diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp | 4135 |
1 files changed, 4135 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp new file mode 100644 index 000000000000..828fd49524ec --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -0,0 +1,4135 @@ +//===- InstructionCombining.cpp - Combine multiple instructions -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// InstructionCombining - Combine instructions to form fewer, simple +// instructions. This pass does not modify the CFG. This pass is where +// algebraic simplification happens. +// +// This pass combines things like: +// %Y = add i32 %X, 1 +// %Z = add i32 %Y, 1 +// into: +// %Z = add i32 %X, 2 +// +// This is a simple worklist driven algorithm. +// +// This pass guarantees that the following canonicalizations are performed on +// the program: +// 1. If a binary operator has a constant operand, it is moved to the RHS +// 2. Bitwise operators with constant operands are always grouped so that +// shifts are performed first, then or's, then and's, then xor's. +// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible +// 4. All cmp instructions on boolean values are replaced with logical ops +// 5. add X, X is represented as (X*2) => (X << 1) +// 6. Multiplies with a power-of-two constant argument are transformed into +// shifts. +// ... etc. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm-c/Initialization.h" +#include "llvm-c/Transforms/InstCombine.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/TinyPtrVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LazyBlockFrequencyInfo.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/TargetFolder.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LegacyPassManager.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/CBindingWrapping.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/DebugCounter.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/InstCombine/InstCombine.h" +#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" +#include "llvm/Transforms/Utils/Local.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <memory> +#include <string> +#include <utility> + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "instcombine" + +STATISTIC(NumWorklistIterations, + "Number of instruction combining iterations performed"); + +STATISTIC(NumCombined , "Number of insts combined"); +STATISTIC(NumConstProp, "Number of constant folds"); +STATISTIC(NumDeadInst , "Number of dead inst eliminated"); +STATISTIC(NumSunkInst , "Number of instructions sunk"); +STATISTIC(NumExpand, "Number of expansions"); +STATISTIC(NumFactor , "Number of factorizations"); +STATISTIC(NumReassoc , "Number of reassociations"); +DEBUG_COUNTER(VisitCounter, "instcombine-visit", + "Controls which instructions are visited"); + +// FIXME: these limits eventually should be as low as 2. +static constexpr unsigned InstCombineDefaultMaxIterations = 1000; +#ifndef NDEBUG +static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100; +#else +static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000; +#endif + +static cl::opt<bool> +EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), + cl::init(true)); + +static cl::opt<unsigned> LimitMaxIterations( + "instcombine-max-iterations", + cl::desc("Limit the maximum number of instruction combining iterations"), + cl::init(InstCombineDefaultMaxIterations)); + +static cl::opt<unsigned> InfiniteLoopDetectionThreshold( + "instcombine-infinite-loop-threshold", + cl::desc("Number of instruction combining iterations considered an " + "infinite loop"), + cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden); + +static cl::opt<unsigned> +MaxArraySize("instcombine-maxarray-size", cl::init(1024), + cl::desc("Maximum array size considered when doing a combine")); + +// FIXME: Remove this flag when it is no longer necessary to convert +// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false +// increases variable availability at the cost of accuracy. Variables that +// cannot be promoted by mem2reg or SROA will be described as living in memory +// for their entire lifetime. However, passes like DSE and instcombine can +// delete stores to the alloca, leading to misleading and inaccurate debug +// information. This flag can be removed when those passes are fixed. +static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", + cl::Hidden, cl::init(true)); + +Optional<Instruction *> +InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { + // Handle target specific intrinsics + if (II.getCalledFunction()->isTargetIntrinsic()) { + return TTI.instCombineIntrinsic(*this, II); + } + return None; +} + +Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( + IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, + bool &KnownBitsComputed) { + // Handle target specific intrinsics + if (II.getCalledFunction()->isTargetIntrinsic()) { + return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, + KnownBitsComputed); + } + return None; +} + +Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( + IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, + APInt &UndefElts3, + std::function<void(Instruction *, unsigned, APInt, APInt &)> + SimplifyAndSetOp) { + // Handle target specific intrinsics + if (II.getCalledFunction()->isTargetIntrinsic()) { + return TTI.simplifyDemandedVectorEltsIntrinsic( + *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, + SimplifyAndSetOp); + } + return None; +} + +Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { + return llvm::EmitGEPOffset(&Builder, DL, GEP); +} + +/// Return true if it is desirable to convert an integer computation from a +/// given bit width to a new bit width. +/// We don't want to convert from a legal to an illegal type or from a smaller +/// to a larger illegal type. A width of '1' is always treated as a legal type +/// because i1 is a fundamental type in IR, and there are many specialized +/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as +/// legal to convert to, in order to open up more combining opportunities. +/// NOTE: this treats i8, i16 and i32 specially, due to them being so common +/// from frontend languages. +bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, + unsigned ToWidth) const { + bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); + bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); + + // Convert to widths of 8, 16 or 32 even if they are not legal types. Only + // shrink types, to prevent infinite loops. + if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) + return true; + + // If this is a legal integer from type, and the result would be an illegal + // type, don't do the transformation. + if (FromLegal && !ToLegal) + return false; + + // Otherwise, if both are illegal, do not increase the size of the result. We + // do allow things like i160 -> i64, but not i64 -> i160. + if (!FromLegal && !ToLegal && ToWidth > FromWidth) + return false; + + return true; +} + +/// Return true if it is desirable to convert a computation from 'From' to 'To'. +/// We don't want to convert from a legal to an illegal type or from a smaller +/// to a larger illegal type. i1 is always treated as a legal type because it is +/// a fundamental type in IR, and there are many specialized optimizations for +/// i1 types. +bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { + // TODO: This could be extended to allow vectors. Datalayout changes might be + // needed to properly support that. + if (!From->isIntegerTy() || !To->isIntegerTy()) + return false; + + unsigned FromWidth = From->getPrimitiveSizeInBits(); + unsigned ToWidth = To->getPrimitiveSizeInBits(); + return shouldChangeType(FromWidth, ToWidth); +} + +// Return true, if No Signed Wrap should be maintained for I. +// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", +// where both B and C should be ConstantInts, results in a constant that does +// not overflow. This function only handles the Add and Sub opcodes. For +// all other opcodes, the function conservatively returns false. +static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { + auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); + if (!OBO || !OBO->hasNoSignedWrap()) + return false; + + // We reason about Add and Sub Only. + Instruction::BinaryOps Opcode = I.getOpcode(); + if (Opcode != Instruction::Add && Opcode != Instruction::Sub) + return false; + + const APInt *BVal, *CVal; + if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) + return false; + + bool Overflow = false; + if (Opcode == Instruction::Add) + (void)BVal->sadd_ov(*CVal, Overflow); + else + (void)BVal->ssub_ov(*CVal, Overflow); + + return !Overflow; +} + +static bool hasNoUnsignedWrap(BinaryOperator &I) { + auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); + return OBO && OBO->hasNoUnsignedWrap(); +} + +static bool hasNoSignedWrap(BinaryOperator &I) { + auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); + return OBO && OBO->hasNoSignedWrap(); +} + +/// Conservatively clears subclassOptionalData after a reassociation or +/// commutation. We preserve fast-math flags when applicable as they can be +/// preserved. +static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { + FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); + if (!FPMO) { + I.clearSubclassOptionalData(); + return; + } + + FastMathFlags FMF = I.getFastMathFlags(); + I.clearSubclassOptionalData(); + I.setFastMathFlags(FMF); +} + +/// Combine constant operands of associative operations either before or after a +/// cast to eliminate one of the associative operations: +/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) +/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) +static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, + InstCombinerImpl &IC) { + auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); + if (!Cast || !Cast->hasOneUse()) + return false; + + // TODO: Enhance logic for other casts and remove this check. + auto CastOpcode = Cast->getOpcode(); + if (CastOpcode != Instruction::ZExt) + return false; + + // TODO: Enhance logic for other BinOps and remove this check. + if (!BinOp1->isBitwiseLogicOp()) + return false; + + auto AssocOpcode = BinOp1->getOpcode(); + auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); + if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) + return false; + + Constant *C1, *C2; + if (!match(BinOp1->getOperand(1), m_Constant(C1)) || + !match(BinOp2->getOperand(1), m_Constant(C2))) + return false; + + // TODO: This assumes a zext cast. + // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 + // to the destination type might lose bits. + + // Fold the constants together in the destination type: + // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) + Type *DestTy = C1->getType(); + Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); + Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); + IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); + IC.replaceOperand(*BinOp1, 1, FoldedC); + return true; +} + +/// This performs a few simplifications for operators that are associative or +/// commutative: +/// +/// Commutative operators: +/// +/// 1. Order operands such that they are listed from right (least complex) to +/// left (most complex). This puts constants before unary operators before +/// binary operators. +/// +/// Associative operators: +/// +/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. +/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. +/// +/// Associative and commutative operators: +/// +/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. +/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. +/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" +/// if C1 and C2 are constants. +bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { + Instruction::BinaryOps Opcode = I.getOpcode(); + bool Changed = false; + + do { + // Order operands such that they are listed from right (least complex) to + // left (most complex). This puts constants before unary operators before + // binary operators. + if (I.isCommutative() && getComplexity(I.getOperand(0)) < + getComplexity(I.getOperand(1))) + Changed = !I.swapOperands(); + + BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); + BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); + + if (I.isAssociative()) { + // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. + if (Op0 && Op0->getOpcode() == Opcode) { + Value *A = Op0->getOperand(0); + Value *B = Op0->getOperand(1); + Value *C = I.getOperand(1); + + // Does "B op C" simplify? + if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { + // It simplifies to V. Form "A op V". + replaceOperand(I, 0, A); + replaceOperand(I, 1, V); + bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); + bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); + + // Conservatively clear all optional flags since they may not be + // preserved by the reassociation. Reset nsw/nuw based on the above + // analysis. + ClearSubclassDataAfterReassociation(I); + + // Note: this is only valid because SimplifyBinOp doesn't look at + // the operands to Op0. + if (IsNUW) + I.setHasNoUnsignedWrap(true); + + if (IsNSW) + I.setHasNoSignedWrap(true); + + Changed = true; + ++NumReassoc; + continue; + } + } + + // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. + if (Op1 && Op1->getOpcode() == Opcode) { + Value *A = I.getOperand(0); + Value *B = Op1->getOperand(0); + Value *C = Op1->getOperand(1); + + // Does "A op B" simplify? + if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { + // It simplifies to V. Form "V op C". + replaceOperand(I, 0, V); + replaceOperand(I, 1, C); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + ClearSubclassDataAfterReassociation(I); + Changed = true; + ++NumReassoc; + continue; + } + } + } + + if (I.isAssociative() && I.isCommutative()) { + if (simplifyAssocCastAssoc(&I, *this)) { + Changed = true; + ++NumReassoc; + continue; + } + + // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. + if (Op0 && Op0->getOpcode() == Opcode) { + Value *A = Op0->getOperand(0); + Value *B = Op0->getOperand(1); + Value *C = I.getOperand(1); + + // Does "C op A" simplify? + if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { + // It simplifies to V. Form "V op B". + replaceOperand(I, 0, V); + replaceOperand(I, 1, B); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + ClearSubclassDataAfterReassociation(I); + Changed = true; + ++NumReassoc; + continue; + } + } + + // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. + if (Op1 && Op1->getOpcode() == Opcode) { + Value *A = I.getOperand(0); + Value *B = Op1->getOperand(0); + Value *C = Op1->getOperand(1); + + // Does "C op A" simplify? + if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { + // It simplifies to V. Form "B op V". + replaceOperand(I, 0, B); + replaceOperand(I, 1, V); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + ClearSubclassDataAfterReassociation(I); + Changed = true; + ++NumReassoc; + continue; + } + } + + // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" + // if C1 and C2 are constants. + Value *A, *B; + Constant *C1, *C2; + if (Op0 && Op1 && + Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && + match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && + match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { + bool IsNUW = hasNoUnsignedWrap(I) && + hasNoUnsignedWrap(*Op0) && + hasNoUnsignedWrap(*Op1); + BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? + BinaryOperator::CreateNUW(Opcode, A, B) : + BinaryOperator::Create(Opcode, A, B); + + if (isa<FPMathOperator>(NewBO)) { + FastMathFlags Flags = I.getFastMathFlags(); + Flags &= Op0->getFastMathFlags(); + Flags &= Op1->getFastMathFlags(); + NewBO->setFastMathFlags(Flags); + } + InsertNewInstWith(NewBO, I); + NewBO->takeName(Op1); + replaceOperand(I, 0, NewBO); + replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2)); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + ClearSubclassDataAfterReassociation(I); + if (IsNUW) + I.setHasNoUnsignedWrap(true); + + Changed = true; + continue; + } + } + + // No further simplifications. + return Changed; + } while (true); +} + +/// Return whether "X LOp (Y ROp Z)" is always equal to +/// "(X LOp Y) ROp (X LOp Z)". +static bool leftDistributesOverRight(Instruction::BinaryOps LOp, + Instruction::BinaryOps ROp) { + // X & (Y | Z) <--> (X & Y) | (X & Z) + // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) + if (LOp == Instruction::And) + return ROp == Instruction::Or || ROp == Instruction::Xor; + + // X | (Y & Z) <--> (X | Y) & (X | Z) + if (LOp == Instruction::Or) + return ROp == Instruction::And; + + // X * (Y + Z) <--> (X * Y) + (X * Z) + // X * (Y - Z) <--> (X * Y) - (X * Z) + if (LOp == Instruction::Mul) + return ROp == Instruction::Add || ROp == Instruction::Sub; + + return false; +} + +/// Return whether "(X LOp Y) ROp Z" is always equal to +/// "(X ROp Z) LOp (Y ROp Z)". +static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, + Instruction::BinaryOps ROp) { + if (Instruction::isCommutative(ROp)) + return leftDistributesOverRight(ROp, LOp); + + // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. + return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); + + // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", + // but this requires knowing that the addition does not overflow and other + // such subtleties. +} + +/// This function returns identity value for given opcode, which can be used to +/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). +static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { + if (isa<Constant>(V)) + return nullptr; + + return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); +} + +/// This function predicates factorization using distributive laws. By default, +/// it just returns the 'Op' inputs. But for special-cases like +/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add +/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to +/// allow more