aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp1624
1 files changed, 1624 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
new file mode 100644
index 000000000000..2a34edbf6cb8
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -0,0 +1,1624 @@
+//===- InstCombineMulDivRem.cpp -------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
+// srem, urem, frem.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Transforms/InstCombine/InstCombiner.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include <cassert>
+
+#define DEBUG_TYPE "instcombine"
+#include "llvm/Transforms/Utils/InstructionWorklist.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+/// The specific integer value is used in a context where it is known to be
+/// non-zero. If this allows us to simplify the computation, do so and return
+/// the new operand, otherwise return null.
+static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
+ Instruction &CxtI) {
+ // If V has multiple uses, then we would have to do more analysis to determine
+ // if this is safe. For example, the use could be in dynamically unreached
+ // code.
+ if (!V->hasOneUse()) return nullptr;
+
+ bool MadeChange = false;
+
+ // ((1 << A) >>u B) --> (1 << (A-B))
+ // Because V cannot be zero, we know that B is less than A.
+ Value *A = nullptr, *B = nullptr, *One = nullptr;
+ if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
+ match(One, m_One())) {
+ A = IC.Builder.CreateSub(A, B);
+ return IC.Builder.CreateShl(One, A);
+ }
+
+ // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
+ // inexact. Similarly for <<.
+ BinaryOperator *I = dyn_cast<BinaryOperator>(V);
+ if (I && I->isLogicalShift() &&
+ IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
+ // We know that this is an exact/nuw shift and that the input is a
+ // non-zero context as well.
+ if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
+ IC.replaceOperand(*I, 0, V2);
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
+ I->setIsExact();
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
+ I->setHasNoUnsignedWrap();
+ MadeChange = true;
+ }
+ }
+
+ // TODO: Lots more we could do here:
+ // If V is a phi node, we can call this on each of its operands.
+ // "select cond, X, 0" can simplify to "X".
+
+ return MadeChange ? V : nullptr;
+}
+
+// TODO: This is a specific form of a much more general pattern.
+// We could detect a select with any binop identity constant, or we
+// could use SimplifyBinOp to see if either arm of the select reduces.
+// But that needs to be done carefully and/or while removing potential
+// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
+static Value *foldMulSelectToNegate(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Cond, *OtherOp;
+
+ // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
+ // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
+ if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
+ m_Value(OtherOp)))) {
+ bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
+ Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
+ return Builder.CreateSelect(Cond, OtherOp, Neg);
+ }
+ // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
+ // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
+ if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
+ m_Value(OtherOp)))) {
+ bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
+ Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
+ return Builder.CreateSelect(Cond, Neg, OtherOp);
+ }
+
+ // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
+ // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
+ if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
+ m_SpecificFP(-1.0))),
+ m_Value(OtherOp)))) {
+ IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
+ Builder.setFastMathFlags(I.getFastMathFlags());
+ return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
+ }
+
+ // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
+ // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
+ if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
+ m_SpecificFP(1.0))),
+ m_Value(OtherOp)))) {
+ IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
+ Builder.setFastMathFlags(I.getFastMathFlags());
+ return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
+ if (Value *V = simplifyMulInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *Phi = foldBinopWithPhiOperands(I))
+ return Phi;
+
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return replaceInstUsesWith(I, V);
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ unsigned BitWidth = I.getType()->getScalarSizeInBits();
+
+ // X * -1 == 0 - X
+ if (match(Op1, m_AllOnes())) {
+ BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
+ if (I.hasNoSignedWrap())
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
+
+ // Also allow combining multiply instructions on vectors.
+ {
+ Value *NewOp;
+ Constant *C1, *C2;
+ const APInt *IVal;
+ if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
+ m_Constant(C1))) &&
+ match(C1, m_APInt(IVal))) {
+ // ((X << C2)*C1) == (X * (C1 << C2))
+ Constant *Shl = ConstantExpr::getShl(C1, C2);
+ BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
+ if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
+ Shl->isNotMinSignedValue())
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
+
+ if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
+ // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
+ if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
+ BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
+
+ if (I.hasNoUnsignedWrap())
+ Shl->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap()) {
+ const APInt *V;
+ if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
+ Shl->setHasNoSignedWrap();
+ }
+
+ return Shl;
+ }
+ }
+ }
+
+ if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
+ // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
+ // The "* (1<<C)" thus becomes a potential shifting opportunity.
+ if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
+ return BinaryOperator::CreateMul(
+ NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
+ }
+
+ if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
+ return FoldedMul;
+
+ if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
+ return replaceInstUsesWith(I, FoldedMul);
+
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
+ // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
+ Value *X;
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
+ Value *Mul = Builder.CreateMul(C1, Op1);
+ // Only go forward with the transform if C1*CI simplifies to a tidier
+ // constant.
