aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp4135
1 files changed, 4135 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
new file mode 100644
index 000000000000..828fd49524ec
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -0,0 +1,4135 @@
+//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// InstructionCombining - Combine instructions to form fewer, simple
+// instructions. This pass does not modify the CFG. This pass is where
+// algebraic simplification happens.
+//
+// This pass combines things like:
+// %Y = add i32 %X, 1
+// %Z = add i32 %Y, 1
+// into:
+// %Z = add i32 %X, 2
+//
+// This is a simple worklist driven algorithm.
+//
+// This pass guarantees that the following canonicalizations are performed on
+// the program:
+// 1. If a binary operator has a constant operand, it is moved to the RHS
+// 2. Bitwise operators with constant operands are always grouped so that
+// shifts are performed first, then or's, then and's, then xor's.
+// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
+// 4. All cmp instructions on boolean values are replaced with logical ops
+// 5. add X, X is represented as (X*2) => (X << 1)
+// 6. Multiplies with a power-of-two constant argument are transformed into
+// shifts.
+// ... etc.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm-c/Initialization.h"
+#include "llvm-c/Transforms/InstCombine.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/TargetFolder.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LegacyPassManager.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CBindingWrapping.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DebugCounter.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/InstCombine/InstCombine.h"
+#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <memory>
+#include <string>
+#include <utility>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+STATISTIC(NumWorklistIterations,
+ "Number of instruction combining iterations performed");
+
+STATISTIC(NumCombined , "Number of insts combined");
+STATISTIC(NumConstProp, "Number of constant folds");
+STATISTIC(NumDeadInst , "Number of dead inst eliminated");
+STATISTIC(NumSunkInst , "Number of instructions sunk");
+STATISTIC(NumExpand, "Number of expansions");
+STATISTIC(NumFactor , "Number of factorizations");
+STATISTIC(NumReassoc , "Number of reassociations");
+DEBUG_COUNTER(VisitCounter, "instcombine-visit",
+ "Controls which instructions are visited");
+
+// FIXME: these limits eventually should be as low as 2.
+static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
+#ifndef NDEBUG
+static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
+#else
+static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
+#endif
+
+static cl::opt<bool>
+EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
+ cl::init(true));
+
+static cl::opt<unsigned> LimitMaxIterations(
+ "instcombine-max-iterations",
+ cl::desc("Limit the maximum number of instruction combining iterations"),
+ cl::init(InstCombineDefaultMaxIterations));
+
+static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
+ "instcombine-infinite-loop-threshold",
+ cl::desc("Number of instruction combining iterations considered an "
+ "infinite loop"),
+ cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
+
+static cl::opt<unsigned>
+MaxArraySize("instcombine-maxarray-size", cl::init(1024),
+ cl::desc("Maximum array size considered when doing a combine"));
+
+// FIXME: Remove this flag when it is no longer necessary to convert
+// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
+// increases variable availability at the cost of accuracy. Variables that
+// cannot be promoted by mem2reg or SROA will be described as living in memory
+// for their entire lifetime. However, passes like DSE and instcombine can
+// delete stores to the alloca, leading to misleading and inaccurate debug
+// information. This flag can be removed when those passes are fixed.
+static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
+ cl::Hidden, cl::init(true));
+
+Optional<Instruction *>
+InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
+ // Handle target specific intrinsics
+ if (II.getCalledFunction()->isTargetIntrinsic()) {
+ return TTI.instCombineIntrinsic(*this, II);
+ }
+ return None;
+}
+
+Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
+ IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
+ bool &KnownBitsComputed) {
+ // Handle target specific intrinsics
+ if (II.getCalledFunction()->isTargetIntrinsic()) {
+ return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
+ KnownBitsComputed);
+ }
+ return None;
+}
+
+Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
+ IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
+ APInt &UndefElts3,
+ std::function<void(Instruction *, unsigned, APInt, APInt &)>
+ SimplifyAndSetOp) {
+ // Handle target specific intrinsics
+ if (II.getCalledFunction()->isTargetIntrinsic()) {
+ return TTI.simplifyDemandedVectorEltsIntrinsic(
+ *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
+ SimplifyAndSetOp);
+ }
+ return None;
+}
+
+Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
+ return llvm::EmitGEPOffset(&Builder, DL, GEP);
+}
+
+/// Return true if it is desirable to convert an integer computation from a
+/// given bit width to a new bit width.
+/// We don't want to convert from a legal to an illegal type or from a smaller
+/// to a larger illegal type. A width of '1' is always treated as a legal type
+/// because i1 is a fundamental type in IR, and there are many specialized
+/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
+/// legal to convert to, in order to open up more combining opportunities.
+/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
+/// from frontend languages.
+bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
+ unsigned ToWidth) const {
+ bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
+ bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
+
+ // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
+ // shrink types, to prevent infinite loops.
+ if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
+ return true;
+
+ // If this is a legal integer from type, and the result would be an illegal
+ // type, don't do the transformation.
+ if (FromLegal && !ToLegal)
+ return false;
+
+ // Otherwise, if both are illegal, do not increase the size of the result. We
+ // do allow things like i160 -> i64, but not i64 -> i160.
+ if (!FromLegal && !ToLegal && ToWidth > FromWidth)
+ return false;
+
+ return true;
+}
+
+/// Return true if it is desirable to convert a computation from 'From' to 'To'.
+/// We don't want to convert from a legal to an illegal type or from a smaller
+/// to a larger illegal type. i1 is always treated as a legal type because it is
+/// a fundamental type in IR, and there are many specialized optimizations for
+/// i1 types.
+bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
+ // TODO: This could be extended to allow vectors. Datalayout changes might be
+ // needed to properly support that.
+ if (!From->isIntegerTy() || !To->isIntegerTy())
+ return false;
+
+ unsigned FromWidth = From->getPrimitiveSizeInBits();
+ unsigned ToWidth = To->getPrimitiveSizeInBits();
+ return shouldChangeType(FromWidth, ToWidth);
+}
+
+// Return true, if No Signed Wrap should be maintained for I.
+// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
+// where both B and C should be ConstantInts, results in a constant that does
+// not overflow. This function only handles the Add and Sub opcodes. For
+// all other opcodes, the function conservatively returns false.
+static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
+ auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
+ if (!OBO || !OBO->hasNoSignedWrap())
+ return false;
+
+ // We reason about Add and Sub Only.
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
+ return false;
+
+ const APInt *BVal, *CVal;
+ if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
+ return false;
+
+ bool Overflow = false;
+ if (Opcode == Instruction::Add)
+ (void)BVal->sadd_ov(*CVal, Overflow);
+ else
+ (void)BVal->ssub_ov(*CVal, Overflow);
+
+ return !Overflow;
+}
+
+static bool hasNoUnsignedWrap(BinaryOperator &I) {
+ auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
+ return OBO && OBO->hasNoUnsignedWrap();
+}
+
+static bool hasNoSignedWrap(BinaryOperator &I) {
+ auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
+ return OBO && OBO->hasNoSignedWrap();
+}
+
+/// Conservatively clears subclassOptionalData after a reassociation or
+/// commutation. We preserve fast-math flags when applicable as they can be
+/// preserved.
+static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
+ FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
+ if (!FPMO) {
+ I.clearSubclassOptionalData();
+ return;
+ }
+
+ FastMathFlags FMF = I.getFastMathFlags();
+ I.clearSubclassOptionalData();
+ I.setFastMathFlags(FMF);
+}
+
+/// Combine constant operands of associative operations either before or after a
+/// cast to eliminate one of the associative operations:
+/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
+/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
+static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
+ InstCombinerImpl &IC) {
+ auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
+ if (!Cast || !Cast->hasOneUse())
+ return false;
+
+ // TODO: Enhance logic for other casts and remove this check.
+ auto CastOpcode = Cast->getOpcode();
+ if (CastOpcode != Instruction::ZExt)
+ return false;
+
+ // TODO: Enhance logic for other BinOps and remove this check.
+ if (!BinOp1->isBitwiseLogicOp())
+ return false;
+
+ auto AssocOpcode = BinOp1->getOpcode();
+ auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
+ if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
+ return false;
+
+ Constant *C1, *C2;
+ if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
+ !match(BinOp2->getOperand(1), m_Constant(C2)))
+ return false;
+
+ // TODO: This assumes a zext cast.
+ // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
+ // to the destination type might lose bits.