factorization opportunities. +static Instruction::BinaryOps +getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, + Value *&LHS, Value *&RHS) { + assert(Op && "Expected a binary operator"); + LHS = Op->getOperand(0); + RHS = Op->getOperand(1); + if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { + Constant *C; + if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { + // X << C --> X * (1 << C) + RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); + return Instruction::Mul; + } + // TODO: We can add other conversions e.g. shr => div etc. + } + return Op->getOpcode(); +} + +/// This tries to simplify binary operations by factorizing out common terms +/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). +Value *InstCombinerImpl::tryFactorization(BinaryOperator &I, + Instruction::BinaryOps InnerOpcode, + Value *A, Value *B, Value *C, + Value *D) { + assert(A && B && C && D && "All values must be provided"); + + Value *V = nullptr; + Value *SimplifiedInst = nullptr; + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); + + // Does "X op' Y" always equal "Y op' X"? + bool InnerCommutative = Instruction::isCommutative(InnerOpcode); + + // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? + if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) + // Does the instruction have the form "(A op' B) op (A op' D)" or, in the + // commutative case, "(A op' B) op (C op' A)"? + if (A == C || (InnerCommutative && A == D)) { + if (A != C) + std::swap(C, D); + // Consider forming "A op' (B op D)". + // If "B op D" simplifies then it can be formed with no cost. + V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); + // If "B op D" doesn't simplify then only go on if both of the existing + // operations "A op' B" and "C op' D" will be zapped as no longer used. + if (!V && LHS->hasOneUse() && RHS->hasOneUse()) + V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); + if (V) { + SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); + } + } + + // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? + if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) + // Does the instruction have the form "(A op' B) op (C op' B)" or, in the + // commutative case, "(A op' B) op (B op' D)"? + if (B == D || (InnerCommutative && B == C)) { + if (B != D) + std::swap(C, D); + // Consider forming "(A op C) op' B". + // If "A op C" simplifies then it can be formed with no cost. + V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); + + // If "A op C" doesn't simplify then only go on if both of the existing + // operations "A op' B" and "C op' D" will be zapped as no longer used. + if (!V && LHS->hasOneUse() && RHS->hasOneUse()) + V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); + if (V) { + SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); + } + } + + if (SimplifiedInst) { + ++NumFactor; + SimplifiedInst->takeName(&I); + + // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { + if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { + bool HasNSW = false; + bool HasNUW = false; + if (isa<OverflowingBinaryOperator>(&I)) { + HasNSW = I.hasNoSignedWrap(); + HasNUW = I.hasNoUnsignedWrap(); + } + + if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { + HasNSW &= LOBO->hasNoSignedWrap(); + HasNUW &= LOBO->hasNoUnsignedWrap(); + } + + if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { + HasNSW &= ROBO->hasNoSignedWrap(); + HasNUW &= ROBO->hasNoUnsignedWrap(); + } + + if (TopLevelOpcode == Instruction::Add && + InnerOpcode == Instruction::Mul) { + // We can propagate 'nsw' if we know that + // %Y = mul nsw i16 %X, C + // %Z = add nsw i16 %Y, %X + // => + // %Z = mul nsw i16 %X, C+1 + // + // iff C+1 isn't INT_MIN + const APInt *CInt; + if (match(V, m_APInt(CInt))) { + if (!CInt->isMinSignedValue()) + BO->setHasNoSignedWrap(HasNSW); + } + + // nuw can be propagated with any constant or nuw value. + BO->setHasNoUnsignedWrap(HasNUW); + } + } + } + } + return SimplifiedInst; +} + +/// This tries to simplify binary operations which some other binary operation +/// distributes over either by factorizing out common terms +/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in +/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). +/// Returns the simplified value, or null if it didn't simplify. +Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); + BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); + Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); + + { + // Factorization. + Value *A, *B, *C, *D; + Instruction::BinaryOps LHSOpcode, RHSOpcode; + if (Op0) + LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); + if (Op1) + RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); + + // The instruction has the form "(A op' B) op (C op' D)". Try to factorize + // a common term. + if (Op0 && Op1 && LHSOpcode == RHSOpcode) + if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) + return V; + + // The instruction has the form "(A op' B) op (C)". Try to factorize common + // term. + if (Op0) + if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) + if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) + return V; + + // The instruction has the form "(B) op (C op' D)". Try to factorize common + // term. + if (Op1) + if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) + if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) + return V; + } + + // Expansion. + if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { + // The instruction has the form "(A op' B) op C". See if expanding it out + // to "(A op C) op' (B op C)" results in simplifications. + Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; + Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' + + // Disable the use of undef because it's not safe to distribute undef. + auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); + Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); + Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive); + + // Do "A op C" and "B op C" both simplify? + if (L && R) { + // They do! Return "L op' R". + ++NumExpand; + C = Builder.CreateBinOp(InnerOpcode, L, R); + C->takeName(&I); + return C; + } + + // Does "A op C" simplify to the identity value for the inner opcode? + if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { + // They do! Return "B op C". + ++NumExpand; + C = Builder.CreateBinOp(TopLevelOpcode, B, C); + C->takeName(&I); + return C; + } + + // Does "B op C" simplify to the identity value for the inner opcode? + if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { + // They do! Return "A op C". + ++NumExpand; + C = Builder.CreateBinOp(TopLevelOpcode, A, C); + C->takeName(&I); + return C; + } + } + + if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { + // The instruction has the form "A op (B op' C)". See if expanding it out + // to "(A op B) op' (A op C)" results in simplifications. + Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); + Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' + + // Disable the use of undef because it's not safe to distribute undef. + auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); + Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive); + Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive); + + // Do "A op B" and "A op C" both simplify? + if (L && R) { + // They do! Return "L op' R". + ++NumExpand; + A = Builder.CreateBinOp(InnerOpcode, L, R); + A->takeName(&I); + return A; + } + + // Does "A op B" simplify to the identity value for the inner opcode? + if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { + // They do! Return "A op C". + ++NumExpand; + A = Builder.CreateBinOp(TopLevelOpcode, A, C); + A->takeName(&I); + return A; + } + + // Does "A op C" simplify to the identity value for the inner opcode? + if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { + // They do! Return "A op B". + ++NumExpand; + A = Builder.CreateBinOp(TopLevelOpcode, A, B); + A->takeName(&I); + return A; + } + } + + return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); +} + +Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, + Value *LHS, + Value *RHS) { + Value *A, *B, *C, *D, *E, *F; + bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); + bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); + if (!LHSIsSelect && !RHSIsSelect) + return nullptr; + + FastMathFlags FMF; + BuilderTy::FastMathFlagGuard Guard(Builder); + if (isa<FPMathOperator>(&I)) { + FMF = I.getFastMathFlags(); + Builder.setFastMathFlags(FMF); + } + + Instruction::BinaryOps Opcode = I.getOpcode(); + SimplifyQuery Q = SQ.getWithInstruction(&I); + + Value *Cond, *True = nullptr, *False = nullptr; + if (LHSIsSelect && RHSIsSelect && A == D) { + // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) + Cond = A; + True = SimplifyBinOp(Opcode, B, E, FMF, Q); + False = SimplifyBinOp(Opcode, C, F, FMF, Q); + + if (LHS->hasOneUse() && RHS->hasOneUse()) { + if (False && !True) + True = Builder.CreateBinOp(Opcode, B, E); + else if (True && !False) + False = Builder.CreateBinOp(Opcode, C, F); + } + } else if (LHSIsSelect && LHS->hasOneUse()) { + // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) + Cond = A; + True = SimplifyBinOp(Opcode, B, RHS, FMF, Q); + False = SimplifyBinOp(Opcode, C, RHS, FMF, Q); + } else if (RHSIsSelect && RHS->hasOneUse()) { + // X op (D ? E : F) -> D ? (X op E) : (X op F) + Cond = D; + True = SimplifyBinOp(Opcode, LHS, E, FMF, Q); + False = SimplifyBinOp(Opcode, LHS, F, FMF, Q); + } + + if (!True || !False) + return nullptr; + + Value *SI = Builder.CreateSelect(Cond, True, False); + SI->takeName(&I); + return SI; +} + +/// Freely adapt every user of V as-if V was changed to !V. +/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. +void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) { + for (User *U : I->users()) { + switch (cast<Instruction>(U)->getOpcode()) { + case Instruction::Select: { + auto *SI = cast<SelectInst>(U); + SI->swapValues(); + SI->swapProfMetadata(); + break; + } + case Instruction::Br: + cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too + break; + case Instruction::Xor: + replaceInstUsesWith(cast<Instruction>(*U), I); + break; + default: + llvm_unreachable("Got unexpected user - out of sync with " + "canFreelyInvertAllUsersOf() ?"); + } + } +} + +/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a +/// constant zero (which is the 'negate' form). +Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { + Value *NegV; + if (match(V, m_Neg(m_Value(NegV)))) + return NegV; + + // Constants can be considered to be negated values if they can be folded. + if (ConstantInt *C = dyn_cast<ConstantInt>(V)) + return ConstantExpr::getNeg(C); + + if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) + if (C->getType()->getElementType()->isIntegerTy()) + return ConstantExpr::getNeg(C); + + if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { + for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { + Constant *Elt = CV->getAggregateElement(i); + if (!Elt) + return nullptr; + + if (isa<UndefValue>(Elt)) + continue; + + if (!isa<ConstantInt>(Elt)) + return nullptr; + } + return ConstantExpr::getNeg(CV); + } + + return nullptr; +} + +static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, + InstCombiner::BuilderTy &Builder) { + if (auto *Cast = dyn_cast<CastInst>(&I)) + return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); + + assert(I.isBinaryOp() && "Unexpected opcode for select folding"); + + // Figure out if the constant is the left or the right argument. + bool ConstIsRHS = isa<Constant>(I.getOperand(1)); + Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); + + if (auto *SOC = dyn_cast<Constant>(SO)) { + if (ConstIsRHS) + return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); + return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); + } + + Value *Op0 = SO, *Op1 = ConstOperand; + if (!ConstIsRHS) + std::swap(Op0, Op1); + + auto *BO = cast<BinaryOperator>(&I); + Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, + SO->getName() + ".op"); + auto *FPInst = dyn_cast<Instruction>(RI); + if (FPInst && isa<FPMathOperator>(FPInst)) + FPInst->copyFastMathFlags(BO); + return RI; +} + +Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, + SelectInst *SI) { + // Don't modify shared select instructions. + if (!SI->hasOneUse()) + return nullptr; + + Value *TV = SI->getTrueValue(); + Value *FV = SI->getFalseValue(); + if (!(isa<Constant>(TV) || isa<Constant>(FV))) + return nullptr; + + // Bool selects with constant operands can be folded to logical ops. + if (SI->getType()->isIntOrIntVectorTy(1)) + return nullptr; + + // If it's a bitcast involving vectors, make sure it has the same number of + // elements on both sides. + if (auto *BC = dyn_cast<BitCastInst>(&Op)) { + VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); + VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); + + // Verify that either both or neither are vectors. + if ((SrcTy == nullptr) != (DestTy == nullptr)) + return nullptr; + + // If vectors, verify that they have the same number of elements. + if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) + return nullptr; + } + + // Test if a CmpInst instruction is used exclusively by a select as + // part of a minimum or maximum operation. If so, refrain from doing + // any other folding. This helps out other analyses which understand + // non-obfuscated minimum and maximum idioms, such as ScalarEvolution + // and CodeGen. And in this case, at least one of the comparison + // operands has at least one user besides the compare (the select), + // which would often largely negate the benefit of folding anyway. + if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { + if (CI->hasOneUse()) { + Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + + // FIXME: This is a hack to avoid infinite looping with min/max patterns. + // We have to ensure that vector constants that only differ with + // undef elements are treated as equivalent. + auto areLooselyEqual = [](Value *A, Value *B) { + if (A == B) + return true; + + // Test for vector constants. + Constant *ConstA, *ConstB; + if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB))) + return false; + + // TODO: Deal with FP constants? + if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType()) + return false; + + // Compare for equality including undefs as equal. + auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB); + const APInt *C; + return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue(); + }; + + if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) || + (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1))) + return nullptr; + } + } + + Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); + Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); + return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); +} + +static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, + InstCombiner::BuilderTy &Builder) { + bool ConstIsRHS = isa<Constant>(I->getOperand(1)); + Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); + + if (auto *InC = dyn_cast<Constant>(InV)) { + if (ConstIsRHS) + return ConstantExpr::get(I->getOpcode(), InC, C); + return ConstantExpr::get(I->getOpcode(), C, InC); + } + + Value *Op0 = InV, *Op1 = C; + if (!ConstIsRHS) + std::swap(Op0, Op1); + + Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo"); + auto *FPInst = dyn_cast<Instruction>(RI); + if (FPInst && isa<FPMathOperator>(FPInst)) + FPInst->copyFastMathFlags(I); + return RI; +} + +Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { + unsigned NumPHIValues = PN->getNumIncomingValues(); + if (NumPHIValues == 0) + return nullptr; + + // We normally only transform phis with a single use. However, if a PHI has + // multiple uses and they are all the same operation, we can fold *all* of the + // uses into the PHI. + if (!PN->hasOneUse()) { + // Walk the use list for the instruction, comparing them to I. + for (User *U : PN->users()) { + Instruction *UI = cast<Instruction>(U); + if (UI != &I && !I.isIdenticalTo(UI)) + return nullptr; + } + // Otherwise, we can replace *all* users with the new PHI we form. + } + + // Check to see if all of the operands of the PHI are simple constants + // (constantint/constantfp/undef). If there is one non-constant value, + // remember the BB it is in. If there is more than one or if *it* is a PHI, + // bail out. We don't do arbitrary constant expressions here because moving + // their computation can be expensive without a cost model. + BasicBlock *NonConstBB = nullptr; + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InVal = PN->getIncomingValue(i); + // If I is a freeze instruction, count undef as a non-constant. + if (match(InVal, m_ImmConstant()) && + (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal))) + continue; + + if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. + if (NonConstBB) return nullptr; // More than one non-const value. + + NonConstBB = PN->getIncomingBlock(i); + + // If the InVal is an invoke at the end of the pred block, then we can't + // insert a computation after it without breaking the edge. + if (isa<InvokeInst>(InVal)) + if (cast<Instruction>(InVal)->getParent() == NonConstBB) + return nullptr; + + // If the incoming non-constant value is in I's block, we will remove one + // instruction, but insert another equivalent one, leading to infinite + // instcombine. + if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) + return nullptr; + } + + // If there is exactly one non-constant value, we can insert a copy of the + // operation in that block. However, if this is a critical edge, we would be + // inserting the computation on some other paths (e.g. inside a loop). Only + // do this if the pred block is unconditionally branching into the phi block. + // Also, make sure that the pred block is not dead code. + if (NonConstBB != nullptr) { + BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); + if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB)) + return