aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp3202
1 files changed, 3202 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
new file mode 100644
index 000000000000..ad96a5f475f1
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -0,0 +1,3202 @@
+//===- InstCombineSelect.cpp ----------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitSelect function.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CmpInstAnalysis.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/OverflowInstAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Transforms/InstCombine/InstCombiner.h"
+#include <cassert>
+#include <utility>
+
+#define DEBUG_TYPE "instcombine"
+#include "llvm/Transforms/Utils/InstructionWorklist.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+
+/// Replace a select operand based on an equality comparison with the identity
+/// constant of a binop.
+static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
+ const TargetLibraryInfo &TLI,
+ InstCombinerImpl &IC) {
+ // The select condition must be an equality compare with a constant operand.
+ Value *X;
+ Constant *C;
+ CmpInst::Predicate Pred;
+ if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
+ return nullptr;
+
+ bool IsEq;
+ if (ICmpInst::isEquality(Pred))
+ IsEq = Pred == ICmpInst::ICMP_EQ;
+ else if (Pred == FCmpInst::FCMP_OEQ)
+ IsEq = true;
+ else if (Pred == FCmpInst::FCMP_UNE)
+ IsEq = false;
+ else
+ return nullptr;
+
+ // A select operand must be a binop.
+ BinaryOperator *BO;
+ if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
+ return nullptr;
+
+ // The compare constant must be the identity constant for that binop.
+ // If this a floating-point compare with 0.0, any zero constant will do.
+ Type *Ty = BO->getType();
+ Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
+ if (IdC != C) {
+ if (!IdC || !CmpInst::isFPPredicate(Pred))
+ return nullptr;
+ if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
+ return nullptr;
+ }
+
+ // Last, match the compare variable operand with a binop operand.
+ Value *Y;
+ if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
+ return nullptr;
+ if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
+ return nullptr;
+
+ // +0.0 compares equal to -0.0, and so it does not behave as required for this
+ // transform. Bail out if we can not exclude that possibility.
+ if (isa<FPMathOperator>(BO))
+ if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
+ return nullptr;
+
+ // BO = binop Y, X
+ // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
+ // =>
+ // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
+ return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
+}
+
+/// This folds:
+/// select (icmp eq (and X, C1)), TC, FC
+/// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
+/// To something like:
+/// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
+/// Or:
+/// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
+/// With some variations depending if FC is larger than TC, or the shift
+/// isn't needed, or the bit widths don't match.
+static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
+ InstCombiner::BuilderTy &Builder) {
+ const APInt *SelTC, *SelFC;
+ if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
+ !match(Sel.getFalseValue(), m_APInt(SelFC)))
+ return nullptr;
+
+ // If this is a vector select, we need a vector compare.
+ Type *SelType = Sel.getType();
+ if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
+ return nullptr;
+
+ Value *V;
+ APInt AndMask;
+ bool CreateAnd = false;
+ ICmpInst::Predicate Pred = Cmp->getPredicate();
+ if (ICmpInst::isEquality(Pred)) {
+ if (!match(Cmp->getOperand(1), m_Zero()))
+ return nullptr;
+
+ V = Cmp->getOperand(0);
+ const APInt *AndRHS;
+ if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
+ return nullptr;
+
+ AndMask = *AndRHS;
+ } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
+ Pred, V, AndMask)) {
+ assert(ICmpInst::isEquality(Pred) && "Not equality test?");
+ if (!AndMask.isPowerOf2())
+ return nullptr;
+
+ CreateAnd = true;
+ } else {
+ return nullptr;
+ }
+
+ // In general, when both constants are non-zero, we would need an offset to
+ // replace the select. This would require more instructions than we started
+ // with. But there's one special-case that we handle here because it can
+ // simplify/reduce the instructions.
+ APInt TC = *SelTC;
+ APInt FC = *SelFC;
+ if (!TC.isZero() && !FC.isZero()) {
+ // If the select constants differ by exactly one bit and that's the same
+ // bit that is masked and checked by the select condition, the select can
+ // be replaced by bitwise logic to set/clear one bit of the constant result.
+ if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
+ return nullptr;
+ if (CreateAnd) {
+ // If we have to create an 'and', then we must kill the cmp to not
+ // increase the instruction count.
+ if (!Cmp->hasOneUse())
+ return nullptr;
+ V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
+ }
+ bool ExtraBitInTC = TC.ugt(FC);
+ if (Pred == ICmpInst::ICMP_EQ) {
+ // If the masked bit in V is clear, clear or set the bit in the result:
+ // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
+ // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
+ Constant *C = ConstantInt::get(SelType, TC);
+ return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
+ }
+ if (Pred == ICmpInst::ICMP_NE) {
+ // If the masked bit in V is set, set or clear the bit in the result:
+ // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
+ // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
+ Constant *C = ConstantInt::get(SelType, FC);
+ return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
+ }
+ llvm_unreachable("Only expecting equality predicates");
+ }
+
+ // Make sure one of the select arms is a power-of-2.
+ if (!TC.isPowerOf2() && !FC.isPowerOf2())
+ return nullptr;
+
+ // Determine which shift is needed to transform result of the 'and' into the
+ // desired result.
+ const APInt &ValC = !TC.isZero() ? TC : FC;
+ unsigned ValZeros = ValC.logBase2();
+ unsigned AndZeros = AndMask.logBase2();
+
+ // Insert the 'and' instruction on the input to the truncate.
+ if (CreateAnd)
+ V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
+
+ // If types don't match, we can still convert the select by introducing a zext
+ // or a trunc of the 'and'.
+ if (ValZeros > AndZeros) {
+ V = Builder.CreateZExtOrTrunc(V, SelType);
+ V = Builder.CreateShl(V, ValZeros - AndZeros);
+ } else if (ValZeros < AndZeros) {
+ V = Builder.CreateLShr(V, AndZeros - ValZeros);
+ V = Builder.CreateZExtOrTrunc(V, SelType);
+ } else {
+ V = Builder.CreateZExtOrTrunc(V, SelType);
+ }
+
+ // Okay, now we know that everything is set up, we just don't know whether we
+ // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
+ bool ShouldNotVal = !TC.isZero();
+ ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
+ if (ShouldNotVal)
+ V = Builder.CreateXor(V, ValC);
+
+ return V;
+}
+
+/// We want to turn code that looks like this:
+/// %C = or %A, %B
+/// %D = select %cond, %C, %A
+/// into:
+/// %C = select %cond, %B, 0
+/// %D = or %A, %C
+///
+/// Assuming that the specified instruction is an operand to the select, return
+/// a bitmask indicating which operands of this instruction are foldable if they
+/// equal the other incoming value of the select.
+static unsigned getSelectFoldableOperands(BinaryOperator *I) {
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return 3; // Can fold through either operand.
+ case Instruction::Sub: // Can only fold on the amount subtracted.
+ case Instruction::FSub:
+ case Instruction::FDiv: // Can only fold on the divisor amount.
+ case Instruction::Shl: // Can only fold on the shift amount.
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return 1;
+ default:
+ return 0; // Cannot fold
+ }
+}
+
+/// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
+Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
+ Instruction *FI) {
+ // Don't break up min/max patterns. The hasOneUse checks below prevent that
+ // for most cases, but vector min/max with bitcasts can be transformed. If the
+ // one-use restrictions are eased for other patterns, we still don't want to
+ // obfuscate min/max.
+ if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
+ match(&SI, m_SMax(m_Value(), m_Value())) ||
+ match(&SI, m_UMin(m_Value(), m_Value())) ||
+ match(&SI, m_UMax(m_Value(), m_Value()))))
+ return nullptr;
+
+ // If this is a cast from the same type, merge.
+ Value *Cond = SI.getCondition();
+ Type *CondTy = Cond->getType();
+ if (TI->getNumOperands() == 1 && TI->isCast()) {
+ Type *FIOpndTy = FI->getOperand(0)->getType();
+ if (TI->getOperand(0)->getType() != FIOpndTy)
+ return nullptr;
+
+ // The select condition may be a vector. We may only change the operand
+ // type if the vector width remains the same (and matches the condition).
+ if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
+ if (!FIOpndTy->isVectorTy() ||
+ CondVTy->getElementCount() !=
+ cast<VectorType>(FIOpndTy)->getElementCount())
+ return nullptr;
+
+ // TODO: If the backend knew how to deal with casts better, we could
+ // remove this limitation. For now, there's too much potential to create
+ // worse codegen by promoting the select ahead of size-altering casts
+ // (PR28160).
+ //
+ // Note that ValueTracking's matchSelectPattern() looks through casts
+ // without checking 'hasOneUse' when it matches min/max patterns, so this
+ // transform may end up happening anyway.
+ if (TI->getOpcode() != Instruction::BitCast &&
+ (!TI->hasOneUse() || !FI->hasOneUse()))
+ return nullptr;
+ } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
+ // TODO: The one-use restrictions for a scalar select could be eased if
+ // the fold of a select in visitLoadInst() was enhanced to match a pattern
+ // that includes a cast.
+ return nullptr;
+ }
+
+ // Fold this by inserting a select from the input values.
+ Value *NewSI =
+ Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
+ SI.getName() + ".v", &SI);
+ return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
+ TI->getType());
+ }
+
+ // Cond ? -X : -Y --> -(Cond ? X : Y)
+ Value *X, *Y;
+ if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
+ (TI->hasOneUse() || FI->hasOneUse())) {
+ // Intersect FMF from the fneg instructions and union those with the select.
+ FastMathFlags FMF = TI->getFastMathFlags();
+ FMF &= FI->getFastMathFlags();
+ FMF |= SI.getFastMathFlags();
+ Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
+ if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
+ NewSelI->setFastMathFlags(FMF);
+ Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
+ NewFNeg->setFastMathFlags(FMF);
+ return NewFNeg;
+ }
+
+ // Min/max intrinsic with a common operand can have the common operand pulled
+ // after the select. This is the same transform as below for binops, but
+ // specialized for intrinsic matching and without the restrictive uses clause.
+ auto *TII = dyn_cast<IntrinsicInst>(TI);
+ auto *FII = dyn_cast<IntrinsicInst>(FI);
+ if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
+ (TII->hasOneUse() || FII->hasOneUse())) {
+ Value *T0, *T1, *F0, *F1;
+ if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
+ match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
+ if (T0 == F0) {
+ Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
+ return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
+ }
+ if (T0 == F1) {
+ Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
+ return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
+ }
+ if (T1 == F0) {
+ Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
+ return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
+ }
+ if (T1 == F1) {
+ Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
+ return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
+ }
+ }
+ }
+
+ // Only handle binary operators (including two-operand getelementptr) with
+ // one-use here. As with the cast case above, it may be possible to relax the
+ // one-use constraint, but that needs be examined carefully since it may not
+ // reduce the total number of instructions.
+ if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
+ !TI->isSameOperationAs(FI) ||
+ (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
+ !TI->hasOneUse() || !FI->hasOneUse())
+ return nullptr;
+
+ // Figure out if the operations have any operands in common.
+ Value *MatchOp, *OtherOpT, *OtherOpF;
+ bool MatchIsOpZero;
+ if (TI->getOperand(0) == FI->getOperand(0)) {
+ MatchOp = TI->getOperand(0);
+ OtherOpT = TI->getOperand(1);
+ OtherOpF = FI->getOperand(1);
+ MatchIsOpZero = true;
+ } else if (TI->getOperand(1) == FI->getOperand(1)) {
+ MatchOp = TI->getOperand(1);
+ OtherOpT = TI->getOperand(0);
+ OtherOpF = FI->getOperand(0);
+ MatchIsOpZero = false;
+ } else if (!TI->isCommutative()) {
+ return nullptr;
+ } else if (TI->getOperand(0) == FI->getOperand(1)) {
+ MatchOp = TI->getOperand(0);
+ OtherOpT = TI->getOperand(1);
+ OtherOpF = FI->getOperand(0);
+ MatchIsOpZero = true;
+ } else if (TI->getOperand(1) == FI->getOperand(0)) {
+ MatchOp = TI->getOperand(1);
+ OtherOpT = TI->getOperand(0);
+ OtherOpF = FI->getOperand(1);
+ MatchIsOpZero = true;
+ } else {
+ return nullptr;
+ }
+
+ // If the select condition is a vector, the operands of the original select's
+ // operands also must be vectors. This may not be the case for getelementptr
+ // for example.