+ if (!match(Mul, m_Mul(m_Value(), m_Value())))
+ return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
+ }
+ }
+
+ // abs(X) * abs(X) -> X * X
+ // nabs(X) * nabs(X) -> X * X
+ if (Op0 == Op1) {
+ Value *X, *Y;
+ SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
+ if (SPF == SPF_ABS || SPF == SPF_NABS)
+ return BinaryOperator::CreateMul(X, X);
+
+ if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
+ return BinaryOperator::CreateMul(X, X);
+ }
+
+ // -X * C --> X * -C
+ Value *X, *Y;
+ Constant *Op1C;
+ if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
+
+ // -X * -Y --> X * Y
+ if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
+ auto *NewMul = BinaryOperator::CreateMul(X, Y);
+ if (I.hasNoSignedWrap() &&
+ cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
+ cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
+ NewMul->setHasNoSignedWrap();
+ return NewMul;
+ }
+
+ // -X * Y --> -(X * Y)
+ // X * -Y --> -(X * Y)
+ if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
+ return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
+
+ // (X / Y) * Y = X - (X % Y)
+ // (X / Y) * -Y = (X % Y) - X
+ {
+ Value *Y = Op1;
+ BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
+ if (!Div || (Div->getOpcode() != Instruction::UDiv &&
+ Div->getOpcode() != Instruction::SDiv)) {
+ Y = Op0;
+ Div = dyn_cast<BinaryOperator>(Op1);
+ }
+ Value *Neg = dyn_castNegVal(Y);
+ if (Div && Div->hasOneUse() &&
+ (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
+ (Div->getOpcode() == Instruction::UDiv ||
+ Div->getOpcode() == Instruction::SDiv)) {
+ Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
+
+ // If the division is exact, X % Y is zero, so we end up with X or -X.
+ if (Div->isExact()) {
+ if (DivOp1 == Y)
+ return replaceInstUsesWith(I, X);
+ return BinaryOperator::CreateNeg(X);
+ }
+
+ auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
+ : Instruction::SRem;
+ // X must be frozen because we are increasing its number of uses.
+ Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
+ Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
+ if (DivOp1 == Y)
+ return BinaryOperator::CreateSub(XFreeze, Rem);
+ return BinaryOperator::CreateSub(Rem, XFreeze);
+ }
+ }
+
+ // Fold the following two scenarios:
+ // 1) i1 mul -> i1 and.
+ // 2) X * Y --> X & Y, iff X, Y can be only {0,1}.
+ // Note: We could use known bits to generalize this and related patterns with
+ // shifts/truncs
+ Type *Ty = I.getType();
+ if (Ty->isIntOrIntVectorTy(1) ||
+ (match(Op0, m_And(m_Value(), m_One())) &&
+ match(Op1, m_And(m_Value(), m_One()))))
+ return BinaryOperator::CreateAnd(Op0, Op1);
+
+ // X*(1 << Y) --> X << Y
+ // (1 << Y)*X --> X << Y
+ {
+ Value *Y;
+ BinaryOperator *BO = nullptr;
+ bool ShlNSW = false;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
+ BO = BinaryOperator::CreateShl(Op1, Y);
+ ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
+ } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
+ BO = BinaryOperator::CreateShl(Op0, Y);
+ ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
+ }
+ if (BO) {
+ if (I.hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap() && ShlNSW)
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
+ }
+
+ // (zext bool X) * (zext bool Y) --> zext (and X, Y)
+ // (sext bool X) * (sext bool Y) --> zext (and X, Y)
+ // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
+ if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
+ (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
+ X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
+ (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
+ Value *And = Builder.CreateAnd(X, Y, "mulbool");
+ return CastInst::Create(Instruction::ZExt, And, Ty);
+ }
+ // (sext bool X) * (zext bool Y) --> sext (and X, Y)
+ // (zext bool X) * (sext bool Y) --> sext (and X, Y)
+ // Note: -1 * 1 == 1 * -1 == -1
+ if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
+ (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
+ X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
+ (Op0->hasOneUse() || Op1->hasOneUse())) {
+ Value *And = Builder.CreateAnd(X, Y, "mulbool");
+ return CastInst::Create(Instruction::SExt, And, Ty);
+ }
+
+ // (zext bool X) * Y --> X ? Y : 0
+ // Y * (zext bool X) --> X ? Y : 0
+ if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
+ if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
+
+ Constant *ImmC;
+ if (match(Op1, m_ImmConstant(ImmC))) {
+ // (sext bool X) * C --> X ? -C : 0
+ if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ Constant *NegC = ConstantExpr::getNeg(ImmC);
+ return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
+ }
+
+ // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
+ const APInt *C;
+ if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
+ *C == C->getBitWidth() - 1) {
+ Constant *NegC = ConstantExpr::getNeg(ImmC);
+ Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
+ return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
+ }
+ }
+
+ // (lshr X, 31) * Y --> (X < 0) ? Y : 0
+ // TODO: We are not checking one-use because the elimination of the multiply
+ // is better for analysis?
