point.
+ if (MulHadOtherUses)
+ eraseInstFromFunction(*Mul);
+
+ return Res;
+}
+
+static Instruction *foldICmpXNegX(ICmpInst &I) {
+ CmpInst::Predicate Pred;
+ Value *X;
+ if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
+ return nullptr;
+
+ if (ICmpInst::isSigned(Pred))
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ else if (ICmpInst::isUnsigned(Pred))
+ Pred = ICmpInst::getSignedPredicate(Pred);
+ // else for equality-comparisons just keep the predicate.
+
+ return ICmpInst::Create(Instruction::ICmp, Pred, X,
+ Constant::getNullValue(X->getType()), I.getName());
+}
+
+/// Try to fold icmp (binop), X or icmp X, (binop).
+/// TODO: A large part of this logic is duplicated in InstSimplify's
+/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
+/// duplication.
+Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
+ const SimplifyQuery &SQ) {
+ const SimplifyQuery Q = SQ.getWithInstruction(&I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // Special logic for binary operators.
+ BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
+ BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
+ if (!BO0 && !BO1)
+ return nullptr;
+
+ if (Instruction *NewICmp = foldICmpXNegX(I))
+ return NewICmp;
+
+ const CmpInst::Predicate Pred = I.getPredicate();
+ Value *X;
+
+ // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
+ // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
+ if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
+ (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
+ return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
+ // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
+ if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
+ (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
+ return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
+
+ bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
+ if (BO0 && isa<OverflowingBinaryOperator>(BO0))
+ NoOp0WrapProblem =
+ ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
+ if (BO1 && isa<OverflowingBinaryOperator>(BO1))
+ NoOp1WrapProblem =
+ ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
+
+ // Analyze the case when either Op0 or Op1 is an add instruction.
+ // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
+ Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
+ if (BO0 && BO0->getOpcode() == Instruction::Add) {
+ A = BO0->getOperand(0);
+ B = BO0->getOperand(1);
+ }
+ if (BO1 && BO1->getOpcode() == Instruction::Add) {
+ C = BO1->getOperand(0);
+ D = BO1->getOperand(1);
+ }
+
+ // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
+ // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
+ if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
+ return new ICmpInst(Pred, A == Op1 ? B : A,
+ Constant::getNullValue(Op1->getType()));
+
+ // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
+ // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
+ if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
+ C == Op0 ? D : C);
+
+ // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
+ if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
+ NoOp1WrapProblem) {
+ // Determine Y and Z in the form icmp (X+Y), (X+Z).
+ Value *Y, *Z;
+ if (A == C) {
+ // C + B == C + D -> B == D
+ Y = B;
+ Z = D;
+ } else if (A == D) {
+ // D + B == C + D -> B == C
+ Y = B;
+ Z = C;
+ } else if (B == C) {
+ // A + C == C + D -> A == D
+ Y = A;
+ Z = D;
+ } else {
+ assert(B == D);
+ // A + D == C + D -> A == C
+ Y = A;
+ Z = C;
+ }
+ return new ICmpInst(Pred, Y, Z);
+ }
+
+ // icmp slt (A + -1), Op1 -> icmp sle A, Op1
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
+ match(B, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
+
+ // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
+ match(B, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
+
+ // icmp sle (A + 1), Op1 -> icmp slt A, Op1
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
+
+ // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
+
+ // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
+ match(D, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
+
+ // icmp sle Op0, (C + -1) -> icmp slt Op0, C
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
+ match(D, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
+
+ // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
+
+ // icmp slt Op0, (C + 1) -> icmp sle Op0, C
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
+
+ // TODO: The subtraction-related identities shown below also hold, but
+ // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
+ // wouldn't happen even if they were implemented.
+ //
+ // icmp ult (A - 1), Op1 -> icmp ule A, Op1
+ // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
+ // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
+ // icmp ule Op0, (C - 1) -> icmp ult Op0, C
+
+ // icmp ule (A + 1), Op0 -> icmp ult A, Op1
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
+
+ // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
+
+ // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
+
+ // icmp ult Op0, (C + 1) -> icmp ule Op0, C
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
+
+ // if C1 has greater magnitude than C2:
+ // icmp (A + C1), (C + C2) -> icmp (A + C3), C
+ // s.t. C3 = C1 - C2
+ //
+ // if C2 has greater magnitude than C1:
+ // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
+ // s.t. C3 = C2 - C1
+ if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
+ (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
+ if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
+ if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
+ const APInt &AP1 = C1->getValue();
+ const APInt &AP2 = C2->getValue();
+ if (AP1.isNegative() == AP2.isNegative()) {
+ APInt AP1Abs = C1->getValue().abs();
+ APInt AP2Abs = C2->getValue().abs();
+ if (AP1Abs.uge(AP2Abs)) {
+ ConstantInt *C3 = Builder.getInt(AP1 - AP2);
+ Value *NewAdd = Builder.CreateNSWAdd(A, C3);
+ return new ICmpInst(Pred, NewAdd, C);
+ } else {
+ ConstantInt *C3 = Builder.getInt(AP2 - AP1);
+ Value *NewAdd = Builder.CreateNSWAdd(C, C3);
+ return new ICmpInst(Pred, A, NewAdd);
+ }
+ }
+ }
+
+ // Analyze the case when either Op0 or Op1 is a sub instruction.
+ // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
+ A = nullptr;
+ B = nullptr;
+ C = nullptr;
+ D = nullptr;
+ if (BO0 && BO0->getOpcode() == Instruction::Sub) {
+ A = BO0->getOperand(0);
+ B = BO0->getOperand(1);
+ }
+ if (BO1 && BO1->getOpcode() == Instruction::Sub) {
+ C = BO1->getOperand(0);
+ D = BO1->getOperand(1);
+ }
+
+ // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
+ if (A == Op1 && NoOp0WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
+ // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
+ if (C == Op0 && NoOp1WrapProblem)
+ return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
+
+ // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
+ // (A - B) u>/u<= A --> B u>/u<= A
+ if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
+ return new ICmpInst(Pred, B, A);
+ // C u</u>= (C - D) --> C u</u>= D
+ if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
+ return new ICmpInst(Pred, C, D);
+ // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
+ if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
+ isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
+ return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
+ // C u<=/u> (C - D) --> C u</u>= D iff B != 0
+ if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
+ isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
+ return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
+
+ // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
+ if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
+ return new ICmpInst(Pred, A, C);
+
+ // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
+ if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
+ return new ICmpInst(Pred, D, B);
+
+ // icmp (0-X) < cst --> x > -cst
+ if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
+ Value *X;
+ if (match(BO0, m_Neg(m_Value(X))))
+ if (Constant *RHSC = dyn_cast<Constant>(Op1))
+ if (RHSC->isNotMinSignedValue())
+ return new ICmpInst(I.getSwappedPredicate(), X,
+ ConstantExpr::getNeg(RHSC));
+ }
+
+ {
+ // Try to remove shared constant multiplier from equality comparison:
+ // X * C == Y * C (with no overflowing/aliasing) --> X == Y
+ Value *X, *Y;
+ const APInt *C;
+ if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
+ match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
+ if (!C->countTrailingZeros() ||
+ (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
+ (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
+ return new ICmpInst(Pred, X, Y);
+ }
+
+ BinaryOperator *SRem = nullptr;
+ // icmp (srem X, Y), Y
+ if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
+ SRem = BO0;
+ // icmp Y, (srem X, Y)
+ else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
+ Op0 == BO1->getOperand(1))
+ SRem = BO1;
+ if (SRem) {
+ // We don't check hasOneUse to avoid increasing register pressure because
+ // the value we use is the same value this instruction was already using.
+ switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
+ default:
+ break;
+ case ICmpInst::ICMP_EQ:
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ case ICmpInst::ICMP_NE:
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
+ Constant::getAllOnesValue(SRem->getType()));
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
+ Constant::getNullValue(SRem->getType()));
+ }
+ }
+
+ if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
+ BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
+ switch (BO0->getOpcode()) {
+ default:
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor: {
+ if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
+ return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
+
+ const APInt *C;
+ if (match(BO0->getOperand(1), m_APInt(C))) {
+ // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
+ if (C->isSignMask()) {
+ ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
+ return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
+ }
+
+ // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
+ if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
+ ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
+ NewPred = I.getSwappedPredicate(NewPred);
+ return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
+ }
+ }
+ break;
+ }
+ case Instruction::Mul: {
+ if (!I.isEquality())
+ break;
+
+ const APInt *C;
+ if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
+ !C->isOneValue()) {
+ // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
+ // Mask = -1 >> count-trailing-zeros(C).