+ if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
+ !OtherOpF->getType()->isVectorTy()))
+ return nullptr;
+
+ // If we reach here, they do have operations in common.
+ Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
+ SI.getName() + ".v", &SI);
+ Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
+ Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
+ if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
+ BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
+ NewBO->copyIRFlags(TI);
+ NewBO->andIRFlags(FI);
+ return NewBO;
+ }
+ if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
+ auto *FGEP = cast<GetElementPtrInst>(FI);
+ Type *ElementType = TGEP->getResultElementType();
+ return TGEP->isInBounds() && FGEP->isInBounds()
+ ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
+ : GetElementPtrInst::Create(ElementType, Op0, {Op1});
+ }
+ llvm_unreachable("Expected BinaryOperator or GEP");
+ return nullptr;
+}
+
+static bool isSelect01(const APInt &C1I, const APInt &C2I) {
+ if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
+ return false;
+ return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
+}
+
+/// Try to fold the select into one of the operands to allow further
+/// optimization.
+Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
+ Value *FalseVal) {
+ // See the comment above GetSelectFoldableOperands for a description of the
+ // transformation we are doing here.
+ auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
+ Value *FalseVal,
+ bool Swapped) -> Instruction * {
+ if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
+ if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
+ if (unsigned SFO = getSelectFoldableOperands(TVI)) {
+ unsigned OpToFold = 0;
+ if ((SFO & 1) && FalseVal == TVI->getOperand(0))
+ OpToFold = 1;
+ else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
+ OpToFold = 2;
+
+ if (OpToFold) {
+ FastMathFlags FMF;
+ // TODO: We probably ought to revisit cases where the select and FP
+ // instructions have different flags and add tests to ensure the
+ // behaviour is correct.
+ if (isa<FPMathOperator>(&SI))
+ FMF = SI.getFastMathFlags();
+ Constant *C = ConstantExpr::getBinOpIdentity(
+ TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
+ Value *OOp = TVI->getOperand(2 - OpToFold);
+ // Avoid creating select between 2 constants unless it's selecting
+ // between 0, 1 and -1.
+ const APInt *OOpC;
+ bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
+ if (!isa<Constant>(OOp) ||
+ (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
+ Value *NewSel = Builder.CreateSelect(
+ SI.getCondition(), Swapped ? C : OOp, Swapped ? OOp : C);
+ if (isa<FPMathOperator>(&SI))
+ cast<Instruction>(NewSel)->setFastMathFlags(FMF);
+ NewSel->takeName(TVI);
+ BinaryOperator *BO =
+ BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
+ BO->copyIRFlags(TVI);
+ return BO;
+ }
+ }
+ }
+ }
+ }
+ return nullptr;
+ };
+
+ if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
+ return R;
+
+ if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
+ return R;
+
+ return nullptr;
+}
+
+/// We want to turn:
+/// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
+/// into:
+/// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
+/// Note:
+/// Z may be 0 if lshr is missing.
+/// Worst-case scenario is that we will replace 5 instructions with 5 different
+/// instructions, but we got rid of select.
+static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
+ Value *TVal, Value *FVal,
+ InstCombiner::BuilderTy &Builder) {
+ if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
+ Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
+ match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
+ return nullptr;
+
+ // The TrueVal has general form of: and %B, 1
+ Value *B;
+ if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
+ return nullptr;
+
+ // Where %B may be optionally shifted: lshr %X, %Z.
+ Value *X, *Z;
+ const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
+
+ // The shift must be valid.
+ // TODO: This restricts the fold to constant shift amounts. Is there a way to
+ // handle variable shifts safely? PR47012
+ if (HasShift &&
+ !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
+ APInt(SelType->getScalarSizeInBits(),
+ SelType->getScalarSizeInBits()))))
+ return nullptr;
+
+ if (!HasShift)
+ X = B;
+
+ Value *Y;
+ if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
+ return nullptr;
+
+ // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
+ // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
+ Constant *One = ConstantInt::get(SelType, 1);
+ Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
+ Value *FullMask = Builder.CreateOr(Y, MaskB);
+ Value *MaskedX = Builder.CreateAnd(X, FullMask);
+ Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
+ return new ZExtInst(ICmpNeZero, SelType);
+}
+
+/// We want to turn:
+/// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
+/// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
+/// into:
+/// ashr (X, Y)
+static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
+ Value *FalseVal,
+ InstCombiner::BuilderTy &Builder) {
+ ICmpInst::Predicate Pred = IC->getPredicate();
+ Value *CmpLHS = IC->getOperand(0);
+ Value *CmpRHS = IC->getOperand(1);
+ if (!CmpRHS->getType()->isIntOrIntVectorTy())
+ return nullptr;
+
+ Value *X, *Y;
+ unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
+ if ((Pred != ICmpInst::ICMP_SGT ||
+ !match(CmpRHS,
+ m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
+ (Pred != ICmpInst::ICMP_SLT ||
+ !match(CmpRHS,
+ m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
+ return nullptr;
+
+ // Canonicalize so that ashr is in FalseVal.
+ if (Pred == ICmpInst::ICMP_SLT)
+ std::swap(TrueVal, FalseVal);
+
+ if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
+ match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
+ match(CmpLHS, m_Specific(X))) {
+ const auto *Ashr = cast<Instruction>(FalseVal);
+ // if lshr is not exact and ashr is, this new ashr must not be exact.
+ bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
+ return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
+ }
+
+ return nullptr;
+}
+
+/// We want to turn:
+/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
+/// into:
+/// (or (shl (and X, C1), C3), Y)
+/// iff:
+/// C1 and C2 are both powers of 2
+/// where:
+/// C3 = Log(C2) - Log(C1)
+///
+/// This transform handles cases where:
+/// 1. The icmp predicate is inverted
+/// 2. The select operands are reversed
+/// 3. The magnitude of C2 and C1 are flipped
+static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
+ Value *FalseVal,
+ InstCombiner::BuilderTy &Builder) {
+ // Only handle integer compares. Also, if this is a vector select, we need a
+ // vector compare.
+ if (!TrueVal->getType()->isIntOrIntVectorTy() ||
+ TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
+ return nullptr;
+
+ Value *CmpLHS = IC->getOperand(0);
+ Value *CmpRHS = IC->getOperand(1);
+
+ Value *V;
+ unsigned C1Log;
+ bool IsEqualZero;
+ bool NeedAnd = false;
+ if (IC->isEquality()) {
+ if (!match(CmpRHS, m_Zero()))
+ return nullptr;
+
+ const APInt *C1;
+ if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
+ return nullptr;
+
+ V = CmpLHS;
+ C1Log = C1->logBase2();
+ IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
+ } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
+ IC->getPredicate() == ICmpInst::ICMP_SGT) {
+ // We also need to recognize (icmp slt (trunc (X)), 0) and
+ // (icmp sgt (trunc (X)), -1).
+ IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
+ if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
+ (!IsEqualZero && !match(CmpRHS, m_Zero())))
+ return nullptr;
+
+ if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
+ return nullptr;
+
+ C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
+ NeedAnd = true;
+ } else {
+ return nullptr;
+ }
+
+ const APInt *C2;
+ bool OrOnTrueVal = false;
+ bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
+ if (!OrOnFalseVal)
+ OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
+
+ if (!OrOnFalseVal && !OrOnTrueVal)
+ return nullptr;
+
+ Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
+
+ unsigned C2Log = C2->logBase2();
+
+ bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
+ bool NeedShift = C1Log != C2Log;
+ bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
+ V->getType()->getScalarSizeInBits();
+
+ // Make sure we don't create more instructions than we save.
+ Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
+ if ((NeedShift + NeedXor + NeedZExtTrunc) >
+ (IC->hasOneUse() + Or->hasOneUse()))
+ return nullptr;
+
+ if (NeedAnd) {
+ // Insert the AND instruction on the input to the truncate.
+ APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
+ V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
+ }
+
+ if (C2Log > C1Log) {
+ V = Builder.CreateZExtOrTrunc(V, Y->getType());
+ V = Builder.CreateShl(V, C2Log - C1Log);
+ } else if (C1Log > C2Log) {
+ V = Builder.CreateLShr(V, C1Log - C2Log);
+ V = Builder.CreateZExtOrTrunc(V, Y->getType());
+ } else
+ V = Builder.CreateZExtOrTrunc(V, Y->getType());
+
+ if (NeedXor)
+ V = Builder.CreateXor(V, *C2);
+
+ return Builder.CreateOr(V, Y);
+}
+
+/// Canonicalize a set or clear of a masked set of constant bits to
+/// select-of-constants form.
+static Instruction *foldSetClearBits(SelectInst &Sel,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Cond = Sel.getCondition();
+ Value *T = Sel.getTrueValue();
+ Value *F = Sel.getFalseValue();
+ Type *Ty = Sel.getType();
+ Value *X;
+ const APInt *NotC, *C;
+
+ // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
+ if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
+ match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
+ Constant *Zero = ConstantInt::getNullValue(Ty);
+ Constant *OrC = ConstantInt::get(Ty, *C);
+ Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
+ return BinaryOperator::CreateOr(T, NewSel);
+ }
+
+ // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
+ if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
+ match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
+ Constant *Zero = ConstantInt::getNullValue(Ty);
+ Constant *OrC = ConstantInt::get(Ty, *C);
+ Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
+ return BinaryOperator::CreateOr(F, NewSel);
+ }
+
+ return nullptr;
+}
+
+// select (x == 0), 0, x * y --> freeze(y) * x
+// select (y == 0), 0, x * y --> freeze(x) * y
+// select (x == 0), undef, x * y --> freeze(y) * x
+// select (x == undef), 0, x * y --> freeze(y) * x
+// Usage of mul instead of 0 will make the result more poisonous,
+// so the operand that was not checked in the condition should be frozen.
+// The latter folding is applied only when a constant compared with x is
+// is a vector consisting of 0 and undefs. If a constant compared with x
+// is a scalar undefined value or undefined vector then an expression
+// should be already folded into a constant.
+static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
+ auto *CondVal = SI.getCondition();
+ auto *TrueVal = SI.getTrueValue();
+ auto *FalseVal = SI.getFalseValue();
+ Value *X, *Y;
+ ICmpInst::Predicate Predicate;
+
+ // Assuming that constant compared with zero is not undef (but it may be
+ // a vector with some undef elements). Otherwise (when a constant is undef)
+ // the select expression should be already simplified.
+ if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
+ !ICmpInst::isEquality(Predicate))
+ return nullptr;
+
+ if (Predicate == ICmpInst::ICMP_NE)
+ std::swap(TrueVal, FalseVal);
+
+ // Check that TrueVal is a constant instead of matching it with m_Zero()
+ // to handle the case when it is a scalar undef value or a vector containing
+ // non-zero elements that are masked by undef elements in the compare
+ // constant.
+ auto *TrueValC = dyn_cast<Constant>(TrueVal);
+ if (TrueValC == nullptr ||
+ !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
+ !isa<Instruction>(FalseVal))
+ return nullptr;
+
+ auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
+ auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
+ // If X is compared with 0 then TrueVal could be either zero or undef.
+ // m_Zero match vectors containing some undef elements, but for scalars
+ // m_Undef should be used explicitly.
+ if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
+ return nullptr;
+
+ auto *FalseValI = cast<Instruction>(FalseVal);
+ auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
+ *FalseValI);
+ IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
+ return IC.replaceInstUsesWith(SI, FalseValI);
+}
+
+/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
+/// There are 8 commuted/swapped variants of this pattern.
+/// TODO: Also support a - UMIN(a,b) patterns.