+ const APInt *C;
+ if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
+ *C == C->getBitWidth() - 1) {
+ Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
+ return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
+ }
+
+ // (and X, 1) * Y --> (trunc X) ? Y : 0
+ if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
+ Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
+ return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
+ }
+
+ // ((ashr X, 31) | 1) * X --> abs(X)
+ // X * ((ashr X, 31) | 1) --> abs(X)
+ if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
+ m_SpecificIntAllowUndef(BitWidth - 1)),
+ m_One()),
+ m_Deferred(X)))) {
+ Value *Abs = Builder.CreateBinaryIntrinsic(
+ Intrinsic::abs, X,
+ ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
+ Abs->takeName(&I);
+ return replaceInstUsesWith(I, Abs);
+ }
+
+ if (Instruction *Ext = narrowMathIfNoOverflow(I))
+ return Ext;
+
+ bool Changed = false;
+ if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
+ Changed = true;
+ I.setHasNoSignedWrap(true);
+ }
+
+ if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
+ Changed = true;
+ I.setHasNoUnsignedWrap(true);
+ }
+
+ return Changed ? &I : nullptr;
+}
+
+Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
+ BinaryOperator::BinaryOps Opcode = I.getOpcode();
+ assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
+ "Expected fmul or fdiv");
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *X, *Y;
+
+ // -X * -Y --> X * Y
+ // -X / -Y --> X / Y
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
+ return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
+
+ // fabs(X) * fabs(X) -> X * X
+ // fabs(X) / fabs(X) -> X / X
+ if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
+ return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
+
+ // fabs(X) * fabs(Y) --> fabs(X * Y)
+ // fabs(X) / fabs(Y) --> fabs(X / Y)
+ if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
+ (Op0->hasOneUse() || Op1->hasOneUse())) {
+ IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
+ Builder.setFastMathFlags(I.getFastMathFlags());
+ Value *XY = Builder.CreateBinOp(Opcode, X, Y);
+ Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
+ Fabs->takeName(&I);
+ return replaceInstUsesWith(I, Fabs);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
+ if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *Phi = foldBinopWithPhiOperands(I))
+ return Phi;
+
+ if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
+ return FoldedMul;
+
+ if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
+ return replaceInstUsesWith(I, FoldedMul);
+
+ if (Instruction *R = foldFPSignBitOps(I))
+ return R;
+
+ // X * -1.0 --> -X
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (match(Op1, m_SpecificFP(-1.0)))
+ return UnaryOperator::CreateFNegFMF(Op0, &I);
+
+ // -X * C --> X * -C
+ Value *X, *Y;
+ Constant *C;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
+ return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
+
+ // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
+ if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
+ return replaceInstUsesWith(I, V);
+
+ if (I.hasAllowReassoc()) {
+ // Reassociate constant RHS with another constant to form constant
+ // expression.
+ if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
+ // (C1 / X) * C --> (C * C1) / X
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ if (CC1->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(CC1, X, &I);
+ }
+ if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
+ // (X / C1) * C --> X * (C / C1)
+ Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
+ if (CDivC1->isNormalFP())
+ return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
+
+ // If the constant was a denormal, try reassociating differently.
+ // (X / C1) * C --> X / (C1 / C)
+ Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
+ if (Op0->hasOneUse() && C1DivC->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
+ }
+
+ // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
+ // canonicalized to 'fadd X, C'. Distributing the multiply may allow
+ // further folds and (X * C) + C2 is 'fma'.
+ if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
+ // (X + C1) * C --> (X * C) + (C * C1)
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
+ }
+ if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
+ // (C1 - X) * C --> (C * C1) - (X * C)
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
+ }
+ }
+
+ Value *Z;
+ if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
+ m_Value(Z)))) {
+ // Sink division: (X / Y) * Z --> (X * Z) / Y
+ Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
+ return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
+ }
+
+ // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
+ // nnan disallows the possibility of returning a number if both operands are
+ // negative (in that case, we should return NaN).
+ if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
+ match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
+ Value *XY = Builder.CreateFMulFMF(X, Y, &I);
+ Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
+ return replaceInstUsesWith(I, Sqrt);
+ }
+
+ // The following transforms are done irrespective of the number of uses
+ // for the expression "1.0/sqrt(X)".
+ // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
+ // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
+ // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
+ // has the necessary (reassoc) fast-math-flags.
+ if (I.hasNoSignedZeros() &&
+ match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
+ match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
+ return BinaryOperator::CreateFDivFMF(X, Y, &I);
+ if (I.hasNoSignedZeros() &&
+ match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
+ match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
+ return BinaryOperator::CreateFDivFMF(X, Y, &I);
+
+ // Like the similar transform in instsimplify, this requires 'nsz' because
+ // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
+ if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
+ Op0->hasNUses(2)) {
+ // Peek through fdiv to find squaring of square root:
+ // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
+ if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(XX, Y, &I);
+ }
+ // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
+ if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(Y, XX, &I);
+ }
+ }
+
+ if (I.isOnlyUserOfAnyOperand()) {
+ // pow(x, y) * pow(x, z) -> pow(x, y + z)
+ if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
+ auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
+ auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+
+ // powi(x, y) * powi(x, z) -> powi(x, y + z)
+ if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
+ match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
+ Y->getType() == Z->getType()) {
+ auto *YZ = Builder.CreateAdd(Y, Z);
+ auto *NewPow = Builder.CreateIntrinsic(
+ Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
+ return replaceInstUsesWith(I, NewPow);
+ }
+
+ // exp(X) * exp(Y) -> exp(X + Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
+ return replaceInstUsesWith(I, Exp);
+ }
+
+ // exp2(X) * exp2(Y) -> exp2(X + Y)
+ if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
+ return replaceInstUsesWith(I, Exp2);
+ }
+ }
+
+ // (X*Y) * X => (X*X) * Y where Y != X
+ // The purpose is two-fold:
+ // 1) to form a power expression (of X).