+ if (unsigned TZs = C->countTrailingZeros()) {
+ Constant *Mask = ConstantInt::get(
+ BO0->getType(),
+ APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
+ Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
+ Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
+ return new ICmpInst(Pred, And1, And2);
+ }
+ }
+ break;
+ }
+ case Instruction::UDiv:
+ case Instruction::LShr:
+ if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
+ break;
+ return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
+
+ case Instruction::SDiv:
+ if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
+ break;
+ return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
+
+ case Instruction::AShr:
+ if (!BO0->isExact() || !BO1->isExact())
+ break;
+ return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
+
+ case Instruction::Shl: {
+ bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
+ bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
+ if (!NUW && !NSW)
+ break;
+ if (!NSW && I.isSigned())
+ break;
+ return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
+ }
+ }
+ }
+
+ if (BO0) {
+ // Transform A & (L - 1) `ult` L --> L != 0
+ auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
+ auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
+
+ if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
+ auto *Zero = Constant::getNullValue(BO0->getType());
+ return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
+ }
+ }
+
+ if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
+ return replaceInstUsesWith(I, V);
+
+ if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
+ return replaceInstUsesWith(I, V);
+
+ if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
+ return replaceInstUsesWith(I, V);
+
+ if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
+ return replaceInstUsesWith(I, V);
+
+ return nullptr;
+}
+
+/// Fold icmp Pred min|max(X, Y), X.
+static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *Op0 = Cmp.getOperand(0);
+ Value *X = Cmp.getOperand(1);
+
+ // Canonicalize minimum or maximum operand to LHS of the icmp.
+ if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
+ match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
+ match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
+ match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
+ std::swap(Op0, X);
+ Pred = Cmp.getSwappedPredicate();
+ }
+
+ Value *Y;
+ if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
+ // smin(X, Y) == X --> X s<= Y
+ // smin(X, Y) s>= X --> X s<= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
+ return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
+
+ // smin(X, Y) != X --> X s> Y
+ // smin(X, Y) s< X --> X s> Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
+
+ // These cases should be handled in InstSimplify:
+ // smin(X, Y) s<= X --> true
+ // smin(X, Y) s> X --> false
+ return nullptr;
+ }
+
+ if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
+ // smax(X, Y) == X --> X s>= Y
+ // smax(X, Y) s<= X --> X s>= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
+
+ // smax(X, Y) != X --> X s< Y
+ // smax(X, Y) s> X --> X s< Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
+
+ // These cases should be handled in InstSimplify:
+ // smax(X, Y) s>= X --> true
+ // smax(X, Y) s< X --> false
+ return nullptr;
+ }
+
+ if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
+ // umin(X, Y) == X --> X u<= Y
+ // umin(X, Y) u>= X --> X u<= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
+ return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
+
+ // umin(X, Y) != X --> X u> Y
+ // umin(X, Y) u< X --> X u> Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
+ return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
+
+ // These cases should be handled in InstSimplify:
+ // umin(X, Y) u<= X --> true
+ // umin(X, Y) u> X --> false
+ return nullptr;
+ }
+
+ if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
+ // umax(X, Y) == X --> X u>= Y
+ // umax(X, Y) u<= X --> X u>= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
+
+ // umax(X, Y) != X --> X u< Y
+ // umax(X, Y) u> X --> X u< Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
+
+ // These cases should be handled in InstSimplify:
+ // umax(X, Y) u>= X --> true
+ // umax(X, Y) u< X --> false
+ return nullptr;
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
+ if (!I.isEquality())
+ return nullptr;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ const CmpInst::Predicate Pred = I.getPredicate();
+ Value *A, *B, *C, *D;
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
+ if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
+ Value *OtherVal = A == Op1 ? B : A;
+ return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
+ }
+
+ if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
+ // A^c1 == C^c2 --> A == C^(c1^c2)
+ ConstantInt *C1, *C2;
+ if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
+ Op1->hasOneUse()) {
+ Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
+ Value *Xor = Builder.CreateXor(C, NC);
+ return new ICmpInst(Pred, A, Xor);
+ }
+
+ // A^B == A^D -> B == D
+ if (A == C)
+ return new ICmpInst(Pred, B, D);
+ if (A == D)
+ return new ICmpInst(Pred, B, C);
+ if (B == C)
+ return new ICmpInst(Pred, A, D);
+ if (B == D)
+ return new ICmpInst(Pred, A, C);
+ }
+ }
+
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
+ // A == (A^B) -> B == 0
+ Value *OtherVal = A == Op0 ? B : A;
+ return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
+ }
+
+ // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
+ if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
+ match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
+ Value *X = nullptr, *Y = nullptr, *Z = nullptr;
+
+ if (A == C) {
+ X = B;
+ Y = D;
+ Z = A;
+ } else if (A == D) {
+ X = B;
+ Y = C;
+ Z = A;
+ } else if (B == C) {
+ X = A;
+ Y = D;
+ Z = B;
+ } else if (B == D) {
+ X = A;
+ Y = C;
+ Z = B;
+ }
+
+ if (X) { // Build (X^Y) & Z
+ Op1 = Builder.CreateXor(X, Y);
+ Op1 = Builder.CreateAnd(Op1, Z);
+ return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
+ }
+ }
+
+ // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
+ // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
+ ConstantInt *Cst1;
+ if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
+ match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
+ (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
+ match(Op1, m_ZExt(m_Value(A))))) {
+ APInt Pow2 = Cst1->getValue() + 1;
+ if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
+ Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
+ return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
+ }
+
+ // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
+ // For lshr and ashr pairs.
+ if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
+ (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
+ unsigned TypeBits = Cst1->getBitWidth();
+ unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
+ if (ShAmt < TypeBits && ShAmt != 0) {
+ ICmpInst::Predicate NewPred =
+ Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
+ Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
+ APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
+ return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
+ }
+ }
+
+ // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
+ if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
+ unsigned TypeBits = Cst1->getBitWidth();
+ unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
+ if (ShAmt < TypeBits && ShAmt != 0) {
+ Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
+ APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
+ Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
+ I.getName() + ".mask");
+ return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
+ }
+ }
+
+ // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
+ // "icmp (and X, mask), cst"
+ uint64_t ShAmt = 0;
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
+ match(Op1, m_ConstantInt(Cst1)) &&
+ // Only do this when A has multiple uses. This is most important to do
+ // when it exposes other optimizations.
+ !A->hasOneUse()) {
+ unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
+
+ if (ShAmt < ASize) {
+ APInt MaskV =
+ APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
+ MaskV <<= ShAmt;
+
+ APInt CmpV = Cst1->getValue().zext(ASize);
+ CmpV <<= ShAmt;
+
+ Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
+ return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
+ }
+ }
+
+ // If both operands are byte-swapped or bit-reversed, just compare the
+ // original values.
+ // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
+ // and handle more intrinsics.
+ if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
+ (match(Op0, m_BitReverse(m_Value(A))) &&
+ match(Op1, m_BitReverse(m_Value(B)))))
+ return new ICmpInst(Pred, A, B);
+
+ // Canonicalize checking for a power-of-2-or-zero value:
+ // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
+ // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
+ if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
+ m_Deferred(A)))) ||
+ !match(Op1, m_ZeroInt()))
+ A = nullptr;
+
+ // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
+ // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
+ if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
+ A = Op1;
+ else if (match(Op1,
+ m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
+ A = Op0;
+
+ if (A) {
+ Type *Ty = A->getType();
+ CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
+ return Pred == ICmpInst::ICMP_EQ
+ ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
+ : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
+ }
+
+ return nullptr;
+}
+
+static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
+ InstCombiner::BuilderTy &Builder) {
+ assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
+ auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
+ Value *X;
+ if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
+ return nullptr;
+
+ bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
+ bool IsSignedCmp = ICmp.isSigned();
+ if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
+ // If the signedness of the two casts doesn't agree (i.e. one is a sext
+ // and the other is a zext), then we can't handle this.
+ // TODO: This is too strict. We can handle some predicates (equality?).
+ if (CastOp0->getOpcode() != CastOp1->getOpcode())
+ return nullptr;
+
+ // Not an extension from the same type?
+ Value *Y = CastOp1->getOperand(0);
+ Type *XTy = X->getType(), *YTy = Y->getType();
+ if (XTy != YTy) {
+ // One of the casts must have one use because we are creating a new cast.
+ if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
+ return nullptr;
+ // Extend the narrower operand to the type of the wider operand.
+ if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
+ X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
+ else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
+ Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
+ else
+ return nullptr;
+ }
+
+ // (zext X) == (zext Y) --> X == Y
+ // (sext X) == (sext Y) --> X == Y
+ if (ICmp.isEquality())
+ return new ICmpInst(ICmp.getPredicate(), X, Y);
+
+ // A signed comparison of sign extended values simplifies into a
+ // signed comparison.
+ if (IsSignedCmp && IsSignedExt)
+ return new ICmpInst(ICmp.getPredicate(), X, Y);
+
+ // The other three cases all fold into an unsigned comparison.
+ return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
+ }
+
+ // Below here, we are only folding a compare with constant.
+ auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
+ if (!C)
+ return nullptr;
+
+ // Compute the constant that would happen if we truncated to SrcTy then
+ // re-extended to DestTy.
+ Type *SrcTy = CastOp0->getSrcTy();
+ Type *DestTy = CastOp0->getDestTy();
+ Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
+ Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
+
+ // If the re-extended constant didn't change...
+ if (Res2 == C) {
+ if (ICmp.isEquality())
+ return new ICmpInst(ICmp.getPredicate(), X, Res1);
+
+ // A signed comparison of sign extended values simplifies into a
+ // signed comparison.