+static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
+ const Value *TrueVal,
+ const Value *FalseVal,
+ InstCombiner::BuilderTy &Builder) {
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ if (!ICmpInst::isUnsigned(Pred))
+ return nullptr;
+
+ // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
+ if (match(TrueVal, m_Zero())) {
+ Pred = ICmpInst::getInversePredicate(Pred);
+ std::swap(TrueVal, FalseVal);
+ }
+ if (!match(FalseVal, m_Zero()))
+ return nullptr;
+
+ Value *A = ICI->getOperand(0);
+ Value *B = ICI->getOperand(1);
+ if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
+ // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
+ std::swap(A, B);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
+ "Unexpected isUnsigned predicate!");
+
+ // Ensure the sub is of the form:
+ // (a > b) ? a - b : 0 -> usub.sat(a, b)
+ // (a > b) ? b - a : 0 -> -usub.sat(a, b)
+ // Checking for both a-b and a+(-b) as a constant.
+ bool IsNegative = false;
+ const APInt *C;
+ if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
+ (match(A, m_APInt(C)) &&
+ match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
+ IsNegative = true;
+ else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
+ !(match(B, m_APInt(C)) &&
+ match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
+ return nullptr;
+
+ // If we are adding a negate and the sub and icmp are used anywhere else, we
+ // would end up with more instructions.
+ if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
+ return nullptr;
+
+ // (a > b) ? a - b : 0 -> usub.sat(a, b)
+ // (a > b) ? b - a : 0 -> -usub.sat(a, b)
+ Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
+ if (IsNegative)
+ Result = Builder.CreateNeg(Result);
+ return Result;
+}
+
+static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
+ InstCombiner::BuilderTy &Builder) {
+ if (!Cmp->hasOneUse())
+ return nullptr;
+
+ // Match unsigned saturated add with constant.
+ Value *Cmp0 = Cmp->getOperand(0);
+ Value *Cmp1 = Cmp->getOperand(1);
+ ICmpInst::Predicate Pred = Cmp->getPredicate();
+ Value *X;
+ const APInt *C, *CmpC;
+ if (Pred == ICmpInst::ICMP_ULT &&
+ match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
+ match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
+ // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
+ return Builder.CreateBinaryIntrinsic(
+ Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
+ }
+
+ // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
+ // There are 8 commuted variants.
+ // Canonicalize -1 (saturated result) to true value of the select.
+ if (match(FVal, m_AllOnes())) {
+ std::swap(TVal, FVal);
+ Pred = CmpInst::getInversePredicate(Pred);
+ }
+ if (!match(TVal, m_AllOnes()))
+ return nullptr;
+
+ // Canonicalize predicate to less-than or less-or-equal-than.
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
+ std::swap(Cmp0, Cmp1);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ }
+ if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
+ return nullptr;
+
+ // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
+ // Strictness of the comparison is irrelevant.
+ Value *Y;
+ if (match(Cmp0, m_Not(m_Value(X))) &&
+ match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
+ // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
+ // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
+ return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
+ }
+ // The 'not' op may be included in the sum but not the compare.
+ // Strictness of the comparison is irrelevant.
+ X = Cmp0;
+ Y = Cmp1;
+ if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
+ // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
+ // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
+ BinaryOperator *BO = cast<BinaryOperator>(FVal);
+ return Builder.CreateBinaryIntrinsic(
+ Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
+ }
+ // The overflow may be detected via the add wrapping round.
+ // This is only valid for strict comparison!
+ if (Pred == ICmpInst::ICMP_ULT &&
+ match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
+ match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
+ // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
+ // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
+ return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
+ }
+
+ return nullptr;
+}
+
+/// Fold the following code sequence:
+/// \code
+/// int a = ctlz(x & -x);
+// x ? 31 - a : a;
+/// \code
+///
+/// into:
+/// cttz(x)
+static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
+ Value *FalseVal,
+ InstCombiner::BuilderTy &Builder) {
+ unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
+ if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
+ return nullptr;
+
+ if (ICI->getPredicate() == ICmpInst::ICMP_NE)
+ std::swap(TrueVal, FalseVal);
+
+ if (!match(FalseVal,
+ m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
+ return nullptr;
+
+ if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
+ return nullptr;
+
+ Value *X = ICI->getOperand(0);
+ auto *II = cast<IntrinsicInst>(TrueVal);
+ if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
+ return nullptr;
+
+ Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
+ II->getType());
+ return CallInst::Create(F, {X, II->getArgOperand(1)});
+}
+
+/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
+/// call to cttz/ctlz with flag 'is_zero_poison' cleared.
+///
+/// For example, we can fold the following code sequence:
+/// \code
+/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
+/// %1 = icmp ne i32 %x, 0
+/// %2 = select i1 %1, i32 %0, i32 32
+/// \code
+///
+/// into:
+/// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
+static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
+ InstCombiner::BuilderTy &Builder) {
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ Value *CmpLHS = ICI->getOperand(0);
+ Value *CmpRHS = ICI->getOperand(1);
+
+ // Check if the condition value compares a value for equality against zero.
+ if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
+ return nullptr;
+
+ Value *SelectArg = FalseVal;
+ Value *ValueOnZero = TrueVal;
+ if (Pred == ICmpInst::ICMP_NE)
+ std::swap(SelectArg, ValueOnZero);
+
+ // Skip zero extend/truncate.
+ Value *Count = nullptr;
+ if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
+ !match(SelectArg, m_Trunc(m_Value(Count))))
+ Count = SelectArg;
+
+ // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
+ // input to the cttz/ctlz is used as LHS for the compare instruction.
+ if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
+ !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
+ return nullptr;
+
+ IntrinsicInst *II = cast<IntrinsicInst>(Count);
+
+ // Check if the value propagated on zero is a constant number equal to the
+ // sizeof in bits of 'Count'.
+ unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
+ if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
+ // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
+ // true to false on this flag, so we can replace it for all users.
+ II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
+ return SelectArg;
+ }
+
+ // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
+ // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
+ // not be used if the input is zero. Relax to 'zero is poison' for that case.
+ if (II->hasOneUse() && SelectArg->hasOneUse() &&
+ !match(II->getArgOperand(1), m_One()))
+ II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
+
+ return nullptr;
+}
+
+/// Return true if we find and adjust an icmp+select pattern where the compare
+/// is with a constant that can be incremented or decremented to match the
+/// minimum or maximum idiom.
+static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *CmpLHS = Cmp.getOperand(0);
+ Value *CmpRHS = Cmp.getOperand(1);
+ Value *TrueVal = Sel.getTrueValue();
+ Value *FalseVal = Sel.getFalseValue();
+
+ // We may move or edit the compare, so make sure the select is the only user.
+ const APInt *CmpC;
+ if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
+ return false;
+
+ // These transforms only work for selects of integers or vector selects of
+ // integer vectors.
+ Type *SelTy = Sel.getType();
+ auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
+ if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
+ return false;
+
+ Constant *AdjustedRHS;
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
+ AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
+ else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
+ AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
+ else
+ return false;
+
+ // X > C ? X : C+1 --> X < C+1 ? C+1 : X
+ // X < C ? X : C-1 --> X > C-1 ? C-1 : X
+ if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
+ (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
+ ; // Nothing to do here. Values match without any sign/zero extension.
+ }
+ // Types do not match. Instead of calculating this with mixed types, promote
+ // all to the larger type. This enables scalar evolution to analyze this
+ // expression.
+ else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
+ Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
+
+ // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
+ // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
+ // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
+ // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
+ if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
+ CmpLHS = TrueVal;
+ AdjustedRHS = SextRHS;
+ } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
+ SextRHS == TrueVal) {
+ CmpLHS = FalseVal;
+ AdjustedRHS = SextRHS;
+ } else if (Cmp.isUnsigned()) {
+ Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
+ // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
+ // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
+ // zext + signed compare cannot be changed:
+ // 0xff <s 0x00, but 0x00ff >s 0x0000
+ if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
+ CmpLHS = TrueVal;
+ AdjustedRHS = ZextRHS;
+ } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
+ ZextRHS == TrueVal) {
+ CmpLHS = FalseVal;
+ AdjustedRHS = ZextRHS;
+ } else {
+ return false;
+ }
+ } else {
+ return false;
+ }
+ } else {
+ return false;
+ }
+
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ CmpRHS = AdjustedRHS;
+ std::swap(FalseVal, TrueVal);
+ Cmp.setPredicate(Pred);
+ Cmp.setOperand(0, CmpLHS);
+ Cmp.setOperand(1, CmpRHS);
+ Sel.setOperand(1, TrueVal);
+ Sel.setOperand(2, FalseVal);
+ Sel.swapProfMetadata();
+
+ // Move the compare instruction right before the select instruction. Otherwise
+ // the sext/zext value may be defined after the compare instruction uses it.
+ Cmp.moveBefore(&Sel);
+
+ return true;
+}
+
+static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
+ InstCombinerImpl &IC) {
+ Value *LHS, *RHS;
+ // TODO: What to do with pointer min/max patterns?
+ if (!Sel.getType()->isIntOrIntVectorTy())
+ return nullptr;
+
+ SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
+ if (SPF == SelectPatternFlavor::SPF_ABS ||
+ SPF == SelectPatternFlavor::SPF_NABS) {
+ if (!Cmp.hasOneUse() && !RHS->hasOneUse())
+ return nullptr; // TODO: Relax this restriction.
+
+ // Note that NSW flag can only be propagated for normal, non-negated abs!
+ bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
+ match(RHS, m_NSWNeg(m_Specific(LHS)));
+ Constant *IntMinIsPoisonC =
+ ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
+ Instruction *Abs =
+ IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
+
+ if (SPF == SelectPatternFlavor::SPF_NABS)
+ return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
+ return IC.replaceInstUsesWith(Sel, Abs);
+ }
+
+ if (SelectPatternResult::isMinOrMax(SPF)) {
+ Intrinsic::ID IntrinsicID;
+ switch (SPF) {
+ case SelectPatternFlavor::SPF_UMIN:
+ IntrinsicID = Intrinsic::umin;
+ break;
+ case SelectPatternFlavor::SPF_UMAX:
+ IntrinsicID = Intrinsic::umax;
+ break;
+ case SelectPatternFlavor::SPF_SMIN:
+ IntrinsicID = Intrinsic::smin;
+ break;
+ case SelectPatternFlavor::SPF_SMAX:
+ IntrinsicID = Intrinsic::smax;
+ break;
+ default:
+ llvm_unreachable("Unexpected SPF");
+ }
+ return IC.replaceInstUsesWith(
+ Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
+ }
+
+ return nullptr;
+}
+
+/// If we have a select with an equality comparison, then we know the value in
+/// one of the arms of the select. See if substituting this value into an arm
+/// and simplifying the result yields the same value as the other arm.
+///
+/// To make this transform safe, we must drop poison-generating flags
+/// (nsw, etc) if we simplified to a binop because the select may be guarding
+/// that poison from propagating. If the existing binop already had no
+/// poison-generating flags, then this transform can be done by instsimplify.
+///
+/// Consider:
+/// %cmp = icmp eq i32 %x, 2147483647
+/// %add = add nsw i32 %x, 1
+/// %sel = select i1 %cmp, i32 -2147483648, i32 %add
+///
+/// We can't replace %sel with %add unless we strip away the flags.
+/// TODO: Wrapping flags could be preserved in some cases with better analysis.
+Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
+ ICmpInst &Cmp) {
+ // Value equivalence substitution requires an all-or-nothing replacement.
+ // It does not make sense for a vector compare where each lane is chosen
+ // independently.
+ if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
+ return nullptr;
+
+ // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
+ Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
+ bool Swapped = false;
+ if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
+ std::swap(TrueVal, FalseVal);
+ Swapped = true;
+ }
+
+ // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
+ // Make sure Y cannot be undef though, as we might pick different values for
+ // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
+ // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
+ // replacement cycle.
+ Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
+ if (TrueVal != CmpLHS &&
+ isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
+ if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
+ /* AllowRefinement */ true))
+ return replaceOperand(Sel, Swapped ? 2 : 1, V);
+
+ // Even if TrueVal does not simplify, we can directly replace a use of
+ // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
+ // else and is safe to speculatively execute (we may end up executing it
+ // with different operands, which should not cause side-effects or trigger
+ // undefined behavior). Only do this if CmpRHS is a constant, as
+ // profitability is not clear for other cases.
+ // FIXME: The replacement could be performed recursively.