nullptr; + } + + // Okay, we can do the transformation: create the new PHI node. + PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); + InsertNewInstBefore(NewPN, *PN); + NewPN->takeName(PN); + + // If we are going to have to insert a new computation, do so right before the + // predecessor's terminator. + if (NonConstBB) + Builder.SetInsertPoint(NonConstBB->getTerminator()); + + // Next, add all of the operands to the PHI. + if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { + // We only currently try to fold the condition of a select when it is a phi, + // not the true/false values. + Value *TrueV = SI->getTrueValue(); + Value *FalseV = SI->getFalseValue(); + BasicBlock *PhiTransBB = PN->getParent(); + for (unsigned i = 0; i != NumPHIValues; ++i) { + BasicBlock *ThisBB = PN->getIncomingBlock(i); + Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); + Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); + Value *InV = nullptr; + // Beware of ConstantExpr: it may eventually evaluate to getNullValue, + // even if currently isNullValue gives false. + Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); + // For vector constants, we cannot use isNullValue to fold into + // FalseVInPred versus TrueVInPred. When we have individual nonzero + // elements in the vector, we will incorrectly fold InC to + // `TrueVInPred`. + if (InC && isa<ConstantInt>(InC)) + InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; + else { + // Generate the select in the same block as PN's current incoming block. + // Note: ThisBB need not be the NonConstBB because vector constants + // which are constants by definition are handled here. + // FIXME: This can lead to an increase in IR generation because we might + // generate selects for vector constant phi operand, that could not be + // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For + // non-vector phis, this transformation was always profitable because + // the select would be generated exactly once in the NonConstBB. + Builder.SetInsertPoint(ThisBB->getTerminator()); + InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, + FalseVInPred, "phi.sel"); + } + NewPN->addIncoming(InV, ThisBB); + } + } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { + Constant *C = cast<Constant>(I.getOperand(1)); + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InV = nullptr; + if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) + InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); + else + InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i), + C, "phi.cmp"); + NewPN->addIncoming(InV, PN->getIncomingBlock(i)); + } + } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), + Builder); + NewPN->addIncoming(InV, PN->getIncomingBlock(i)); + } + } else if (isa<FreezeInst>(&I)) { + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InV; + if (NonConstBB == PN->getIncomingBlock(i)) + InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr"); + else + InV = PN->getIncomingValue(i); + NewPN->addIncoming(InV, PN->getIncomingBlock(i)); + } + } else { + CastInst *CI = cast<CastInst>(&I); + Type *RetTy = CI->getType(); + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InV; + if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) + InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); + else + InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), + I.getType(), "phi.cast"); + NewPN->addIncoming(InV, PN->getIncomingBlock(i)); + } + } + + for (User *U : make_early_inc_range(PN->users())) { + Instruction *User = cast<Instruction>(U); + if (User == &I) continue; + replaceInstUsesWith(*User, NewPN); + eraseInstFromFunction(*User); + } + return replaceInstUsesWith(I, NewPN); +} + +Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { + if (!isa<Constant>(I.getOperand(1))) + return nullptr; + + if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { + if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) + return NewSel; + } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { + if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) + return NewPhi; + } + return nullptr; +} + +/// Given a pointer type and a constant offset, determine whether or not there +/// is a sequence of GEP indices into the pointed type that will land us at the +/// specified offset. If so, fill them into NewIndices and return the resultant +/// element type, otherwise return null. +Type * +InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, + SmallVectorImpl<Value *> &NewIndices) { + Type *Ty = PtrTy->getElementType(); + if (!Ty->isSized()) + return nullptr; + + // Start with the index over the outer type. Note that the type size + // might be zero (even if the offset isn't zero) if the indexed type + // is something like [0 x {int, int}] + Type *IndexTy = DL.getIndexType(PtrTy); + int64_t FirstIdx = 0; + if (int64_t TySize = DL.getTypeAllocSize(Ty)) { + FirstIdx = Offset/TySize; + Offset -= FirstIdx*TySize; + + // Handle hosts where % returns negative instead of values [0..TySize). + if (Offset < 0) { + --FirstIdx; + Offset += TySize; + assert(Offset >= 0); + } + assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); + } + + NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); + + // Index into the types. If we fail, set OrigBase to null. + while (Offset) { + // Indexing into tail padding between struct/array elements. + if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) + return nullptr; + + if (StructType *STy = dyn_cast<StructType>(Ty)) { + const StructLayout *SL = DL.getStructLayout(STy); + assert(Offset < (int64_t)SL->getSizeInBytes() && + "Offset must stay within the indexed type"); + + unsigned Elt = SL->getElementContainingOffset(Offset); + NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), + Elt)); + + Offset -= SL->getElementOffset(Elt); + Ty = STy->getElementType(Elt); + } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { + uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); + assert(EltSize && "Cannot index into a zero-sized array"); + NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); + Offset %= EltSize; + Ty = AT->getElementType(); + } else { + // Otherwise, we can't index into the middle of this atomic type, bail. + return nullptr; + } + } + + return Ty; +} + +static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { + // If this GEP has only 0 indices, it is the same pointer as + // Src. If Src is not a trivial GEP too, don't combine + // the indices. + if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && + !Src.hasOneUse()) + return false; + return true; +} + +/// Return a value X such that Val = X * Scale, or null if none. +/// If the multiplication is known not to overflow, then NoSignedWrap is set. +Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { + assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); + assert(cast<IntegerType>(Val->getType())->getBitWidth() == + Scale.getBitWidth() && "Scale not compatible with value!"); + + // If Val is zero or Scale is one then Val = Val * Scale. + if (match(Val, m_Zero()) || Scale == 1) { + NoSignedWrap = true; + return Val; + } + + // If Scale is zero then it does not divide Val. + if (Scale.isMinValue()) + return nullptr; + + // Look through chains of multiplications, searching for a constant that is + // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 + // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by + // a factor of 4 will produce X*(Y*2). The principle of operation is to bore + // down from Val: + // + // Val = M1 * X || Analysis starts here and works down + // M1 = M2 * Y || Doesn't descend into terms with more + // M2 = Z * 4 \/ than one use + // + // Then to modify a term at the bottom: + // + // Val = M1 * X + // M1 = Z * Y || Replaced M2 with Z + // + // Then to work back up correcting nsw flags. + + // Op - the term we are currently analyzing. Starts at Val then drills down. + // Replaced with its descaled value before exiting from the drill down loop. + Value *Op = Val; + + // Parent - initially null, but after drilling down notes where Op came from. + // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the + // 0'th operand of Val. + std::pair<Instruction *, unsigned> Parent; + + // Set if the transform requires a descaling at deeper levels that doesn't + // overflow. + bool RequireNoSignedWrap = false; + + // Log base 2 of the scale. Negative if not a power of 2. + int32_t logScale = Scale.exactLogBase2(); + + for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down + if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + // If Op is a constant divisible by Scale then descale to the quotient. + APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. + APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); + if (!Remainder.isMinValue()) + // Not divisible by Scale. + return nullptr; + // Replace with the quotient in the parent. + Op = ConstantInt::get(CI->getType(), Quotient); + NoSignedWrap = true; + break; + } + + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { + if (BO->getOpcode() == Instruction::Mul) { + // Multiplication. + NoSignedWrap = BO->hasNoSignedWrap(); + if (RequireNoSignedWrap && !NoSignedWrap) + return nullptr; + + // There are three cases for multiplication: multiplication by exactly + // the scale, multiplication by a constant different to the scale, and + // multiplication by something else. + Value *LHS = BO->getOperand(0); + Value *RHS = BO->getOperand(1); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { + // Multiplication by a constant. + if (CI->getValue() == Scale) { + // Multiplication by exactly the scale, replace the multiplication + // by its left-hand side in the parent. + Op = LHS; + break; + } + + // Otherwise drill down into the constant. + if (!Op->hasOneUse()) + return nullptr; + + Parent = std::make_pair(BO, 1); + continue; + } + + // Multiplication by something else. Drill down into the left-hand side + // since that's where the reassociate pass puts the good stuff. + if (!Op->hasOneUse()) + return nullptr; + + Parent = std::make_pair(BO, 0); + continue; + } + + if (logScale > 0 && BO->getOpcode() == Instruction::Shl && + isa<ConstantInt>(BO->getOperand(1))) { + // Multiplication by a power of 2. + NoSignedWrap = BO->hasNoSignedWrap(); + if (RequireNoSignedWrap && !NoSignedWrap) + return nullptr; + + Value *LHS = BO->getOperand(0); + int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> + getLimitedValue(Scale.getBitWidth()); + // Op = LHS << Amt. + + if (Amt == logScale) { + // Multiplication by exactly the scale, replace the multiplication + // by its left-hand side in the parent. + Op = LHS; + break; + } + if (Amt < logScale || !Op->hasOneUse()) + return nullptr; + + // Multiplication by more than the scale. Reduce the multiplying amount + // by the scale in the parent. + Parent = std::make_pair(BO, 1); + Op = ConstantInt::get(BO->getType(), Amt - logScale); + break; + } + } + + if (!Op->hasOneUse()) + return nullptr; + + if (CastInst *Cast = dyn_cast<CastInst>(Op)) { + if (Cast->getOpcode() == Instruction::SExt) { + // Op is sign-extended from a smaller type, descale in the smaller type. + unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); + APInt SmallScale = Scale.trunc(SmallSize); + // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to + // descale Op as (sext Y) * Scale. In order to have + // sext (Y * SmallScale) = (sext Y) * Scale + // some conditions need to hold however: SmallScale must sign-extend to + // Scale and the multiplication Y * SmallScale should not overflow. + if (SmallScale.sext(Scale.getBitWidth()) != Scale) + // SmallScale does not sign-extend to Scale. + return nullptr; + assert(SmallScale.exactLogBase2() == logScale); + // Require that Y * SmallScale must not overflow. + RequireNoSignedWrap = true; + + // Drill down through the cast. + Parent = std::make_pair(Cast, 0); + Scale = SmallScale; + continue; + } + + if (Cast->getOpcode() == Instruction::Trunc) { + // Op is truncated from a larger type, descale in the larger type. + // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then + // trunc (Y * sext Scale) = (trunc Y) * Scale + // always holds. However (trunc Y) * Scale may overflow even if + // trunc (Y * sext Scale) does not, so nsw flags need to be cleared + // from this point up in the expression (see later). + if (RequireNoSignedWrap) + return nullptr; + + // Drill down through the cast. + unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); + Parent = std::make_pair(Cast, 0); + Scale = Scale.sext(LargeSize); + if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) + logScale = -1; + assert(Scale.exactLogBase2() == logScale); + continue; + } + } + + // Unsupported expression, bail out. + return nullptr; + } + + // If Op is zero then Val = Op * Scale. + if (match(Op, m_Zero())) { + NoSignedWrap = true; + return Op; + } + + // We know that we can successfully descale, so from here on we can safely + // modify the IR. Op holds the descaled version of the deepest term in the + // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known + // not to overflow. + + if (!Parent.first) + // The expression only had one term. + return Op; + + // Rewrite the parent using the descaled version of its operand. + assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); + assert(Op != Parent.first->getOperand(Parent.second) && + "Descaling was a no-op?"); + replaceOperand(*Parent.first, Parent.second, Op); + Worklist.push(Parent.first); + + // Now work back up the expression correcting nsw flags. The logic is based + // on the following observation: if X * Y is known not to overflow as a signed + // multiplication, and Y is replaced by a value Z with smaller absolute value, + // then X * Z will not overflow as a signed multiplication either. As we work + // our way up, having NoSignedWrap 'true' means that the descaled value at the + // current level has strictly smaller absolute value than the original. + Instruction *Ancestor = Parent.first; + do { + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { + // If the multiplication wasn't nsw then we can't say anything about the + // value of the descaled multiplication, and we have to clear nsw flags + // from this point on up. + bool OpNoSignedWrap = BO->hasNoSignedWrap(); + NoSignedWrap &= OpNoSignedWrap; + if (NoSignedWrap != OpNoSignedWrap) { + BO->setHasNoSignedWrap(NoSignedWrap); + Worklist.push(Ancestor); + } + } else if (Ancestor->getOpcode() == Instruction::Trunc) { + // The fact that the descaled input to the trunc has smaller absolute + // value than the original input doesn't tell us anything useful about + // the absolute values of the truncations. + NoSignedWrap = false; + } + assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && + "Failed to keep proper track of nsw flags while drilling down?"); + + if (Ancestor == Val) + // Got to the top, all done! + return Val; + + // Move up one level in the expression. + assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); + Ancestor = Ancestor->user_back(); + } while (true); +} + +Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { + if (!isa<VectorType>(Inst.getType())) + return nullptr; + + BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); + Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); + assert(cast<VectorType>(LHS->getType())->getElementCount() == + cast<VectorType>(Inst.getType())->getElementCount()); + assert(cast<VectorType>(RHS->getType())->getElementCount() == + cast<VectorType>(Inst.getType())->getElementCount()); + + // If both operands of the binop are vector concatenations, then perform the + // narrow binop on each pair of the source operands followed by concatenation + // of the results. + Value *L0, *L1, *R0, *R1; + ArrayRef<int> Mask; + if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && + match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && + LHS->hasOneUse() && RHS->hasOneUse() && + cast<ShuffleVectorInst>(LHS)->isConcat() && + cast<ShuffleVectorInst>(RHS)->isConcat()) { + // This transform does not have the speculative execution constraint as + // below because the shuffle is a concatenation. The new binops are + // operating on exactly the same elements as the existing binop. + // TODO: We could ease the mask requirement to allow different undef lanes, + // but that requires an analysis of the binop-with-undef output value. + Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); + if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) + BO->copyIRFlags(&Inst); + Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); + if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) + BO->copyIRFlags(&Inst); + return new ShuffleVectorInst(NewBO0, NewBO1, Mask); + } + + // It may not be safe to reorder shuffles and things like div, urem, etc. + // because we may trap when executing those ops on unknown vector elements. + // See PR20059. + if (!isSafeToSpeculativelyExecute(&Inst)) + return nullptr; + + auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { + Value *XY = Builder.CreateBinOp(Opcode, X, Y); + if (auto *BO = dyn_cast<BinaryOperator>(XY)) + BO->copyIRFlags(&Inst); + return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); + }; + + // If both arguments of the binary operation are shuffles that use the same + // mask and shuffle within a single vector, move the shuffle after the binop. + Value *V1, *V2; + if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) && + match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) && + V1->getType() == V2->getType() && + (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { + // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) + return createBinOpShuffle(V1, V2, Mask); + } + + // If both arguments of a commutative binop are select-shuffles that use the + // same mask with commuted operands, the shuffles are unnecessary. + if (Inst.isCommutative() && + match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && + match(RHS, + m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { + auto *LShuf = cast<ShuffleVectorInst>(LHS); + auto *RShuf = cast<ShuffleVectorInst>(RHS); + // TODO: Allow shuffles that contain undefs in the mask? + // That is legal, but it reduces undef knowledge. + // TODO: Allow arbitrary shuffles by shuffling after binop? + // That might be legal, but we have to deal with poison. + if (LShuf->isSelect() && + !is_contained(LShuf->getShuffleMask(), UndefMaskElem) && + RShuf->isSelect() && + !