+ if (IsSignedExt && IsSignedCmp)
+ return new ICmpInst(ICmp.getPredicate(), X, Res1);
+
+ // The other three cases all fold into an unsigned comparison.
+ return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
+ }
+
+ // The re-extended constant changed, partly changed (in the case of a vector),
+ // or could not be determined to be equal (in the case of a constant
+ // expression), so the constant cannot be represented in the shorter type.
+ // All the cases that fold to true or false will have already been handled
+ // by SimplifyICmpInst, so only deal with the tricky case.
+ if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
+ return nullptr;
+
+ // Is source op positive?
+ // icmp ult (sext X), C --> icmp sgt X, -1
+ if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
+ return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
+
+ // Is source op negative?
+ // icmp ugt (sext X), C --> icmp slt X, 0
+ assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
+ return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
+}
+
+/// Handle icmp (cast x), (cast or constant).
+Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
+ auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
+ if (!CastOp0)
+ return nullptr;
+ if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
+ return nullptr;
+
+ Value *Op0Src = CastOp0->getOperand(0);
+ Type *SrcTy = CastOp0->getSrcTy();
+ Type *DestTy = CastOp0->getDestTy();
+
+ // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
+ // integer type is the same size as the pointer type.
+ auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
+ if (isa<VectorType>(SrcTy)) {
+ SrcTy = cast<VectorType>(SrcTy)->getElementType();
+ DestTy = cast<VectorType>(DestTy)->getElementType();
+ }
+ return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
+ };
+ if (CastOp0->getOpcode() == Instruction::PtrToInt &&
+ CompatibleSizes(SrcTy, DestTy)) {
+ Value *NewOp1 = nullptr;
+ if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
+ Value *PtrSrc = PtrToIntOp1->getOperand(0);
+ if (PtrSrc->getType()->getPointerAddressSpace() ==
+ Op0Src->getType()->getPointerAddressSpace()) {
+ NewOp1 = PtrToIntOp1->getOperand(0);
+ // If the pointer types don't match, insert a bitcast.
+ if (Op0Src->getType() != NewOp1->getType())
+ NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
+ }
+ } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
+ NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
+ }
+
+ if (NewOp1)
+ return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
+ }
+
+ return foldICmpWithZextOrSext(ICmp, Builder);
+}
+
+static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
+ switch (BinaryOp) {
+ default:
+ llvm_unreachable("Unsupported binary op");
+ case Instruction::Add:
+ case Instruction::Sub:
+ return match(RHS, m_Zero());
+ case Instruction::Mul:
+ return match(RHS, m_One());
+ }
+}
+
+OverflowResult
+InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
+ bool IsSigned, Value *LHS, Value *RHS,
+ Instruction *CxtI) const {
+ switch (BinaryOp) {
+ default:
+ llvm_unreachable("Unsupported binary op");
+ case Instruction::Add:
+ if (IsSigned)
+ return computeOverflowForSignedAdd(LHS, RHS, CxtI);
+ else
+ return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
+ case Instruction::Sub:
+ if (IsSigned)
+ return computeOverflowForSignedSub(LHS, RHS, CxtI);
+ else
+ return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
+ case Instruction::Mul:
+ if (IsSigned)
+ return computeOverflowForSignedMul(LHS, RHS, CxtI);
+ else
+ return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
+ }
+}
+
+bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
+ bool IsSigned, Value *LHS,
+ Value *RHS, Instruction &OrigI,
+ Value *&Result,
+ Constant *&Overflow) {
+ if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
+ std::swap(LHS, RHS);
+
+ // If the overflow check was an add followed by a compare, the insertion point
+ // may be pointing to the compare. We want to insert the new instructions
+ // before the add in case there are uses of the add between the add and the
+ // compare.
+ Builder.SetInsertPoint(&OrigI);
+
+ Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
+ if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
+ OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
+
+ if (isNeutralValue(BinaryOp, RHS)) {
+ Result = LHS;
+ Overflow = ConstantInt::getFalse(OverflowTy);
+ return true;
+ }
+
+ switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
+ case OverflowResult::MayOverflow:
+ return false;
+ case OverflowResult::AlwaysOverflowsLow:
+ case OverflowResult::AlwaysOverflowsHigh:
+ Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
+ Result->takeName(&OrigI);
+ Overflow = ConstantInt::getTrue(OverflowTy);
+ return true;
+ case OverflowResult::NeverOverflows:
+ Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
+ Result->takeName(&OrigI);
+ Overflow = ConstantInt::getFalse(OverflowTy);
+ if (auto *Inst = dyn_cast<Instruction>(Result)) {
+ if (IsSigned)
+ Inst->setHasNoSignedWrap();
+ else
+ Inst->setHasNoUnsignedWrap();
+ }
+ return true;
+ }
+
+ llvm_unreachable("Unexpected overflow result");
+}
+
+/// Recognize and process idiom involving test for multiplication
+/// overflow.
+///
+/// The caller has matched a pattern of the form:
+/// I = cmp u (mul(zext A, zext B), V
+/// The function checks if this is a test for overflow and if so replaces
+/// multiplication with call to 'mul.with.overflow' intrinsic.
+///
+/// \param I Compare instruction.
+/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
+/// the compare instruction. Must be of integer type.
+/// \param OtherVal The other argument of compare instruction.
+/// \returns Instruction which must replace the compare instruction, NULL if no
+/// replacement required.
+static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
+ Value *OtherVal,
+ InstCombinerImpl &IC) {
+ // Don't bother doing this transformation for pointers, don't do it for
+ // vectors.
+ if (!isa<IntegerType>(MulVal->getType()))
+ return nullptr;
+
+ assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
+ assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
+ auto *MulInstr = dyn_cast<Instruction>(MulVal);
+ if (!MulInstr)
+ return nullptr;
+ assert(MulInstr->getOpcode() == Instruction::Mul);
+
+ auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
+ *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
+ assert(LHS->getOpcode() == Instruction::ZExt);
+ assert(RHS->getOpcode() == Instruction::ZExt);
+ Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
+
+ // Calculate type and width of the result produced by mul.with.overflow.
+ Type *TyA = A->getType(), *TyB = B->getType();
+ unsigned WidthA = TyA->getPrimitiveSizeInBits(),
+ WidthB = TyB->getPrimitiveSizeInBits();
+ unsigned MulWidth;
+ Type *MulType;
+ if (WidthB > WidthA) {
+ MulWidth = WidthB;
+ MulType = TyB;
+ } else {
+ MulWidth = WidthA;
+ MulType = TyA;
+ }
+
+ // In order to replace the original mul with a narrower mul.with.overflow,
+ // all uses must ignore upper bits of the product. The number of used low
+ // bits must be not greater than the width of mul.with.overflow.
+ if (MulVal->hasNUsesOrMore(2))
+ for (User *U : MulVal->users()) {
+ if (U == &I)
+ continue;
+ if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
+ // Check if truncation ignores bits above MulWidth.
+ unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
+ if (TruncWidth > MulWidth)
+ return nullptr;
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
+ // Check if AND ignores bits above MulWidth.
+ if (BO->getOpcode() != Instruction::And)
+ return nullptr;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ const APInt &CVal = CI->getValue();
+ if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
+ return nullptr;
+ } else {
+ // In this case we could have the operand of the binary operation
+ // being defined in another block, and performing the replacement
+ // could break the dominance relation.
+ return nullptr;
+ }
+ } else {
+ // Other uses prohibit this transformation.
+ return nullptr;
+ }
+ }
+
+ // Recognize patterns
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
+ ConstantInt *CI;
+ Value *ValToMask;
+ if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
+ if (ValToMask != MulVal)
+ return nullptr;
+ const APInt &CVal = CI->getValue() + 1;
+ if (CVal.isPowerOf2()) {
+ unsigned MaskWidth = CVal.logBase2();
+ if (MaskWidth == MulWidth)
+ break; // Recognized
+ }
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_UGT:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp ugt mulval, max
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getMaxValue(MulWidth);
+ MaxVal = MaxVal.zext(CI->getBitWidth());
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_UGE:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp uge mulval, max+1
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_ULE:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp ule mulval, max
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getMaxValue(MulWidth);
+ MaxVal = MaxVal.zext(CI->getBitWidth());
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_ULT:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp ule mulval, max + 1
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ default:
+ return nullptr;
+ }
+
+ InstCombiner::BuilderTy &Builder = IC.Builder;
+ Builder.SetInsertPoint(MulInstr);
+
+ // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
+ Value *MulA = A, *MulB = B;
+ if (WidthA < MulWidth)
+ MulA = Builder.CreateZExt(A, MulType);
+ if (WidthB < MulWidth)
+ MulB = Builder.CreateZExt(B, MulType);
+ Function *F = Intrinsic::getDeclaration(
+ I.getModule(), Intrinsic::umul_with_overflow, MulType);
+ CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
+ IC.addToWorklist(MulInstr);
+
+ // If there are uses of mul result other than the comparison, we know that
+ // they are truncation or binary AND. Change them to use result of
+ // mul.with.overflow and adjust properly mask/size.