+ if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
+ if (auto *I = dyn_cast<Instruction>(TrueVal))
+ if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
+ for (Use &U : I->operands())
+ if (U == CmpLHS) {
+ replaceUse(U, CmpRHS);
+ return &Sel;
+ }
+ }
+ if (TrueVal != CmpRHS &&
+ isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
+ if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
+ /* AllowRefinement */ true))
+ return replaceOperand(Sel, Swapped ? 2 : 1, V);
+
+ auto *FalseInst = dyn_cast<Instruction>(FalseVal);
+ if (!FalseInst)
+ return nullptr;
+
+ // InstSimplify already performed this fold if it was possible subject to
+ // current poison-generating flags. Try the transform again with
+ // poison-generating flags temporarily dropped.
+ bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
+ if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
+ WasNUW = OBO->hasNoUnsignedWrap();
+ WasNSW = OBO->hasNoSignedWrap();
+ FalseInst->setHasNoUnsignedWrap(false);
+ FalseInst->setHasNoSignedWrap(false);
+ }
+ if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
+ WasExact = PEO->isExact();
+ FalseInst->setIsExact(false);
+ }
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
+ WasInBounds = GEP->isInBounds();
+ GEP->setIsInBounds(false);
+ }
+
+ // Try each equivalence substitution possibility.
+ // We have an 'EQ' comparison, so the select's false value will propagate.
+ // Example:
+ // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
+ if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
+ /* AllowRefinement */ false) == TrueVal ||
+ simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
+ /* AllowRefinement */ false) == TrueVal) {
+ return replaceInstUsesWith(Sel, FalseVal);
+ }
+
+ // Restore poison-generating flags if the transform did not apply.
+ if (WasNUW)
+ FalseInst->setHasNoUnsignedWrap();
+ if (WasNSW)
+ FalseInst->setHasNoSignedWrap();
+ if (WasExact)
+ FalseInst->setIsExact();
+ if (WasInBounds)
+ cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
+
+ return nullptr;
+}
+
+// See if this is a pattern like:
+// %old_cmp1 = icmp slt i32 %x, C2
+// %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
+// %old_x_offseted = add i32 %x, C1
+// %old_cmp0 = icmp ult i32 %old_x_offseted, C0
+// %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
+// This can be rewritten as more canonical pattern:
+// %new_cmp1 = icmp slt i32 %x, -C1
+// %new_cmp2 = icmp sge i32 %x, C0-C1
+// %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
+// %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
+// Iff -C1 s<= C2 s<= C0-C1
+// Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
+// SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
+static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
+ InstCombiner::BuilderTy &Builder) {
+ Value *X = Sel0.getTrueValue();
+ Value *Sel1 = Sel0.getFalseValue();
+
+ // First match the condition of the outermost select.
+ // Said condition must be one-use.
+ if (!Cmp0.hasOneUse())
+ return nullptr;
+ ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
+ Value *Cmp00 = Cmp0.getOperand(0);
+ Constant *C0;
+ if (!match(Cmp0.getOperand(1),
+ m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
+ return nullptr;
+
+ if (!isa<SelectInst>(Sel1)) {
+ Pred0 = ICmpInst::getInversePredicate(Pred0);
+ std::swap(X, Sel1);
+ }
+
+ // Canonicalize Cmp0 into ult or uge.
+ // FIXME: we shouldn't care about lanes that are 'undef' in the end?
+ switch (Pred0) {
+ case ICmpInst::Predicate::ICMP_ULT:
+ case ICmpInst::Predicate::ICMP_UGE:
+ // Although icmp ult %x, 0 is an unusual thing to try and should generally
+ // have been simplified, it does not verify with undef inputs so ensure we
+ // are not in a strange state.
+ if (!match(C0, m_SpecificInt_ICMP(
+ ICmpInst::Predicate::ICMP_NE,
+ APInt::getZero(C0->getType()->getScalarSizeInBits()))))
+ return nullptr;
+ break; // Great!
+ case ICmpInst::Predicate::ICMP_ULE:
+ case ICmpInst::Predicate::ICMP_UGT:
+ // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
+ // C0, which again means it must not have any all-ones elements.
+ if (!match(C0,
+ m_SpecificInt_ICMP(
+ ICmpInst::Predicate::ICMP_NE,
+ APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
+ return nullptr; // Can't do, have all-ones element[s].
+ Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
+ C0 = InstCombiner::AddOne(C0);
+ break;
+ default:
+ return nullptr; // Unknown predicate.
+ }
+
+ // Now that we've canonicalized the ICmp, we know the X we expect;
+ // the select in other hand should be one-use.
+ if (!Sel1->hasOneUse())
+ return nullptr;
+
+ // If the types do not match, look through any truncs to the underlying
+ // instruction.
+ if (Cmp00->getType() != X->getType() && X->hasOneUse())
+ match(X, m_TruncOrSelf(m_Value(X)));
+
+ // We now can finish matching the condition of the outermost select:
+ // it should either be the X itself, or an addition of some constant to X.
+ Constant *C1;
+ if (Cmp00 == X)
+ C1 = ConstantInt::getNullValue(X->getType());
+ else if (!match(Cmp00,
+ m_Add(m_Specific(X),
+ m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
+ return nullptr;
+
+ Value *Cmp1;
+ ICmpInst::Predicate Pred1;
+ Constant *C2;
+ Value *ReplacementLow, *ReplacementHigh;
+ if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
+ m_Value(ReplacementHigh))) ||
+ !match(Cmp1,
+ m_ICmp(Pred1, m_Specific(X),
+ m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
+ return nullptr;
+
+ if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
+ return nullptr; // Not enough one-use instructions for the fold.
+ // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
+ // two comparisons we'll need to build.
+
+ // Canonicalize Cmp1 into the form we expect.
+ // FIXME: we shouldn't care about lanes that are 'undef' in the end?
+ switch (Pred1) {
+ case ICmpInst::Predicate::ICMP_SLT:
+ break;
+ case ICmpInst::Predicate::ICMP_SLE:
+ // We'd have to increment C2 by one, and for that it must not have signed
+ // max element, but then it would have been canonicalized to 'slt' before
+ // we get here. So we can't do anything useful with 'sle'.
+ return nullptr;
+ case ICmpInst::Predicate::ICMP_SGT:
+ // We want to canonicalize it to 'slt', so we'll need to increment C2,
+ // which again means it must not have any signed max elements.
+ if (!match(C2,
+ m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
+ APInt::getSignedMaxValue(
+ C2->getType()->getScalarSizeInBits()))))
+ return nullptr; // Can't do, have signed max element[s].
+ C2 = InstCombiner::AddOne(C2);
+ LLVM_FALLTHROUGH;
+ case ICmpInst::Predicate::ICMP_SGE:
+ // Also non-canonical, but here we don't need to change C2,
+ // so we don't have any restrictions on C2, so we can just handle it.
+ Pred1 = ICmpInst::Predicate::ICMP_SLT;
+ std::swap(ReplacementLow, ReplacementHigh);
+ break;
+ default:
+ return nullptr; // Unknown predicate.
+ }
+ assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
+ "Unexpected predicate type.");
+
+ // The thresholds of this clamp-like pattern.
+ auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
+ auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
+
+ assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
+ Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
+ "Unexpected predicate type.");
+ if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
+ std::swap(ThresholdLowIncl, ThresholdHighExcl);
+
+ // The fold has a precondition 1: C2 s>= ThresholdLow
+ auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
+ ThresholdLowIncl);
+ if (!match(Precond1, m_One()))
+ return nullptr;
+ // The fold has a precondition 2: C2 s<= ThresholdHigh
+ auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
+ ThresholdHighExcl);
+ if (!match(Precond2, m_One()))
+ return nullptr;
+
+ // If we are matching from a truncated input, we need to sext the
+ // ReplacementLow and ReplacementHigh values. Only do the transform if they
+ // are free to extend due to being constants.
+ if (X->getType() != Sel0.getType()) {
+ Constant *LowC, *HighC;
+ if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
+ !match(ReplacementHigh, m_ImmConstant(HighC)))
+ return nullptr;
+ ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
+ ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
+ }
+
+ // All good, finally emit the new pattern.
+ Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
+ Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
+ Value *MaybeReplacedLow =
+ Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
+
+ // Create the final select. If we looked through a truncate above, we will
+ // need to retruncate the result.
+ Value *MaybeReplacedHigh = Builder.CreateSelect(
+ ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
+ return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
+}
+
+// If we have
+// %cmp = icmp [canonical predicate] i32 %x, C0
+// %r = select i1 %cmp, i32 %y, i32 C1
+// Where C0 != C1 and %x may be different from %y, see if the constant that we
+// will have if we flip the strictness of the predicate (i.e. without changing
+// the result) is identical to the C1 in select. If it matches we can change
+// original comparison to one with swapped predicate, reuse the constant,
+// and swap the hands of select.
+static Instruction *
+tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
+ InstCombinerImpl &IC) {
+ ICmpInst::Predicate Pred;
+ Value *X;
+ Constant *C0;
+ if (!match(&Cmp, m_OneUse(m_ICmp(
+ Pred, m_Value(X),
+ m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
+ return nullptr;
+
+ // If comparison predicate is non-relational, we won't be able to do anything.
+ if (ICmpInst::isEquality(Pred))
+ return nullptr;
+
+ // If comparison predicate is non-canonical, then we certainly won't be able
+ // to make it canonical; canonicalizeCmpWithConstant() already tried.
+ if (!InstCombiner::isCanonicalPredicate(Pred))
+ return nullptr;
+
+ // If the [input] type of comparison and select type are different, lets abort
+ // for now. We could try to compare constants with trunc/[zs]ext though.
+ if (C0->getType() != Sel.getType())
+ return nullptr;
+
+ // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
+ // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
+ // Or should we just abandon this transform entirely?
+ if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
+ return nullptr;
+
+
+ Value *SelVal0, *SelVal1; // We do not care which one is from where.
+ match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
+ // At least one of these values we are selecting between must be a constant
+ // else we'll never succeed.
+ if (!match(SelVal0, m_AnyIntegralConstant()) &&
+ !match(SelVal1, m_AnyIntegralConstant()))
+ return nullptr;
+
+ // Does this constant C match any of the `select` values?
+ auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
+ return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
+ };
+
+ // If C0 *already* matches true/false value of select, we are done.
+ if (MatchesSelectValue(C0))
+ return nullptr;
+
+ // Check the constant we'd have with flipped-strictness predicate.
+ auto FlippedStrictness =
+ InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
+ if (!FlippedStrictness)
+ return nullptr;
+
+ // If said constant doesn't match either, then there is no hope,
+ if (!MatchesSelectValue(FlippedStrictness->second))
+ return nullptr;
+
+ // It matched! Lets insert the new comparison just before select.
+ InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
+ IC.Builder.SetInsertPoint(&Sel);
+
+ Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
+ Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
+ Cmp.getName() + ".inv");
+ IC.replaceOperand(Sel, 0, NewCmp);
+ Sel.swapValues();
+ Sel.swapProfMetadata();
+
+ return &Sel;
+}
+
+static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
+ Value *FVal,
+ InstCombiner::BuilderTy &Builder) {
+ if (!Cmp->hasOneUse())
+ return nullptr;
+
+ const APInt *CmpC;
+ if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
+ return nullptr;
+
+ // (X u< 2) ? -X : -1 --> sext (X != 0)
+ Value *X = Cmp->getOperand(0);
+ if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
+ match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
+ return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
+
+ // (X u> 1) ? -1 : -X --> sext (X != 0)
+ if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
+ match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
+ return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
+
+ return nullptr;
+}
+
+static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI) {
+ const APInt *CmpC;
+ Value *V;
+ CmpInst::Predicate Pred;
+ if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
+ return nullptr;
+
+ BinaryOperator *BO;
+ const APInt *C;
+ CmpInst::Predicate CPred;
+ if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
+ CPred = ICI->getPredicate();
+ else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
+ CPred = ICI->getInversePredicate();
+ else
+ return nullptr;
+
+ const APInt *BinOpC;
+ if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
+ return nullptr;
+
+ ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
+ .binaryOp(BO->getOpcode(), *BinOpC);
+ if (R == *C) {
+ BO->dropPoisonGeneratingFlags();
+ return BO;
+ }
+ return nullptr;
+}
+
+/// Visit a SelectInst that has an ICmpInst as its first operand.
+Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
+ ICmpInst *ICI) {
+ if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
+ return NewSel;
+
+ if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
+ return NewSPF;
+
+ if (Value *V = foldSelectInstWithICmpConst(SI, ICI))
+ return replaceInstUsesWith(SI, V);
+
+ if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ if (Instruction *NewSel =
+ tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
+ return NewSel;
+
+ bool Changed = adjustMinMax(SI, *ICI);
+
+ if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ // NOTE: if we wanted to, this is where to detect integer MIN/MAX
+ Value *TrueVal = SI.getTrueValue();
+ Value *FalseVal = SI.getFalseValue();
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ Value *CmpLHS = ICI->getOperand(0);
+ Value *CmpRHS = ICI->getOperand(1);
+ if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
+ if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
+ // Transform (X == C) ? X : Y -> (X == C) ? C : Y
+ SI.setOperand(1, CmpRHS);
+ Changed = true;
+ } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
+ // Transform (X != C) ? Y : X -> (X != C) ? Y : C
+ SI.setOperand(2, CmpRHS);
+ Changed = true;
+ }
+ }
+
+ // Canonicalize a signbit condition to use zero constant by swapping:
+ // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
+ // To avoid conflicts (infinite loops) with other canonicalizations, this is
+ // not applied with any constant select arm.
+ if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
+ !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
+ ICI->hasOneUse()) {
+ InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
+ Builder.SetInsertPoint(&SI);
+ Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
+ replaceOperand(SI, 0, IsNeg);
+ SI.swapValues();
+ SI.swapProfMetadata();
+ return &SI;
+ }
+
+ // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
+ // decomposeBitTestICmp() might help.
+ {
+ unsigned BitWidth =
+ DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
+ APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
+ Value *X;
+ const APInt *Y, *C;
+ bool TrueWhenUnset;
+ bool IsBitTest = false;
+ if (ICmpInst::isEquality(Pred) &&
+ match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
+ match(CmpRHS, m_Zero())) {
+ IsBitTest = true;
+ TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
+ } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
+ X = CmpLHS;
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = false;
+ } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
+ X = CmpLHS;
+ Y = &MinSignedValue;
+ IsBitTest = true;
+ TrueWhenUnset = true;
+ }
+ if (IsBitTest) {
+ Value *V = nullptr;
+ // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
+ if (TrueWhenUnset && TrueVal == X &&
+ match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder.CreateAnd(X, ~(*Y));
+ // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
+ else if (!TrueWhenUnset && FalseVal == X &&
+ match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder.CreateAnd(X, ~(*Y));
+ // (X & Y) == 0 ? X ^ Y : X --> X | Y
+ else if (TrueWhenUnset && FalseVal == X &&
+ match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder.CreateOr(X, *Y);
+ // (X & Y) != 0 ? X : X ^ Y --> X | Y
+ else if (!TrueWhenUnset && TrueVal == X &&
+ match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
+ V = Builder.CreateOr(X, *Y);
+
+ if (V)
+ return replaceInstUsesWith(SI, V);
+ }
+ }
+
+ if (Instruction *V =
+ foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
+ return V;
+
+ if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
+ return V;
+
+ if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
+ return V;
+
+ if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ return Changed ? &SI : nullptr;
+}
+
+/// SI is a select whose condition is a PHI node (but the two may be in
+/// different blocks). See if the true/false values (V) are live in all of the
+/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
+///
+/// X = phi [ C1, BB1], [C2, BB2]
+/// Y = add
+/// Z = select X, Y, 0
+///
+/// because Y is not live in BB1/BB2.
+static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
+ const SelectInst &SI) {
+ // If the value is a non-instruction value like a constant or argument, it
+ // can always be mapped.
+ const Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return true;
+
+ // If V is a PHI node defined in the same block as the condition PHI, we can
+ // map the arguments.
+ const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
+
+ if (const PHINode *VP = dyn_cast<PHINode>(I))
+ if (VP->getParent() == CondPHI->getParent())
+ return true;
+
+ // Otherwise, if the PHI and select are defined in the same block and if V is
+ // defined in a different block, then we can transform it.
+ if (SI.getParent() == CondPHI->getParent() &&
+ I->getParent() != CondPHI->getParent())
+ return true;
+
+ // Otherwise we have a 'hard' case and we can't tell without doing more
+ // detailed dominator based analysis, punt.
+ return false;
+}
+
+/// We have an SPF (e.g. a min or max) of an SPF of the form:
+/// SPF2(SPF1(A, B), C)
+Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
+ SelectPatternFlavor SPF1, Value *A,
+ Value *B, Instruction &Outer,
+ SelectPatternFlavor SPF2,
+ Value *C) {
+ if (Outer.getType() != Inner->getType())
+ return nullptr;
+
+ if (C == A || C == B) {
+ // MAX(MAX(A, B), B) -> MAX(A, B)
+ // MIN(MIN(a, b), a) -> MIN(a, b)
+ // TODO: This could be done in instsimplify.
+ if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
+ return replaceInstUsesWith(Outer, Inner);
+ }
+
+ return nullptr;
+}
+
+/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
+/// This is even legal for FP.
+static Instruction *foldAddSubSelect(SelectInst &SI,
+ InstCombiner::BuilderTy &Builder) {
+ Value *CondVal = SI.getCondition();
+ Value *TrueVal = SI.getTrueValue();
+ Value *FalseVal = SI.getFalseValue();
+ auto *TI = dyn_cast<Instruction>(TrueVal);
+ auto *FI = dyn_cast<Instruction>(FalseVal);
+ if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
+ return nullptr;
+
+ Instruction *AddOp = nullptr, *SubOp = nullptr;
+ if ((TI->getOpcode() == Instruction::Sub &&
+ FI->getOpcode() == Instruction::Add) ||
+ (TI->getOpcode() == Instruction::FSub &&
+ FI->getOpcode() == Instruction::FAdd)) {
+ AddOp = FI;
+ SubOp = TI;
+ } else if ((FI->getOpcode() == Instruction::Sub &&
+ TI->getOpcode() == Instruction::Add) ||
+ (FI->getOpcode() == Instruction::FSub &&
+ TI->getOpcode() == Instruction::FAdd)) {
+ AddOp = TI;
+ SubOp = FI;
+ }
+
+ if (AddOp) {
+ Value *OtherAddOp = nullptr;
+ if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
+ OtherAddOp = AddOp->getOperand(1);
+ } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
+ OtherAddOp = AddOp->getOperand(0);
+ }
+
+ if (OtherAddOp) {
+ // So at this point we know we have (Y -> OtherAddOp):
+ // select C, (add X, Y), (sub X, Z)
+ Value *NegVal; // Compute -Z
+ if (SI.getType()->isFPOrFPVectorTy()) {
+ NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
+ if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
+ FastMathFlags Flags = AddOp->getFastMathFlags();
+ Flags &= SubOp->getFastMathFlags();
+ NegInst->setFastMathFlags(Flags);
+ }
+ } else {
+ NegVal = Builder.CreateNeg(SubOp->getOperand(1));
+ }
+
+ Value *NewTrueOp = OtherAddOp;
+ Value *NewFalseOp = NegVal;
+ if (AddOp != TI)
+ std::swap(NewTrueOp, NewFalseOp);
+ Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
+ SI.getName() + ".p", &SI);
+
+ if (SI.getType()->isFPOrFPVectorTy()) {
+ Instruction *RI =
+ BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
+
+ FastMathFlags Flags = AddOp->getFastMathFlags();
+ Flags &= SubOp->getFastMathFlags();
+ RI->setFastMathFlags(Flags);
+ return RI;
+ } else
+ return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
+ }
+ }
+ return nullptr;
+}
+
+/// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
+/// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
+/// Along with a number of patterns similar to:
+/// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+/// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+static Instruction *
+foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
+ Value *CondVal = SI.getCondition();
+ Value *TrueVal = SI.getTrueValue();
+ Value *FalseVal = SI.getFalseValue();
+
+ WithOverflowInst *II;
+ if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
+ !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
+ return nullptr;
+
+ Value *X = II->getLHS();
+ Value *Y = II->getRHS();
+
+ auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
+ Type *Ty = Limit->getType();
+
+ ICmpInst::Predicate Pred;
+ Value *TrueVal, *FalseVal, *Op;
+ const APInt *C;
+ if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
+ m_Value(TrueVal), m_Value(FalseVal))))
+ return false;
+
+ auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
+ auto IsMinMax = [&](Value *Min, Value *Max) {
+ APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
+ APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
+ return match(Min, m_SpecificInt(MinVal)) &&
+ match(Max, m_SpecificInt(MaxVal));
+ };
+
+ if (Op != X && Op != Y)
+ return false;
+
+ if (IsAdd) {
+ // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
+ IsMinMax(TrueVal, FalseVal))
+ return true;
+ // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
+ IsMinMax(FalseVal, TrueVal))
+ return true;
+ } else {
+ // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
+ IsMinMax(TrueVal, FalseVal))
+ return true;
+ // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
+ IsMinMax(FalseVal, TrueVal))
+ return true;
+ // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
+ IsMinMax(FalseVal, TrueVal))
+ return true;
+ // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
+ IsMinMax(TrueVal, FalseVal))
+ return true;
+ }
+
+ return false;
+ };
+
+ Intrinsic::ID NewIntrinsicID;
+ if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
+ match(TrueVal, m_AllOnes()))
+ // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
+ NewIntrinsicID = Intrinsic::uadd_sat;
+ else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
+ match(TrueVal, m_Zero()))
+ // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
+ NewIntrinsicID = Intrinsic::usub_sat;
+ else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
+ IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
+ // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
+ NewIntrinsicID = Intrinsic::sadd_sat;
+ else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
+ IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
+ // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
+ NewIntrinsicID = Intrinsic::ssub_sat;
+ else
+ return nullptr;
+
+ Function *F =
+ Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
+ return CallInst::Create(F, {X, Y});
+}
+
+Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
+ Constant *C;
+ if (!match(Sel.getTrueValue(), m_Constant(C)) &&
+ !match(Sel.getFalseValue(), m_Constant(C)))
+ return nullptr;
+
+ Instruction *ExtInst;
+ if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
+ !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
+ return nullptr;
+
+ auto ExtOpcode = ExtInst->getOpcode();
+ if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
+ return nullptr;
+
+ // If we are extending from a boolean type or if we can create a select that
+ // has the same size operands as its condition, try to narrow the select.
+ Value *X = ExtInst->getOperand(0);
+ Type *SmallType = X->getType();
+ Value *Cond = Sel.getCondition();
+ auto *Cmp = dyn_cast<CmpInst>(Cond);
+ if (!SmallType->isIntOrIntVectorTy(1) &&
+ (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
+ return nullptr;
+
+ // If the constant is the same after truncation to the smaller type and
+ // extension to the original type, we can narrow the select.
+ Type *SelType = Sel.getType();
+ Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
+ Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
+ if (ExtC == C && ExtInst->hasOneUse()) {
+ Value *TruncCVal = cast<Value>(TruncC);
+ if (ExtInst == Sel.getFalseValue())
+ std::swap(X, TruncCVal);
+
+ // select Cond, (ext X), C --> ext(select Cond, X, C')
+ // select Cond, C, (ext X) --> ext(select Cond, C', X)
+ Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
+ return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
+ }
+
+ // If one arm of the select is the extend of the condition, replace that arm
+ // with the extension of the appropriate known bool value.
+ if (Cond == X) {
+ if (ExtInst == Sel.getTrueValue()) {
+ // select X, (sext X), C --> select X, -1, C
+ // select X, (zext X), C --> select X, 1, C
+ Constant *One = ConstantInt::getTrue(SmallType);
+ Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
+ return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
+ } else {
+ // select X, C, (sext X) --> select X, C, 0
+ // select X, C, (zext X) --> select X, C, 0
+ Constant *Zero = ConstantInt::getNullValue(SelType);
+ return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
+ }
+ }
+
+ return nullptr;
+}
+
+/// Try to transform a vector select with a constant condition vector into a
+/// shuffle for easier combining with other shuffles and insert/extract.