+
+ // Fold the constants together in the destination type:
+ // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
+ Type *DestTy = C1->getType();
+ Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
+ Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
+ IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
+ IC.replaceOperand(*BinOp1, 1, FoldedC);
+ return true;
+}
+
+/// This performs a few simplifications for operators that are associative or
+/// commutative:
+///
+/// Commutative operators:
+///
+/// 1. Order operands such that they are listed from right (least complex) to
+/// left (most complex). This puts constants before unary operators before
+/// binary operators.
+///
+/// Associative operators:
+///
+/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+///
+/// Associative and commutative operators:
+///
+/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+/// if C1 and C2 are constants.
+bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ bool Changed = false;
+
+ do {
+ // Order operands such that they are listed from right (least complex) to
+ // left (most complex). This puts constants before unary operators before
+ // binary operators.
+ if (I.isCommutative() && getComplexity(I.getOperand(0)) <
+ getComplexity(I.getOperand(1)))
+ Changed = !I.swapOperands();
+
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
+
+ if (I.isAssociative()) {
+ // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "B op C" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
+ // It simplifies to V. Form "A op V".
+ replaceOperand(I, 0, A);
+ replaceOperand(I, 1, V);
+ bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
+ bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
+
+ // Conservatively clear all optional flags since they may not be
+ // preserved by the reassociation. Reset nsw/nuw based on the above
+ // analysis.
+ ClearSubclassDataAfterReassociation(I);
+
+ // Note: this is only valid because SimplifyBinOp doesn't look at
+ // the operands to Op0.
+ if (IsNUW)
+ I.setHasNoUnsignedWrap(true);
+
+ if (IsNSW)
+ I.setHasNoSignedWrap(true);
+
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "A op B" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
+ // It simplifies to V. Form "V op C".
+ replaceOperand(I, 0, V);
+ replaceOperand(I, 1, C);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+ }
+
+ if (I.isAssociative() && I.isCommutative()) {
+ if (simplifyAssocCastAssoc(&I, *this)) {
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+
+ // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
+ // It simplifies to V. Form "V op B".
+ replaceOperand(I, 0, V);
+ replaceOperand(I, 1, B);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
+ // It simplifies to V. Form "B op V".
+ replaceOperand(I, 0, B);
+ replaceOperand(I, 1, V);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+ // if C1 and C2 are constants.
+ Value *A, *B;
+ Constant *C1, *C2;
+ if (Op0 && Op1 &&
+ Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
+ match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
+ match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
+ bool IsNUW = hasNoUnsignedWrap(I) &&
+ hasNoUnsignedWrap(*Op0) &&
+ hasNoUnsignedWrap(*Op1);
+ BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
+ BinaryOperator::CreateNUW(Opcode, A, B) :
+ BinaryOperator::Create(Opcode, A, B);
+
+ if (isa<FPMathOperator>(NewBO)) {
+ FastMathFlags Flags = I.getFastMathFlags();
+ Flags &= Op0->getFastMathFlags();
+ Flags &= Op1->getFastMathFlags();
+ NewBO->setFastMathFlags(Flags);
+ }
+ InsertNewInstWith(NewBO, I);
+ NewBO->takeName(Op1);
+ replaceOperand(I, 0, NewBO);
+ replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+ if (IsNUW)
+ I.setHasNoUnsignedWrap(true);
+
+ Changed = true;
+ continue;
+ }
+ }
+
+ // No further simplifications.
+ return Changed;
+ } while (true);
+}
+
+/// Return whether "X LOp (Y ROp Z)" is always equal to
+/// "(X LOp Y) ROp (X LOp Z)".
+static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ // X & (Y | Z) <--> (X & Y) | (X & Z)
+ // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
+ if (LOp == Instruction::And)
+ return ROp == Instruction::Or || ROp == Instruction::Xor;
+
+ // X | (Y & Z) <--> (X | Y) & (X | Z)
+ if (LOp == Instruction::Or)
+ return ROp == Instruction::And;
+
+ // X * (Y + Z) <--> (X * Y) + (X * Z)
+ // X * (Y - Z) <--> (X * Y) - (X * Z)
+ if (LOp == Instruction::Mul)
+ return ROp == Instruction::Add || ROp == Instruction::Sub;
+
+ return false;
+}
+
+/// Return whether "(X LOp Y) ROp Z" is always equal to
+/// "(X ROp Z) LOp (Y ROp Z)".
+static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ if (Instruction::isCommutative(ROp))
+ return leftDistributesOverRight(ROp, LOp);
+
+ // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
+ return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
+
+ // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
+ // but this requires knowing that the addition does not overflow and other
+ // such subtleties.
+}
+
+/// This function returns identity value for given opcode, which can be used to
+/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
+static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
+ if (isa<Constant>(V))
+ return nullptr;
+
+ return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
+}
+
+/// This function predicates factorization using distributive laws. By default,
+/// it just returns the 'Op' inputs. But for special-cases like
+/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
+/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
+/// allow more factorization opportunities.
+static Instruction::BinaryOps
+getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
+ Value *&LHS, Value *&RHS) {
+ assert(Op && "Expected a binary operator");
+ LHS = Op->getOperand(0);
+ RHS = Op->getOperand(1);
+ if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
+ Constant *C;
+ if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
+ // X << C --> X * (1 << C)
+ RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
+ return Instruction::Mul;
+ }
+ // TODO: We can add other conversions e.g. shr => div etc.
+ }
+ return Op->getOpcode();
+}
+
+/// This tries to simplify binary operations by factorizing out common terms
+/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
+Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
+ Instruction::BinaryOps InnerOpcode,
+ Value *A, Value *B, Value *C,
+ Value *D) {
+ assert(A && B && C && D && "All values must be provided");
+
+ Value *V = nullptr;
+ Value *SimplifiedInst = nullptr;
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
+
+ // Does "X op' Y" always equal "Y op' X"?
+ bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
+
+ // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
+ if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
+ // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
+ // commutative case, "(A op' B) op (C op' A)"?
+ if (A == C || (InnerCommutative && A == D)) {
+ if (A != C)
+ std::swap(C, D);
+ // Consider forming "A op' (B op D)".
+ // If "B op D" simplifies then it can be formed with no cost.
+ V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
+ // If "B op D" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && LHS->hasOneUse() && RHS->hasOneUse())
+ V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
+ if (V) {
+ SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
+ }
+ }
+
+ // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
+ if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
+ // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
+ // commutative case, "(A op' B) op (B op' D)"?
+ if (B == D || (InnerCommutative && B == C)) {
+ if (B != D)
+ std::swap(C, D);
+ // Consider forming "(A op C) op' B".
+ // If "A op C" simplifies then it can be formed with no cost.
+ V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
+
+ // If "A op C" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && LHS->hasOneUse() && RHS->hasOneUse())
+ V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
+ if (V) {
+ SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
+ }
+ }
+
+ if (SimplifiedInst) {
+ ++NumFactor;
+ SimplifiedInst->takeName(&I);
+
+ // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
+ if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
+ bool HasNSW = false;
+ bool HasNUW = false;
+ if (isa<OverflowingBinaryOperator>(&I)) {
+ HasNSW = I.hasNoSignedWrap();
+ HasNUW = I.hasNoUnsignedWrap();
+ }
+
+ if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
+ HasNSW &= LOBO->hasNoSignedWrap();
+ HasNUW &= LOBO->hasNoUnsignedWrap();
+ }
+
+ if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
+ HasNSW &= ROBO->hasNoSignedWrap();
+ HasNUW &= ROBO->hasNoUnsignedWrap();
+ }
+
+ if (TopLevelOpcode == Instruction::Add &&
+ InnerOpcode == Instruction::Mul) {
+ // We can propagate 'nsw' if we know that
+ // %Y = mul nsw i16 %X, C
+ // %Z = add nsw i16 %Y, %X
+ // =>
+ // %Z = mul nsw i16 %X, C+1
+ //
+ // iff C+1 isn't INT_MIN
+ const APInt *CInt;
+ if (match(V, m_APInt(CInt))) {
+ if (!CInt->isMinSignedValue())
+ BO->setHasNoSignedWrap(HasNSW);
+ }
+
+ // nuw can be propagated with any constant or nuw value.
+ BO->setHasNoUnsignedWrap(HasNUW);
+ }
+ }
+ }
+ }
+ return SimplifiedInst;
+}
+
+/// This tries to simplify binary operations which some other binary operation
+/// distributes over either by factorizing out common terms
+/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
+/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
+/// Returns the simplified value, or null if it didn't simplify.
+Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
+ Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
+
+ {
+ // Factorization.
+ Value *A, *B, *C, *D;
+ Instruction::BinaryOps LHSOpcode, RHSOpcode;
+ if (Op0)
+ LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
+ if (Op1)
+ RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
+
+ // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
+ // a common term.