+ if (MulVal->hasNUsesOrMore(2)) {
+ Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
+ for (User *U : make_early_inc_range(MulVal->users())) {
+ if (U == &I || U == OtherVal)
+ continue;
+ if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
+ if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
+ IC.replaceInstUsesWith(*TI, Mul);
+ else
+ TI->setOperand(0, Mul);
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
+ assert(BO->getOpcode() == Instruction::And);
+ // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
+ ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
+ APInt ShortMask = CI->getValue().trunc(MulWidth);
+ Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
+ Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
+ IC.replaceInstUsesWith(*BO, Zext);
+ } else {
+ llvm_unreachable("Unexpected Binary operation");
+ }
+ IC.addToWorklist(cast<Instruction>(U));
+ }
+ }
+ if (isa<Instruction>(OtherVal))
+ IC.addToWorklist(cast<Instruction>(OtherVal));
+
+ // The original icmp gets replaced with the overflow value, maybe inverted
+ // depending on predicate.
+ bool Inverse = false;
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_NE:
+ break;
+ case ICmpInst::ICMP_EQ:
+ Inverse = true;
+ break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ if (I.getOperand(0) == MulVal)
+ break;
+ Inverse = true;
+ break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ if (I.getOperand(1) == MulVal)
+ break;
+ Inverse = true;
+ break;
+ default:
+ llvm_unreachable("Unexpected predicate");
+ }
+ if (Inverse) {
+ Value *Res = Builder.CreateExtractValue(Call, 1);
+ return BinaryOperator::CreateNot(Res);
+ }
+
+ return ExtractValueInst::Create(Call, 1);
+}
+
+/// When performing a comparison against a constant, it is possible that not all
+/// the bits in the LHS are demanded. This helper method computes the mask that
+/// IS demanded.
+static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
+ const APInt *RHS;
+ if (!match(I.getOperand(1), m_APInt(RHS)))
+ return APInt::getAllOnesValue(BitWidth);
+
+ // If this is a normal comparison, it demands all bits. If it is a sign bit
+ // comparison, it only demands the sign bit.
+ bool UnusedBit;
+ if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
+ return APInt::getSignMask(BitWidth);
+
+ switch (I.getPredicate()) {
+ // For a UGT comparison, we don't care about any bits that
+ // correspond to the trailing ones of the comparand. The value of these
+ // bits doesn't impact the outcome of the comparison, because any value
+ // greater than the RHS must differ in a bit higher than these due to carry.
+ case ICmpInst::ICMP_UGT:
+ return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
+
+ // Similarly, for a ULT comparison, we don't care about the trailing zeros.
+ // Any value less than the RHS must differ in a higher bit because of carries.
+ case ICmpInst::ICMP_ULT:
+ return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
+
+ default:
+ return APInt::getAllOnesValue(BitWidth);
+ }
+}
+
+/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
+/// should be swapped.
+/// The decision is based on how many times these two operands are reused
+/// as subtract operands and their positions in those instructions.
+/// The rationale is that several architectures use the same instruction for
+/// both subtract and cmp. Thus, it is better if the order of those operands
+/// match.
+/// \return true if Op0 and Op1 should be swapped.
+static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
+ // Filter out pointer values as those cannot appear directly in subtract.
+ // FIXME: we may want to go through inttoptrs or bitcasts.
+ if (Op0->getType()->isPointerTy())
+ return false;
+ // If a subtract already has the same operands as a compare, swapping would be
+ // bad. If a subtract has the same operands as a compare but in reverse order,
+ // then swapping is good.
+ int GoodToSwap = 0;
+ for (const User *U : Op0->users()) {
+ if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
+ GoodToSwap++;
+ else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
+ GoodToSwap--;
+ }
+ return GoodToSwap > 0;
+}
+
+/// Check that one use is in the same block as the definition and all
+/// other uses are in blocks dominated by a given block.
+///
+/// \param DI Definition
+/// \param UI Use
+/// \param DB Block that must dominate all uses of \p DI outside
+/// the parent block
+/// \return true when \p UI is the only use of \p DI in the parent block
+/// and all other uses of \p DI are in blocks dominated by \p DB.
+///
+bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
+ const Instruction *UI,
+ const BasicBlock *DB) const {
+ assert(DI && UI && "Instruction not defined\n");
+ // Ignore incomplete definitions.
+ if (!DI->getParent())
+ return false;
+ // DI and UI must be in the same block.
+ if (DI->getParent() != UI->getParent())
+ return false;
+ // Protect from self-referencing blocks.
+ if (DI->getParent() == DB)
+ return false;
+ for (const User *U : DI->users()) {
+ auto *Usr = cast<Instruction>(U);
+ if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
+ return false;
+ }
+ return true;
+}
+
+/// Return true when the instruction sequence within a block is select-cmp-br.
+static bool isChainSelectCmpBranch(const SelectInst *SI) {
+ const BasicBlock *BB = SI->getParent();
+ if (!BB)
+ return false;
+ auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
+ if (!BI || BI->getNumSuccessors() != 2)
+ return false;
+ auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
+ return false;
+ return true;
+}
+
+/// True when a select result is replaced by one of its operands
+/// in select-icmp sequence. This will eventually result in the elimination
+/// of the select.
+///
+/// \param SI Select instruction
+/// \param Icmp Compare instruction
+/// \param SIOpd Operand that replaces the select
+///
+/// Notes:
+/// - The replacement is global and requires dominator information
+/// - The caller is responsible for the actual replacement
+///
+/// Example:
+///
+/// entry:
+/// %4 = select i1 %3, %C* %0, %C* null
+/// %5 = icmp eq %C* %4, null
+/// br i1 %5, label %9, label %7
+/// ...
+/// ; <label>:7 ; preds = %entry
+/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
+/// ...
+///
+/// can be transformed to
+///
+/// %5 = icmp eq %C* %0, null
+/// %6 = select i1 %3, i1 %5, i1 true
+/// br i1 %6, label %9, label %7
+/// ...
+/// ; <label>:7 ; preds = %entry
+/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
+///
+/// Similar when the first operand of the select is a constant or/and
+/// the compare is for not equal rather than equal.
+///
+/// NOTE: The function is only called when the select and compare constants
+/// are equal, the optimization can work only for EQ predicates. This is not a
+/// major restriction since a NE compare should be 'normalized' to an equal
+/// compare, which usually happens in the combiner and test case
+/// select-cmp-br.ll checks for it.
+bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
+ const ICmpInst *Icmp,
+ const unsigned SIOpd) {
+ assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
+ if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
+ BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
+ // The check for the single predecessor is not the best that can be
+ // done. But it protects efficiently against cases like when SI's
+ // home block has two successors, Succ and Succ1, and Succ1 predecessor
+ // of Succ. Then SI can't be replaced by SIOpd because the use that gets
+ // replaced can be reached on either path. So the uniqueness check
+ // guarantees that the path all uses of SI (outside SI's parent) are on
+ // is disjoint from all other paths out of SI. But that information
+ // is more expensive to compute, and the trade-off here is in favor
+ // of compile-time. It should also be noticed that we check for a single
+ // predecessor and not only uniqueness. This to handle the situation when
+ // Succ and Succ1 points to the same basic block.
+ if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
+ NumSel++;
+ SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Try to fold the comparison based on range information we can get by checking
+/// whether bits are known to be zero or one in the inputs.
+Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = Op0->getType();
+ ICmpInst::Predicate Pred = I.getPredicate();
+
+ // Get scalar or pointer size.
+ unsigned BitWidth = Ty->isIntOrIntVectorTy()
+ ? Ty->getScalarSizeInBits()
+ : DL.getPointerTypeSizeInBits(Ty->getScalarType());
+
+ if (!BitWidth)
+ return nullptr;
+
+ KnownBits Op0Known(BitWidth);
+ KnownBits Op1Known(BitWidth);
+
+ if (SimplifyDemandedBits(&I, 0,
+ getDemandedBitsLHSMask(I, BitWidth),
+ Op0Known, 0))
+ return &I;
+
+ if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
+ Op1Known, 0))
+ return &I;
+
+ // Given the known and unknown bits, compute a range that the LHS could be
+ // in. Compute the Min, Max and RHS values based on the known bits. For the
+ // EQ and NE we use unsigned values.
+ APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
+ APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
+ if (I.isSigned()) {
+ Op0Min = Op0Known.getSignedMinValue();
+ Op0Max = Op0Known.getSignedMaxValue();
+ Op1Min = Op1Known.getSignedMinValue();
+ Op1Max = Op1Known.getSignedMaxValue();
+ } else {
+ Op0Min = Op0Known.getMinValue();
+ Op0Max = Op0Known.getMaxValue();
+ Op1Min = Op1Known.getMinValue();
+ Op1Max = Op1Known.getMaxValue();
+ }
+
+ // If Min and Max are known to be the same, then SimplifyDemandedBits figured
+ // out that the LHS or RHS is a constant. Constant fold this now, so that
+ // code below can assume that Min != Max.