+static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
+ Value *CondVal = SI.getCondition();
+ Constant *CondC;
+ auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
+ if (!CondValTy || !match(CondVal, m_Constant(CondC)))
+ return nullptr;
+
+ unsigned NumElts = CondValTy->getNumElements();
+ SmallVector<int, 16> Mask;
+ Mask.reserve(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = CondC->getAggregateElement(i);
+ if (!Elt)
+ return nullptr;
+
+ if (Elt->isOneValue()) {
+ // If the select condition element is true, choose from the 1st vector.
+ Mask.push_back(i);
+ } else if (Elt->isNullValue()) {
+ // If the select condition element is false, choose from the 2nd vector.
+ Mask.push_back(i + NumElts);
+ } else if (isa<UndefValue>(Elt)) {
+ // Undef in a select condition (choose one of the operands) does not mean
+ // the same thing as undef in a shuffle mask (any value is acceptable), so
+ // give up.
+ return nullptr;
+ } else {
+ // Bail out on a constant expression.
+ return nullptr;
+ }
+ }
+
+ return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
+}
+
+/// If we have a select of vectors with a scalar condition, try to convert that
+/// to a vector select by splatting the condition. A splat may get folded with
+/// other operations in IR and having all operands of a select be vector types
+/// is likely better for vector codegen.
+static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
+ InstCombinerImpl &IC) {
+ auto *Ty = dyn_cast<VectorType>(Sel.getType());
+ if (!Ty)
+ return nullptr;
+
+ // We can replace a single-use extract with constant index.
+ Value *Cond = Sel.getCondition();
+ if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
+ return nullptr;
+
+ // select (extelt V, Index), T, F --> select (splat V, Index), T, F
+ // Splatting the extracted condition reduces code (we could directly create a
+ // splat shuffle of the source vector to eliminate the intermediate step).
+ return IC.replaceOperand(
+ Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
+}
+
+/// Reuse bitcasted operands between a compare and select:
+/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
+/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
+static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Cond = Sel.getCondition();
+ Value *TVal = Sel.getTrueValue();
+ Value *FVal = Sel.getFalseValue();
+
+ CmpInst::Predicate Pred;
+ Value *A, *B;
+ if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
+ return nullptr;
+
+ // The select condition is a compare instruction. If the select's true/false
+ // values are already the same as the compare operands, there's nothing to do.
+ if (TVal == A || TVal == B || FVal == A || FVal == B)
+ return nullptr;
+
+ Value *C, *D;
+ if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
+ return nullptr;
+
+ // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
+ Value *TSrc, *FSrc;
+ if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
+ !match(FVal, m_BitCast(m_Value(FSrc))))
+ return nullptr;
+
+ // If the select true/false values are *different bitcasts* of the same source
+ // operands, make the select operands the same as the compare operands and
+ // cast the result. This is the canonical select form for min/max.
+ Value *NewSel;
+ if (TSrc == C && FSrc == D) {
+ // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
+ // bitcast (select (cmp A, B), A, B)
+ NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
+ } else if (TSrc == D && FSrc == C) {
+ // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
+ // bitcast (select (cmp A, B), B, A)
+ NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
+ } else {
+ return nullptr;
+ }
+ return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
+}
+
+/// Try to eliminate select instructions that test the returned flag of cmpxchg
+/// instructions.
+///
+/// If a select instruction tests the returned flag of a cmpxchg instruction and
+/// selects between the returned value of the cmpxchg instruction its compare
+/// operand, the result of the select will always be equal to its false value.
+/// For example:
+///
+/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
+/// %1 = extractvalue { i64, i1 } %0, 1
+/// %2 = extractvalue { i64, i1 } %0, 0
+/// %3 = select i1 %1, i64 %compare, i64 %2
+/// ret i64 %3
+///
+/// The returned value of the cmpxchg instruction (%2) is the original value
+/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
+/// must have been equal to %compare. Thus, the result of the select is always
+/// equal to %2, and the code can be simplified to:
+///
+/// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
+/// %1 = extractvalue { i64, i1 } %0, 0
+/// ret i64 %1
+///
+static Value *foldSelectCmpXchg(SelectInst &SI) {
+ // A helper that determines if V is an extractvalue instruction whose
+ // aggregate operand is a cmpxchg instruction and whose single index is equal
+ // to I. If such conditions are true, the helper returns the cmpxchg
+ // instruction; otherwise, a nullptr is returned.
+ auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
+ auto *Extract = dyn_cast<ExtractValueInst>(V);
+ if (!Extract)
+ return nullptr;
+ if (Extract->getIndices()[0] != I)
+ return nullptr;
+ return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
+ };
+
+ // If the select has a single user, and this user is a select instruction that
+ // we can simplify, skip the cmpxchg simplification for now.
+ if (SI.hasOneUse())
+ if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
+ if (Select->getCondition() == SI.getCondition())
+ if (Select->getFalseValue() == SI.getTrueValue() ||
+ Select->getTrueValue() == SI.getFalseValue())
+ return nullptr;
+
+ // Ensure the select condition is the returned flag of a cmpxchg instruction.
+ auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
+ if (!CmpXchg)
+ return nullptr;
+
+ // Check the true value case: The true value of the select is the returned
+ // value of the same cmpxchg used by the condition, and the false value is the
+ // cmpxchg instruction's compare operand.
+ if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
+ if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
+ return SI.getFalseValue();
+
+ // Check the false value case: The false value of the select is the returned
+ // value of the same cmpxchg used by the condition, and the true value is the
+ // cmpxchg instruction's compare operand.
+ if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
+ if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
+ return SI.getFalseValue();
+
+ return nullptr;
+}
+
+/// Try to reduce a funnel/rotate pattern that includes a compare and select
+/// into a funnel shift intrinsic. Example:
+/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
+/// --> call llvm.fshl.i32(a, a, b)
+/// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
+/// --> call llvm.fshl.i32(a, b, c)
+/// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
+/// --> call llvm.fshr.i32(a, b, c)
+static Instruction *foldSelectFunnelShift(SelectInst &Sel,
+ InstCombiner::BuilderTy &Builder) {
+ // This must be a power-of-2 type for a bitmasking transform to be valid.
+ unsigned Width = Sel.getType()->getScalarSizeInBits();
+ if (!isPowerOf2_32(Width))
+ return nullptr;
+
+ BinaryOperator *Or0, *Or1;
+ if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
+ return nullptr;
+
+ Value *SV0, *SV1, *SA0, *SA1;
+ if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
+ m_ZExtOrSelf(m_Value(SA0))))) ||
+ !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
+ m_ZExtOrSelf(m_Value(SA1))))) ||
+ Or0->getOpcode() == Or1->getOpcode())
+ return nullptr;
+
+ // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
+ if (Or0->getOpcode() == BinaryOperator::LShr) {
+ std::swap(Or0, Or1);
+ std::swap(SV0, SV1);
+ std::swap(SA0, SA1);
+ }
+ assert(Or0->getOpcode() == BinaryOperator::Shl &&
+ Or1->getOpcode() == BinaryOperator::LShr &&
+ "Illegal or(shift,shift) pair");
+
+ // Check the shift amounts to see if they are an opposite pair.
+ Value *ShAmt;
+ if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
+ ShAmt = SA0;
+ else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
+ ShAmt = SA1;
+ else
+ return nullptr;
+
+ // We should now have this pattern:
+ // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
+ // The false value of the select must be a funnel-shift of the true value:
+ // IsFShl -> TVal must be SV0 else TVal must be SV1.
+ bool IsFshl = (ShAmt == SA0);
+ Value *TVal = Sel.getTrueValue();
+ if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
+ return nullptr;
+
+ // Finally, see if the select is filtering out a shift-by-zero.
+ Value *Cond = Sel.getCondition();
+ ICmpInst::Predicate Pred;
+ if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
+ Pred != ICmpInst::ICMP_EQ)
+ return nullptr;
+
+ // If this is not a rotate then the select was blocking poison from the
+ // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
+ if (SV0 != SV1) {
+ if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
+ SV1 = Builder.CreateFreeze(SV1);
+ else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
+ SV0 = Builder.CreateFreeze(SV0);
+ }
+
+ // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
+ // Convert to funnel shift intrinsic.
+ Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
+ Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
+ ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
+ return CallInst::Create(F, { SV0, SV1, ShAmt });
+}
+
+static Instruction *foldSelectToCopysign(SelectInst &Sel,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Cond = Sel.getCondition();
+ Value *TVal = Sel.getTrueValue();
+ Value *FVal = Sel.getFalseValue();
+ Type *SelType = Sel.getType();
+
+ // Match select ?, TC, FC where the constants are equal but negated.
+ // TODO: Generalize to handle a negated variable operand?
+ const APFloat *TC, *FC;
+ if (!match(TVal, m_APFloatAllowUndef(TC)) ||
+ !match(FVal, m_APFloatAllowUndef(FC)) ||
+ !abs(*TC).bitwiseIsEqual(abs(*FC)))
+ return nullptr;
+
+ assert(TC != FC && "Expected equal select arms to simplify");
+
+ Value *X;
+ const APInt *C;
+ bool IsTrueIfSignSet;
+ ICmpInst::Predicate Pred;
+ if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
+ !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
+ X->getType() != SelType)
+ return nullptr;
+
+ // If needed, negate the value that will be the sign argument of the copysign:
+ // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
+ // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
+ // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
+ // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
+ // Note: FMF from the select can not be propagated to the new instructions.
+ if (IsTrueIfSignSet ^ TC->isNegative())
+ X = Builder.CreateFNeg(X);
+
+ // Canonicalize the magnitude argument as the positive constant since we do
+ // not care about its sign.
+ Value *MagArg = ConstantFP::get(SelType, abs(*TC));
+ Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
+ Sel.getType());
+ return CallInst::Create(F, { MagArg, X });
+}
+
+Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
+ auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
+ if (!VecTy)
+ return nullptr;
+
+ unsigned NumElts = VecTy->getNumElements();
+ APInt UndefElts(NumElts, 0);
+ APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
+ if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
+ if (V != &Sel)
+ return replaceInstUsesWith(Sel, V);
+ return &Sel;
+ }
+
+ // A select of a "select shuffle" with a common operand can be rearranged
+ // to select followed by "select shuffle". Because of poison, this only works
+ // in the case of a shuffle with no undefined mask elements.
+ Value *Cond = Sel.getCondition();
+ Value *TVal = Sel.getTrueValue();
+ Value *FVal = Sel.getFalseValue();
+ Value *X, *Y;
+ ArrayRef<int> Mask;
+ if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
+ !is_contained(Mask, UndefMaskElem) &&
+ cast<ShuffleVectorInst>(TVal)->isSelect()) {
+ if (X == FVal) {
+ // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
+ Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
+ return new ShuffleVectorInst(X, NewSel, Mask);
+ }
+ if (Y == FVal) {
+ // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
+ Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
+ return new ShuffleVectorInst(NewSel, Y, Mask);
+ }
+ }
+ if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
+ !is_contained(Mask, UndefMaskElem) &&
+ cast<ShuffleVectorInst>(FVal)->isSelect()) {
+ if (X == TVal) {
+ // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
+ Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
+ return new ShuffleVectorInst(X, NewSel, Mask);
+ }
+ if (Y == TVal) {
+ // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
+ Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
+ return new ShuffleVectorInst(NewSel, Y, Mask);
+ }
+ }
+
+ return nullptr;
+}
+
+static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
+ const DominatorTree &DT,
+ InstCombiner::BuilderTy &Builder) {
+ // Find the block's immediate dominator that ends with a conditional branch
+ // that matches select's condition (maybe inverted).
+ auto *IDomNode = DT[BB]->getIDom();
+ if (!IDomNode)
+ return nullptr;
+ BasicBlock *IDom = IDomNode->getBlock();
+
+ Value *Cond = Sel.getCondition();
+ Value *IfTrue, *IfFalse;
+ BasicBlock *TrueSucc, *FalseSucc;
+ if (match(IDom->getTerminator(),
+ m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
+ m_BasicBlock(FalseSucc)))) {
+ IfTrue = Sel.getTrueValue();
+ IfFalse = Sel.getFalseValue();
+ } else if (match(IDom->getTerminator(),
+ m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
+ m_BasicBlock(FalseSucc)))) {
+ IfTrue = Sel.getFalseValue();
+ IfFalse = Sel.getTrueValue();
+ } else
+ return nullptr;
+
+ // Make sure the branches are actually different.