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) { + // Example: + // LHS = shuffle V1, V2, <0, 5, 6, 3> + // RHS = shuffle V2, V1, <0, 5, 6, 3> + // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 + Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); + NewBO->copyIRFlags(&Inst); + return NewBO; + } + } + + // If one argument is a shuffle within one vector and the other is a constant, + // try moving the shuffle after the binary operation. This canonicalization + // intends to move shuffles closer to other shuffles and binops closer to + // other binops, so they can be folded. It may also enable demanded elements + // transforms. + Constant *C; + auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); + if (InstVTy && + match(&Inst, + m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))), + m_ImmConstant(C))) && + cast<FixedVectorType>(V1->getType())->getNumElements() <= + InstVTy->getNumElements()) { + assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && + "Shuffle should not change scalar type"); + + // Find constant NewC that has property: + // shuffle(NewC, ShMask) = C + // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) + // reorder is not possible. A 1-to-1 mapping is not required. Example: + // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> + bool ConstOp1 = isa<Constant>(RHS); + ArrayRef<int> ShMask = Mask; + unsigned SrcVecNumElts = + cast<FixedVectorType>(V1->getType())->getNumElements(); + UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); + SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); + bool MayChange = true; + unsigned NumElts = InstVTy->getNumElements(); + for (unsigned I = 0; I < NumElts; ++I) { + Constant *CElt = C->getAggregateElement(I); + if (ShMask[I] >= 0) { + assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); + Constant *NewCElt = NewVecC[ShMask[I]]; + // Bail out if: + // 1. The constant vector contains a constant expression. + // 2. The shuffle needs an element of the constant vector that can't + // be mapped to a new constant vector. + // 3. This is a widening shuffle that copies elements of V1 into the + // extended elements (extending with undef is allowed). + if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || + I >= SrcVecNumElts) { + MayChange = false; + break; + } + NewVecC[ShMask[I]] = CElt; + } + // If this is a widening shuffle, we must be able to extend with undef + // elements. If the original binop does not produce an undef in the high + // lanes, then this transform is not safe. + // Similarly for undef lanes due to the shuffle mask, we can only + // transform binops that preserve undef. + // TODO: We could shuffle those non-undef constant values into the + // result by using a constant vector (rather than an undef vector) + // as operand 1 of the new binop, but that might be too aggressive + // for target-independent shuffle creation. + if (I >= SrcVecNumElts || ShMask[I] < 0) { + Constant *MaybeUndef = + ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) + : ConstantExpr::get(Opcode, CElt, UndefScalar); + if (!isa<UndefValue>(MaybeUndef)) { + MayChange = false; + break; + } + } + } + if (MayChange) { + Constant *NewC = ConstantVector::get(NewVecC); + // It may not be safe to execute a binop on a vector with undef elements + // because the entire instruction can be folded to undef or create poison + // that did not exist in the original code. + if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) + NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); + + // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) + // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) + Value *NewLHS = ConstOp1 ? V1 : NewC; + Value *NewRHS = ConstOp1 ? NewC : V1; + return createBinOpShuffle(NewLHS, NewRHS, Mask); + } + } + + // Try to reassociate to sink a splat shuffle after a binary operation. + if (Inst.isAssociative() && Inst.isCommutative()) { + // Canonicalize shuffle operand as LHS. + if (isa<ShuffleVectorInst>(RHS)) + std::swap(LHS, RHS); + + Value *X; + ArrayRef<int> MaskC; + int SplatIndex; + BinaryOperator *BO; + if (!match(LHS, + m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || + !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || + X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) || + BO->getOpcode() != Opcode) + return nullptr; + + // FIXME: This may not be safe if the analysis allows undef elements. By + // moving 'Y' before the splat shuffle, we are implicitly assuming + // that it is not undef/poison at the splat index. + Value *Y, *OtherOp; + if (isSplatValue(BO->getOperand(0), SplatIndex)) { + Y = BO->getOperand(0); + OtherOp = BO->getOperand(1); + } else if (isSplatValue(BO->getOperand(1), SplatIndex)) { + Y = BO->getOperand(1); + OtherOp = BO->getOperand(0); + } else { + return nullptr; + } + + // X and Y are splatted values, so perform the binary operation on those + // values followed by a splat followed by the 2nd binary operation: + // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp + Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); + SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); + Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); + Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); + + // Intersect FMF on both new binops. Other (poison-generating) flags are + // dropped to be safe. + if (isa<FPMathOperator>(R)) { + R->copyFastMathFlags(&Inst); + R->andIRFlags(BO); + } + if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) + NewInstBO->copyIRFlags(R); + return R; + } + + return nullptr; +} + +/// Try to narrow the width of a binop if at least 1 operand is an extend of +/// of a value. This requires a potentially expensive known bits check to make +/// sure the narrow op does not overflow. +Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { + // We need at least one extended operand. + Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); + + // If this is a sub, we swap the operands since we always want an extension + // on the RHS. The LHS can be an extension or a constant. + if (BO.getOpcode() == Instruction::Sub) + std::swap(Op0, Op1); + + Value *X; + bool IsSext = match(Op0, m_SExt(m_Value(X))); + if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) + return nullptr; + + // If both operands are the same extension from the same source type and we + // can eliminate at least one (hasOneUse), this might work. + CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; + Value *Y; + if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && + cast<Operator>(Op1)->getOpcode() == CastOpc && + (Op0->hasOneUse() || Op1->hasOneUse()))) { + // If that did not match, see if we have a suitable constant operand. + // Truncating and extending must produce the same constant. + Constant *WideC; + if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) + return nullptr; + Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); + if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) + return nullptr; + Y = NarrowC; + } + + // Swap back now that we found our operands. + if (BO.getOpcode() == Instruction::Sub) + std::swap(X, Y); + + // Both operands have narrow versions. Last step: the math must not overflow + // in the narrow width. + if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) + return nullptr; + + // bo (ext X), (ext Y) --> ext (bo X, Y) + // bo (ext X), C --> ext (bo X, C') + Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); + if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { + if (IsSext) + NewBinOp->setHasNoSignedWrap(); + else + NewBinOp->setHasNoUnsignedWrap(); + } + return CastInst::Create(CastOpc, NarrowBO, BO.getType()); +} + +static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { + // At least one GEP must be inbounds. + if (!GEP1.isInBounds() && !GEP2.isInBounds()) + return false; + + return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && + (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); +} + +/// Thread a GEP operation with constant indices through the constant true/false +/// arms of a select. +static Instruction *foldSelectGEP(GetElementPtrInst &GEP, + InstCombiner::BuilderTy &Builder) { + if (!GEP.hasAllConstantIndices()) + return nullptr; + + Instruction *Sel; + Value *Cond; + Constant *TrueC, *FalseC; + if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || + !match(Sel, + m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) + return nullptr; + + // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' + // Propagate 'inbounds' and metadata from existing instructions. + // Note: using IRBuilder to create the constants for efficiency. + SmallVector<Value *, 4> IndexC(GEP.indices()); + bool IsInBounds = GEP.isInBounds(); + Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC) + : Builder.CreateGEP(TrueC, IndexC); + Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC) + : Builder.CreateGEP(FalseC, IndexC); + return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); +} + +Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { + SmallVector<Value *, 8> Ops(GEP.operands()); + Type *GEPType = GEP.getType(); + Type *GEPEltType = GEP.getSourceElementType(); + bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType); + if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) + return replaceInstUsesWith(GEP, V); + + // For vector geps, use the generic demanded vector support. + // Skip if GEP return type is scalable. The number of elements is unknown at + // compile-time. + if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { + auto VWidth = GEPFVTy->getNumElements(); + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, + UndefElts)) { + if (V != &GEP) + return replaceInstUsesWith(GEP, V); + return &GEP; + } + + // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if + // possible (decide on canonical form for pointer broadcast), 3) exploit + // undef elements to decrease demanded bits + } + + Value *PtrOp = GEP.getOperand(0); + + // Eliminate unneeded casts for indices, and replace indices which displace + // by multiples of a zero size type with zero. + bool MadeChange = false; + + // Index width may not be the same width as pointer width. + // Data layout chooses the right type based on supported integer types. + Type *NewScalarIndexTy = + DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); + + gep_type_iterator GTI = gep_type_begin(GEP); + for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; + ++I, ++GTI) { + // Skip indices into struct types. + if (GTI.isStruct()) + continue; + + Type *IndexTy = (*I)->getType(); + Type *NewIndexType = + IndexTy->isVectorTy() + ? VectorType::get(NewScalarIndexTy, + cast<VectorType>(IndexTy)->getElementCount()) + : NewScalarIndexTy; + + // If the element type has zero size then any index over it is equivalent + // to an index of zero, so replace it with zero if it is not zero already. + Type *EltTy = GTI.getIndexedType(); + if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) + if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { + *I = Constant::getNullValue(NewIndexType); + MadeChange = true; + } + + if (IndexTy != NewIndexType) { + // If we are using a wider index than needed for this platform, shrink + // it to what we need. If narrower, sign-extend it to what we need. + // This explicit cast can make subsequent optimizations more obvious. + *I = Builder.CreateIntCast(*I, NewIndexType, true); + MadeChange = true; + } + } + if (MadeChange) + return &GEP; + + // Check to see if the inputs to the PHI node are getelementptr instructions. + if (auto *PN = dyn_cast<PHINode>(PtrOp)) { + auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); + if (!Op1) + return nullptr; + + // Don't fold a GEP into itself through a PHI node. This can only happen + // through the back-edge of a loop. Folding a GEP into itself means that + // the value of the previous iteration needs to be stored in the meantime, + // thus requiring an additional register variable to be live, but not + // actually achieving anything (the GEP still needs to be executed once per + // loop iteration). + if (Op1 == &GEP) + return nullptr; + + int DI = -1; + + for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { + auto *Op2 = dyn_cast<GetElementPtrInst>(*I); + if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) + return nullptr; + + // As for Op1 above, don't try to fold a GEP into itself. + if (Op2 == &GEP) + return nullptr; + + // Keep track of the type as we walk the GEP. + Type *CurTy = nullptr; + + for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { + if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) + return nullptr; + + if (Op1->getOperand(J) != Op2->getOperand(J)) { + if (DI == -1) { + // We have not seen any differences yet in the GEPs feeding the + // PHI yet, so we record this one if it is allowed to be a + // variable. + + // The first two arguments can vary for any GEP, the rest have to be + // static for struct slots + if (J > 1) { + assert(CurTy && "No current type?"); + if (CurTy->isStructTy()) + return nullptr; + } + + DI = J; + } else { + // The GEP is different by more than one input. While this could be + // extended to support GEPs that vary by more than one variable it + // doesn't make sense since it greatly increases the complexity and + // would result in an R+R+R addressing mode which no backend + // directly supports and would need to be broken into several + // simpler instructions anyway. + return nullptr; + } + } + + // Sink down a layer of the type for the next iteration. + if (J > 0) { + if (J == 1) { + CurTy = Op1->getSourceElementType(); + } else { + CurTy = + GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); + } + } + } + } + + // If not all GEPs are identical we'll have to create a new PHI node. + // Check that the old PHI node has only one use so that it will get + // removed. + if (DI != -1 && !PN->hasOneUse()) + return nullptr; + + auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); + if (DI == -1) { + // All the GEPs feeding the PHI are identical. Clone one down into our + // BB so that it can be merged with the current GEP. + } else { + // All the GEPs feeding the PHI differ at a single offset. Clone a GEP + // into the current block so it can be merged, and create a new PHI to + // set that index. + PHINode *NewPN; + { + IRBuilderBase::InsertPointGuard Guard(Builder); + Builder.SetInsertPoint(PN); + NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), + PN->getNumOperands()); + } + + for (auto &I : PN->operands()) + NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), + PN->getIncomingBlock(I)); + + NewGEP->setOperand(DI, NewPN); + } + + GEP.getParent()->getInstList().insert( + GEP.getParent()->getFirstInsertionPt(), NewGEP); + replaceOperand(GEP, 0, NewGEP); + PtrOp = NewGEP; + } + + // Combine Indices - If the source pointer to this getelementptr instruction + // is a getelementptr instruction, combine the indices of the two + // getelementptr instructions into a single instruction. + if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { + if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) + return nullptr; + + // Try to reassociate loop invariant GEP chains to enable LICM. + if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && + Src->hasOneUse()) { + if (Loop *L = LI->getLoopFor(GEP.getParent())) { + Value *GO1 = GEP.getOperand(1); + Value *SO1 = Src->getOperand(1); + // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is + // invariant: this breaks the dependence between GEPs and allows LICM + // to hoist the invariant part out of the loop. + if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { + // We have to be careful here. + // We have something like: + // %src = getelementptr <ty>, <ty>* %base, <ty> %idx + // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 + // If we just swap idx & idx2 then we could inadvertantly + // change %src from a vector to a scalar, or vice versa. + // Cases: + // 1) %base a scalar & idx a scalar & idx2 a vector + // => Swapping idx & idx2 turns %src into a vector type. + // 2) %base a scalar & idx a vector & idx2 a scalar + // => Swapping idx & idx2 turns %src in a scalar type + // 3) %base, %idx, and %idx2 are scalars + // => %src & %gep are scalars + // => swapping idx & idx2 is safe + // 4) %base a vector + // => %src is a vector + // => swapping idx & idx2 is safe. + auto *SO0 = Src->getOperand(0); + auto *SO0Ty = SO0->getType(); + if (!isa<VectorType>(GEPType) || // case 3 + isa<VectorType>(SO0Ty)) { // case 4 + Src->setOperand(1, GO1); + GEP.setOperand(1, SO1); + return &GEP; + } else { + // Case 1 or 2 + // -- have to recreate %src & %gep + // put NewSrc at same location as %src + Builder.SetInsertPoint(cast<Instruction>(PtrOp)); + auto *NewSrc = cast<GetElementPtrInst>( + Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); + NewSrc->setIsInBounds(Src->isInBounds()); + auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); + NewGEP->setIsInBounds(GEP.isInBounds()); + return NewGEP; + } + } + } + } + + // Note that if our source is a gep chain itself then we wait for that + // chain to be resolved before we perform this transformation. This + // avoids us creating a TON of code in some cases. + if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) + if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) + return nullptr; // Wait until our source is folded to completion. + + SmallVector<Value*, 8> Indices; + + // Find out whether the last