+ if (!isa<Constant>(Op0) && Op0Min == Op0Max)
+ return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
+ if (!isa<Constant>(Op1) && Op1Min == Op1Max)
+ return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
+
+ // Based on the range information we know about the LHS, see if we can
+ // simplify this comparison. For example, (x&4) < 8 is always true.
+ switch (Pred) {
+ default:
+ llvm_unreachable("Unknown icmp opcode!");
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE: {
+ if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
+ return replaceInstUsesWith(
+ I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
+
+ // If all bits are known zero except for one, then we know at most one bit
+ // is set. If the comparison is against zero, then this is a check to see if
+ // *that* bit is set.
+ APInt Op0KnownZeroInverted = ~Op0Known.Zero;
+ if (Op1Known.isZero()) {
+ // If the LHS is an AND with the same constant, look through it.
+ Value *LHS = nullptr;
+ const APInt *LHSC;
+ if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
+ *LHSC != Op0KnownZeroInverted)
+ LHS = Op0;
+
+ Value *X;
+ if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
+ APInt ValToCheck = Op0KnownZeroInverted;
+ Type *XTy = X->getType();
+ if (ValToCheck.isPowerOf2()) {
+ // ((1 << X) & 8) == 0 -> X != 3
+ // ((1 << X) & 8) != 0 -> X == 3
+ auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
+ auto NewPred = ICmpInst::getInversePredicate(Pred);
+ return new ICmpInst(NewPred, X, CmpC);
+ } else if ((++ValToCheck).isPowerOf2()) {
+ // ((1 << X) & 7) == 0 -> X >= 3
+ // ((1 << X) & 7) != 0 -> X < 3
+ auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
+ auto NewPred =
+ Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
+ return new ICmpInst(NewPred, X, CmpC);
+ }
+ }
+
+ // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
+ const APInt *CI;
+ if (Op0KnownZeroInverted.isOneValue() &&
+ match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
+ // ((8 >>u X) & 1) == 0 -> X != 3
+ // ((8 >>u X) & 1) != 0 -> X == 3
+ unsigned CmpVal = CI->countTrailingZeros();
+ auto NewPred = ICmpInst::getInversePredicate(Pred);
+ return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
+ }
+ }
+ break;
+ }
+ case ICmpInst::ICMP_ULT: {
+ if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+
+ const APInt *CmpC;
+ if (match(Op1, m_APInt(CmpC))) {
+ // A <u C -> A == C-1 if min(A)+1 == C
+ if (*CmpC == Op0Min + 1)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(Op1->getType(), *CmpC - 1));
+ // X <u C --> X == 0, if the number of zero bits in the bottom of X
+ // exceeds the log2 of C.
+ if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ Constant::getNullValue(Op1->getType()));
+ }
+ break;
+ }
+ case ICmpInst::ICMP_UGT: {
+ if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+
+ const APInt *CmpC;
+ if (match(Op1, m_APInt(CmpC))) {
+ // A >u C -> A == C+1 if max(a)-1 == C
+ if (*CmpC == Op0Max - 1)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(Op1->getType(), *CmpC + 1));
+ // X >u C --> X != 0, if the number of zero bits in the bottom of X
+ // exceeds the log2 of C.
+ if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0,
+ Constant::getNullValue(Op1->getType()));
+ }
+ break;
+ }
+ case ICmpInst::ICMP_SLT: {
+ if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ const APInt *CmpC;
+ if (match(Op1, m_APInt(CmpC))) {
+ if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(Op1->getType(), *CmpC - 1));
+ }
+ break;
+ }
+ case ICmpInst::ICMP_SGT: {
+ if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ const APInt *CmpC;
+ if (match(Op1, m_APInt(CmpC))) {
+ if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(Op1->getType(), *CmpC + 1));
+ }
+ break;
+ }
+ case ICmpInst::ICMP_SGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
+ if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
+ break;
+ case ICmpInst::ICMP_SLE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
+ if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
+ break;
+ case ICmpInst::ICMP_UGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
+ if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
+ break;
+ case ICmpInst::ICMP_ULE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
+ if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
+ break;
+ }
+
+ // Turn a signed comparison into an unsigned one if both operands are known to
+ // have the same sign.
+ if (I.isSigned() &&
+ ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
+ (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
+ return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
+
+ return nullptr;
+}
+
+llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
+InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
+ Constant *C) {
+ assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
+ "Only for relational integer predicates.");
+
+ Type *Type = C->getType();
+ bool IsSigned = ICmpInst::isSigned(Pred);
+
+ CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
+ bool WillIncrement =
+ UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
+
+ // Check if the constant operand can be safely incremented/decremented
+ // without overflowing/underflowing.
+ auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
+ return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
+ };
+
+ Constant *SafeReplacementConstant = nullptr;
+ if (auto *CI = dyn_cast<ConstantInt>(C)) {
+ // Bail out if the constant can't be safely incremented/decremented.
+ if (!ConstantIsOk(CI))
+ return llvm::None;
+ } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
+ unsigned NumElts = FVTy->getNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt)
+ return llvm::None;
+
+ if (isa<UndefValue>(Elt))
+ continue;
+
+ // Bail out if we can't determine if this constant is min/max or if we
+ // know that this constant is min/max.
+ auto *CI = dyn_cast<ConstantInt>(Elt);
+ if (!CI || !ConstantIsOk(CI))
+ return llvm::None;
+
+ if (!SafeReplacementConstant)
+ SafeReplacementConstant = CI;
+ }
+ } else {
+ // ConstantExpr?
+ return llvm::None;
+ }
+
+ // It may not be safe to change a compare predicate in the presence of
+ // undefined elements, so replace those elements with the first safe constant
+ // that we found.
+ // TODO: in case of poison, it is safe; let's replace undefs only.
+ if (C->containsUndefOrPoisonElement()) {
+ assert(SafeReplacementConstant && "Replacement constant not set");
+ C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
+ }
+
+ CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
+
+ // Increment or decrement the constant.
+ Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
+ Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
+
+ return std::make_pair(NewPred, NewC);
+}
+
+/// If we have an icmp le or icmp ge instruction with a constant operand, turn
+/// it into the appropriate icmp lt or icmp gt instruction. This transform
+/// allows them to be folded in visitICmpInst.
+static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
+ ICmpInst::Predicate Pred = I.getPredicate();
+ if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
+ InstCombiner::isCanonicalPredicate(Pred))
+ return nullptr;
+
+ Value *Op0 = I.getOperand(0);
+ Value *Op1 = I.getOperand(1);
+ auto *Op1C = dyn_cast<Constant>(Op1);
+ if (!Op1C)
+ return nullptr;
+
+ auto FlippedStrictness =
+ InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
+ if (!FlippedStrictness)
+ return nullptr;
+
+ return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
+}
+
+/// If we have a comparison with a non-canonical predicate, if we can update
+/// all the users, invert the predicate and adjust all the users.
+CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
+ // Is the predicate already canonical?
+ CmpInst::Predicate Pred = I.getPredicate();
+ if (InstCombiner::isCanonicalPredicate(Pred))
+ return nullptr;
+
+ // Can all users be adjusted to predicate inversion?
+ if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
+ return nullptr;
+
+ // Ok, we can canonicalize comparison!
+ // Let's first invert the comparison's predicate.
+ I.setPredicate(CmpInst::getInversePredicate(Pred));
+ I.setName(I.getName() + ".not");
+
+ // And, adapt users.
+ freelyInvertAllUsersOf(&I);
+
+ return &I;
+}
+
+/// Integer compare with boolean values can always be turned into bitwise ops.
+static Instruction *canonicalizeICmpBool(ICmpInst &I,
+ InstCombiner::BuilderTy &Builder) {
+ Value *A = I.getOperand(0), *B = I.getOperand(1);
+ assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
+
+ // A boolean compared to true/false can be simplified to Op0/true/false in
+ // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
+ // Cases not handled by InstSimplify are always 'not' of Op0.