+ // 2) potentially shorten the critical path: After transformation, the
+ // latency of the instruction Y is amortized by the expression of X*X,
+ // and therefore Y is in a "less critical" position compared to what it
+ // was before the transformation.
+ if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
+ Op1 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+ if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
+ Op0 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+ }
+
+ // log2(X * 0.5) * Y = log2(X) * Y - Y
+ if (I.isFast()) {
+ IntrinsicInst *Log2 = nullptr;
+ if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
+ m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
+ Log2 = cast<IntrinsicInst>(Op0);
+ Y = Op1;
+ }
+ if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
+ m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
+ Log2 = cast<IntrinsicInst>(Op1);
+ Y = Op0;
+ }
+ if (Log2) {
+ Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
+ Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
+ return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold a divide or remainder with a select instruction divisor when one of the
+/// select operands is zero. In that case, we can use the other select operand
+/// because div/rem by zero is undefined.
+bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
+ SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
+ if (!SI)
+ return false;
+
+ int NonNullOperand;
+ if (match(SI->getTrueValue(), m_Zero()))
+ // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
+ NonNullOperand = 2;
+ else if (match(SI->getFalseValue(), m_Zero()))
+ // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
+ NonNullOperand = 1;
+ else
+ return false;
+
+ // Change the div/rem to use 'Y' instead of the select.
+ replaceOperand(I, 1, SI->getOperand(NonNullOperand));
+
+ // Okay, we know we replace the operand of the div/rem with 'Y' with no
+ // problem. However, the select, or the condition of the select may have
+ // multiple uses. Based on our knowledge that the operand must be non-zero,
+ // propagate the known value for the select into other uses of it, and
+ // propagate a known value of the condition into its other users.
+
+ // If the select and condition only have a single use, don't bother with this,
+ // early exit.
+ Value *SelectCond = SI->getCondition();
+ if (SI->use_empty() && SelectCond->hasOneUse())
+ return true;
+
+ // Scan the current block backward, looking for other uses of SI.
+ BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
+ Type *CondTy = SelectCond->getType();
+ while (BBI != BBFront) {
+ --BBI;
+ // If we found an instruction that we can't assume will return, so
+ // information from below it cannot be propagated above it.
+ if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
+ break;
+
+ // Replace uses of the select or its condition with the known values.
+ for (Use &Op : BBI->operands()) {
+ if (Op == SI) {
+ replaceUse(Op, SI->getOperand(NonNullOperand));
+ Worklist.push(&*BBI);
+ } else if (Op == SelectCond) {
+ replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
+ : ConstantInt::getFalse(CondTy));
+ Worklist.push(&*BBI);
+ }
+ }
+
+ // If we past the instruction, quit looking for it.
+ if (&*BBI == SI)
+ SI = nullptr;
+ if (&*BBI == SelectCond)
+ SelectCond = nullptr;
+
+ // If we ran out of things to eliminate, break out of the loop.
+ if (!SelectCond && !SI)
+ break;
+
+ }
+ return true;
+}
+
+/// True if the multiply can not be expressed in an int this size.
+static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
+ bool IsSigned) {
+ bool Overflow;
+ Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
+ return Overflow;
+}
+
+/// True if C1 is a multiple of C2. Quotient contains C1/C2.
+static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
+ bool IsSigned) {
+ assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
+
+ // Bail if we will divide by zero.
+ if (C2.isZero())
+ return false;
+
+ // Bail if we would divide INT_MIN by -1.
+ if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
+ return false;
+
+ APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
+ if (IsSigned)
+ APInt::sdivrem(C1, C2, Quotient, Remainder);
+ else
+ APInt::udivrem(C1, C2, Quotient, Remainder);
+
+ return Remainder.isMinValue();
+}
+
+/// This function implements the transforms common to both integer division
+/// instructions (udiv and sdiv). It is called by the visitors to those integer
+/// division instructions.
+/// Common integer divide transforms
+Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
+ if (Instruction *Phi = foldBinopWithPhiOperands(I))
+ return Phi;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ bool IsSigned = I.getOpcode() == Instruction::SDiv;
+ Type *Ty = I.getType();
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
+ return replaceOperand(I, 1, V);
+
+ // Handle cases involving: [su]div X, (select Cond, Y, Z)
+ // This does not apply for fdiv.