index in the source GEP is a sequential idx. + bool EndsWithSequential = false; + for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); + I != E; ++I) + EndsWithSequential = I.isSequential(); + + // Can we combine the two pointer arithmetics offsets? + if (EndsWithSequential) { + // Replace: gep (gep %P, long B), long A, ... + // With: T = long A+B; gep %P, T, ... + Value *SO1 = Src->getOperand(Src->getNumOperands()-1); + Value *GO1 = GEP.getOperand(1); + + // If they aren't the same type, then the input hasn't been processed + // by the loop above yet (which canonicalizes sequential index types to + // intptr_t). Just avoid transforming this until the input has been + // normalized. + if (SO1->getType() != GO1->getType()) + return nullptr; + + Value *Sum = + SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); + // Only do the combine when we are sure the cost after the + // merge is never more than that before the merge. + if (Sum == nullptr) + return nullptr; + + // Update the GEP in place if possible. + if (Src->getNumOperands() == 2) { + GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); + replaceOperand(GEP, 0, Src->getOperand(0)); + replaceOperand(GEP, 1, Sum); + return &GEP; + } + Indices.append(Src->op_begin()+1, Src->op_end()-1); + Indices.push_back(Sum); + Indices.append(GEP.op_begin()+2, GEP.op_end()); + } else if (isa<Constant>(*GEP.idx_begin()) && + cast<Constant>(*GEP.idx_begin())->isNullValue() && + Src->getNumOperands() != 1) { + // Otherwise we can do the fold if the first index of the GEP is a zero + Indices.append(Src->op_begin()+1, Src->op_end()); + Indices.append(GEP.idx_begin()+1, GEP.idx_end()); + } + + if (!Indices.empty()) + return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)) + ? GetElementPtrInst::CreateInBounds( + Src->getSourceElementType(), Src->getOperand(0), Indices, + GEP.getName()) + : GetElementPtrInst::Create(Src->getSourceElementType(), + Src->getOperand(0), Indices, + GEP.getName()); + } + + // Skip if GEP source element type is scalable. The type alloc size is unknown + // at compile-time. + if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { + unsigned AS = GEP.getPointerAddressSpace(); + if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == + DL.getIndexSizeInBits(AS)) { + uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); + + bool Matched = false; + uint64_t C; + Value *V = nullptr; + if (TyAllocSize == 1) { + V = GEP.getOperand(1); + Matched = true; + } else if (match(GEP.getOperand(1), + m_AShr(m_Value(V), m_ConstantInt(C)))) { + if (TyAllocSize == 1ULL << C) + Matched = true; + } else if (match(GEP.getOperand(1), + m_SDiv(m_Value(V), m_ConstantInt(C)))) { + if (TyAllocSize == C) + Matched = true; + } + + if (Matched) { + // Canonicalize (gep i8* X, -(ptrtoint Y)) + // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) + // The GEP pattern is emitted by the SCEV expander for certain kinds of + // pointer arithmetic. + if (match(V, m_Neg(m_PtrToInt(m_Value())))) { + Operator *Index = cast<Operator>(V); + Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); + Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); + return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); + } + // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) + // to (bitcast Y) + Value *Y; + if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), + m_PtrToInt(m_Specific(GEP.getOperand(0)))))) + return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); + } + } + } + + // We do not handle pointer-vector geps here. + if (GEPType->isVectorTy()) + return nullptr; + + // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). + Value *StrippedPtr = PtrOp->stripPointerCasts(); + PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); + + if (StrippedPtr != PtrOp) { + bool HasZeroPointerIndex = false; + Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); + + if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) + HasZeroPointerIndex = C->isZero(); + + // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... + // into : GEP [10 x i8]* X, i32 0, ... + // + // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... + // into : GEP i8* X, ... + // + // This occurs when the program declares an array extern like "int X[];" + if (HasZeroPointerIndex) { + if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { + // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? + if (CATy->getElementType() == StrippedPtrEltTy) { + // -> GEP i8* X, ... + SmallVector<Value *, 8> Idx(drop_begin(GEP.indices())); + GetElementPtrInst *Res = GetElementPtrInst::Create( + StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); + Res->setIsInBounds(GEP.isInBounds()); + if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) + return Res; + // Insert Res, and create an addrspacecast. + // e.g., + // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... + // -> + // %0 = GEP i8 addrspace(1)* X, ... + // addrspacecast i8 addrspace(1)* %0 to i8* + return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); + } + + if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { + // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? + if (CATy->getElementType() == XATy->getElementType()) { + // -> GEP [10 x i8]* X, i32 0, ... + // At this point, we know that the cast source type is a pointer + // to an array of the same type as the destination pointer + // array. Because the array type is never stepped over (there + // is a leading zero) we can fold the cast into this GEP. + if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { + GEP.setSourceElementType(XATy); + return replaceOperand(GEP, 0, StrippedPtr); + } + // Cannot replace the base pointer directly because StrippedPtr's + // address space is different. Instead, create a new GEP followed by + // an addrspacecast. + // e.g., + // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), + // i32 0, ... + // -> + // %0 = GEP [10 x i8] addrspace(1)* X, ... + // addrspacecast i8 addrspace(1)* %0 to i8* + SmallVector<Value *, 8> Idx(GEP.indices()); + Value *NewGEP = + GEP.isInBounds() + ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, + Idx, GEP.getName()) + : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, + GEP.getName()); + return new AddrSpaceCastInst(NewGEP, GEPType); + } + } + } + } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) { + // Skip if GEP source element type is scalable. The type alloc size is + // unknown at compile-time. + // Transform things like: %t = getelementptr i32* + // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2 + // x i32]* %str, i32 0, i32 %V; bitcast + if (StrippedPtrEltTy->isArrayTy() && + DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == + DL.getTypeAllocSize(GEPEltType)) { + Type *IdxType = DL.getIndexType(GEPType); + Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; + Value *NewGEP = + GEP.isInBounds() + ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, + GEP.getName()) + : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, + GEP.getName()); + + // V and GEP are both pointer types --> BitCast + return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); + } + + // Transform things like: + // %V = mul i64 %N, 4 + // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V + // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast + if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { + // Check that changing the type amounts to dividing the index by a scale + // factor. + uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); + uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize(); + if (ResSize && SrcSize % ResSize == 0) { + Value *Idx = GEP.getOperand(1); + unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); + uint64_t Scale = SrcSize / ResSize; + + // Earlier transforms ensure that the index has the right type + // according to Data Layout, which considerably simplifies the + // logic by eliminating implicit casts. + assert(Idx->getType() == DL.getIndexType(GEPType) && + "Index type does not match the Data Layout preferences"); + + bool NSW; + if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { + // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. + // If the multiplication NewIdx * Scale may overflow then the new + // GEP may not be "inbounds". + Value *NewGEP = + GEP.isInBounds() && NSW + ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, + NewIdx, GEP.getName()) + : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, + GEP.getName()); + + // The NewGEP must be pointer typed, so must the old one -> BitCast + return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, + GEPType); + } + } + } + + // Similarly, transform things like: + // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp + // (where tmp = 8*tmp2) into: + // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast + if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && + StrippedPtrEltTy->isArrayTy()) { + // Check that changing to the array element type amounts to dividing the + // index by a scale factor. + uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize(); + uint64_t ArrayEltSize = + DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) + .getFixedSize(); + if (ResSize && ArrayEltSize % ResSize == 0) { + Value *Idx = GEP.getOperand(1); + unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); + uint64_t Scale = ArrayEltSize / ResSize; + + // Earlier transforms ensure that the index has the right type + // according to the Data Layout, which considerably simplifies + // the logic by eliminating implicit casts. + assert(Idx->getType() == DL.getIndexType(GEPType) && + "Index type does not match the Data Layout preferences"); + + bool NSW; + if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { + // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. + // If the multiplication NewIdx * Scale may overflow then the new + // GEP may not be "inbounds". + Type *IndTy = DL.getIndexType(GEPType); + Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; + + Value *NewGEP = + GEP.isInBounds() && NSW + ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, + Off, GEP.getName()) + : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, + GEP.getName()); + // The NewGEP must be pointer typed, so must the old one -> BitCast + return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, + GEPType); + } + } + } + } + } + + // addrspacecast between types is canonicalized as a bitcast, then an + // addrspacecast. To take advantage of the below bitcast + struct GEP, look + // through the addrspacecast. + Value *ASCStrippedPtrOp = PtrOp; + if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { + // X = bitcast A addrspace(1)* to B addrspace(1)* + // Y = addrspacecast A addrspace(1)* to B addrspace(2)* + // Z = gep Y, <...constant indices...> + // Into an addrspacecasted GEP of the struct. + if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) + ASCStrippedPtrOp = BC; + } + + if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { + Value *SrcOp = BCI->getOperand(0); + PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); + Type *SrcEltType = SrcType->getElementType(); + + // GEP directly using the source operand if this GEP is accessing an element + // of a bitcasted pointer to vector or array of the same dimensions: + // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z + // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z + auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy, + const DataLayout &DL) { + auto *VecVTy = cast<FixedVectorType>(VecTy); + return ArrTy->getArrayElementType() == VecVTy->getElementType() && + ArrTy->getArrayNumElements() == VecVTy->getNumElements() && + DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy); + }; + if (GEP.getNumOperands() == 3 && + ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) && + areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) || + (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() && + areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) { + + // Create a new GEP here, as using `setOperand()` followed by + // `setSourceElementType()` won't actually update the type of the + // existing GEP Value. Causing issues if this Value is accessed when + // constructing an AddrSpaceCastInst + Value *NGEP = + GEP.isInBounds() + ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) + : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); + NGEP->takeName(&GEP); + + // Preserve GEP address space to satisfy users + if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) + return new AddrSpaceCastInst(NGEP, GEPType); + + return replaceInstUsesWith(GEP, NGEP); + } + + // See if we can simplify: + // X = bitcast A* to B* + // Y = gep X, <...constant indices...> + // into a gep of the original struct. This is important for SROA and alias + // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. + unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); + APInt Offset(OffsetBits, 0); + if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { + // If this GEP instruction doesn't move the pointer, just replace the GEP + // with a bitcast of the real input to the dest type. + if (!Offset) { + // If the bitcast is of an allocation, and the allocation will be + // converted to match the type of the cast, don't touch this. + if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { + // See if the bitcast simplifies, if so, don't nuke this GEP yet. + if (Instruction *I = visitBitCast(*BCI)) { + if (I != BCI) { + I->takeName(BCI); + BCI->getParent()->getInstList().insert(BCI->getIterator(), I); + replaceInstUsesWith(*BCI, I); + } + return &GEP; + } + } + + if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) + return new AddrSpaceCastInst(SrcOp, GEPType); + return new BitCastInst(SrcOp, GEPType); + } + + // Otherwise, if the offset is non-zero, we need to find out if there is a + // field at Offset in 'A's type. If so, we can pull the cast through the + // GEP. + SmallVector<Value*, 8> NewIndices; + if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { + Value *NGEP = + GEP.isInBounds() + ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) + : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); + + if (NGEP->getType() == GEPType) + return replaceInstUsesWith(GEP, NGEP); + NGEP->takeName(&GEP); + + if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) + return new AddrSpaceCastInst(NGEP, GEPType); + return new BitCastInst(NGEP, GEPType); + } + } + } + + if (!GEP.isInBounds()) { + unsigned IdxWidth = + DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); + APInt BasePtrOffset(IdxWidth, 0); + Value *UnderlyingPtrOp = + PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, + BasePtrOffset); + if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { + if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && + BasePtrOffset.isNonNegative()) { + APInt AllocSize( + IdxWidth, + DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize()); + if (BasePtrOffset.ule(AllocSize)) { + return GetElementPtrInst::CreateInBounds( + GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), + GEP.getName()); + } + } + } + } + + if (Instruction *R = foldSelectGEP(GEP, Builder)) + return R; + + return nullptr; +} + +static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, + Instruction *AI) { + if (isa<ConstantPointerNull>(V)) + return true; + if (auto *LI = dyn_cast<LoadInst>(V)) + return isa<GlobalVariable>(LI->getPointerOperand()); + // Two distinct allocations will never be equal. + // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking + // through bitcasts of V can cause + // the result statement below to be true, even when AI and V (ex: + // i8* ->i32* ->i8* of AI) are the same allocations. + return isAllocLikeFn(V, TLI) && V != AI; +} + +static bool isAllocSiteRemovable(Instruction *AI, + SmallVectorImpl<WeakTrackingVH> &Users, + const TargetLibraryInfo *TLI) { + SmallVector<Instruction*, 4> Worklist; + Worklist.push_back(AI); + + do { + Instruction *PI = Worklist.pop_back_val(); + for (User *U : PI->users()) { + Instruction *I = cast<Instruction>(U); + switch (I->getOpcode()) { + default: + // Give up the moment we see something we can't handle. + return false; + + case Instruction::AddrSpaceCast: + case Instruction::BitCast: + case Instruction::GetElementPtr: + Users.emplace_back(I); + Worklist.push_back(I); + continue; + + case Instruction::ICmp: { + ICmpInst *ICI = cast<ICmpInst>(I); + // We can fold eq/ne comparisons with null to false/true, respectively. + // We also fold comparisons in some conditions provided the alloc has + // not escaped (see isNeverEqualToUnescapedAlloc). + if (!ICI->isEquality()) + return false; + unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; + if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) + return false; + Users.emplace_back(I); + continue; + } + + case Instruction::Call: + // Ignore no-op and store intrinsics. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: + return false; + + case Intrinsic::memmove: + case Intrinsic::memcpy: + case Intrinsic::memset: { + MemIntrinsic *MI = cast<MemIntrinsic>(II); + if (MI->isVolatile() || MI->getRawDest() != PI) + return false; + LLVM_FALLTHROUGH; + } + case Intrinsic::assume: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + Users.emplace_back(I); + continue; + } + } + + if (isFreeCall(I, TLI)) { + Users.emplace_back(I); + continue; + } + return false; + + case Instruction::Store: { + StoreInst *SI = cast<StoreInst>(I); + if (SI->isVolatile() || SI->getPointerOperand() != PI) + return false; + Users.emplace_back(I); + continue; + } + } + llvm_unreachable("missing a return?"); + } + } while (!Worklist.empty()); + return true; +} + +Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { + // If we have a malloc call which is only used in any amount of comparisons to + // null and free calls, delete the calls and replace the comparisons with true + // or false as appropriate. + + // This is based on the principle that we can substitute our own allocation + // function (which will never return null) rather than knowledge of the + // specific function being called. In some sense this can change the permitted + // outputs of a program (when we convert a malloc to an alloca, the fact that + // the allocation is now on the stack is potentially visible, for example), + // but we believe in a permissible manner. + SmallVector<WeakTrackingVH, 64> Users; + + // If we are removing an alloca with a dbg.declare, insert dbg.value calls + // before each store. + SmallVector<DbgVariableIntrinsic *, 8> DVIs; + std::unique_ptr<DIBuilder> DIB; + if (isa<AllocaInst>(MI)) { + findDbgUsers(DVIs, &MI); + DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); + } + + if (isAllocSiteRemovable(&MI, Users, &TLI)) { + for (unsigned i = 0, e = Users.size(); i != e; ++i) { + // Lowering all @llvm.objectsize calls first because they may + // use a bitcast/GEP of the alloca we are removing. + if (!Users[i]) + continue; + + Instruction *I = cast<Instruction>(&*Users[i]); + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + if (II->getIntrinsicID() == Intrinsic::objectsize) { + Value *Result = + lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); + replaceInstUsesWith(*I, Result); + eraseInstFromFunction(*I); + Users[i] = nullptr; // Skip examining in the next loop. + } + } + } + for (unsigned i = 0, e = Users.size(); i != e; ++i) { + if (!Users[i]) + continue; + + Instruction *I = cast<Instruction>(&*Users[i]); + + if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { + replaceInstUsesWith(*C, + ConstantInt::get(Type::getInt1Ty(C->getContext()), + C->isFalseWhenEqual())); + } else if (auto *SI = dyn_cast<StoreInst>(I)) { + for (auto *DVI : DVIs) + if (DVI->isAddressOfVariable()) + ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); + } else { + // Casts, GEP, or anything else: we're about to delete this instruction, + // so it can not have any valid uses. + replaceInstUsesWith(*I, UndefValue::get(I->getType())); + } + eraseInstFromFunction(*I); + } + + if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { + // Replace invoke with a NOP intrinsic to maintain the original CFG + Module *M = II->getModule(); + Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); + InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), + None, "", II->getParent()); + } + + // Remove debug intrinsics which describe the value contained within the + // alloca. In addition to removing dbg.{declare,addr} which simply point to + // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: + // + // ``` + // define void @foo(i32 %0) { + // %a = alloca i32 ; Deleted. + // store i32 %0, i32* %a + // dbg.value(i32 %0, "arg0") ; Not deleted. + // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. + // call void @trivially_inlinable_no_op(i32* %a) + // ret void + // } + // ``` + // + // This may not be required if we stop describing the contents of allocas + // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in + // the LowerDbgDeclare utility. + // + // If there is a dead store to `%a` in @trivially_inlinable_no_op, the + // "arg0" dbg.value may be stale after the call. However, failing to remove + // the DW_OP_deref dbg.value causes large gaps in location coverage. + for (auto *DVI : DVIs) + if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) + DVI->eraseFromParent(); + + return eraseInstFromFunction(MI); + } + return nullptr; +} + +/// Move the call to free before a NULL test. +/// +/// Check if this free is accessed after its argument has been test +/// against NULL (property 0). +/// If yes, it is legal to move this call in its predecessor block. +/// +/// The move is performed only if the block containing the call to free +/// will be removed, i.e.: +/// 1. it has only one predecessor P, and P has two successors +/// 2. it contains the call, noops, and an unconditional branch +/// 3. its successor is the same as its predecessor's successor +/// +/// The profitability is out-of concern here and this function should +/// be called only if the caller knows this transformation would be +/// profitable (e.g., for code size). +static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, + const DataLayout &DL) { + Value *Op = FI.getArgOperand(0); + BasicBlock *FreeInstrBB = FI.getParent(); + BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); + + // Validate part of constraint #1: Only one predecessor + // FIXME: We can extend the number of predecessor, but in that case, we + // would duplicate the call to free in each predecessor and it may + // not be profitable even for code size. + if (!PredBB) + return nullptr; + + // Validate constraint #2: Does this block contains only the call to + // free, noops, and an unconditional branch? + BasicBlock *SuccBB; + Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); + if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) + return nullptr; + + // If there are only 2 instructions in the block, at this point, + // this is the call to free and unconditional. + // If there are more than 2 instructions, check that they are noops + // i.e., they won't hurt the performance of the generated code. + if (FreeInstrBB->size() != 2) { + for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { + if (&Inst == &FI || &Inst == FreeInstrBBTerminator) + continue; + auto *Cast = dyn_cast<CastInst>(&Inst); + if (!Cast || !Cast->isNoopCast(DL)) + return nullptr; + } + } + // Validate the rest of constraint #1 by matching on the pred branch. + Instruction *TI = PredBB->getTerminator(); + BasicBlock *TrueBB, *FalseBB; + ICmpInst::Predicate Pred; + if (!match(TI, m_Br(m_ICmp(Pred, + m_CombineOr(m_Specific(Op), + m_Specific(Op->stripPointerCasts())), + m_Zero()), + TrueBB, FalseBB))) + return nullptr; + if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) + return nullptr; + + // Validate constraint #3: Ensure the null case just falls through. + if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) + return nullptr; + assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && + "Broken CFG: missing edge from predecessor to successor"); + + // At this point, we know that everything in FreeInstrBB can be moved + // before TI. + for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); + It != End;) { + Instruction &Instr = *It++; + if (&Instr == FreeInstrBBTerminator) + break; + Instr.moveBefore(TI); + } + assert(FreeInstrBB->size() == 1 && + "Only the branch instruction should remain"); + return &FI; +} + +Instruction *InstCombinerImpl::visitFree(CallInst &FI) { + Value *Op = FI.getArgOperand(0); + + // free undef -> unreachable. + if (isa<UndefValue>(Op)) { + // Leave a marker since we can't modify the CFG here. + CreateNonTerminatorUnreachable(&FI); + return eraseInstFromFunction(FI); + } + + // If we have 'free null' delete the instruction. This can happen in stl code + // when lots of inlining happens. + if (isa<ConstantPointerNull>(Op)) + return eraseInstFromFunction(FI); + + // If we optimize for code size, try to move the call to free before the null + // test so that simplify cfg can remove the empty block and dead code + // elimination the branch. I.e., helps to turn something like: + // if (foo) free(foo); + // into + // free(foo); + // + // Note that we can only do this for 'free' and not for any flavor of + // 'operator delete'; there is no 'operator delete' symbol for which we are + // permitted to invent a call, even if we're passing in a null pointer. + if (MinimizeSize) { + LibFunc Func; + if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) + if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) + return I; + } + + return nullptr; +} + +static bool isMustTailCall(Value *V) { + if (auto *CI = dyn_cast<CallInst>(V)) + return CI->isMustTailCall(); + return false; +} + +Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { + if (RI.getNumOperands() == 0) // ret void + return nullptr; + + Value *ResultOp = RI.getOperand(0); + Type *VTy = ResultOp->getType(); + if (!VTy->isIntegerTy() || isa<Constant>(ResultOp)) + return nullptr; + + // Don't replace result of musttail calls. + if (isMustTailCall(ResultOp)) + return nullptr; + + // There might be assume intrinsics dominating this return that completely + // determine the value. If so, constant fold it. + KnownBits Known = computeKnownBits(ResultOp, 0, &RI); + if (Known.isConstant()) + return replaceOperand(RI, 0, + Constant::getIntegerValue(VTy, Known.getConstant())); + + return nullptr; +} + +Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { + // Try to remove the previous instruction if it must lead to unreachable. + // This includes instructions like stores and "llvm.assume" that may not get + // removed by simple dead code elimination. + Instruction *Prev = I.getPrevNonDebugInstruction(); + if (Prev && !Prev->isEHPad() && + isGuaranteedToTransferExecutionToSuccessor(Prev)) { + // Temporarily disable removal of volatile stores preceding unreachable, + // pending a potential LangRef change permitting volatile stores to trap. + // TODO: Either remove this code, or properly integrate the check into + // isGuaranteedToTransferExecutionToSuccessor(). + if (auto *SI = dyn_cast<StoreInst>(Prev)) + if (SI->isVolatile()) + return nullptr; + + // A value may still have uses before we process it here (for example, in + // another unreachable block), so convert those to undef. + replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType())); + eraseInstFromFunction(*Prev); + return &I; + } + return nullptr; +} + +Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { + assert(BI.isUnconditional() && "Only for unconditional branches."); + + // If this store is the second-to-last instruction in the basic block + // (excluding debug info and bitcasts of pointers) and if the block ends with + // an unconditional branch, try to move the store to the successor block. + + auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { + auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { + return isa<DbgInfoIntrinsic>(BBI) || + (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); + }; + + BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); + do { + if (BBI != FirstInstr) + --BBI; + } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); + + return dyn_cast<StoreInst>(BBI); + }; + + if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) + if (mergeStoreIntoSuccessor(*SI)) + return &BI; + + return nullptr; +} + +Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { + if (BI.isUnconditional()) + return visitUnconditionalBranchInst(BI); + + // Change br (not X), label True, label False to: br X, label False, True + Value *X = nullptr; + if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && + !isa<Constant>(X)) { + // Swap Destinations and condition... + BI.swapSuccessors(); + return replaceOperand(BI, 0, X); + } + + // If the condition is irrelevant, remove the use so that other + // transforms on the condition become more effective. + if (!isa<ConstantInt>(BI.getCondition()) && + BI.getSuccessor(0) == BI.getSuccessor(1)) + return replaceOperand( + BI, 0, ConstantInt::getFalse(BI.getCondition()->getType())); + + // Canonicalize, for example, fcmp_one -> fcmp_oeq. + CmpInst::Predicate Pred; + if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())), + m_BasicBlock(), m_BasicBlock())) && + !isCanonicalPredicate(Pred)) { + // Swap destinations and condition. + CmpInst *Cond = cast<CmpInst>(BI.getCondition()); + Cond->setPredicate(CmpInst::getInversePredicate(Pred)); + BI.swapSuccessors(); + Worklist.push(Cond); + return &BI; + } + + return nullptr; +} + +Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { + Value *Cond = SI.getCondition(); + Value *Op0; + ConstantInt *AddRHS; + if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { + // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. + for (auto Case : SI.cases()) { + Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); + assert(isa<ConstantInt>(NewCase) && + "Result of expression should be constant"); + Case.setValue(cast<ConstantInt>(NewCase)); + } + return replaceOperand(SI, 0, Op0); + } + + KnownBits Known = computeKnownBits(Cond, 0, &SI); + unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); + unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); + + // Compute the number of leading bits we can ignore. + // TODO: A better way to determine this would use ComputeNumSignBits(). + for (auto &C : SI.cases()) { + LeadingKnownZeros = std::min( + LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); + LeadingKnownOnes = std::min( + LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); + } + + unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); + + // Shrink the condition operand if the new type is smaller than the old type. + // But do not shrink to a non-standard type, because backend can't generate + // good code for that yet. + // TODO: We can make it aggressive again after fixing PR39569. + if (NewWidth > 0 && NewWidth < Known.getBitWidth() && + shouldChangeType(Known.getBitWidth(), NewWidth)) { + IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); + Builder.SetInsertPoint(&SI); + Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); + + for (auto Case : SI.cases()) { + APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); + Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); + } + return replaceOperand(SI, 0, NewCond); + } + + return nullptr; +} + +Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { + Value *Agg = EV.getAggregateOperand(); + + if (!EV.hasIndices()) + return replaceInstUsesWith(EV, Agg); + + if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), + SQ.getWithInstruction(&EV))) + return replaceInstUsesWith(EV, V); + + if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { + // We're extracting from an insertvalue instruction, compare the indices + const unsigned *exti, *exte, *insi, *inse; + for (exti = EV.idx_begin(), insi = IV->idx_begin(), + exte = EV.idx_end(), inse = IV->idx_end(); + exti != exte && insi != inse; + ++exti, ++insi) { + if (*insi != *exti) + // The insert and extract both reference distinctly different elements. + // This means the extract is not influenced by the insert, and we can + // replace the aggregate operand of the extract with the aggregate + // operand of the insert. i.e., replace + // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 + // %E = extractvalue { i32, { i32 } } %I, 0 + // with + // %E = extractvalue { i32, { i32 } } %A, 0 + return ExtractValueInst::Create(IV->getAggregateOperand(), + EV.getIndices()); + } + if (exti == exte && insi == inse) + // Both iterators are at the end: Index lists are identical. Replace + // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 + // %C = extractvalue { i32, { i32 } } %B, 1, 0 + // with "i32 42" + return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); + if (exti == exte) { + // The extract list is a prefix of the insert list. i.e. replace + // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 + // %E = extractvalue { i32, { i32 } } %I, 1 + // with + // %X = extractvalue { i32, { i32 } } %A, 1 + // %E = insertvalue { i32 } %X, i32 42, 0 + // by switching the order of the insert and extract (though the + // insertvalue should be left in, since it may have other uses). + Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), + EV.getIndices()); + return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), + makeArrayRef(insi, inse)); + } + if (insi == inse) + // The insert list is a prefix of the extract list + // We can simply remove the common indices from the extract and make it + // operate on the inserted value instead of the insertvalue result. + // i.e., replace + // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 + // %E = extractvalue { i32, { i32 } } %I, 1, 0 + // with + // %E extractvalue { i32 } { i32 42 }, 0 + return ExtractValueInst::Create(IV->getInsertedValueOperand(), + makeArrayRef(exti, exte)); + } + if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { + // We're extracting from an overflow intrinsic, see if we're the only user, + // which allows us to simplify multiple result intrinsics to simpler + // things that just get one value. + if (WO->hasOneUse()) { + // Check if we're grabbing only the result of a 'with overflow' intrinsic + // and replace it with a traditional binary instruction. + if (*EV.idx_begin() == 0) { + Instruction::BinaryOps BinOp = WO->getBinaryOp(); + Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); + replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); + eraseInstFromFunction(*WO); + return BinaryOperator::Create(BinOp, LHS, RHS); + } + + // If the normal result of the add is dead, and the RHS is a constant, + // we can transform this into a range comparison. + // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 + if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) + if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) + return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), + ConstantExpr::getNot(CI)); + } + } + if (LoadInst *L = dyn_cast<LoadInst>(Agg)) + // If the (non-volatile) load only has one use, we can rewrite this to a + // load from a GEP. This reduces the size of the load. If a load is used + // only by extractvalue instructions then this either must have been + // optimized before, or it is a struct with padding, in which case we + // don't want to do the transformation as it loses padding knowledge. + if (L->isSimple() && L->hasOneUse()) { + // extractvalue has integer indices, getelementptr has Value*s. Convert. + SmallVector<Value*, 4> Indices; + // Prefix an i32 0 since we need the first element. + Indices.push_back(Builder.getInt32(0)); + for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); + I != E; ++I) + Indices.push_back(Builder.getInt32(*I)); + + // We need to insert these at the location of the old load, not at that of + // the extractvalue. + Builder.SetInsertPoint(L); + Value *GEP = Builder.CreateInBoundsGEP(L->getType(), + L->getPointerOperand(), Indices); + Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); + // Whatever aliasing information we had for the orignal load must also + // hold for the smaller load, so propagate the annotations. + AAMDNodes Nodes; + L->getAAMetadata(Nodes); + NL->setAAMetadata(Nodes); + // Returning the load directly will cause the main loop to insert it in + // the wrong spot, so use replaceInstUsesWith(). + return replaceInstUsesWith(EV, NL); + } + // We could simplify extracts from other values. Note that nested extracts may + // already be simplified implicitly by the above: extract (extract (insert) ) + // will be translated into extract ( insert ( extract ) ) first and then just + // the value inserted, if appropriate. Similarly for extracts from single-use + // loads: extract (extract (load)) will be translated to extract (load (gep)) + // and if again single-use then via load (gep (gep)) to load (gep). + // However, double extracts from e.g. function arguments or return values + // aren't handled yet. + return nullptr; +} + +/// Return 'true' if the given typeinfo will match anything. +static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { + switch (Personality) { + case EHPersonality::GNU_C: + case EHPersonality::GNU_C_SjLj: + case EHPersonality::Rust: + // The GCC C EH and Rust personality only exists to support cleanups, so + // it's not clear what the semantics of catch clauses are. + return false; + case EHPersonality::Unknown: + return false; + case EHPersonality::GNU_Ada: + // While __gnat_all_others_value will match any Ada exception, it doesn't + // match foreign exceptions (or didn't, before gcc-4.7). + return false; + case EHPersonality::GNU_CXX: + case EHPersonality::GNU_CXX_SjLj: + case EHPersonality::GNU_ObjC: + case EHPersonality::MSVC_X86SEH: + case EHPersonality::MSVC_TableSEH: + case EHPersonality::MSVC_CXX: + case EHPersonality::CoreCLR: + case EHPersonality::Wasm_CXX: + case EHPersonality::XL_CXX: + return TypeInfo->isNullValue(); + } + llvm_unreachable("invalid enum"); +} + +static bool shorter_filter(const Value *LHS, const Value *RHS) { + return + cast<ArrayType>(LHS->getType())->getNumElements() + < + cast<ArrayType>(RHS->getType())->getNumElements(); +} + +Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { + // The logic here should be correct for any real-world personality function. + // However if that turns out not to be true, the offending logic can always + // be conditioned on the personality function, like the catch-all logic is. + EHPersonality Personality = + classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); + + // Simplify the list of clauses, eg by removing repeated catch clauses + // (these are often created by inlining). + bool MakeNewInstruction = false; // If true, recreate using the following: + SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; + bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. + + SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. + for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { + bool isLastClause = i + 1 == e; + if (LI.isCatch(i)) { + // A catch clause. + Constant *CatchClause = LI.getClause(i); + Constant *TypeInfo = CatchClause->stripPointerCasts(); + + // If we already saw this clause, there is no point in having a second + // copy of it. + if (AlreadyCaught.insert(TypeInfo).second) { + // This catch clause was not already seen. + NewClauses.push_back(CatchClause); + } else { + // Repeated catch clause - drop the redundant copy. + MakeNewInstruction = true; + } + + // If this is a catch-all then there is no point in keeping any following + // clauses or marking the landingpad as having a cleanup. + if (isCatchAll(Personality, TypeInfo)) { + if (!isLastClause) + MakeNewInstruction = true; + CleanupFlag = false; + break; + } + } else { + // A filter clause. If any of the filter elements were already caught + // then they can be dropped from the filter. It is tempting to try to + // exploit the filter further by saying that any typeinfo that does not + // occur in the filter can't be caught later (and thus can be dropped). + // However this would be wrong, since typeinfos can match without being + // equal (for example if one represents a C++ class, and the other some + // class derived from it). + assert(LI.isFilter(i) && "Unsupported landingpad clause!"); + Constant *FilterClause = LI.getClause(i); + ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); + unsigned NumTypeInfos = FilterType->getNumElements(); + + // An empty filter catches everything, so there is no point in keeping any + // following clauses or marking the landingpad as having a cleanup. By + // dealing with this case here the following code is made a bit simpler. + if (!NumTypeInfos) { + NewClauses.push_back(FilterClause); + if (!isLastClause) + MakeNewInstruction = true; + CleanupFlag = false; + break; + } + + bool MakeNewFilter = false; // If true, make a new filter. + SmallVector<Constant *, 16> NewFilterElts; // New elements. + if (isa<ConstantAggregateZero>(FilterClause)) { + // Not an empty filter - it contains at least one null typeinfo. + assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); + Constant *TypeInfo = + Constant::getNullValue(FilterType->getElementType()); + // If this typeinfo is a catch-all then the filter can never match. + if (isCatchAll(Personality, TypeInfo)) { + // Throw the filter away. + MakeNewInstruction = true; + continue; + } + + // There is no point in having multiple copies of this typeinfo, so + // discard all but the first copy if there is more than one. + NewFilterElts.push_back(TypeInfo); + if (NumTypeInfos > 1) + MakeNewFilter = true; + } else { + ConstantArray *Filter = cast<ConstantArray>(FilterClause); + SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. + NewFilterElts.reserve(NumTypeInfos); + + // Remove any filter elements that were already caught or that already + // occurred in the filter. While there, see if any of the elements are + // catch-alls. If so, the filter can be discarded. + bool SawCatchAll = false; + for (unsigned j = 0; j != NumTypeInfos; ++j) { + Constant *Elt = Filter->getOperand(j); + Constant *TypeInfo = Elt->stripPointerCasts(); + if (isCatchAll(Personality, TypeInfo)) { + // This element is a catch-all. Bail out, noting this fact. + SawCatchAll = true; + break; + } + + // Even if we've seen a type in a catch clause, we don't want to + // remove it from the filter. An unexpected type handler may be + // set up for a call site which throws an exception of the same + // type caught. In order for the exception thrown by the unexpected + // handler to propagate correctly, the filter must be correctly + // described for the call site. + // + // Example: + // + // void unexpected() { throw 1;} + // void foo() throw (int) { + // std::set_unexpected(unexpected); + // try { + // throw 2.0; + // } catch (int i) {} + // } + + // There is no point in having multiple copies of the same typeinfo in + // a filter, so only add it if we didn't already. + if (SeenInFilter.insert(TypeInfo).second) + NewFilterElts.push_back(cast<Constant>(Elt)); + } + // A filter containing a catch-all cannot match anything by definition. + if (SawCatchAll) { + // Throw the filter away. + MakeNewInstruction = true; + continue; + } + + // If we dropped something from the filter, make a new one. + if (NewFilterElts.size() < NumTypeInfos) + MakeNewFilter = true; + } + if (MakeNewFilter) { + FilterType = ArrayType::get(FilterType->getElementType(), + NewFilterElts.size()); + FilterClause = ConstantArray::get(FilterType, NewFilterElts); + MakeNewInstruction = true; + } + + NewClauses.push_back(FilterClause); + + // If the new filter is empty then it will catch everything so there is + // no point in keeping any following clauses or marking the landingpad + // as having a cleanup. The case of the original filter being empty was + // already handled above. + if (MakeNewFilter && !NewFilterElts.size()) { + assert(MakeNewInstruction && "New filter but not a new instruction!"); + CleanupFlag = false; + break; + } + } + } + + // If several filters occur in a row then reorder them so that the shortest + // filters come first (those with the smallest number of elements). This is + // advantageous because shorter filters are more likely to match, speeding up + // unwinding, but mostly because it increases the effectiveness of the other + // filter optimizations below. + for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { + unsigned j; + // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. + for (j = i; j != e; ++j) + if (!isa<ArrayType>(NewClauses[j]->getType())) + break; + + // Check whether the filters are already sorted by length. We need to know + // if sorting them is actually going to do anything so that we only make a + // new landingpad instruction if it does. + for (unsigned k = i; k + 1 < j; ++k) + if (shorter_filter(NewClauses[k+1], NewClauses[k])) { + // Not sorted, so sort the filters now. Doing an unstable sort would be + // correct too but reordering filters pointlessly might confuse users. + std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, + shorter_filter); + MakeNewInstruction = true; + break; + } + + // Look for the next batch of filters. + i = j + 1; + } + + // If typeinfos matched if and only if equal, then the elements of a filter L + // that occurs later than a filter F could be replaced by the intersection of + // the elements of F and L. In reality two typeinfos can match without being + // equal (for example if one represents a C++ class, and the other some class + // derived from it) so it would be wrong to perform this transform in general. + // However the transform is correct and useful if F is a subset of L. In that + // case L can be replaced by F, and thus removed altogether since repeating a + // filter is pointless. So here we look at all pairs of filters F and L where + // L follows F in the list of clauses, and remove L if every element of F is + // an element of L. This can occur when inlining C++ functions with exception + // specifications. + for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { + // Examine each filter in turn. + Value *Filter = NewClauses[i]; + ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); + if (!FTy) + // Not a filter - skip it. + continue; + unsigned FElts = FTy->getNumElements(); + // Examine each filter following this one. Doing this backwards means that + // we don't have to worry about filters disappearing under us when removed. + for (unsigned j = NewClauses.size() - 1; j != i; --j) { + Value *LFilter = NewClauses[j]; + ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); + if (!LTy) + // Not a filter - skip it. + continue; + // If Filter is a subset of LFilter, i.e. every element of Filter is also + // an element of LFilter, then discard LFilter. + SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; + // If Filter is empty then it is a subset of LFilter. + if (!FElts) { + // Discard LFilter. + NewClauses.erase(J); + MakeNewInstruction = true; + // Move on to the next filter. + continue; + } + unsigned LElts = LTy->getNumElements(); + // If Filter is longer than LFilter then it cannot be a subset of it. + if (FElts > LElts) + // Move on to the next filter. + continue; + // At this point we know that LFilter has at least one element. + if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. + // Filter is a subset of LFilter iff Filter contains only zeros (as we + // already know that Filter is not longer than LFilter). + if (isa<ConstantAggregateZero>(Filter)) { + assert(FElts <= LElts && "Should have handled this case earlier!"); + // Discard LFilter. + NewClauses.erase(J); + MakeNewInstruction = true; + } + // Move on to the next filter. + continue; + } + ConstantArray *LArray = cast<ConstantArray>(LFilter); + if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. + // Since Filter is non-empty and contains only zeros, it is a subset of + // LFilter iff LFilter contains a zero. + assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); + for (unsigned l = 0; l != LElts; ++l) + if (LArray->getOperand(l)->isNullValue()) { + // LFilter contains a zero - discard it. + NewClauses.erase(J); + MakeNewInstruction = true; + break; + } + // Move on to the next filter. + continue; + } + // At this point we know that both filters are ConstantArrays. Loop over + // operands to see whether every element of Filter is also an element of + // LFilter. Since filters tend to be short this is probably faster than + // using a method that scales nicely. + ConstantArray *FArray = cast<ConstantArray>(Filter); + bool AllFound = true; + for (unsigned f = 0; f != FElts; ++f) { + Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); + AllFound = false; + for (unsigned l = 0; l != LElts; ++l) { + Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); + if (LTypeInfo == FTypeInfo) { + AllFound = true; + break; + } + } + if (!AllFound) + break; + } + if (AllFound) { + // Discard LFilter. + NewClauses.erase(J); + MakeNewInstruction = true; + } + // Move on to the next filter. + } + } + + // If we changed any of the clauses, replace the old landingpad instruction + // with a new one. + if (MakeNewInstruction) { + LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), + NewClauses.size()); + for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) + NLI->addClause(NewClauses[i]); + // A landing pad with no clauses must have the cleanup flag set. It is + // theoretically possible, though highly unlikely, that we eliminated all + // clauses. If so, force the cleanup flag to true. + if (NewClauses.empty()) + CleanupFlag = true; + NLI->setCleanup(CleanupFlag); + return NLI; + } + + // Even if none of the clauses changed, we may nonetheless have understood + // that the cleanup flag is pointless. Clear it if so. + if (LI.isCleanup() != CleanupFlag) { + assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); + LI.setCleanup(CleanupFlag); + return &LI; + } + + return nullptr; +} + +Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { + Value *Op0 = I.getOperand(0); + + if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) + return replaceInstUsesWith(I, V); + + // freeze (phi const, x) --> phi const, (freeze x) + if (auto *PN = dyn_cast<PHINode>(Op0)) { + if (Instruction *NV = foldOpIntoPhi(I, PN)) + return NV; + } + + if (match(Op0, m_Undef())) { + // If I is freeze(undef), see its uses and fold it to the best constant. + // - or: pick -1 + // - select's condition: pick the value that leads to choosing a constant + // - other ops: pick 0 + Constant *BestValue = nullptr; + Constant *NullValue = Constant::getNullValue(I.getType()); + for (const auto *U : I.users()) { + Constant *C = NullValue; + + if (match(U, m_Or(m_Value(), m_Value()))) + C = Constant::getAllOnesValue(I.getType()); + else if (const auto *SI = dyn_cast<SelectInst>(U)) { + if (SI->getCondition() == &I) { + APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1); + C = Constant::getIntegerValue(I.getType(), CondVal); + } + } + + if (!BestValue) + BestValue = C; + else if (BestValue != C) + BestValue = NullValue; + } + + return replaceInstUsesWith(I, BestValue); + } + + return nullptr; +} + +/// Try to move the specified instruction from its current block into the +/// beginning of DestBlock, which can only happen if it's safe to move the +/// instruction past all of the instructions between it and the end of its +/// block. +static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { + assert(I->getSingleUndroppableUse() && "Invariants didn't hold!"); + BasicBlock *SrcBlock = I->getParent(); + + // Cannot move control-flow-involving, volatile loads, vaarg, etc. + if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || + I->isTerminator()) + return false; + + // Do not sink static or dynamic alloca instructions. Static allocas must + // remain in the entry block, and dynamic allocas must not be sunk in between + // a stacksave / stackrestore pair, which would incorrectly shorten its + // lifetime. + if (isa<AllocaInst>(I)) + return false; + + // Do not sink into catchswitch blocks. + if (isa<CatchSwitchInst>(DestBlock->getTerminator())) + return false; + + // Do not sink convergent call instructions. + if (auto *CI = dyn_cast<CallInst>(I)) { + if (CI->isConvergent()) + return false; + } + // We can only sink load instructions if there is nothing between the load and + // the end of block that could change the value. + if (I->mayReadFromMemory()) { + // We don't want to do any sophisticated alias analysis, so we only check + // the instructions after I in I's parent block if we try to sink to its + // successor block. + if (DestBlock->getUniquePredecessor() != I->getParent()) + return false; + for (BasicBlock::iterator Scan = I->getIterator(), + E = I->getParent()->end(); + Scan != E; ++Scan) + if (Scan->mayWriteToMemory()) + return false; + } + + I->dropDroppableUses([DestBlock](const Use *U) { + if (auto *I = dyn_cast<Instruction>(U->getUser())) + return I->getParent() != DestBlock; + return true; + }); + /// FIXME: We could remove droppable uses that are not dominated by + /// the new position. + + BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); + I->moveBefore(&*InsertPos); + ++NumSunkInst; + + // Also sink all related debug uses from the source basic block. Otherwise we + // get debug use before the def. Attempt to salvage debug uses first, to + // maximise the range variables have location for. If we cannot salvage, then + // mark the location undef: we know it was supposed to receive a new location + // here, but that computation has been sunk. + SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; + findDbgUsers(DbgUsers, I); + + // Update the arguments of a dbg.declare instruction, so that it + // does not point into a sunk instruction. + auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) { + if (!isa<DbgDeclareInst>(DII)) + return false; + + if (isa<CastInst>(I)) + DII->setOperand( + 0, MetadataAsValue::get(I->getContext(), + ValueAsMetadata::get(I->getOperand(0)))); + return true; + }; + + SmallVector<DbgVariableIntrinsic *, 2> DIIClones; + for (auto User : DbgUsers) { + // A dbg.declare instruction should not be cloned, since there can only be + // one per variable fragment. It should be left in the original place + // because the sunk instruction is not an alloca (otherwise we could not be + // here). + if (User->getParent() != SrcBlock || updateDbgDeclare(User)) + continue; + + DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); + LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); + } + + // Perform salvaging without the clones, then sink the clones. + if (!DIIClones.empty()) { + salvageDebugInfoForDbgValues(*I, DbgUsers); + for (auto &DIIClone : DIIClones) { + DIIClone->insertBefore(&*InsertPos); + LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); + } + } + + return true; +} + +bool InstCombinerImpl::run() { + while (!Worklist.isEmpty()) { + // Walk deferred instructions in reverse order, and push them to the + // worklist, which means they'll end up popped from the worklist in-order. + while (Instruction *I = Worklist.popDeferred()) { + // Check to see if we can DCE the instruction. We do this already here to + // reduce the number of uses and thus allow other folds to trigger. + // Note that eraseInstFromFunction() may push additional instructions on + // the deferred worklist, so this will DCE whole instruction chains. + if (isInstructionTriviallyDead(I, &TLI)) { + eraseInstFromFunction(*I); + ++NumDeadInst; + continue; + } + + Worklist.push(I); + } + + Instruction *I = Worklist.removeOne(); + if (I == nullptr) continue; // skip null values. + + // Check to see if we can DCE the instruction. + if (isInstructionTriviallyDead(I, &TLI)) { + eraseInstFromFunction(*I); + ++NumDeadInst; + continue; + } + + if (!DebugCounter::shouldExecute(VisitCounter)) + continue; + + // Instruction isn't dead, see if we can constant propagate it. + if (!I->use_empty() && + (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { + if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { + LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I + << '\n'); + + // Add operands to the worklist. + replaceInstUsesWith(*I, C); + ++NumConstProp; + if (isInstructionTriviallyDead(I, &TLI)) + eraseInstFromFunction(*I); + MadeIRChange = true; + continue; + } + } + + // See if we can trivially sink this instruction to its user if we can + // prove that the successor is not executed more frequently than our block. + if (EnableCodeSinking) + if (Use *SingleUse = I->getSingleUndroppableUse()) { + BasicBlock *BB = I->getParent(); + Instruction *UserInst = cast<Instruction>(SingleUse->getUser()); + BasicBlock *UserParent; + + // Get the block the use occurs in. + if (PHINode *PN = dyn_cast<PHINode>(UserInst)) + UserParent = PN->getIncomingBlock(*SingleUse); + else + UserParent = UserInst->getParent(); + + // Try sinking to another block. If that block is unreachable, then do + // not bother. SimplifyCFG should handle it. + if (UserParent != BB && DT.isReachableFromEntry(UserParent)) { + // See if the user is one of our successors that has only one + // predecessor, so that we don't have to split the critical edge. + bool ShouldSink = UserParent->getUniquePredecessor() == BB; + // Another option where we can sink is a block that ends with a + // terminator that does not pass control to other block (such as + // return or unreachable). In this case: + // - I dominates the User (by SSA form); + // - the User will be executed at most once. + // So sinking I down to User is always profitable or neutral. + if (!ShouldSink) { + auto *Term = UserParent->getTerminator(); + ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term); + } + if (ShouldSink) { + assert(DT.dominates(BB, UserParent) && + "Dominance relation broken?"); + // Okay, the CFG is simple enough, try to sink this instruction. + if (TryToSinkInstruction(I, UserParent)) { + LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); + MadeIRChange = true; + // We'll add uses of the sunk instruction below, but since sinking + // can expose opportunities for it's *operands* add them to the + // worklist + for (Use &U : I->operands()) + if (Instruction *OpI = dyn_cast<Instruction>(U.get())) + Worklist.push(OpI); + } + } + } + } + + // Now that we have an instruction, try combining it to simplify it. + Builder.SetInsertPoint(I); + Builder.CollectMetadataToCopy( + I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); + +#ifndef NDEBUG + std::string OrigI; +#endif + LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); + LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); + + if (Instruction *Result = visit(*I)) { + ++NumCombined; + // Should we replace the old instruction with a new one? + if (Result != I) { + LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' + << " New = " << *Result << '\n'); + + Result->copyMetadata(*I, + {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); + // Everything uses the new instruction now. + I->replaceAllUsesWith(Result); + + // Move the name to the new instruction first. + Result->takeName(I); + + // Insert the new instruction into the basic block... + BasicBlock *InstParent = I->getParent(); + BasicBlock::iterator InsertPos = I->getIterator(); + + // Are we replace a PHI with something that isn't a PHI, or vice versa? + if (isa<PHINode>(Result) != isa<PHINode>(I)) { + // We need to fix up the insertion point. + if (isa<PHINode>(I)) // PHI -> Non-PHI + InsertPos = InstParent->getFirstInsertionPt(); + else // Non-PHI -> PHI + InsertPos = InstParent->getFirstNonPHI()->getIterator(); + } + + InstParent->getInstList().insert(InsertPos, Result); + + // Push the new instruction and any users onto the worklist. + Worklist.pushUsersToWorkList(*Result); + Worklist.push(Result); + + eraseInstFromFunction(*I); + } else { + LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' + << " New = " << *I << '\n'); + + // If the instruction was modified, it's possible that it is now dead. + // if so, remove it. + if (isInstructionTriviallyDead(I, &TLI)) { + eraseInstFromFunction(*I); + } else { + Worklist.pushUsersToWorkList(*I); + Worklist.push(I); + } + } + MadeIRChange = true; + } + } + + Worklist.zap(); + return MadeIRChange; +} + +// Track the scopes used by !alias.scope and !noalias. In a function, a +// @llvm.experimental.noalias.scope.decl is only useful if that scope is used +// by both sets. If not, the declaration of the scope can be safely omitted. +// The MDNode of the scope can be omitted as well for the instructions that are +// part of this function. We do not do that at this point, as this might become +// too time consuming to do. +class AliasScopeTracker { + SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; + SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; + +public: + void analyse(Instruction *I) { + // This seems to be faster than checking 'mayReadOrWriteMemory()'. + if (!I->hasMetadataOtherThanDebugLoc()) + return; + + auto Track = [](Metadata *ScopeList, auto &Container) { + const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); + if (!MDScopeList || !Container.insert(MDScopeList).second) + return; + for (auto &MDOperand : MDScopeList->operands()) + if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) + Container.insert(MDScope); + }; + + Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); + Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); + } + + bool isNoAliasScopeDeclDead(Instruction *Inst) { + NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); + if (!Decl) + return false; + + assert(Decl->use_empty() && + "llvm.experimental.noalias.scope.decl in use ?"); + const MDNode *MDSL = Decl->getScopeList(); + assert(MDSL->getNumOperands() == 1 && + "llvm.experimental.noalias.scope should refer to a single scope"); + auto &MDOperand = MDSL->getOperand(0); + if (auto *MD = dyn_cast<MDNode>(MDOperand)) + return !UsedAliasScopesAndLists.contains(MD) || + !UsedNoAliasScopesAndLists.contains(MD); + + // Not an MDNode ? throw away. + return true; + } +}; + +/// Populate the IC worklist from a function, by walking it in depth-first +/// order and adding all reachable code to the worklist. +/// +/// This has a couple of tricks to make the code faster and more powerful. In +/// particular, we constant fold and DCE instructions as we go, to avoid adding +/// them to the worklist (this significantly speeds up instcombine on code where +/// many instructions are dead or constant). Additionally, if we find a branch +/// whose condition is a known constant, we only visit the reachable successors. +static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, + const TargetLibraryInfo *TLI, + InstCombineWorklist &ICWorklist) { + bool MadeIRChange = false; + SmallPtrSet<BasicBlock *, 32> Visited; + SmallVector<BasicBlock*, 256> Worklist; + Worklist.push_back(&F.front()); + + SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; + DenseMap<Constant *, Constant *> FoldedConstants; + AliasScopeTracker SeenAliasScopes; + + do { + BasicBlock *BB = Worklist.pop_back_val(); + + // We have now visited this block! If we've already been here, ignore it. + if (!Visited.insert(BB).second) + continue; + + for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { + Instruction *Inst = &*BBI++; + + // ConstantProp instruction if trivially constant. + if (!Inst->use_empty() && + (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) + if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { + LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst + << '\n'); + Inst->replaceAllUsesWith(C); + ++NumConstProp; + if (isInstructionTriviallyDead(Inst, TLI)) + Inst->eraseFromParent(); + MadeIRChange = true; + continue; + } + + // See if we can constant fold its operands. + for (Use &U : Inst->operands()) { + if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) + continue; + + auto *C = cast<Constant>(U); + Constant *&FoldRes = FoldedConstants[C]; + if (!FoldRes) + FoldRes = ConstantFoldConstant(C, DL, TLI); + + if (FoldRes != C) { + LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst + << "\n Old = " << *C + << "\n New = " << *FoldRes << '\n'); + U = FoldRes; + MadeIRChange = true; + } + } + + // Skip processing debug and pseudo intrinsics in InstCombine. Processing + // these call instructions consumes non-trivial amount of time and + // provides no value for the optimization. + if (!Inst->isDebugOrPseudoInst()) { + InstrsForInstCombineWorklist.push_back(Inst); + SeenAliasScopes.analyse(Inst); + } + } + + // Recursively visit successors. If this is a branch or switch on a + // constant, only visit the reachable successor. + Instruction *TI = BB->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { + bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); + BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); + Worklist.push_back(ReachableBB); + continue; + } + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { + Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); + continue; + } + } + + append_range(Worklist, successors(TI)); + } while (!Worklist.empty()); + + // Remove instructions inside unreachable blocks. This prevents the + // instcombine code from having to deal with some bad special cases, and + // reduces use counts of instructions. + for (BasicBlock &BB : F) { + if (Visited.count(&BB)) + continue; + + unsigned NumDeadInstInBB; + unsigned NumDeadDbgInstInBB; + std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = + removeAllNonTerminatorAndEHPadInstructions(&BB); + + MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; + NumDeadInst += NumDeadInstInBB; + } + + // Once we've found all of the instructions to add to instcombine's worklist, + // add them in reverse order. This way instcombine will visit from the top + // of the function down. This jives well with the way that it adds all uses + // of instructions to the worklist after doing a transformation, thus avoiding + // some N^2 behavior in pathological cases. + ICWorklist.reserve(InstrsForInstCombineWorklist.size()); + for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) { + // DCE instruction if trivially dead. As we iterate in reverse program + // order here, we will clean up whole chains of dead instructions. + if (isInstructionTriviallyDead(Inst, TLI) || + SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { + ++NumDeadInst; + LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); + salvageDebugInfo(*Inst); + Inst->eraseFromParent(); + MadeIRChange = true; + continue; + } + + ICWorklist.push(Inst); + } + + return MadeIRChange; +} + +static bool combineInstructionsOverFunction( + Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, + AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, + DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, + ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) { + auto &DL = F.getParent()->getDataLayout(); + MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue()); + + /// Builder - This is an IRBuilder that automatically inserts new + /// instructions into the worklist when they are created. + IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( + F.getContext(), TargetFolder(DL), + IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { + Worklist.add(I); + if (match(I, m_Intrinsic<Intrinsic::assume>())) + AC.registerAssumption(cast<CallInst>(I)); + })); + + // Lower dbg.declare intrinsics otherwise their value may be clobbered + // by instcombiner. + bool MadeIRChange = false; + if (ShouldLowerDbgDeclare) + MadeIRChange = LowerDbgDeclare(F); + + // Iterate while there is work to do. + unsigned Iteration = 0; + while (true) { + ++NumWorklistIterations; + ++Iteration; + + if (Iteration > InfiniteLoopDetectionThreshold) { + report_fatal_error( + "Instruction Combining seems stuck in an infinite loop after " + + Twine(InfiniteLoopDetectionThreshold) + " iterations."); + } + + if (Iteration > MaxIterations) { + LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations + << " on " << F.getName() + << " reached; stopping before reaching a fixpoint\n"); + break; + } + + LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " + << F.getName() << "\n"); + + MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); + + InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, + ORE, BFI, PSI, DL, LI); + IC.MaxArraySizeForCombine = MaxArraySize; + + if (!IC.run()) + break; + + MadeIRChange = true; + } + + return MadeIRChange; +} + +InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {} + +InstCombinePass::InstCombinePass(unsigned MaxIterations) + : MaxIterations(MaxIterations) {} + +PreservedAnalyses InstCombinePass::run(Function &F, + FunctionAnalysisManager &AM) { + auto &AC = AM.getResult<AssumptionAnalysis>(F); + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); + auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); + auto &TTI = AM.getResult<TargetIRAnalysis>(F); + + auto *LI = AM.getCachedResult<LoopAnalysis>(F); + + auto *AA = &AM.getResult<AAManager>(F); + auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); + ProfileSummaryInfo *PSI = + MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); + auto *BFI = (PSI && PSI->hasProfileSummary()) ? + &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; + + if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, + BFI, PSI, MaxIterations, LI)) + // No changes, all analyses are preserved. + return PreservedAnalyses::all(); + + // Mark all the analyses that instcombine updates as preserved. + PreservedAnalyses PA; + PA.preserveSet<CFGAnalyses>(); + PA.preserve<AAManager>(); + PA.preserve<BasicAA>(); + PA.preserve<GlobalsAA>(); + return PA; +} + +void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<AAResultsWrapperPass>(); + AU.addPreserved<BasicAAWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.addRequired<ProfileSummaryInfoWrapperPass>(); + LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); +} + +bool InstructionCombiningPass::runOnFunction(Function &F) { + if (skipFunction(F)) + return false; + + // Required analyses. + auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + + // Optional analyses. + auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); + auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; + ProfileSummaryInfo *PSI = + &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); + BlockFrequencyInfo *BFI = + (PSI && PSI->hasProfileSummary()) ? + &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : + nullptr; + + return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, + BFI, PSI, MaxIterations, LI); +} + +char InstructionCombiningPass::ID = 0; + +InstructionCombiningPass::InstructionCombiningPass() + : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) { + initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); +} + +InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations) + : FunctionPass(ID), MaxIterations(MaxIterations) { + initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); +} + +INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", + "Combine redundant instructions", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", + "Combine redundant instructions", false, false) + +// Initialization Routines +void llvm::initializeInstCombine(PassRegistry &Registry) { + initializeInstructionCombiningPassPass(Registry); +} + +void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { + initializeInstructionCombiningPassPass(*unwrap(R)); +} + +FunctionPass *llvm::createInstructionCombiningPass() { + return new InstructionCombiningPass(); +} + +FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) { + return new InstructionCombiningPass(MaxIterations); +} + +void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { + unwrap(PM)->add(createInstructionCombiningPass()); +} |