+ if (match(B, m_Zero())) {
+ switch (I.getPredicate()) {
+ case CmpInst::ICMP_EQ: // A == 0 -> !A
+ case CmpInst::ICMP_ULE: // A <=u 0 -> !A
+ case CmpInst::ICMP_SGE: // A >=s 0 -> !A
+ return BinaryOperator::CreateNot(A);
+ default:
+ llvm_unreachable("ICmp i1 X, C not simplified as expected.");
+ }
+ } else if (match(B, m_One())) {
+ switch (I.getPredicate()) {
+ case CmpInst::ICMP_NE: // A != 1 -> !A
+ case CmpInst::ICMP_ULT: // A <u 1 -> !A
+ case CmpInst::ICMP_SGT: // A >s -1 -> !A
+ return BinaryOperator::CreateNot(A);
+ default:
+ llvm_unreachable("ICmp i1 X, C not simplified as expected.");
+ }
+ }
+
+ switch (I.getPredicate()) {
+ default:
+ llvm_unreachable("Invalid icmp instruction!");
+ case ICmpInst::ICMP_EQ:
+ // icmp eq i1 A, B -> ~(A ^ B)
+ return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
+
+ case ICmpInst::ICMP_NE:
+ // icmp ne i1 A, B -> A ^ B
+ return BinaryOperator::CreateXor(A, B);
+
+ case ICmpInst::ICMP_UGT:
+ // icmp ugt -> icmp ult
+ std::swap(A, B);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_ULT:
+ // icmp ult i1 A, B -> ~A & B
+ return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
+
+ case ICmpInst::ICMP_SGT:
+ // icmp sgt -> icmp slt
+ std::swap(A, B);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_SLT:
+ // icmp slt i1 A, B -> A & ~B
+ return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
+
+ case ICmpInst::ICMP_UGE:
+ // icmp uge -> icmp ule
+ std::swap(A, B);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_ULE:
+ // icmp ule i1 A, B -> ~A | B
+ return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
+
+ case ICmpInst::ICMP_SGE:
+ // icmp sge -> icmp sle
+ std::swap(A, B);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::ICMP_SLE:
+ // icmp sle i1 A, B -> A | ~B
+ return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
+ }
+}
+
+// Transform pattern like:
+// (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
+// (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
+// Into:
+// (X l>> Y) != 0
+// (X l>> Y) == 0
+static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
+ InstCombiner::BuilderTy &Builder) {
+ ICmpInst::Predicate Pred, NewPred;
+ Value *X, *Y;
+ if (match(&Cmp,
+ m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
+ switch (Pred) {
+ case ICmpInst::ICMP_ULE:
+ NewPred = ICmpInst::ICMP_NE;
+ break;
+ case ICmpInst::ICMP_UGT:
+ NewPred = ICmpInst::ICMP_EQ;
+ break;
+ default:
+ return nullptr;
+ }
+ } else if (match(&Cmp, m_c_ICmp(Pred,
+ m_OneUse(m_CombineOr(
+ m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
+ m_Add(m_Shl(m_One(), m_Value(Y)),
+ m_AllOnes()))),
+ m_Value(X)))) {
+ // The variant with 'add' is not canonical, (the variant with 'not' is)
+ // we only get it because it has extra uses, and can't be canonicalized,
+
+ switch (Pred) {
+ case ICmpInst::ICMP_ULT:
+ NewPred = ICmpInst::ICMP_NE;
+ break;
+ case ICmpInst::ICMP_UGE:
+ NewPred = ICmpInst::ICMP_EQ;
+ break;
+ default:
+ return nullptr;
+ }
+ } else
+ return nullptr;
+
+ Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
+ Constant *Zero = Constant::getNullValue(NewX->getType());
+ return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
+}
+
+static Instruction *foldVectorCmp(CmpInst &Cmp,
+ InstCombiner::BuilderTy &Builder) {
+ const CmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
+ Value *V1, *V2;
+ ArrayRef<int> M;
+ if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
+ return nullptr;
+
+ // If both arguments of the cmp are shuffles that use the same mask and
+ // shuffle within a single vector, move the shuffle after the cmp:
+ // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
+ Type *V1Ty = V1->getType();
+ if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
+ V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
+ Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
+ return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
+ }
+
+ // Try to canonicalize compare with splatted operand and splat constant.
+ // TODO: We could generalize this for more than splats. See/use the code in
+ // InstCombiner::foldVectorBinop().
+ Constant *C;
+ if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
+ return nullptr;
+
+ // Length-changing splats are ok, so adjust the constants as needed:
+ // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
+ Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
+ int MaskSplatIndex;
+ if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
+ // We allow undefs in matching, but this transform removes those for safety.
+ // Demanded elements analysis should be able to recover some/all of that.
+ C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
+ ScalarC);
+ SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
+ Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
+ return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
+ NewM);
+ }
+
+ return nullptr;
+}
+
+// extract(uadd.with.overflow(A, B), 0) ult A
+// -> extract(uadd.with.overflow(A, B), 1)
+static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
+ CmpInst::Predicate Pred = I.getPredicate();
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ Value *UAddOv;
+ Value *A, *B;
+ auto UAddOvResultPat = m_ExtractValue<0>(
+ m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
+ if (match(Op0, UAddOvResultPat) &&
+ ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
+ (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
+ (match(A, m_One()) || match(B, m_One()))) ||
+ (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
+ (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
+ // extract(uadd.with.overflow(A, B), 0) < A
+ // extract(uadd.with.overflow(A, 1), 0) == 0
+ // extract(uadd.with.overflow(A, -1), 0) != -1
+ UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
+ else if (match(Op1, UAddOvResultPat) &&
+ Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
+ // A > extract(uadd.with.overflow(A, B), 0)
+ UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
+ else
+ return nullptr;
+
+ return ExtractValueInst::Create(UAddOv, 1);
+}
+
+Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
+ bool Changed = false;
+ const SimplifyQuery Q = SQ.getWithInstruction(&I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ unsigned Op0Cplxity = getComplexity(Op0);
+ unsigned Op1Cplxity = getComplexity(Op1);
+
+ /// Orders the operands of the compare so that they are listed from most
+ /// complex to least complex. This puts constants before unary operators,
+ /// before binary operators.
+ if (Op0Cplxity < Op1Cplxity ||
+ (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
+ I.swapOperands();
+ std::swap(Op0, Op1);
+ Changed = true;
+ }
+
+ if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
+ return replaceInstUsesWith(I, V);
+
+ // Comparing -val or val with non-zero is the same as just comparing val
+ // ie, abs(val) != 0 -> val != 0
+ if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
+ Value *Cond, *SelectTrue, *SelectFalse;
+ if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
+ m_Value(SelectFalse)))) {
+ if (Value *V = dyn_castNegVal(SelectTrue)) {
+ if (V == SelectFalse)
+ return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
+ }
+ else if (Value *V = dyn_castNegVal(SelectFalse)) {
+ if (V == SelectTrue)
+ return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
+ }
+ }
+ }
+
+ if (Op0->getType()->isIntOrIntVectorTy(1))
+ if (Instruction *Res = canonicalizeICmpBool(I, Builder))
+ return Res;
+
+ if (Instruction *Res = canonicalizeCmpWithConstant(I))
+ return Res;
+
+ if (Instruction *Res = canonicalizeICmpPredicate(I))
+ return Res;
+
+ if (Instruction *Res = foldICmpWithConstant(I))
+ return Res;
+
+ if (Instruction *Res = foldICmpWithDominatingICmp(I))
+ return Res;
+
+ if (Instruction *Res = foldICmpBinOp(I, Q))
+ return Res;
+
+ if (Instruction *Res = foldICmpUsingKnownBits(I))
+ return Res;
+
+ // Test if the ICmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ //
+ // Do the same for the other patterns recognized by matchSelectPattern.
+ if (I.hasOneUse())
+ if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
+ Value *A, *B;
+ SelectPatternResult SPR = matchSelectPattern(SI, A, B);
+ if (SPR.Flavor != SPF_UNKNOWN)
+ return nullptr;
+ }
+
+ // Do this after checking for min/max to prevent infinite looping.
+ if (Instruction *Res = foldICmpWithZero(I))
+ return Res;
+
+ // FIXME: We only do this after checking for min/max to prevent infinite
+ // looping caused by a reverse canonicalization of these patterns for min/max.
+ // FIXME: The organization of folds is a mess. These would naturally go into
+ // canonicalizeCmpWithConstant(), but we can't move all of the above folds
+ // down here after the min/max restriction.
+ ICmpInst::Predicate Pred = I.getPredicate();
+ const APInt *C;
+ if (match(Op1, m_APInt(C))) {
+ // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
+ if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
+ Constant *Zero = Constant::getNullValue(Op0->getType());
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
+ }
+
+ // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
+ if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
+ Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
+ }
+ }
+
+ if (Instruction *Res = foldICmpInstWithConstant(I))
+ return Res;
+
+ // Try to match comparison as a sign bit test. Intentionally do this after
+ // foldICmpInstWithConstant() to potentially let other folds to happen first.
+ if (Instruction *New = foldSignBitTest(I))
+ return New;
+
+ if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
+ return Res;
+
+ // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
+ if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
+ return NI;
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
+ if (Instruction *NI = foldGEPICmp(GEP, Op0,
+ ICmpInst::getSwappedPredicate(I.getPredicate()), I))
+ return NI;
+
+ // Try to optimize equality comparisons against alloca-based pointers.
+ if (Op0->getType()->isPointerTy() && I.isEquality()) {
+ assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
+ if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
+ if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
+ return New;
+ if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
+ if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
+ return New;
+ }
+
+ if (Instruction *Res = foldICmpBitCast(I, Builder))
+ return Res;
+
+ // TODO: Hoist this above the min/max bailout.
+ if (Instruction *R = foldICmpWithCastOp(I))
+ return R;
+
+ if (Instruction *Res = foldICmpWithMinMax(I))
+ return Res;
+
+ {
+ Value *A, *B;
+ // Transform (A & ~B) == 0 --> (A & B) != 0
+ // and (A & ~B) != 0 --> (A & B) == 0
+ // if A is a power of 2.