+ if (Op0 && Op1 && LHSOpcode == RHSOpcode)
+ if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
+ return V;
+
+ // The instruction has the form "(A op' B) op (C)". Try to factorize common
+ // term.
+ if (Op0)
+ if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
+ if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
+ return V;
+
+ // The instruction has the form "(B) op (C op' D)". Try to factorize common
+ // term.
+ if (Op1)
+ if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
+ if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
+ return V;
+ }
+
+ // Expansion.
+ if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
+ // The instruction has the form "(A op' B) op C". See if expanding it out
+ // to "(A op C) op' (B op C)" results in simplifications.
+ Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
+ Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
+
+ // Disable the use of undef because it's not safe to distribute undef.
+ auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
+ Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
+ Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
+
+ // Do "A op C" and "B op C" both simplify?
+ if (L && R) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ C = Builder.CreateBinOp(InnerOpcode, L, R);
+ C->takeName(&I);
+ return C;
+ }
+
+ // Does "A op C" simplify to the identity value for the inner opcode?
+ if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
+ // They do! Return "B op C".
+ ++NumExpand;
+ C = Builder.CreateBinOp(TopLevelOpcode, B, C);
+ C->takeName(&I);
+ return C;
+ }
+
+ // Does "B op C" simplify to the identity value for the inner opcode?
+ if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
+ // They do! Return "A op C".
+ ++NumExpand;
+ C = Builder.CreateBinOp(TopLevelOpcode, A, C);
+ C->takeName(&I);
+ return C;
+ }
+ }
+
+ if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
+ // The instruction has the form "A op (B op' C)". See if expanding it out
+ // to "(A op B) op' (A op C)" results in simplifications.
+ Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
+ Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
+
+ // Disable the use of undef because it's not safe to distribute undef.
+ auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
+ Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
+ Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
+
+ // Do "A op B" and "A op C" both simplify?
+ if (L && R) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ A = Builder.CreateBinOp(InnerOpcode, L, R);
+ A->takeName(&I);
+ return A;
+ }
+
+ // Does "A op B" simplify to the identity value for the inner opcode?
+ if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
+ // They do! Return "A op C".
+ ++NumExpand;
+ A = Builder.CreateBinOp(TopLevelOpcode, A, C);
+ A->takeName(&I);
+ return A;
+ }
+
+ // Does "A op C" simplify to the identity value for the inner opcode?
+ if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
+ // They do! Return "A op B".
+ ++NumExpand;
+ A = Builder.CreateBinOp(TopLevelOpcode, A, B);
+ A->takeName(&I);
+ return A;
+ }
+ }
+
+ return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
+}
+
+Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
+ Value *LHS,
+ Value *RHS) {
+ Value *A, *B, *C, *D, *E, *F;
+ bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
+ bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
+ if (!LHSIsSelect && !RHSIsSelect)
+ return nullptr;
+
+ FastMathFlags FMF;
+ BuilderTy::FastMathFlagGuard Guard(Builder);
+ if (isa<FPMathOperator>(&I)) {
+ FMF = I.getFastMathFlags();
+ Builder.setFastMathFlags(FMF);
+ }
+
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ SimplifyQuery Q = SQ.getWithInstruction(&I);
+
+ Value *Cond, *True = nullptr, *False = nullptr;
+ if (LHSIsSelect && RHSIsSelect && A == D) {
+ // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
+ Cond = A;
+ True = SimplifyBinOp(Opcode, B, E, FMF, Q);
+ False = SimplifyBinOp(Opcode, C, F, FMF, Q);
+
+ if (LHS->hasOneUse() && RHS->hasOneUse()) {
+ if (False && !True)
+ True = Builder.CreateBinOp(Opcode, B, E);
+ else if (True && !False)
+ False = Builder.CreateBinOp(Opcode, C, F);
+ }
+ } else if (LHSIsSelect && LHS->hasOneUse()) {
+ // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
+ Cond = A;
+ True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
+ False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
+ } else if (RHSIsSelect && RHS->hasOneUse()) {
+ // X op (D ? E : F) -> D ? (X op E) : (X op F)
+ Cond = D;
+ True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
+ False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
+ }
+
+ if (!True || !False)
+ return nullptr;
+
+ Value *SI = Builder.CreateSelect(Cond, True, False);
+ SI->takeName(&I);
+ return SI;
+}
+
+/// Freely adapt every user of V as-if V was changed to !V.
+/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
+void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
+ for (User *U : I->users()) {
+ switch (cast<Instruction>(U)->getOpcode()) {
+ case Instruction::Select: {
+ auto *SI = cast<SelectInst>(U);
+ SI->swapValues();
+ SI->swapProfMetadata();
+ break;
+ }
+ case Instruction::Br:
+ cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
+ break;
+ case Instruction::Xor:
+ replaceInstUsesWith(cast<Instruction>(*U), I);
+ break;
+ default:
+ llvm_unreachable("Got unexpected user - out of sync with "
+ "canFreelyInvertAllUsersOf() ?");
+ }
+ }
+}
+
+/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
+/// constant zero (which is the 'negate' form).
+Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
+ Value *NegV;
+ if (match(V, m_Neg(m_Value(NegV))))
+ return NegV;
+
+ // Constants can be considered to be negated values if they can be folded.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(V))
+ return ConstantExpr::getNeg(C);
+
+ if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
+ if (C->getType()->getElementType()->isIntegerTy())
+ return ConstantExpr::getNeg(C);
+
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
+ for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
+ Constant *Elt = CV->getAggregateElement(i);
+ if (!Elt)
+ return nullptr;
+
+ if (isa<UndefValue>(Elt))
+ continue;
+
+ if (!isa<ConstantInt>(Elt))
+ return nullptr;
+ }
+ return ConstantExpr::getNeg(CV);
+ }
+
+ return nullptr;
+}
+
+static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
+ InstCombiner::BuilderTy &Builder) {
+ if (auto *Cast = dyn_cast<CastInst>(&I))
+ return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
+
+ assert(I.isBinaryOp() && "Unexpected opcode for select folding");
+
+ // Figure out if the constant is the left or the right argument.
+ bool ConstIsRHS = isa<Constant>(I.getOperand(1));
+ Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
+
+ if (auto *SOC = dyn_cast<Constant>(SO)) {
+ if (ConstIsRHS)
+ return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
+ return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
+ }
+
+ Value *Op0 = SO, *Op1 = ConstOperand;
+ if (!ConstIsRHS)
+ std::swap(Op0, Op1);
+
+ auto *BO = cast<BinaryOperator>(&I);
+ Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
+ SO->getName() + ".op");
+ auto *FPInst = dyn_cast<Instruction>(RI);
+ if (FPInst && isa<FPMathOperator>(FPInst))
+ FPInst->copyFastMathFlags(BO);
+ return RI;
+}
+
+Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
+ SelectInst *SI) {
+ // Don't modify shared select instructions.
+ if (!SI->hasOneUse())
+ return nullptr;
+
+ Value *TV = SI->getTrueValue();
+ Value *FV = SI->getFalseValue();
+ if (!(isa<Constant>(TV) || isa<Constant>(FV)))
+ return nullptr;
+
+ // Bool selects with constant operands can be folded to logical ops.
+ if (SI->getType()->isIntOrIntVectorTy(1))
+ return nullptr;
+
+ // If it's a bitcast involving vectors, make sure it has the same number of
+ // elements on both sides.
+ if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
+ VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
+ VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
+
+ // Verify that either both or neither are vectors.
+ if ((SrcTy == nullptr) != (DestTy == nullptr))
+ return nullptr;
+
+ // If vectors, verify that they have the same number of elements.
+ if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
+ return nullptr;
+ }
+
+ // Test if a CmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
+ if (CI->hasOneUse()) {
+ Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
+
+ // FIXME: This is a hack to avoid infinite looping with min/max patterns.
+ // We have to ensure that vector constants that only differ with
+ // undef elements are treated as equivalent.
+ auto areLooselyEqual = [](Value *A, Value *B) {
+ if (A == B)
+ return true;
+
+ // Test for vector constants.
+ Constant *ConstA, *ConstB;
+ if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
+ return false;
+
+ // TODO: Deal with FP constants?
+ if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
+ return false;
+
+ // Compare for equality including undefs as equal.
+ auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
+ const APInt *C;
+ return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
+ };
+
+ if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
+ (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
+ return nullptr;
+ }
+ }
+
+ Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
+ Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
+ return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
+}
+
+static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
+ InstCombiner::BuilderTy &Builder) {
+ bool ConstIsRHS = isa<Constant>(I->getOperand(1));
+ Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
+
+ if (auto *InC = dyn_cast<Constant>(InV)) {
+ if (ConstIsRHS)
+ return ConstantExpr::get(I->getOpcode(), InC, C);
+ return ConstantExpr::get(I->getOpcode(), C, InC);
+ }
+
+ Value *Op0 = InV, *Op1 = C;
+ if (!ConstIsRHS)
+ std::swap(Op0, Op1);
+
+ Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
+ auto *FPInst = dyn_cast<Instruction>(RI);
+ if (FPInst && isa<FPMathOperator>(FPInst))
+ FPInst->copyFastMathFlags(I);
+ return RI;
+}
+
+Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
+ unsigned NumPHIValues = PN->getNumIncomingValues();
+ if (NumPHIValues == 0)
+ return nullptr;
+
+ // We normally only transform phis with a single use. However, if a PHI has
+ // multiple uses and they are all the same operation, we can fold *all* of the
+ // uses into the PHI.
+ if (!PN->hasOneUse()) {
+ // Walk the use list for the instruction, comparing them to I.
+ for (User *U : PN->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ if (UI != &I && !I.isIdenticalTo(UI))
+ return nullptr;
+ }
+ // Otherwise, we can replace *all* users with the new PHI we form.
+ }
+
+ // Check to see if all of the operands of the PHI are simple constants
+ // (constantint/constantfp/undef). If there is one non-constant value,
+ // remember the BB it is in. If there is more than one or if *it* is a PHI,
+ // bail out. We don't do arbitrary constant expressions here because moving
+ // their computation can be expensive without a cost model.
+ BasicBlock *NonConstBB = nullptr;
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InVal = PN->getIncomingValue(i);
+ // If I is a freeze instruction, count undef as a non-constant.
+ if (match(InVal, m_ImmConstant()) &&
+ (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
+ continue;
+
+ if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
+ if (NonConstBB) return nullptr; // More than one non-const value.
+
+ NonConstBB = PN->getIncomingBlock(i);
+
+ // If the InVal is an invoke at the end of the pred block, then we can't
+ // insert a computation after it without breaking the edge.
+ if (isa<InvokeInst>(InVal))
+ if (cast<Instruction>(InVal)->getParent() == NonConstBB)
+ return nullptr;
+
+ // If the incoming non-constant value is in I's block, we will remove one
+ // instruction, but insert another equivalent one, leading to infinite
+ // instcombine.
+ if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
+ return nullptr;
+ }
+
+ // If there is exactly one non-constant value, we can insert a copy of the
+ // operation in that block. However, if this is a critical edge, we would be
+ // inserting the computation on some other paths (e.g. inside a loop). Only
+ // do this if the pred block is unconditionally branching into the phi block.
+ // Also, make sure that the pred block is not dead code.
+ if (NonConstBB != nullptr) {
+ BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
+ if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
+ return nullptr;
+ }
+
+ // Okay, we can do the transformation: create the new PHI node.
+ PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
+ InsertNewInstBefore(NewPN, *PN);
+ NewPN->takeName(PN);
+
+ // If we are going to have to insert a new computation, do so right before the
+ // predecessor's terminator.
+ if (NonConstBB)
+ Builder.SetInsertPoint(NonConstBB->getTerminator());
+
+ // Next, add all of the operands to the PHI.
+ if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
+ // We only currently try to fold the condition of a select when it is a phi,
+ // not the true/false values.
+ Value *TrueV = SI->getTrueValue();
+ Value *FalseV = SI->getFalseValue();
+ BasicBlock *PhiTransBB = PN->getParent();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ BasicBlock *ThisBB = PN->getIncomingBlock(i);
+ Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *InV = nullptr;
+ // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
+ // even if currently isNullValue gives false.
+ Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
+ // For vector constants, we cannot use isNullValue to fold into
+ // FalseVInPred versus TrueVInPred. When we have individual nonzero
+ // elements in the vector, we will incorrectly fold InC to
+ // `TrueVInPred`.
+ if (InC && isa<ConstantInt>(InC))
+ InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
+ else {
+ // Generate the select in the same block as PN's current incoming block.
+ // Note: ThisBB need not be the NonConstBB because vector constants
+ // which are constants by definition are handled here.
+ // FIXME: This can lead to an increase in IR generation because we might
+ // generate selects for vector constant phi operand, that could not be
+ // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
+ // non-vector phis, this transformation was always profitable because
+ // the select would be generated exactly once in the NonConstBB.
+ Builder.SetInsertPoint(ThisBB->getTerminator());
+ InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
+ FalseVInPred, "phi.sel");
+ }
+ NewPN->addIncoming(InV, ThisBB);
+ }
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
+ Constant *C = cast<Constant>(I.getOperand(1));
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = nullptr;
+ if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
+ else
+ InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
+ C, "phi.cmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
+ Builder);
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else if (isa<FreezeInst>(&I)) {
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV;
+ if (NonConstBB == PN->getIncomingBlock(i))
+ InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
+ else
+ InV = PN->getIncomingValue(i);
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else {
+ CastInst *CI = cast<CastInst>(&I);
+ Type *RetTy = CI->getType();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
+ else
+ InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
+ I.getType(), "phi.cast");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ }
+
+ for (User *U : make_early_inc_range(PN->users())) {
+ Instruction *User = cast<Instruction>(U);
+ if (User == &I) continue;
+ replaceInstUsesWith(*User, NewPN);
+ eraseInstFromFunction(*User);
+ }
+ return replaceInstUsesWith(I, NewPN);
+}
+
+Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
+ if (!isa<Constant>(I.getOperand(1)))
+ return nullptr;
+
+ if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
+ if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
+ return NewSel;
+ } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
+ if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
+ return NewPhi;
+ }
+ return nullptr;
+}
+
+/// Given a pointer type and a constant offset, determine whether or not there
+/// is a sequence of GEP indices into the pointed type that will land us at the
+/// specified offset. If so, fill them into NewIndices and return the resultant
+/// element type, otherwise return null.
+Type *
+InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
+ SmallVectorImpl<Value *> &NewIndices) {
+ Type *Ty = PtrTy->getElementType();
+ if (!Ty->isSized())
+ return nullptr;
+
+ // Start with the index over the outer type. Note that the type size
+ // might be zero (even if the offset isn't zero) if the indexed type
+ // is something like [0 x {int, int}]
+ Type *IndexTy = DL.getIndexType(PtrTy);
+ int64_t FirstIdx = 0;
+ if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
+ FirstIdx = Offset/TySize;
+ Offset -= FirstIdx*TySize;
+
+ // Handle hosts where % returns negative instead of values [0..TySize).
+ if (Offset < 0) {
+ --FirstIdx;
+ Offset += TySize;
+ assert(Offset >= 0);
+ }
+ assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
+ }
+
+ NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
+
+ // Index into the types. If we fail, set OrigBase to null.
+ while (Offset) {
+ // Indexing into tail padding between struct/array elements.
+ if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
+ return nullptr;
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ assert(Offset < (int64_t)SL->getSizeInBytes() &&
+ "Offset must stay within the indexed type");
+
+ unsigned Elt = SL->getElementContainingOffset(Offset);
+ NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+ Elt));
+
+ Offset -= SL->getElementOffset(Elt);
+ Ty = STy->getElementType(Elt);
+ } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+ uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
+ assert(EltSize && "Cannot index into a zero-sized array");
+ NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
+ Offset %= EltSize;
+ Ty = AT->getElementType();
+ } else {
+ // Otherwise, we can't index into the middle of this atomic type, bail.
+ return nullptr;
+ }
+ }
+
+ return Ty;
+}
+
+static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
+ // If this GEP has only 0 indices, it is the same pointer as
+ // Src. If Src is not a trivial GEP too, don't combine
+ // the indices.
+ if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
+ !Src.hasOneUse())
+ return false;
+ return true;
+}
+
+/// Return a value X such that Val = X * Scale, or null if none.
+/// If the multiplication is known not to overflow, then NoSignedWrap is set.
+Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
+ assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
+ assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
+ Scale.getBitWidth() && "Scale not compatible with value!");
+
+ // If Val is zero or Scale is one then Val = Val * Scale.
+ if (match(Val, m_Zero()) || Scale == 1) {
+ NoSignedWrap = true;
+ return Val;
+ }
+
+ // If Scale is zero then it does not divide Val.