+ if (TrueSucc == FalseSucc)
+ return nullptr;
+
+ // We want to replace select %cond, %a, %b with a phi that takes value %a
+ // for all incoming edges that are dominated by condition `%cond == true`,
+ // and value %b for edges dominated by condition `%cond == false`. If %a
+ // or %b are also phis from the same basic block, we can go further and take
+ // their incoming values from the corresponding blocks.
+ BasicBlockEdge TrueEdge(IDom, TrueSucc);
+ BasicBlockEdge FalseEdge(IDom, FalseSucc);
+ DenseMap<BasicBlock *, Value *> Inputs;
+ for (auto *Pred : predecessors(BB)) {
+ // Check implication.
+ BasicBlockEdge Incoming(Pred, BB);
+ if (DT.dominates(TrueEdge, Incoming))
+ Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
+ else if (DT.dominates(FalseEdge, Incoming))
+ Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
+ else
+ return nullptr;
+ // Check availability.
+ if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
+ if (!DT.dominates(Insn, Pred->getTerminator()))
+ return nullptr;
+ }
+
+ Builder.SetInsertPoint(&*BB->begin());
+ auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
+ for (auto *Pred : predecessors(BB))
+ PN->addIncoming(Inputs[Pred], Pred);
+ PN->takeName(&Sel);
+ return PN;
+}
+
+static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
+ InstCombiner::BuilderTy &Builder) {
+ // Try to replace this select with Phi in one of these blocks.
+ SmallSetVector<BasicBlock *, 4> CandidateBlocks;
+ CandidateBlocks.insert(Sel.getParent());
+ for (Value *V : Sel.operands())
+ if (auto *I = dyn_cast<Instruction>(V))
+ CandidateBlocks.insert(I->getParent());
+
+ for (BasicBlock *BB : CandidateBlocks)
+ if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
+ return PN;
+ return nullptr;
+}
+
+static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
+ FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
+ if (!FI)
+ return nullptr;
+
+ Value *Cond = FI->getOperand(0);
+ Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
+
+ // select (freeze(x == y)), x, y --> y
+ // select (freeze(x != y)), x, y --> x
+ // The freeze should be only used by this select. Otherwise, remaining uses of
+ // the freeze can observe a contradictory value.
+ // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
+ // a = select c, x, y ;
+ // f(a, c) ; f(poison, 1) cannot happen, but if a is folded
+ // ; to y, this can happen.
+ CmpInst::Predicate Pred;
+ if (FI->hasOneUse() &&
+ match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
+ (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
+ return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
+ SelectInst &SI,
+ bool IsAnd) {
+ Value *CondVal = SI.getCondition();
+ Value *A = SI.getTrueValue();
+ Value *B = SI.getFalseValue();
+
+ assert(Op->getType()->isIntOrIntVectorTy(1) &&
+ "Op must be either i1 or vector of i1.");
+
+ Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
+ if (!Res)
+ return nullptr;
+
+ Value *Zero = Constant::getNullValue(A->getType());
+ Value *One = Constant::getAllOnesValue(A->getType());
+
+ if (*Res == true) {
+ if (IsAnd)
+ // select op, (select cond, A, B), false => select op, A, false
+ // and op, (select cond, A, B) => select op, A, false
+ // if op = true implies condval = true.
+ return SelectInst::Create(Op, A, Zero);
+ else
+ // select op, true, (select cond, A, B) => select op, true, A
+ // or op, (select cond, A, B) => select op, true, A
+ // if op = false implies condval = true.
+ return SelectInst::Create(Op, One, A);
+ } else {
+ if (IsAnd)
+ // select op, (select cond, A, B), false => select op, B, false
+ // and op, (select cond, A, B) => select op, B, false
+ // if op = true implies condval = false.
+ return SelectInst::Create(Op, B, Zero);
+ else
+ // select op, true, (select cond, A, B) => select op, true, B
+ // or op, (select cond, A, B) => select op, true, B
+ // if op = false implies condval = false.
+ return SelectInst::Create(Op, One, B);
+ }
+}
+
+// Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
+// fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
+static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
+ InstCombinerImpl &IC) {
+ Value *CondVal = SI.getCondition();
+
+ for (bool Swap : {false, true}) {
+ Value *TrueVal = SI.getTrueValue();
+ Value *X = SI.getFalseValue();
+ CmpInst::Predicate Pred;
+
+ if (Swap)
+ std::swap(TrueVal, X);
+
+ if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
+ continue;
+
+ // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
+ // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
+ if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
+ if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
+ Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
+ return IC.replaceInstUsesWith(SI, Fabs);
+ }
+ if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
+ Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
+ return IC.replaceInstUsesWith(SI, Fabs);
+ }
+ }
+
+ // With nsz, when 'Swap' is false:
+ // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
+ // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
+ // when 'Swap' is true:
+ // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
+ // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
+ if (!match(TrueVal, m_FNeg(m_Specific(X))) || !SI.hasNoSignedZeros())
+ return nullptr;
+
+ if (Swap)
+ Pred = FCmpInst::getSwappedPredicate(Pred);
+
+ bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
+ Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
+ bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
+ Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
+
+ if (IsLTOrLE) {
+ Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
+ return IC.replaceInstUsesWith(SI, Fabs);
+ }
+ if (IsGTOrGE) {
+ Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
+ Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
+ NewFNeg->setFastMathFlags(SI.getFastMathFlags());
+ return NewFNeg;
+ }
+ }
+
+ return nullptr;
+}
+
+// Match the following IR pattern:
+// %x.lowbits = and i8 %x, %lowbitmask
+// %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
+// %x.biased = add i8 %x, %bias
+// %x.biased.highbits = and i8 %x.biased, %highbitmask
+// %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
+// Define:
+// %alignment = add i8 %lowbitmask, 1
+// Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
+// and 2. %bias is equal to either %lowbitmask or %alignment,
+// and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
+// then this pattern can be transformed into:
+// %x.offset = add i8 %x, %lowbitmask
+// %x.roundedup = and i8 %x.offset, %highbitmask
+static Value *
+foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Cond = SI.getCondition();
+ Value *X = SI.getTrueValue();
+ Value *XBiasedHighBits = SI.getFalseValue();
+
+ ICmpInst::Predicate Pred;
+ Value *XLowBits;
+ if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
+ !ICmpInst::isEquality(Pred))
+ return nullptr;
+
+ if (Pred == ICmpInst::Predicate::ICMP_NE)
+ std::swap(X, XBiasedHighBits);
+
+ // FIXME: we could support non non-splats here.
+
+ const APInt *LowBitMaskCst;
+ if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst))))
+ return nullptr;
+
+ const APInt *BiasCst, *HighBitMaskCst;
+ if (!match(XBiasedHighBits,
+ m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)),
+ m_APIntAllowUndef(HighBitMaskCst))))
+ return nullptr;
+
+ if (!LowBitMaskCst->isMask())
+ return nullptr;
+
+ APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
+ if (InvertedLowBitMaskCst != *HighBitMaskCst)
+ return nullptr;
+
+ APInt AlignmentCst = *LowBitMaskCst + 1;
+
+ if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
+ return nullptr;
+
+ if (!XBiasedHighBits->hasOneUse()) {
+ if (*BiasCst == *LowBitMaskCst)
+ return XBiasedHighBits;
+ return nullptr;
+ }
+
+ // FIXME: could we preserve undef's here?
+ Type *Ty = X->getType();
+ Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
+ X->getName() + ".biased");
+ Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
+ R->takeName(&SI);
+ return R;
+}
+
+Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
+ Value *CondVal = SI.getCondition();
+ Value *TrueVal = SI.getTrueValue();
+ Value *FalseVal = SI.getFalseValue();
+ Type *SelType = SI.getType();
+
+ if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
+ SQ.getWithInstruction(&SI)))
+ return replaceInstUsesWith(SI, V);
+
+ if (Instruction *I = canonicalizeSelectToShuffle(SI))
+ return I;
+
+ if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
+ return I;
+
+ // Avoid potential infinite loops by checking for non-constant condition.
+ // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
+ // Scalar select must have simplified?
+ if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
+ TrueVal->getType() == CondVal->getType()) {
+ // Folding select to and/or i1 isn't poison safe in general. impliesPoison
+ // checks whether folding it does not convert a well-defined value into
+ // poison.
+ if (match(TrueVal, m_One())) {
+ if (impliesPoison(FalseVal, CondVal)) {
+ // Change: A = select B, true, C --> A = or B, C
+ return BinaryOperator::CreateOr(CondVal, FalseVal);
+ }
+
+ if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
+ if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
+ if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
+ /*IsSelectLogical*/ true))
+ return replaceInstUsesWith(SI, V);
+ }
+ if (match(FalseVal, m_Zero())) {
+ if (impliesPoison(TrueVal, CondVal)) {
+ // Change: A = select B, C, false --> A = and B, C
+ return BinaryOperator::CreateAnd(CondVal, TrueVal);
+ }
+
+ if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
+ if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
+ if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
+ /*IsSelectLogical*/ true))
+ return replaceInstUsesWith(SI, V);
+ }
+
+ auto *One = ConstantInt::getTrue(SelType);
+ auto *Zero = ConstantInt::getFalse(SelType);
+
+ // We match the "full" 0 or 1 constant here to avoid a potential infinite
+ // loop with vectors that may have undefined/poison elements.
+ // select a, false, b -> select !a, b, false
+ if (match(TrueVal, m_Specific(Zero))) {
+ Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
+ return SelectInst::Create(NotCond, FalseVal, Zero);
+ }
+ // select a, b, true -> select !a, true, b
+ if (match(FalseVal, m_Specific(One))) {
+ Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
+ return SelectInst::Create(NotCond, One, TrueVal);
+ }
+
+ // select a, a, b -> select a, true, b
+ if (CondVal == TrueVal)
+ return replaceOperand(SI, 1, One);
+ // select a, b, a -> select a, b, false
+ if (CondVal == FalseVal)
+ return replaceOperand(SI, 2, Zero);
+
+ // select a, !a, b -> select !a, b, false
+ if (match(TrueVal, m_Not(m_Specific(CondVal))))
+ return SelectInst::Create(TrueVal, FalseVal, Zero);
+ // select a, b, !a -> select !a, true, b
+ if (match(FalseVal, m_Not(m_Specific(CondVal))))
+ return SelectInst::Create(FalseVal, One, TrueVal);
+
+ Value *A, *B;
+
+ // DeMorgan in select form: !a && !b --> !(a || b)
+ // select !a, !b, false --> not (select a, true, b)
+ if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
+ (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
+ !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
+ return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
+
+ // DeMorgan in select form: !a || !b --> !(a && b)
+ // select !a, true, !b --> not (select a, b, false)
+ if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
+ (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
+ !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
+ return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
+
+ // select (select a, true, b), true, b -> select a, true, b
+ if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
+ match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
+ return replaceOperand(SI, 0, A);
+ // select (select a, b, false), b, false -> select a, b, false
+ if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
+ match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
+ return replaceOperand(SI, 0, A);
+
+ Value *C;
+ // select (~a | c), a, b -> and a, (or c, freeze(b))
+ if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) &&
+ CondVal->hasOneUse()) {
+ FalseVal = Builder.CreateFreeze(FalseVal);
+ return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal));
+ }
+ // select (~c & b), a, b -> and b, (or freeze(a), c)
+ if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) &&
+ CondVal->hasOneUse()) {
+ TrueVal = Builder.CreateFreeze(TrueVal);
+ return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal));
+ }
+
+ if (!SelType->isVectorTy()) {
+ if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
+ /* AllowRefinement */ true))
+ return replaceOperand(SI, 1, S);
+ if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
+ /* AllowRefinement */ true))
+ return replaceOperand(SI, 2, S);
+ }
+
+ if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
+ Use *Y = nullptr;
+ bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
+ Value *Op1 = IsAnd ? TrueVal : FalseVal;
+ if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
+ auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
+ InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
+ replaceUse(*Y, FI);
+ return replaceInstUsesWith(SI, Op1);
+ }
+
+ if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
+ if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
+ /* IsAnd */ IsAnd))
+ return I;
+
+ if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
+ if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
+ if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
+ /* IsLogical */ true))
+ return replaceInstUsesWith(SI, V);
+ }
+
+ // select (select a, true, b), c, false -> select a, c, false
+ // select c, (select a, true, b), false -> select c, a, false
+ // if c implies that b is false.