+ if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_Zero()) &&
+ isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
+ return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
+ Op1);
+
+ // ~X < ~Y --> Y < X
+ // ~X < C --> X > ~C
+ if (match(Op0, m_Not(m_Value(A)))) {
+ if (match(Op1, m_Not(m_Value(B))))
+ return new ICmpInst(I.getPredicate(), B, A);
+
+ const APInt *C;
+ if (match(Op1, m_APInt(C)))
+ return new ICmpInst(I.getSwappedPredicate(), A,
+ ConstantInt::get(Op1->getType(), ~(*C)));
+ }
+
+ Instruction *AddI = nullptr;
+ if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
+ m_Instruction(AddI))) &&
+ isa<IntegerType>(A->getType())) {
+ Value *Result;
+ Constant *Overflow;
+ // m_UAddWithOverflow can match patterns that do not include an explicit
+ // "add" instruction, so check the opcode of the matched op.
+ if (AddI->getOpcode() == Instruction::Add &&
+ OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
+ Result, Overflow)) {
+ replaceInstUsesWith(*AddI, Result);
+ eraseInstFromFunction(*AddI);
+ return replaceInstUsesWith(I, Overflow);
+ }
+ }
+
+ // (zext a) * (zext b) --> llvm.umul.with.overflow.
+ if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
+ if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
+ return R;
+ }
+ if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
+ if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
+ return R;
+ }
+ }
+
+ if (Instruction *Res = foldICmpEquality(I))
+ return Res;
+
+ if (Instruction *Res = foldICmpOfUAddOv(I))
+ return Res;
+
+ // The 'cmpxchg' instruction returns an aggregate containing the old value and
+ // an i1 which indicates whether or not we successfully did the swap.
+ //
+ // Replace comparisons between the old value and the expected value with the
+ // indicator that 'cmpxchg' returns.
+ //
+ // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
+ // spuriously fail. In those cases, the old value may equal the expected
+ // value but it is possible for the swap to not occur.
+ if (I.getPredicate() == ICmpInst::ICMP_EQ)
+ if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
+ if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
+ if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
+ !ACXI->isWeak())
+ return ExtractValueInst::Create(ACXI, 1);
+
+ {
+ Value *X;
+ const APInt *C;
+ // icmp X+Cst, X
+ if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
+ return foldICmpAddOpConst(X, *C, I.getPredicate());
+
+ // icmp X, X+Cst
+ if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
+ return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
+ }
+
+ if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
+ return Res;
+
+ if (I.getType()->isVectorTy())
+ if (Instruction *Res = foldVectorCmp(I, Builder))
+ return Res;
+
+ return Changed ? &I : nullptr;
+}
+
+/// Fold fcmp ([us]itofp x, cst) if possible.
+Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
+ Instruction *LHSI,
+ Constant *RHSC) {
+ if (!isa<ConstantFP>(RHSC)) return nullptr;
+ const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
+
+ // Get the width of the mantissa. We don't want to hack on conversions that
+ // might lose information from the integer, e.g. "i64 -> float"
+ int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
+ if (MantissaWidth == -1) return nullptr; // Unknown.
+
+ IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
+
+ bool LHSUnsigned = isa<UIToFPInst>(LHSI);
+
+ if (I.isEquality()) {
+ FCmpInst::Predicate P = I.getPredicate();
+ bool IsExact = false;
+ APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
+ RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
+
+ // If the floating point constant isn't an integer value, we know if we will
+ // ever compare equal / not equal to it.
+ if (!IsExact) {
+ // TODO: Can never be -0.0 and other non-representable values
+ APFloat RHSRoundInt(RHS);
+ RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
+ if (RHS != RHSRoundInt) {
+ if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
+ return replaceInstUsesWith(I, Builder.getFalse());
+
+ assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
+ return replaceInstUsesWith(I, Builder.getTrue());
+ }
+ }
+
+ // TODO: If the constant is exactly representable, is it always OK to do
+ // equality compares as integer?
+ }
+
+ // Check to see that the input is converted from an integer type that is small
+ // enough that preserves all bits. TODO: check here for "known" sign bits.
+ // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
+ unsigned InputSize = IntTy->getScalarSizeInBits();
+
+ // Following test does NOT adjust InputSize downwards for signed inputs,
+ // because the most negative value still requires all the mantissa bits
+ // to distinguish it from one less than that value.
+ if ((int)InputSize > MantissaWidth) {
+ // Conversion would lose accuracy. Check if loss can impact comparison.
+ int Exp = ilogb(RHS);
+ if (Exp == APFloat::IEK_Inf) {
+ int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
+ if (MaxExponent < (int)InputSize - !LHSUnsigned)
+ // Conversion could create infinity.
+ return nullptr;
+ } else {
+ // Note that if RHS is zero or NaN, then Exp is negative
+ // and first condition is trivially false.
+ if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
+ // Conversion could affect comparison.
+ return nullptr;
+ }
+ }
+
+ // Otherwise, we can potentially simplify the comparison. We know that it
+ // will always come through as an integer value and we know the constant is
+ // not a NAN (it would have been previously simplified).
+ assert(!RHS.isNaN() && "NaN comparison not already folded!");
+
+ ICmpInst::Predicate Pred;
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Unexpected predicate!");
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_OEQ:
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_OGT:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
+ break;
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGE:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
+ break;
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_OLT:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
+ break;
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLE:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
+ break;
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_ONE:
+ Pred = ICmpInst::ICMP_NE;
+ break;
+ case FCmpInst::FCMP_ORD:
+ return replaceInstUsesWith(I, Builder.getTrue());
+ case FCmpInst::FCMP_UNO:
+ return replaceInstUsesWith(I, Builder.getFalse());
+ }
+
+ // Now we know that the APFloat is a normal number, zero or inf.
+
+ // See if the FP constant is too large for the integer. For example,
+ // comparing an i8 to 300.0.
+ unsigned IntWidth = IntTy->getScalarSizeInBits();
+
+ if (!LHSUnsigned) {
+ // If the RHS value is > SignedMax, fold the comparison. This handles +INF
+ // and large values.
+ APFloat SMax(RHS.getSemantics());
+ SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMax < RHS) { // smax < 13123.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
+ Pred == ICmpInst::ICMP_SLE)
+ return replaceInstUsesWith(I, Builder.getTrue());
+ return replaceInstUsesWith(I, Builder.getFalse());
+ }
+ } else {
+ // If the RHS value is > UnsignedMax, fold the comparison. This handles
+ // +INF and large values.
+ APFloat UMax(RHS.getSemantics());
+ UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
+ APFloat::rmNearestTiesToEven);
+ if (UMax < RHS) { // umax < 13123.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
+ Pred == ICmpInst::ICMP_ULE)
+ return replaceInstUsesWith(I, Builder.getTrue());
+ return replaceInstUsesWith(I, Builder.getFalse());
+ }
+ }
+
+ if (!LHSUnsigned) {
+ // See if the RHS value is < SignedMin.
+ APFloat SMin(RHS.getSemantics());
+ SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMin > RHS) { // smin > 12312.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
+ Pred == ICmpInst::ICMP_SGE)
+ return replaceInstUsesWith(I, Builder.getTrue());
+ return replaceInstUsesWith(I, Builder.getFalse());
+ }
+ } else {
+ // See if the RHS value is < UnsignedMin.
+ APFloat UMin(RHS.getSemantics());
+ UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
+ APFloat::rmNearestTiesToEven);
+ if (UMin > RHS) { // umin > 12312.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
+ Pred == ICmpInst::ICMP_UGE)
+ return replaceInstUsesWith(I, Builder.getTrue());
+ return replaceInstUsesWith(I, Builder.getFalse());
+ }
+ }
+
+ // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
+ // [0, UMAX], but it may still be fractional. See if it is fractional by
+ // casting the FP value to the integer value and back, checking for equality.
+ // Don't do this for zero, because -0.0 is not fractional.
+ Constant *RHSInt = LHSUnsigned
+ ? ConstantExpr::getFPToUI(RHSC, IntTy)
+ : ConstantExpr::getFPToSI(RHSC, IntTy);
+ if (!RHS.isZero()) {
+ bool Equal = LHSUnsigned
+ ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
+ : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
+ if (!Equal) {
+ // If we had a comparison against a fractional value, we have to adjust
+ // the compare predicate and sometimes the value. RHSC is rounded towards
+ // zero at this point.