+ if (Scale.isMinValue())
+ return nullptr;
+
+ // Look through chains of multiplications, searching for a constant that is
+ // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
+ // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
+ // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
+ // down from Val:
+ //
+ // Val = M1 * X || Analysis starts here and works down
+ // M1 = M2 * Y || Doesn't descend into terms with more
+ // M2 = Z * 4 \/ than one use
+ //
+ // Then to modify a term at the bottom:
+ //
+ // Val = M1 * X
+ // M1 = Z * Y || Replaced M2 with Z
+ //
+ // Then to work back up correcting nsw flags.
+
+ // Op - the term we are currently analyzing. Starts at Val then drills down.
+ // Replaced with its descaled value before exiting from the drill down loop.
+ Value *Op = Val;
+
+ // Parent - initially null, but after drilling down notes where Op came from.
+ // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
+ // 0'th operand of Val.
+ std::pair<Instruction *, unsigned> Parent;
+
+ // Set if the transform requires a descaling at deeper levels that doesn't
+ // overflow.
+ bool RequireNoSignedWrap = false;
+
+ // Log base 2 of the scale. Negative if not a power of 2.
+ int32_t logScale = Scale.exactLogBase2();
+
+ for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // If Op is a constant divisible by Scale then descale to the quotient.
+ APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
+ APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
+ if (!Remainder.isMinValue())
+ // Not divisible by Scale.
+ return nullptr;
+ // Replace with the quotient in the parent.
+ Op = ConstantInt::get(CI->getType(), Quotient);
+ NoSignedWrap = true;
+ break;
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
+ if (BO->getOpcode() == Instruction::Mul) {
+ // Multiplication.
+ NoSignedWrap = BO->hasNoSignedWrap();
+ if (RequireNoSignedWrap && !NoSignedWrap)
+ return nullptr;
+
+ // There are three cases for multiplication: multiplication by exactly
+ // the scale, multiplication by a constant different to the scale, and
+ // multiplication by something else.
+ Value *LHS = BO->getOperand(0);
+ Value *RHS = BO->getOperand(1);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ // Multiplication by a constant.
+ if (CI->getValue() == Scale) {
+ // Multiplication by exactly the scale, replace the multiplication
+ // by its left-hand side in the parent.
+ Op = LHS;
+ break;
+ }
+
+ // Otherwise drill down into the constant.
+ if (!Op->hasOneUse())
+ return nullptr;
+
+ Parent = std::make_pair(BO, 1);
+ continue;
+ }
+
+ // Multiplication by something else. Drill down into the left-hand side
+ // since that's where the reassociate pass puts the good stuff.
+ if (!Op->hasOneUse())
+ return nullptr;
+
+ Parent = std::make_pair(BO, 0);
+ continue;
+ }
+
+ if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
+ isa<ConstantInt>(BO->getOperand(1))) {
+ // Multiplication by a power of 2.
+ NoSignedWrap = BO->hasNoSignedWrap();
+ if (RequireNoSignedWrap && !NoSignedWrap)
+ return nullptr;
+
+ Value *LHS = BO->getOperand(0);
+ int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
+ getLimitedValue(Scale.getBitWidth());
+ // Op = LHS << Amt.
+
+ if (Amt == logScale) {
+ // Multiplication by exactly the scale, replace the multiplication
+ // by its left-hand side in the parent.
+ Op = LHS;
+ break;
+ }
+ if (Amt < logScale || !Op->hasOneUse())
+ return nullptr;
+
+ // Multiplication by more than the scale. Reduce the multiplying amount
+ // by the scale in the parent.
+ Parent = std::make_pair(BO, 1);
+ Op = ConstantInt::get(BO->getType(), Amt - logScale);
+ break;
+ }
+ }
+
+ if (!Op->hasOneUse())
+ return nullptr;
+
+ if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
+ if (Cast->getOpcode() == Instruction::SExt) {
+ // Op is sign-extended from a smaller type, descale in the smaller type.
+ unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
+ APInt SmallScale = Scale.trunc(SmallSize);
+ // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
+ // descale Op as (sext Y) * Scale. In order to have
+ // sext (Y * SmallScale) = (sext Y) * Scale
+ // some conditions need to hold however: SmallScale must sign-extend to
+ // Scale and the multiplication Y * SmallScale should not overflow.
+ if (SmallScale.sext(Scale.getBitWidth()) != Scale)
+ // SmallScale does not sign-extend to Scale.
+ return nullptr;
+ assert(SmallScale.exactLogBase2() == logScale);
+ // Require that Y * SmallScale must not overflow.
+ RequireNoSignedWrap = true;
+
+ // Drill down through the cast.
+ Parent = std::make_pair(Cast, 0);
+ Scale = SmallScale;
+ continue;
+ }
+
+ if (Cast->getOpcode() == Instruction::Trunc) {
+ // Op is truncated from a larger type, descale in the larger type.
+ // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
+ // trunc (Y * sext Scale) = (trunc Y) * Scale
+ // always holds. However (trunc Y) * Scale may overflow even if
+ // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
+ // from this point up in the expression (see later).
+ if (RequireNoSignedWrap)
+ return nullptr;
+
+ // Drill down through the cast.
+ unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
+ Parent = std::make_pair(Cast, 0);
+ Scale = Scale.sext(LargeSize);
+ if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
+ logScale = -1;
+ assert(Scale.exactLogBase2() == logScale);
+ continue;
+ }
+ }
+
+ // Unsupported expression, bail out.
+ return nullptr;
+ }
+
+ // If Op is zero then Val = Op * Scale.
+ if (match(Op, m_Zero())) {
+ NoSignedWrap = true;
+ return Op;
+ }
+
+ // We know that we can successfully descale, so from here on we can safely
+ // modify the IR. Op holds the descaled version of the deepest term in the
+ // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
+ // not to overflow.
+
+ if (!Parent.first)
+ // The expression only had one term.
+ return Op;
+
+ // Rewrite the parent using the descaled version of its operand.
+ assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
+ assert(Op != Parent.first->getOperand(Parent.second) &&
+ "Descaling was a no-op?");
+ replaceOperand(*Parent.first, Parent.second, Op);
+ Worklist.push(Parent.first);
+
+ // Now work back up the expression correcting nsw flags. The logic is based
+ // on the following observation: if X * Y is known not to overflow as a signed
+ // multiplication, and Y is replaced by a value Z with smaller absolute value,
+ // then X * Z will not overflow as a signed multiplication either. As we work
+ // our way up, having NoSignedWrap 'true' means that the descaled value at the
+ // current level has strictly smaller absolute value than the original.
+ Instruction *Ancestor = Parent.first;
+ do {
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
+ // If the multiplication wasn't nsw then we can't say anything about the
+ // value of the descaled multiplication, and we have to clear nsw flags
+ // from this point on up.
+ bool OpNoSignedWrap = BO->hasNoSignedWrap();
+ NoSignedWrap &= OpNoSignedWrap;
+ if (NoSignedWrap != OpNoSignedWrap) {
+ BO->setHasNoSignedWrap(NoSignedWrap);
+ Worklist.push(Ancestor);
+ }
+ } else if (Ancestor->getOpcode() == Instruction::Trunc) {
+ // The fact that the descaled input to the trunc has smaller absolute
+ // value than the original input doesn't tell us anything useful about
+ // the absolute values of the truncations.
+ NoSignedWrap = false;
+ }
+ assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
+ "Failed to keep proper track of nsw flags while drilling down?");
+
+ if (Ancestor == Val)
+ // Got to the top, all done!
+ return Val;
+
+ // Move up one level in the expression.
+ assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
+ Ancestor = Ancestor->user_back();
+ } while (true);
+}
+
+Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
+ if (!isa<VectorType>(Inst.getType()))
+ return nullptr;
+
+ BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
+ Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
+ assert(cast<VectorType>(LHS->getType())->getElementCount() ==
+ cast<VectorType>(Inst.getType())->getElementCount());
+ assert(cast<VectorType>(RHS->getType())->getElementCount() ==
+ cast<VectorType>(Inst.getType())->getElementCount());
+
+ // If both operands of the binop are vector concatenations, then perform the
+ // narrow binop on each pair of the source operands followed by concatenation
+ // of the results.
+ Value *L0, *L1, *R0, *R1;
+ ArrayRef<int> Mask;
+ if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
+ match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
+ LHS->hasOneUse() && RHS->hasOneUse() &&
+ cast<ShuffleVectorInst>(LHS)->isConcat() &&
+ cast<ShuffleVectorInst>(RHS)->isConcat()) {
+ // This transform does not have the speculative execution constraint as
+ // below because the shuffle is a concatenation. The new binops are
+ // operating on exactly the same elements as the existing binop.