+ if (simplifyDivRemOfSelectWithZeroOp(I))
+ return &I;
+
+ // If the divisor is a select-of-constants, try to constant fold all div ops:
+ // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
+ // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
+ if (match(Op0, m_ImmConstant()) &&
+ match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
+ if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
+ /*FoldWithMultiUse*/ true))
+ return R;
+ }
+
+ const APInt *C2;
+ if (match(Op1, m_APInt(C2))) {
+ Value *X;
+ const APInt *C1;
+
+ // (X / C1) / C2 -> X / (C1*C2)
+ if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
+ APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
+ if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
+ return BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Product));
+ }
+
+ if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
+ APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
+
+ // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
+ if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
+ auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Quotient));
+ NewDiv->setIsExact(I.isExact());
+ return NewDiv;
+ }
+
+ // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
+ if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
+ auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
+ ConstantInt::get(Ty, Quotient));
+ auto *OBO = cast<OverflowingBinaryOperator>(Op0);
+ Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
+ Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
+ return Mul;
+ }
+ }
+
+ if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
+ C1->ult(C1->getBitWidth() - 1)) ||
+ (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
+ C1->ult(C1->getBitWidth()))) {
+ APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
+ APInt C1Shifted = APInt::getOneBitSet(
+ C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
+
+ // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
+ if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
+ auto *BO = BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Quotient));
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+
+ // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
+ if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
+ auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
+ ConstantInt::get(Ty, Quotient));
+ auto *OBO = cast<OverflowingBinaryOperator>(Op0);
+ Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
+ Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
+ return Mul;
+ }
+ }
+
+ if (!C2->isZero()) // avoid X udiv 0
+ if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
+ return FoldedDiv;
+ }
+
+ if (match(Op0, m_One())) {
+ assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
+ if (IsSigned) {
+ // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
+ // (Op1 + 1) u< 3 ? Op1 : 0
+ // Op1 must be frozen because we are increasing its number of uses.
+ Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
+ Value *Inc = Builder.CreateAdd(F1, Op0);
+ Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
+ return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
+ } else {
+ // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
+ // result is one, otherwise it's zero.
+ return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
+ }
+ }
+
+ // See if we can fold away this div instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
+ Value *X, *Z;
+ if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
+ if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
+ (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
+ return BinaryOperator::Create(I.getOpcode(), X, Op1);
+
+ // (X << Y) / X -> 1 << Y
+ Value *Y;
+ if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
+ if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
+
+ // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
+ if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
+ bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
+ bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
+ if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
+ replaceOperand(I, 0, ConstantInt::get(Ty, 1));
+ replaceOperand(I, 1, Y);
+ return &I;
+ }
+ }
+
+ return nullptr;
+}
+
+static const unsigned MaxDepth = 6;
+
+// Take the exact integer log2 of the value. If DoFold is true, create the
+// actual instructions, otherwise return a non-null dummy value. Return nullptr
+// on failure.
+static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
+ bool DoFold) {
+ auto IfFold = [DoFold](function_ref<Value *()> Fn) {
+ if (!DoFold)
+ return reinterpret_cast<Value *>(-1);
+ return Fn();
+ };
+
+ // FIXME: assert that Op1 isn't/doesn't contain undef.
+
+ // log2(2^C) -> C
+ if (match(Op, m_Power2()))
+ return IfFold([&]() {
+ Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
+ if (!C)
+ llvm_unreachable("Failed to constant fold udiv -> logbase2");
+ return C;
+ });
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxDepth)
+ return nullptr;
+
+ // log2(zext X) -> zext log2(X)
+ // FIXME: Require one use?
+ Value *X, *Y;
+ if (match(Op, m_ZExt(m_Value(X))))
+ if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
+ return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
+
+ // log2(X << Y) -> log2(X) + Y
+ // FIXME: Require one use unless X is 1?
+ if (match(Op, m_Shl(m_Value(X), m_Value(Y))))
+ if (Value *LogX = takeLog2(Builder, X, Depth, DoFold))
+ return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
+
+ // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
+ // FIXME: missed optimization: if one of the hands of select is/contains
+ // undef, just directly pick the other one.
+ // FIXME: can both hands contain undef?
+ // FIXME: Require one use?
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op))
+ if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth, DoFold))
+ if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth, DoFold))
+ return IfFold([&]() {
+ return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
+ });
+
+ // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
+ // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
+ auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
+ if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned())
+ if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth, DoFold))
+ if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth, DoFold))
+ return IfFold([&]() {
+ return Builder.CreateBinaryIntrinsic(
+ MinMax->getIntrinsicID(), LogX, LogY);
+ });
+
+ return nullptr;
+}
+
+/// If we have zero-extended operands of an unsigned div or rem, we may be able
+/// to narrow the operation (sink the zext below the math).