+ switch (Pred) {
+ default: llvm_unreachable("Unexpected integer comparison!");
+ case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
+ return replaceInstUsesWith(I, Builder.getTrue());
+ case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
+ return replaceInstUsesWith(I, Builder.getFalse());
+ case ICmpInst::ICMP_ULE:
+ // (float)int <= 4.4 --> int <= 4
+ // (float)int <= -4.4 --> false
+ if (RHS.isNegative())
+ return replaceInstUsesWith(I, Builder.getFalse());
+ break;
+ case ICmpInst::ICMP_SLE:
+ // (float)int <= 4.4 --> int <= 4
+ // (float)int <= -4.4 --> int < -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLT;
+ break;
+ case ICmpInst::ICMP_ULT:
+ // (float)int < -4.4 --> false
+ // (float)int < 4.4 --> int <= 4
+ if (RHS.isNegative())
+ return replaceInstUsesWith(I, Builder.getFalse());
+ Pred = ICmpInst::ICMP_ULE;
+ break;
+ case ICmpInst::ICMP_SLT:
+ // (float)int < -4.4 --> int < -4
+ // (float)int < 4.4 --> int <= 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLE;
+ break;
+ case ICmpInst::ICMP_UGT:
+ // (float)int > 4.4 --> int > 4
+ // (float)int > -4.4 --> true
+ if (RHS.isNegative())
+ return replaceInstUsesWith(I, Builder.getTrue());
+ break;
+ case ICmpInst::ICMP_SGT:
+ // (float)int > 4.4 --> int > 4
+ // (float)int > -4.4 --> int >= -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGE;
+ break;
+ case ICmpInst::ICMP_UGE:
+ // (float)int >= -4.4 --> true
+ // (float)int >= 4.4 --> int > 4
+ if (RHS.isNegative())
+ return replaceInstUsesWith(I, Builder.getTrue());
+ Pred = ICmpInst::ICMP_UGT;
+ break;
+ case ICmpInst::ICMP_SGE:
+ // (float)int >= -4.4 --> int >= -4
+ // (float)int >= 4.4 --> int > 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGT;
+ break;
+ }
+ }
+ }
+
+ // Lower this FP comparison into an appropriate integer version of the
+ // comparison.
+ return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
+}
+
+/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
+static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
+ Constant *RHSC) {
+ // When C is not 0.0 and infinities are not allowed:
+ // (C / X) < 0.0 is a sign-bit test of X
+ // (C / X) < 0.0 --> X < 0.0 (if C is positive)
+ // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
+ //
+ // Proof:
+ // Multiply (C / X) < 0.0 by X * X / C.
+ // - X is non zero, if it is the flag 'ninf' is violated.
+ // - C defines the sign of X * X * C. Thus it also defines whether to swap
+ // the predicate. C is also non zero by definition.
+ //
+ // Thus X * X / C is non zero and the transformation is valid. [qed]
+
+ FCmpInst::Predicate Pred = I.getPredicate();
+
+ // Check that predicates are valid.
+ if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
+ (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
+ return nullptr;
+
+ // Check that RHS operand is zero.
+ if (!match(RHSC, m_AnyZeroFP()))
+ return nullptr;
+
+ // Check fastmath flags ('ninf').
+ if (!LHSI->hasNoInfs() || !I.hasNoInfs())
+ return nullptr;
+
+ // Check the properties of the dividend. It must not be zero to avoid a
+ // division by zero (see Proof).
+ const APFloat *C;
+ if (!match(LHSI->getOperand(0), m_APFloat(C)))
+ return nullptr;
+
+ if (C->isZero())
+ return nullptr;
+
+ // Get swapped predicate if necessary.
+ if (C->isNegative())
+ Pred = I.getSwappedPredicate();
+
+ return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
+}
+
+/// Optimize fabs(X) compared with zero.
+static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
+ Value *X;
+ if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
+ !match(I.getOperand(1), m_PosZeroFP()))
+ return nullptr;
+
+ auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
+ I->setPredicate(P);
+ return IC.replaceOperand(*I, 0, X);
+ };
+
+ switch (I.getPredicate()) {
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OLT:
+ // fabs(X) >= 0.0 --> true
+ // fabs(X) < 0.0 --> false
+ llvm_unreachable("fcmp should have simplified");
+
+ case FCmpInst::FCMP_OGT:
+ // fabs(X) > 0.0 --> X != 0.0
+ return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
+
+ case FCmpInst::FCMP_UGT:
+ // fabs(X) u> 0.0 --> X u!= 0.0
+ return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
+
+ case FCmpInst::FCMP_OLE:
+ // fabs(X) <= 0.0 --> X == 0.0
+ return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
+
+ case FCmpInst::FCMP_ULE:
+ // fabs(X) u<= 0.0 --> X u== 0.0
+ return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
+
+ case FCmpInst::FCMP_OGE:
+ // fabs(X) >= 0.0 --> !isnan(X)
+ assert(!I.hasNoNaNs() && "fcmp should have simplified");
+ return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
+
+ case FCmpInst::FCMP_ULT:
+ // fabs(X) u< 0.0 --> isnan(X)
+ assert(!I.hasNoNaNs() && "fcmp should have simplified");
+ return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
+
+ case FCmpInst::FCMP_OEQ:
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_ONE:
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_ORD:
+ case FCmpInst::FCMP_UNO:
+ // Look through the fabs() because it doesn't change anything but the sign.
+ // fabs(X) == 0.0 --> X == 0.0,
+ // fabs(X) != 0.0 --> X != 0.0
+ // isnan(fabs(X)) --> isnan(X)
+ // !isnan(fabs(X) --> !isnan(X)
+ return replacePredAndOp0(&I, I.getPredicate(), X);
+
+ default:
+ return nullptr;
+ }
+}
+
+Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
+ bool Changed = false;
+
+ /// Orders the operands of the compare so that they are listed from most
+ /// complex to least complex. This puts constants before unary operators,
+ /// before binary operators.
+ if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
+ I.swapOperands();
+ Changed = true;
+ }
+
+ const CmpInst::Predicate Pred = I.getPredicate();
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ // Simplify 'fcmp pred X, X'
+ Type *OpType = Op0->getType();
+ assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
+ if (Op0 == Op1) {
+ switch (Pred) {
+ default: break;
+ case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
+ case FCmpInst::FCMP_ULT: // True if unordered or less than
+ case FCmpInst::FCMP_UGT: // True if unordered or greater than
+ case FCmpInst::FCMP_UNE: // True if unordered or not equal
+ // Canonicalize these to be 'fcmp uno %X, 0.0'.
+ I.setPredicate(FCmpInst::FCMP_UNO);
+ I.setOperand(1, Constant::getNullValue(OpType));
+ return &I;
+
+ case FCmpInst::FCMP_ORD: // True if ordered (no nans)
+ case FCmpInst::FCMP_OEQ: // True if ordered and equal
+ case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
+ case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
+ // Canonicalize these to be 'fcmp ord %X, 0.0'.
+ I.setPredicate(FCmpInst::FCMP_ORD);
+ I.setOperand(1, Constant::getNullValue(OpType));
+ return &I;
+ }
+ }
+
+ // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
+ // then canonicalize the operand to 0.0.
+ if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
+ if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
+ return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
+
+ if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
+ return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
+ }
+
+ // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
+ Value *X, *Y;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
+ return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
+
+ // Test if the FCmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ if (I.hasOneUse())
+ if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
+ Value *A, *B;
+ SelectPatternResult SPR = matchSelectPattern(SI, A, B);
+ if (SPR.Flavor != SPF_UNKNOWN)
+ return nullptr;
+ }
+
+ // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
+ // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
+ if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
+ return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
+
+ // Handle fcmp with instruction LHS and constant RHS.
+ Instruction *LHSI;
+ Constant *RHSC;
+ if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
+ switch (LHSI->getOpcode()) {
+ case Instruction::PHI:
+ // Only fold fcmp into the PHI if the phi and fcmp are in the same
+ // block. If in the same block, we're encouraging jump threading. If
+ // not, we are just pessimizing the code by making an i1 phi.
+ if (LHSI->getParent() == I.getParent())
+ if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
+ return NV;
+ break;
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
+ return NV;
+ break;
+ case Instruction::FDiv:
+ if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
+ return NV;
+ break;
+ case Instruction::Load:
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
+ if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !cast<LoadInst>(LHSI)->isVolatile())
+ if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ return Res;
+ break;
+ }
+ }
+
+ if (Instruction *R = foldFabsWithFcmpZero(I, *this))
+ return R;
+
+ if (match(Op0, m_FNeg(m_Value(X)))) {
+ // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
+ Constant *C;
+ if (match(Op1, m_Constant(C))) {
+ Constant *NegC = ConstantExpr::getFNeg(C);
+ return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
+ }
+ }
+
+ if (match(Op0, m_FPExt(m_Value(X)))) {
+ // fcmp (fpext X), (fpext Y) -> fcmp X, Y
+ if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
+ return new FCmpInst(Pred, X, Y, "", &I);
+
+ // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
+ const APFloat *C;
+ if (match(Op1, m_APFloat(C))) {
+ const fltSemantics &FPSem =
+ X->getType()->getScalarType()->getFltSemantics();
+ bool Lossy;
+ APFloat TruncC = *C;
+ TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
+
+ // Avoid lossy conversions and denormals.
+ // Zero is a special case that's OK to convert.
+ APFloat Fabs = TruncC;
+ Fabs.clearSign();
+ if (!Lossy &&
+ (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
+ Constant *NewC = ConstantFP::get(X->getType(), TruncC);
+ return new FCmpInst(Pred, X, NewC, "", &I);
+ }
+ }
+ }
+
+ if (I.getType()->isVectorTy())
+ if (Instruction *Res = foldVectorCmp(I, Builder))
+ return Res;
+
+ return Changed ? &I : nullptr;
+}