+ // TODO: We could ease the mask requirement to allow different undef lanes,
+ // but that requires an analysis of the binop-with-undef output value.
+ Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
+ if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
+ BO->copyIRFlags(&Inst);
+ Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
+ if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
+ BO->copyIRFlags(&Inst);
+ return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
+ }
+
+ // It may not be safe to reorder shuffles and things like div, urem, etc.
+ // because we may trap when executing those ops on unknown vector elements.
+ // See PR20059.
+ if (!isSafeToSpeculativelyExecute(&Inst))
+ return nullptr;
+
+ auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
+ Value *XY = Builder.CreateBinOp(Opcode, X, Y);
+ if (auto *BO = dyn_cast<BinaryOperator>(XY))
+ BO->copyIRFlags(&Inst);
+ return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
+ };
+
+ // If both arguments of the binary operation are shuffles that use the same
+ // mask and shuffle within a single vector, move the shuffle after the binop.
+ Value *V1, *V2;
+ if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
+ match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
+ V1->getType() == V2->getType() &&
+ (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
+ // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
+ return createBinOpShuffle(V1, V2, Mask);
+ }
+
+ // If both arguments of a commutative binop are select-shuffles that use the
+ // same mask with commuted operands, the shuffles are unnecessary.
+ if (Inst.isCommutative() &&
+ match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
+ match(RHS,
+ m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
+ auto *LShuf = cast<ShuffleVectorInst>(LHS);
+ auto *RShuf = cast<ShuffleVectorInst>(RHS);
+ // TODO: Allow shuffles that contain undefs in the mask?
+ // That is legal, but it reduces undef knowledge.
+ // TODO: Allow arbitrary shuffles by shuffling after binop?
+ // That might be legal, but we have to deal with poison.
+ if (LShuf->isSelect() &&
+ !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
+ RShuf->isSelect() &&
+ !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
+ // Example:
+ // LHS = shuffle V1, V2, <0, 5, 6, 3>
+ // RHS = shuffle V2, V1, <0, 5, 6, 3>
+ // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
+ Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
+ NewBO->copyIRFlags(&Inst);
+ return NewBO;
+ }
+ }
+
+ // If one argument is a shuffle within one vector and the other is a constant,
+ // try moving the shuffle after the binary operation. This canonicalization
+ // intends to move shuffles closer to other shuffles and binops closer to
+ // other binops, so they can be folded. It may also enable demanded elements
+ // transforms.
+ Constant *C;
+ auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
+ if (InstVTy &&
+ match(&Inst,
+ m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
+ m_ImmConstant(C))) &&
+ cast<FixedVectorType>(V1->getType())->getNumElements() <=
+ InstVTy->getNumElements()) {
+ assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
+ "Shuffle should not change scalar type");
+
+ // Find constant NewC that has property:
+ // shuffle(NewC, ShMask) = C
+ // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
+ // reorder is not possible. A 1-to-1 mapping is not required. Example:
+ // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
+ bool ConstOp1 = isa<Constant>(RHS);
+ ArrayRef<int> ShMask = Mask;
+ unsigned SrcVecNumElts =
+ cast<FixedVectorType>(V1->getType())->getNumElements();
+ UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
+ SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
+ bool MayChange = true;
+ unsigned NumElts = InstVTy->getNumElements();
+ for (unsigned I = 0; I < NumElts; ++I) {
+ Constant *CElt = C->getAggregateElement(I);
+ if (ShMask[I] >= 0) {
+ assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
+ Constant *NewCElt = NewVecC[ShMask[I]];
+ // Bail out if:
+ // 1. The constant vector contains a constant expression.
+ // 2. The shuffle needs an element of the constant vector that can't
+ // be mapped to a new constant vector.
+ // 3. This is a widening shuffle that copies elements of V1 into the
+ // extended elements (extending with undef is allowed).
+ if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
+ I >= SrcVecNumElts) {
+ MayChange = false;
+ break;
+ }
+ NewVecC[ShMask[I]] = CElt;
+ }
+ // If this is a widening shuffle, we must be able to extend with undef
+ // elements. If the original binop does not produce an undef in the high
+ // lanes, then this transform is not safe.
+ // Similarly for undef lanes due to the shuffle mask, we can only
+ // transform binops that preserve undef.
+ // TODO: We could shuffle those non-undef constant values into the
+ // result by using a constant vector (rather than an undef vector)
+ // as operand 1 of the new binop, but that might be too aggressive
+ // for target-independent shuffle creation.
+ if (I >= SrcVecNumElts || ShMask[I] < 0) {
+ Constant *MaybeUndef =
+ ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
+ : ConstantExpr::get(Opcode, CElt, UndefScalar);
+ if (!isa<UndefValue>(MaybeUndef)) {
+ MayChange = false;
+ break;
+ }
+ }
+ }
+ if (MayChange) {
+ Constant *NewC = ConstantVector::get(NewVecC);
+ // It may not be safe to execute a binop on a vector with undef elements
+ // because the entire instruction can be folded to undef or create poison
+ // that did not exist in the original code.
+ if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
+ NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
+
+ // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
+ // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
+ Value *NewLHS = ConstOp1 ? V1 : NewC;
+ Value *NewRHS = ConstOp1 ? NewC : V1;
+ return createBinOpShuffle(NewLHS, NewRHS, Mask);
+ }
+ }
+
+ // Try to reassociate to sink a splat shuffle after a binary operation.
+ if (Inst.isAssociative() && Inst.isCommutative()) {
+ // Canonicalize shuffle operand as LHS.
+ if (isa<ShuffleVectorInst>(RHS))
+ std::swap(LHS, RHS);
+
+ Value *X;
+ ArrayRef<int> MaskC;
+ int SplatIndex;
+ BinaryOperator *BO;
+ if (!match(LHS,
+ m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
+ !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
+ X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
+ BO->getOpcode() != Opcode)
+ return nullptr;
+
+ // FIXME: This may not be safe if the analysis allows undef elements. By
+ // moving 'Y' before the splat shuffle, we are implicitly assuming
+ // that it is not undef/poison at the splat index.
+ Value *Y, *OtherOp;
+ if (isSplatValue(BO->getOperand(0), SplatIndex)) {
+ Y = BO->getOperand(0);
+ OtherOp = BO->getOperand(1);
+ } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
+ Y = BO->getOperand(1);
+ OtherOp = BO->getOperand(0);
+ } else {
+ return nullptr;
+ }
+
+ // X and Y are splatted values, so perform the binary operation on those
+ // values followed by a splat followed by the 2nd binary operation:
+ // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
+ Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
+ SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
+ Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
+ Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
+
+ // Intersect FMF on both new binops. Other (poison-generating) flags are
+ // dropped to be safe.
+ if (isa<FPMathOperator>(R)) {
+ R->copyFastMathFlags(&Inst);
+ R->andIRFlags(BO);
+ }
+ if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
+ NewInstBO->copyIRFlags(R);
+ return R;
+ }
+
+ return nullptr;
+}
+
+/// Try to narrow the width of a binop if at least 1 operand is an extend of
+/// of a value. This requires a potentially expensive known bits check to make
+/// sure the narrow op does not overflow.
+Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
+ // We need at least one extended operand.
+ Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
+
+ // If this is a sub, we swap the operands since we always want an extension
+ // on the RHS. The LHS can be an extension or a constant.
+ if (BO.getOpcode() == Instruction::Sub)
+ std::swap(Op0, Op1);
+
+ Value *X;
+ bool IsSext = match(Op0, m_SExt(m_Value(X)));
+ if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
+ return nullptr;
+
+ // If both operands are the same extension from the same source type and we
+ // can eliminate at least one (hasOneUse), this might work.
+ CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
+ Value *Y;
+ if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
+ cast<Operator>(Op1)->getOpcode() == CastOpc &&
+ (Op0->hasOneUse() || Op1->hasOneUse()))) {
+ // If that did not match, see if we have a suitable constant operand.
+ // Truncating and extending must produce the same constant.
+ Constant *WideC;
+ if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
+ return nullptr;
+ Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
+ if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
+ return nullptr;
+ Y = NarrowC;
+ }
+
+ // Swap back now that we found our operands.
+ if (BO.getOpcode() == Instruction::Sub)
+ std::swap(X, Y);
+
+ // Both operands have narrow versions. Last step: the math must not overflow
+ // in the narrow width.