+static Instruction *narrowUDivURem(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ Value *N = I.getOperand(0);
+ Value *D = I.getOperand(1);
+ Type *Ty = I.getType();
+ Value *X, *Y;
+ if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
+ X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
+ // udiv (zext X), (zext Y) --> zext (udiv X, Y)
+ // urem (zext X), (zext Y) --> zext (urem X, Y)
+ Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
+ return new ZExtInst(NarrowOp, Ty);
+ }
+
+ Constant *C;
+ if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
+ (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
+ // If the constant is the same in the smaller type, use the narrow version.
+ Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
+ if (ConstantExpr::getZExt(TruncC, Ty) != C)
+ return nullptr;
+
+ // udiv (zext X), C --> zext (udiv X, C')
+ // urem (zext X), C --> zext (urem X, C')
+ // udiv C, (zext X) --> zext (udiv C', X)
+ // urem C, (zext X) --> zext (urem C', X)
+ Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
+ : Builder.CreateBinOp(Opcode, TruncC, X);
+ return new ZExtInst(NarrowOp, Ty);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
+ if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *X;
+ const APInt *C1, *C2;
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
+ // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
+ bool Overflow;
+ APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
+ if (!Overflow) {
+ bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
+ BinaryOperator *BO = BinaryOperator::CreateUDiv(
+ X, ConstantInt::get(X->getType(), C2ShlC1));
+ if (IsExact)
+ BO->setIsExact();
+ return BO;
+ }
+ }
+
+ // Op0 / C where C is large (negative) --> zext (Op0 >= C)
+ // TODO: Could use isKnownNegative() to handle non-constant values.
+ Type *Ty = I.getType();
+ if (match(Op1, m_Negative())) {
+ Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
+ return CastInst::CreateZExtOrBitCast(Cmp, Ty);
+ }
+ // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
+ if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
+ return CastInst::CreateZExtOrBitCast(Cmp, Ty);
+ }
+
+ if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
+ return NarrowDiv;
+
+ // If the udiv operands are non-overflowing multiplies with a common operand,
+ // then eliminate the common factor:
+ // (A * B) / (A * X) --> B / X (and commuted variants)
+ // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
+ // TODO: If -reassociation handled this generally, we could remove this.
+ Value *A, *B;
+ if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
+ if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
+ match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
+ return BinaryOperator::CreateUDiv(B, X);
+ if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
+ match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
+ return BinaryOperator::CreateUDiv(A, X);
+ }
+
+ // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
+ if (takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/false)) {
+ Value *Res = takeLog2(Builder, Op1, /*Depth*/0, /*DoFold*/true);
+ return replaceInstUsesWith(
+ I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
+ if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = I.getType();
+ Value *X;
+ // sdiv Op0, -1 --> -Op0
+ // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
+ if (match(Op1, m_AllOnes()) ||
+ (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
+ return BinaryOperator::CreateNeg(Op0);
+
+ // X / INT_MIN --> X == INT_MIN
+ if (match(Op1, m_SignMask()))
+ return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
+
+ // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
+ // sdiv exact X, -1<<C --> -(ashr exact X, C)
+ if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
+ match(Op1, m_NegatedPower2()))) {
+ bool DivisorWasNegative = match(Op1, m_NegatedPower2());
+ if (DivisorWasNegative)
+ Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
+ auto *AShr = BinaryOperator::CreateExactAShr(
+ Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
+ if (!DivisorWasNegative)
+ return AShr;
+ Builder.Insert(AShr);
+ AShr->setName(I.getName() + ".neg");
+ return BinaryOperator::CreateNeg(AShr, I.getName());
+ }
+
+ const APInt *Op1C;
+ if (match(Op1, m_APInt(Op1C))) {
+ // If the dividend is sign-extended and the constant divisor is small enough
+ // to fit in the source type, shrink the division to the narrower type:
+ // (sext X) sdiv C --> sext (X sdiv C)
+ Value *Op0Src;
+ if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
+ Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
+
+ // In the general case, we need to make sure that the dividend is not the
+ // minimum signed value because dividing that by -1 is UB. But here, we
+ // know that the -1 divisor case is already handled above.
+
+ Constant *NarrowDivisor =
+ ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
+ Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
+ return new SExtInst(NarrowOp, Ty);
+ }
+
+ // -X / C --> X / -C (if the negation doesn't overflow).
+ // TODO: This could be enhanced to handle arbitrary vector constants by
+ // checking if all elements are not the min-signed-val.
+ if (!Op1C->isMinSignedValue() &&
+ match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
+ Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
+ Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+ }
+
+ // -X / Y --> -(X / Y)
+ Value *Y;
+ if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
+ return BinaryOperator::CreateNSWNeg(
+ Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
+
+ // abs(X) / X --> X > -1 ? 1 : -1
+ // X / abs(X) --> X > -1 ? 1 : -1
+ if (match(&I, m_c_BinOp(
+ m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
+ m_Deferred(X)))) {
+ Value *Cond = Builder.CreateIsNotNeg(X);
+ return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
+ ConstantInt::getAllOnesValue(Ty));
+ }
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a udiv.
+ APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
+ if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
+ if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+
+ if (match(Op1, m_NegatedPower2())) {
+ // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
+ // -> -(X udiv (1 << C)) -> -(X u>> C)
+ Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
+ ConstantExpr::getNeg(cast<Constant>(Op1)));
+ Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
+ return BinaryOperator::CreateNeg(Shr);
+ }
+
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+ }
+
+ return nullptr;
+}
+
+/// Remove negation and try to convert division into multiplication.
+static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
+ Constant *C;
+ if (!match(I.getOperand(1), m_Constant(C)))
+ return nullptr;
+
+ // -X / C --> X / -C
+ Value *X;
+ if (match(I.getOperand(0), m_FNeg(m_Value(X))))
+ return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
+
+ // If the constant divisor has an exact inverse, this is always safe. If not,
+ // then we can still create a reciprocal if fast-math-flags allow it and the
+ // constant is a regular number (not zero, infinite, or denormal).
+ if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
+ return nullptr;
+
+ // Disallow denormal constants because we don't know what would happen
+ // on all targets.
+ // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
+ // denorms are flushed?
+ auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
+ if (!RecipC->isNormalFP())
+ return nullptr;
+
+ // X / C --> X * (1 / C)
+ return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
+}
+
+/// Remove negation and try to reassociate constant math.
+static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
+ Constant *C;
+ if (!match(I.getOperand(0), m_Constant(C)))
+ return nullptr;
+
+ // C / -X --> -C / X
+ Value *X;
+ if (match(I.getOperand(1), m_FNeg(m_Value(X))))
+ return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
+
+ if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
+ return nullptr;
+
+ // Try to reassociate C / X expressions where X includes another constant.
+ Constant *C2, *NewC = nullptr;
+ if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
+ // C / (X * C2) --> (C / C2) / X
+ NewC = ConstantExpr::getFDiv(C, C2);
+ } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
+ // C / (X / C2) --> (C * C2) / X
+ NewC = ConstantExpr::getFMul(C, C2);
+ }
+ // Disallow denormal constants because we don't know what would happen
+ // on all targets.
+ // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
+ // denorms are flushed?
+ if (!NewC || !NewC->isNormalFP())
+ return nullptr;
+
+ return BinaryOperator::CreateFDivFMF(NewC, X, &I);
+}
+
+/// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
+static Instruction *foldFDivPowDivisor(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ auto *II = dyn_cast<IntrinsicInst>(Op1);
+ if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
+ !I.hasAllowReciprocal())
+ return nullptr;
+
+ // Z / pow(X, Y) --> Z * pow(X, -Y)
+ // Z / exp{2}(Y) --> Z * exp{2}(-Y)
+ // In the general case, this creates an extra instruction, but fmul allows
+ // for better canonicalization and optimization than fdiv.
+ Intrinsic::ID IID = II->getIntrinsicID();
+ SmallVector<Value *> Args;
+ switch (IID) {
+ case Intrinsic::pow:
+ Args.push_back(II->getArgOperand(0));
+ Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
+ break;
+ case Intrinsic::powi: {
+ // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
+ // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
+ // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
+ // non-standard results, so this corner case should be acceptable if the
+ // code rules out INF values.
+ if (!I.hasNoInfs())
+ return nullptr;
+ Args.push_back(II->getArgOperand(0));
+ Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
+ Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
+ Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
+ return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
+ }
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
+ break;
+ default:
+ return nullptr;
+ }
+ Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
+ return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
+}
+
+Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
+ Module *M = I.getModule();
+
+ if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *Phi = foldBinopWithPhiOperands(I))
+ return Phi;
+
+ if (Instruction *R = foldFDivConstantDivisor(I))
+ return R;
+
+ if (Instruction *R = foldFDivConstantDividend(I))
+ return R;
+
+ if (Instruction *R = foldFPSignBitOps(I))
+ return R;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (isa<Constant>(Op0))
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<Constant>(Op1))
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
+ Value *X, *Y;
+ if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
+ (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
+ // (X / Y) / Z => X / (Y * Z)
+ Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
+ return BinaryOperator::CreateFDivFMF(X, YZ, &I);
+ }
+ if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
+ (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
+ // Z / (X / Y) => (Y * Z) / X
+ Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
+ return BinaryOperator::CreateFDivFMF(YZ, X, &I);
+ }
+ // Z / (1.0 / Y) => (Y * Z)
+ //
+ // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
+ // m_OneUse check is avoided because even in the case of the multiple uses
+ // for 1.0/Y, the number of instructions remain the same and a division is
+ // replaced by a multiplication.
+ if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
+ return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
+ }
+
+ if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
+ // sin(X) / cos(X) -> tan(X)
+ // cos(X) / sin(X) -> 1/tan(X) (cotangent)
+ Value *X;
+ bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
+ bool IsCot =
+ !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
+
+ if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
+ LibFunc_tanf, LibFunc_tanl)) {
+ IRBuilder<> B(&I);
+ IRBuilder<>::FastMathFlagGuard FMFGuard(B);
+ B.setFastMathFlags(I.getFastMathFlags());
+ AttributeList Attrs =
+ cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
+ Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
+ LibFunc_tanl, B, Attrs);
+ if (IsCot)
+ Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
+ return replaceInstUsesWith(I, Res);
+ }
+ }
+
+ // X / (X * Y) --> 1.0 / Y
+ // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
+ // We can ignore the possibility that X is infinity because INF/INF is NaN.