+ if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
+ match(FalseVal, m_Zero())) {
+ Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
+ if (Res && *Res == false)
+ return replaceOperand(SI, 0, A);
+ }
+ if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
+ match(FalseVal, m_Zero())) {
+ Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
+ if (Res && *Res == false)
+ return replaceOperand(SI, 1, A);
+ }
+ // select c, true, (select a, b, false) -> select c, true, a
+ // select (select a, b, false), true, c -> select a, true, c
+ // if c = false implies that b = true
+ if (match(TrueVal, m_One()) &&
+ match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
+ Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
+ if (Res && *Res == true)
+ return replaceOperand(SI, 2, A);
+ }
+ if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
+ match(TrueVal, m_One())) {
+ Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
+ if (Res && *Res == true)
+ return replaceOperand(SI, 0, A);
+ }
+
+ // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
+ // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
+ Value *C1, *C2;
+ if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
+ match(TrueVal, m_One()) &&
+ match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
+ if (match(C2, m_Not(m_Specific(C1)))) // first case
+ return SelectInst::Create(C1, A, B);
+ else if (match(C1, m_Not(m_Specific(C2)))) // second case
+ return SelectInst::Create(C2, B, A);
+ }
+ }
+
+ // Selecting between two integer or vector splat integer constants?
+ //
+ // Note that we don't handle a scalar select of vectors:
+ // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
+ // because that may need 3 instructions to splat the condition value:
+ // extend, insertelement, shufflevector.
+ //
+ // Do not handle i1 TrueVal and FalseVal otherwise would result in
+ // zext/sext i1 to i1.
+ if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
+ CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
+ // select C, 1, 0 -> zext C to int
+ if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
+ return new ZExtInst(CondVal, SelType);
+
+ // select C, -1, 0 -> sext C to int
+ if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
+ return new SExtInst(CondVal, SelType);
+
+ // select C, 0, 1 -> zext !C to int
+ if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
+ Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
+ return new ZExtInst(NotCond, SelType);
+ }
+
+ // select C, 0, -1 -> sext !C to int
+ if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
+ Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
+ return new SExtInst(NotCond, SelType);
+ }
+ }
+
+ if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
+ Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
+ // Are we selecting a value based on a comparison of the two values?
+ if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
+ (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
+ // Canonicalize to use ordered comparisons by swapping the select
+ // operands.
+ //
+ // e.g.
+ // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
+ if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
+ FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
+ IRBuilder<>::FastMathFlagGuard FMFG(Builder);
+ // FIXME: The FMF should propagate from the select, not the fcmp.
+ Builder.setFastMathFlags(FCmp->getFastMathFlags());
+ Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
+ FCmp->getName() + ".inv");
+ Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
+ return replaceInstUsesWith(SI, NewSel);
+ }
+
+ // NOTE: if we wanted to, this is where to detect MIN/MAX
+ }
+ }
+
+ // Fold selecting to fabs.
+ if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
+ return Fabs;
+
+ // See if we are selecting two values based on a comparison of the two values.
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
+ if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
+ return Result;
+
+ if (Instruction *Add = foldAddSubSelect(SI, Builder))
+ return Add;
+ if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
+ return Add;
+ if (Instruction *Or = foldSetClearBits(SI, Builder))
+ return Or;
+ if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
+ return Mul;
+
+ // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
+ auto *TI = dyn_cast<Instruction>(TrueVal);
+ auto *FI = dyn_cast<Instruction>(FalseVal);
+ if (TI && FI && TI->getOpcode() == FI->getOpcode())
+ if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
+ return IV;
+
+ if (Instruction *I = foldSelectExtConst(SI))
+ return I;
+
+ // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
+ // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
+ auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
+ bool Swap) -> GetElementPtrInst * {
+ Value *Ptr = Gep->getPointerOperand();
+ if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
+ !Gep->hasOneUse())
+ return nullptr;
+ Value *Idx = Gep->getOperand(1);
+ if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
+ return nullptr;
+ Type *ElementType = Gep->getResultElementType();
+ Value *NewT = Idx;
+ Value *NewF = Constant::getNullValue(Idx->getType());
+ if (Swap)
+ std::swap(NewT, NewF);
+ Value *NewSI =
+ Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
+ return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
+ };
+ if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
+ if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
+ return NewGep;
+ if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
+ if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
+ return NewGep;
+
+ // See if we can fold the select into one of our operands.
+ if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
+ if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
+ return FoldI;
+
+ Value *LHS, *RHS;
+ Instruction::CastOps CastOp;
+ SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
+ auto SPF = SPR.Flavor;
+ if (SPF) {
+ Value *LHS2, *RHS2;
+ if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
+ if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
+ RHS2, SI, SPF, RHS))
+ return R;
+ if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
+ if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
+ RHS2, SI, SPF, LHS))
+ return R;
+ }
+
+ if (SelectPatternResult::isMinOrMax(SPF)) {
+ // Canonicalize so that
+ // - type casts are outside select patterns.
+ // - float clamp is transformed to min/max pattern
+
+ bool IsCastNeeded = LHS->getType() != SelType;
+ Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
+ Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
+ if (IsCastNeeded ||
+ (LHS->getType()->isFPOrFPVectorTy() &&
+ ((CmpLHS != LHS && CmpLHS != RHS) ||
+ (CmpRHS != LHS && CmpRHS != RHS)))) {
+ CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
+
+ Value *Cmp;
+ if (CmpInst::isIntPredicate(MinMaxPred)) {
+ Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
+ } else {
+ IRBuilder<>::FastMathFlagGuard FMFG(Builder);
+ auto FMF =
+ cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
+ Builder.setFastMathFlags(FMF);
+ Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
+ }
+
+ Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
+ if (!IsCastNeeded)
+ return replaceInstUsesWith(SI, NewSI);
+
+ Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
+ return replaceInstUsesWith(SI, NewCast);
+ }
+ }
+ }
+
+ // Canonicalize select of FP values where NaN and -0.0 are not valid as
+ // minnum/maxnum intrinsics.
+ if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
+ Value *X, *Y;
+ if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
+ return replaceInstUsesWith(
+ SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
+
+ if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
+ return replaceInstUsesWith(
+ SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
+ }
+
+ // See if we can fold the select into a phi node if the condition is a select.
+ if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
+ // The true/false values have to be live in the PHI predecessor's blocks.
+ if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
+ canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
+ if (Instruction *NV = foldOpIntoPhi(SI, PN))
+ return NV;
+
+ if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
+ if (TrueSI->getCondition()->getType() == CondVal->getType()) {
+ // select(C, select(C, a, b), c) -> select(C, a, c)
+ if (TrueSI->getCondition() == CondVal) {
+ if (SI.getTrueValue() == TrueSI->getTrueValue())
+ return nullptr;
+ return replaceOperand(SI, 1, TrueSI->getTrueValue());
+ }
+ // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
+ // We choose this as normal form to enable folding on the And and
+ // shortening paths for the values (this helps getUnderlyingObjects() for
+ // example).
+ if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
+ Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
+ replaceOperand(SI, 0, And);
+ replaceOperand(SI, 1, TrueSI->getTrueValue());
+ return &SI;
+ }
+ }
+ }
+ if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
+ if (FalseSI->getCondition()->getType() == CondVal->getType()) {
+ // select(C, a, select(C, b, c)) -> select(C, a, c)
+ if (FalseSI->getCondition() == CondVal) {
+ if (SI.getFalseValue() == FalseSI->getFalseValue())
+ return nullptr;
+ return replaceOperand(SI, 2, FalseSI->getFalseValue());
+ }
+ // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
+ if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
+ Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
+ replaceOperand(SI, 0, Or);
+ replaceOperand(SI, 2, FalseSI->getFalseValue());
+ return &SI;
+ }
+ }
+ }
+
+ auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
+ // The select might be preventing a division by 0.
+ switch (BO->getOpcode()) {
+ default:
+ return true;
+ case Instruction::SRem:
+ case Instruction::URem:
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ return false;
+ }
+ };
+
+ // Try to simplify a binop sandwiched between 2 selects with the same
+ // condition.
+ // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
+ BinaryOperator *TrueBO;
+ if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
+ canMergeSelectThroughBinop(TrueBO)) {
+ if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
+ if (TrueBOSI->getCondition() == CondVal) {
+ replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
+ Worklist.push(TrueBO);
+ return &SI;
+ }
+ }
+ if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
+ if (TrueBOSI->getCondition() == CondVal) {
+ replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
+ Worklist.push(TrueBO);
+ return &SI;
+ }
+ }
+ }
+
+ // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
+ BinaryOperator *FalseBO;
+ if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
+ canMergeSelectThroughBinop(FalseBO)) {
+ if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
+ if (FalseBOSI->getCondition() == CondVal) {
+ replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
+ Worklist.push(FalseBO);
+ return &SI;
+ }
+ }
+ if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
+ if (FalseBOSI->getCondition() == CondVal) {
+ replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
+ Worklist.push(FalseBO);
+ return &SI;
+ }
+ }
+ }
+
+ Value *NotCond;
+ if (match(CondVal, m_Not(m_Value(NotCond))) &&
+ !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
+ replaceOperand(SI, 0, NotCond);
+ SI.swapValues();
+ SI.swapProfMetadata();
+ return &SI;
+ }
+
+ if (Instruction *I = foldVectorSelect(SI))
+ return I;
+
+ // If we can compute the condition, there's no need for a select.
+ // Like the above fold, we are attempting to reduce compile-time cost by
+ // putting this fold here with limitations rather than in InstSimplify.
+ // The motivation for this call into value tracking is to take advantage of
+ // the assumption cache, so make sure that is populated.
+ if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
+ KnownBits Known(1);
+ computeKnownBits(CondVal, Known, 0, &SI);
+ if (Known.One.isOne())
+ return replaceInstUsesWith(SI, TrueVal);
+ if (Known.Zero.isOne())
+ return replaceInstUsesWith(SI, FalseVal);
+ }
+
+ if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
+ return BitCastSel;
+
+ // Simplify selects that test the returned flag of cmpxchg instructions.
+ if (Value *V = foldSelectCmpXchg(SI))
+ return replaceInstUsesWith(SI, V);
+
+ if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
+ return Select;
+
+ if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
+ return Funnel;
+
+ if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
+ return Copysign;
+
+ if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
+ return replaceInstUsesWith(SI, PN);
+
+ if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
+ return replaceInstUsesWith(SI, Fr);
+
+ if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
+ return replaceInstUsesWith(SI, V);
+
+ // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
+ // Load inst is intentionally not checked for hasOneUse()
+ if (match(FalseVal, m_Zero()) &&
+ (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
+ m_CombineOr(m_Undef(), m_Zero()))) ||
+ match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
+ m_CombineOr(m_Undef(), m_Zero()))))) {
+ auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
+ if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
+ MaskedInst->setArgOperand(3, FalseVal /* Zero */);
+ return replaceInstUsesWith(SI, MaskedInst);
+ }
+
+ Value *Mask;
+ if (match(TrueVal, m_Zero()) &&
+ (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
+ m_CombineOr(m_Undef(), m_Zero()))) ||
+ match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
+ m_CombineOr(m_Undef(), m_Zero())))) &&
+ (CondVal->getType() == Mask->getType())) {
+ // We can remove the select by ensuring the load zeros all lanes the
+ // select would have. We determine this by proving there is no overlap
+ // between the load and select masks.
+ // (i.e (load_mask & select_mask) == 0 == no overlap)
+ bool CanMergeSelectIntoLoad = false;
+ if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
+ CanMergeSelectIntoLoad = match(V, m_Zero());
+
+ if (CanMergeSelectIntoLoad) {
+ auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
+ if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
+ MaskedInst->setArgOperand(3, TrueVal /* Zero */);
+ return replaceInstUsesWith(SI, MaskedInst);
+ }
+ }
+
+ return nullptr;
+}