+ if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
+ return nullptr;
+
+ // bo (ext X), (ext Y) --> ext (bo X, Y)
+ // bo (ext X), C --> ext (bo X, C')
+ Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
+ if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
+ if (IsSext)
+ NewBinOp->setHasNoSignedWrap();
+ else
+ NewBinOp->setHasNoUnsignedWrap();
+ }
+ return CastInst::Create(CastOpc, NarrowBO, BO.getType());
+}
+
+static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
+ // At least one GEP must be inbounds.
+ if (!GEP1.isInBounds() && !GEP2.isInBounds())
+ return false;
+
+ return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
+ (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
+}
+
+/// Thread a GEP operation with constant indices through the constant true/false
+/// arms of a select.
+static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
+ InstCombiner::BuilderTy &Builder) {
+ if (!GEP.hasAllConstantIndices())
+ return nullptr;
+
+ Instruction *Sel;
+ Value *Cond;
+ Constant *TrueC, *FalseC;
+ if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
+ !match(Sel,
+ m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
+ return nullptr;
+
+ // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
+ // Propagate 'inbounds' and metadata from existing instructions.
+ // Note: using IRBuilder to create the constants for efficiency.
+ SmallVector<Value *, 4> IndexC(GEP.indices());
+ bool IsInBounds = GEP.isInBounds();
+ Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
+ : Builder.CreateGEP(TrueC, IndexC);
+ Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
+ : Builder.CreateGEP(FalseC, IndexC);
+ return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
+}
+
+Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ SmallVector<Value *, 8> Ops(GEP.operands());
+ Type *GEPType = GEP.getType();
+ Type *GEPEltType = GEP.getSourceElementType();
+ bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
+ if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
+ return replaceInstUsesWith(GEP, V);
+
+ // For vector geps, use the generic demanded vector support.
+ // Skip if GEP return type is scalable. The number of elements is unknown at
+ // compile-time.
+ if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
+ auto VWidth = GEPFVTy->getNumElements();
+ APInt UndefElts(VWidth, 0);
+ APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
+ if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
+ UndefElts)) {
+ if (V != &GEP)
+ return replaceInstUsesWith(GEP, V);
+ return &GEP;
+ }
+
+ // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
+ // possible (decide on canonical form for pointer broadcast), 3) exploit
+ // undef elements to decrease demanded bits
+ }
+
+ Value *PtrOp = GEP.getOperand(0);
+
+ // Eliminate unneeded casts for indices, and replace indices which displace
+ // by multiples of a zero size type with zero.
+ bool MadeChange = false;
+
+ // Index width may not be the same width as pointer width.
+ // Data layout chooses the right type based on supported integer types.
+ Type *NewScalarIndexTy =
+ DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
+ ++I, ++GTI) {
+ // Skip indices into struct types.
+ if (GTI.isStruct())
+ continue;
+
+ Type *IndexTy = (*I)->getType();
+ Type *NewIndexType =
+ IndexTy->isVectorTy()
+ ? VectorType::get(NewScalarIndexTy,
+ cast<VectorType>(IndexTy)->getElementCount())
+ : NewScalarIndexTy;
+
+ // If the element type has zero size then any index over it is equivalent
+ // to an index of zero, so replace it with zero if it is not zero already.
+ Type *EltTy = GTI.getIndexedType();
+ if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
+ if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
+ *I = Constant::getNullValue(NewIndexType);
+ MadeChange = true;
+ }
+
+ if (IndexTy != NewIndexType) {
+ // If we are using a wider index than needed for this platform, shrink
+ // it to what we need. If narrower, sign-extend it to what we need.
+ // This explicit cast can make subsequent optimizations more obvious.
+ *I = Builder.CreateIntCast(*I, NewIndexType, true);
+ MadeChange = true;
+ }
+ }
+ if (MadeChange)
+ return &GEP;
+
+ // Check to see if the inputs to the PHI node are getelementptr instructions.
+ if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
+ auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
+ if (!Op1)
+ return nullptr;
+
+ // Don't fold a GEP into itself through a PHI node. This can only happen
+ // through the back-edge of a loop. Folding a GEP into itself means that
+ // the value of the previous iteration needs to be stored in the meantime,
+ // thus requiring an additional register variable to be live, but not
+ // actually achieving anything (the GEP still needs to be executed once per
+ // loop iteration).
+ if (Op1 == &GEP)
+ return nullptr;
+
+ int DI = -1;
+
+ for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
+ auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
+ if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
+ return nullptr;
+
+ // As for Op1 above, don't try to fold a GEP into itself.
+ if (Op2 == &GEP)
+ return nullptr;
+
+ // Keep track of the type as we walk the GEP.
+ Type *CurTy = nullptr;
+
+ for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
+ if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
+ return nullptr;
+
+ if (Op1->getOperand(J) != Op2->getOperand(J)) {
+ if (DI == -1) {
+ // We have not seen any differences yet in the GEPs feeding the
+ // PHI yet, so we record this one if it is allowed to be a
+ // variable.
+
+ // The first two arguments can vary for any GEP, the rest have to be
+ // static for struct slots
+ if (J > 1) {
+ assert(CurTy && "No current type?");
+ if (CurTy->isStructTy())
+ return nullptr;
+ }
+
+ DI = J;
+ } else {
+ // The GEP is different by more than one input. While this could be
+ // extended to support GEPs that vary by more than one variable it
+ // doesn't make sense since it greatly increases the complexity and
+ // would result in an R+R+R addressing mode which no backend
+ // directly supports and would need to be broken into several
+ // simpler instructions anyway.
+ return nullptr;
+ }
+ }
+
+ // Sink down a layer of the type for the next iteration.
+ if (J > 0) {
+ if (J == 1) {
+ CurTy = Op1->getSourceElementType();
+ } else {
+ CurTy =
+ GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
+ }
+ }
+ }
+ }
+
+ // If not all GEPs are identical we'll have to create a new PHI node.
+ // Check that the old PHI node has only one use so that it will get
+ // removed.
+ if (DI != -1 && !PN->hasOneUse())
+ return nullptr;
+
+ auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
+ if (DI == -1) {
+ // All the GEPs feeding the PHI are identical. Clone one down into our
+ // BB so that it can be merged with the current GEP.
+ } else {
+ // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
+ // into the current block so it can be merged, and create a new PHI to
+ // set that index.
+ PHINode *NewPN;
+ {
+ IRBuilderBase::InsertPointGuard Guard(Builder);
+ Builder.SetInsertPoint(PN);
+ NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
+ PN->getNumOperands());
+ }
+
+ for (auto &I : PN->operands())
+ NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
+ PN->getIncomingBlock(I));
+
+ NewGEP->setOperand(DI, NewPN);
+ }
+
+ GEP.getParent()->getInstList().insert(
+ GEP.getParent()->getFirstInsertionPt(), NewGEP);
+ replaceOperand(GEP, 0, NewGEP);
+ PtrOp = NewGEP;
+ }
+
+ // Combine Indices - If the source pointer to this getelementptr instruction
+ // is a getelementptr instruction, combine the indices of the two
+ // getelementptr instructions into a single instruction.
+ if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
+ if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
+ return nullptr;
+
+ // Try to reassociate loop invariant GEP chains to enable LICM.
+ if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
+ Src->hasOneUse()) {
+ if (Loop *L = LI->getLoopFor(GEP.getParent())) {
+ Value *GO1 = GEP.getOperand(1);
+ Value *SO1 = Src->getOperand(1);
+ // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
+ // invariant: this breaks the dependence between GEPs and allows LICM
+ // to hoist the invariant part out of the loop.
+ if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
+ // We have to be careful here.
+ // We have something like:
+ // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
+ // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
+ // If we just swap idx & idx2 then we could inadvertantly
+ // change %src from a vector to a scalar, or vice versa.
+ // Cases:
+ // 1) %base a scalar & idx a scalar & idx2 a vector
+ // => Swapping idx & idx2 turns %src into a vector type.
+ // 2) %base a scalar & idx a vector & idx2 a scalar
+ // => Swapping idx & idx2 turns %src in a scalar type
+ // 3) %base, %idx, and %idx2 are scalars
+ // => %src & %gep are scalars
+ // => swapping idx & idx2 is safe
+ // 4) %base a vector
+ // => %src is a vector
+ // => swapping idx & idx2 is safe.