+ Value *X, *Y;
+ if (I.hasNoNaNs() && I.hasAllowReassoc() &&
+ match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
+ replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
+ replaceOperand(I, 1, Y);
+ return &I;
+ }
+
+ // X / fabs(X) -> copysign(1.0, X)
+ // fabs(X) / X -> copysign(1.0, X)
+ if (I.hasNoNaNs() && I.hasNoInfs() &&
+ (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
+ match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
+ Value *V = Builder.CreateBinaryIntrinsic(
+ Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
+ return replaceInstUsesWith(I, V);
+ }
+
+ if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
+ return Mul;
+
+ return nullptr;
+}
+
+/// This function implements the transforms common to both integer remainder
+/// instructions (urem and srem). It is called by the visitors to those integer
+/// remainder instructions.
+/// Common integer remainder transforms
+Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
+ if (Instruction *Phi = foldBinopWithPhiOperands(I))
+ return Phi;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
+ return replaceOperand(I, 1, V);
+
+ // Handle cases involving: rem X, (select Cond, Y, Z)
+ if (simplifyDivRemOfSelectWithZeroOp(I))
+ return &I;
+
+ // If the divisor is a select-of-constants, try to constant fold all rem ops:
+ // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
+ // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
+ if (match(Op0, m_ImmConstant()) &&
+ match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
+ if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
+ /*FoldWithMultiUse*/ true))
+ return R;
+ }
+
+ if (isa<Constant>(Op1)) {
+ if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
+ const APInt *Op1Int;
+ if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
+ (I.getOpcode() == Instruction::URem ||
+ !Op1Int->isMinSignedValue())) {
+ // foldOpIntoPhi will speculate instructions to the end of the PHI's
+ // predecessor blocks, so do this only if we know the srem or urem
+ // will not fault.
+ if (Instruction *NV = foldOpIntoPhi(I, PN))
+ return NV;
+ }
+ }
+
+ // See if we can fold away this rem instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
+ if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *common = commonIRemTransforms(I))
+ return common;
+
+ if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
+ return NarrowRem;
+
+ // X urem Y -> X and Y-1, where Y is a power of 2,
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = I.getType();
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
+ // This may increase instruction count, we don't enforce that Y is a
+ // constant.
+ Constant *N1 = Constant::getAllOnesValue(Ty);
+ Value *Add = Builder.CreateAdd(Op1, N1);
+ return BinaryOperator::CreateAnd(Op0, Add);
+ }
+
+ // 1 urem X -> zext(X != 1)
+ if (match(Op0, m_One())) {
+ Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
+ return CastInst::CreateZExtOrBitCast(Cmp, Ty);
+ }
+
+ // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
+ // Op0 must be frozen because we are increasing its number of uses.
+ if (match(Op1, m_Negative())) {
+ Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
+ Value *Cmp = Builder.CreateICmpULT(F0, Op1);
+ Value *Sub = Builder.CreateSub(F0, Op1);
+ return SelectInst::Create(Cmp, F0, Sub);
+ }
+
+ // If the divisor is a sext of a boolean, then the divisor must be max
+ // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
+ // max unsigned value. In that case, the remainder is 0:
+ // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
+ Value *X;
+ if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
+ return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
+ if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // Handle the integer rem common cases
+ if (Instruction *Common = commonIRemTransforms(I))
+ return Common;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ {
+ const APInt *Y;
+ // X % -Y -> X % Y
+ if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
+ return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
+ }
+
+ // -X srem Y --> -(X srem Y)
+ Value *X, *Y;
+ if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
+ return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a urem.
+ APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
+ if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
+ MaskedValueIsZero(Op0, Mask, 0, &I)) {
+ // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateURem(Op0, Op1, I.getName());
+ }
+
+ // If it's a constant vector, flip any negative values positive.
+ if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
+ Constant *C = cast<Constant>(Op1);
+ unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
+
+ bool hasNegative = false;
+ bool hasMissing = false;
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt) {
+ hasMissing = true;
+ break;
+ }
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
+ if (RHS->isNegative())
+ hasNegative = true;
+ }
+
+ if (hasNegative && !hasMissing) {
+ SmallVector<Constant *, 16> Elts(VWidth);
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
+ if (RHS->isNegative())
+ Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
+ }
+ }
+
+ Constant *NewRHSV = ConstantVector::get(Elts);
+ if (NewRHSV != C) // Don't loop on -MININT
+ return replaceOperand(I, 1, NewRHSV);
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
+ if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *Phi = foldBinopWithPhiOperands(I))
+ return Phi;
+
+ return nullptr;
+}