+ auto *SO0 = Src->getOperand(0);
+ auto *SO0Ty = SO0->getType();
+ if (!isa<VectorType>(GEPType) || // case 3
+ isa<VectorType>(SO0Ty)) { // case 4
+ Src->setOperand(1, GO1);
+ GEP.setOperand(1, SO1);
+ return &GEP;
+ } else {
+ // Case 1 or 2
+ // -- have to recreate %src & %gep
+ // put NewSrc at same location as %src
+ Builder.SetInsertPoint(cast<Instruction>(PtrOp));
+ auto *NewSrc = cast<GetElementPtrInst>(
+ Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
+ NewSrc->setIsInBounds(Src->isInBounds());
+ auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
+ NewGEP->setIsInBounds(GEP.isInBounds());
+ return NewGEP;
+ }
+ }
+ }
+ }
+
+ // Note that if our source is a gep chain itself then we wait for that
+ // chain to be resolved before we perform this transformation. This
+ // avoids us creating a TON of code in some cases.
+ if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
+ if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
+ return nullptr; // Wait until our source is folded to completion.
+
+ SmallVector<Value*, 8> Indices;
+
+ // Find out whether the last index in the source GEP is a sequential idx.
+ bool EndsWithSequential = false;
+ for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+ I != E; ++I)
+ EndsWithSequential = I.isSequential();
+
+ // Can we combine the two pointer arithmetics offsets?
+ if (EndsWithSequential) {
+ // Replace: gep (gep %P, long B), long A, ...
+ // With: T = long A+B; gep %P, T, ...
+ Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+ Value *GO1 = GEP.getOperand(1);
+
+ // If they aren't the same type, then the input hasn't been processed
+ // by the loop above yet (which canonicalizes sequential index types to
+ // intptr_t). Just avoid transforming this until the input has been
+ // normalized.
+ if (SO1->getType() != GO1->getType())
+ return nullptr;
+
+ Value *Sum =
+ SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
+ // Only do the combine when we are sure the cost after the
+ // merge is never more than that before the merge.
+ if (Sum == nullptr)
+ return nullptr;
+
+ // Update the GEP in place if possible.
+ if (Src->getNumOperands() == 2) {
+ GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
+ replaceOperand(GEP, 0, Src->getOperand(0));
+ replaceOperand(GEP, 1, Sum);
+ return &GEP;
+ }
+ Indices.append(Src->op_begin()+1, Src->op_end()-1);
+ Indices.push_back(Sum);
+ Indices.append(GEP.op_begin()+2, GEP.op_end());
+ } else if (isa<Constant>(*GEP.idx_begin()) &&
+ cast<Constant>(*GEP.idx_begin())->isNullValue() &&
+ Src->getNumOperands() != 1) {
+ // Otherwise we can do the fold if the first index of the GEP is a zero
+ Indices.append(Src->op_begin()+1, Src->op_end());
+ Indices.append(GEP.idx_begin()+1, GEP.idx_end());
+ }
+
+ if (!Indices.empty())
+ return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
+ ? GetElementPtrInst::CreateInBounds(
+ Src->getSourceElementType(), Src->getOperand(0), Indices,
+ GEP.getName())
+ : GetElementPtrInst::Create(Src->getSourceElementType(),
+ Src->getOperand(0), Indices,
+ GEP.getName());
+ }
+
+ // Skip if GEP source element type is scalable. The type alloc size is unknown
+ // at compile-time.
+ if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
+ unsigned AS = GEP.getPointerAddressSpace();
+ if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
+ DL.getIndexSizeInBits(AS)) {
+ uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
+
+ bool Matched = false;
+ uint64_t C;
+ Value *V = nullptr;
+ if (TyAllocSize == 1) {
+ V = GEP.getOperand(1);
+ Matched = true;
+ } else if (match(GEP.getOperand(1),
+ m_AShr(m_Value(V), m_ConstantInt(C)))) {
+ if (TyAllocSize == 1ULL << C)
+ Matched = true;
+ } else if (match(GEP.getOperand(1),
+ m_SDiv(m_Value(V), m_ConstantInt(C)))) {
+ if (TyAllocSize == C)
+ Matched = true;
+ }
+
+ if (Matched) {
+ // Canonicalize (gep i8* X, -(ptrtoint Y))
+ // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
+ // The GEP pattern is emitted by the SCEV expander for certain kinds of
+ // pointer arithmetic.
+ if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
+ Operator *Index = cast<Operator>(V);
+ Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
+ Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
+ return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
+ }
+ // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
+ // to (bitcast Y)
+ Value *Y;
+ if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
+ m_PtrToInt(m_Specific(GEP.getOperand(0))))))
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
+ }
+ }
+ }
+
+ // We do not handle pointer-vector geps here.
+ if (GEPType->isVectorTy())
+ return nullptr;
+
+ // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+ Value *StrippedPtr = PtrOp->stripPointerCasts();
+ PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
+
+ if (StrippedPtr != PtrOp) {
+ bool HasZeroPointerIndex = false;
+ Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
+
+ if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
+ HasZeroPointerIndex = C->isZero();
+
+ // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
+ // into : GEP [10 x i8]* X, i32 0, ...
+ //
+ // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
+ // into : GEP i8* X, ...
+ //
+ // This occurs when the program declares an array extern like "int X[];"
+ if (HasZeroPointerIndex) {
+ if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
+ // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == StrippedPtrEltTy) {
+ // -> GEP i8* X, ...
+ SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
+ GetElementPtrInst *Res = GetElementPtrInst::Create(
+ StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
+ Res->setIsInBounds(GEP.isInBounds());
+ if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
+ return Res;
+ // Insert Res, and create an addrspacecast.
+ // e.g.,
+ // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
+ // ->
+ // %0 = GEP i8 addrspace(1)* X, ...
+ // addrspacecast i8 addrspace(1)* %0 to i8*
+ return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
+ }
+
+ if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
+ // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == XATy->getElementType()) {
+ // -> GEP [10 x i8]* X, i32 0, ...
+ // At this point, we know that the cast source type is a pointer
+ // to an array of the same type as the destination pointer
+ // array. Because the array type is never stepped over (there
+ // is a leading zero) we can fold the cast into this GEP.
+ if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
+ GEP.setSourceElementType(XATy);
+ return replaceOperand(GEP, 0, StrippedPtr);
+ }
+ // Cannot replace the base pointer directly because StrippedPtr's
+ // address space is different. Instead, create a new GEP followed by
+ // an addrspacecast.
+ // e.g.,
+ // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
+ // i32 0, ...
+ // ->
+ // %0 = GEP [10 x i8] addrspace(1)* X, ...
+ // addrspacecast i8 addrspace(1)* %0 to i8*
+ SmallVector<Value *, 8> Idx(GEP.indices());
+ Value *NewGEP =
+ GEP.isInBounds()
+ ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
+ Idx, GEP.getName())
+ : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
+ GEP.getName());
+ return new AddrSpaceCastInst(NewGEP, GEPType);
+ }
+ }
+ }
+ } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
+ // Skip if GEP source element type is scalable. The type alloc size is
+ // unknown at compile-time.
+ // Transform things like: %t = getelementptr i32*
+ // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
+ // x i32]* %str, i32 0, i32 %V; bitcast
+ if (StrippedPtrEltTy->isArrayTy() &&
+ DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
+ DL.getTypeAllocSize(GEPEltType)) {
+ Type *IdxType = DL.getIndexType(GEPType);
+ Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
+ Value *NewGEP =
+ GEP.isInBounds()
+ ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
+ GEP.getName())
+ : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
+ GEP.getName());
+
+ // V and GEP are both pointer types --> BitCast
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
+ }
+
+ // Transform things like:
+ // %V = mul i64 %N, 4
+ // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
+ // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
+ if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
+ // Check that changing the type amounts to dividing the index by a scale
+ // factor.
+ uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
+ uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
+ if (ResSize && SrcSize % ResSize == 0) {
+ Value *Idx = GEP.getOperand(1);
+ unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
+ uint64_t Scale = SrcSize / ResSize;
+
+ // Earlier transforms ensure that the index has the right type
+ // according to Data Layout, which considerably simplifies the
+ // logic by eliminating implicit casts.
+ assert(Idx->getType() == DL.getIndexType(GEPType) &&
+ "Index type does not match the Data Layout preferences");
+
+ bool NSW;
+ if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
+ // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
+ // If the multiplication NewIdx * Scale may overflow then the new
+ // GEP may not be "inbounds".
+ Value *NewGEP =
+ GEP.isInBounds() && NSW
+ ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
+ NewIdx, GEP.getName())
+ : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
+ GEP.getName());
+
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
+ GEPType);
+ }
+ }
+ }
+
+ // Similarly, transform things like:
+ // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
+ // (where tmp = 8*tmp2) into:
+ // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
+ if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
+ StrippedPtrEltTy->isArrayTy()) {
+ // Check that changing to the array element type amounts to dividing the
+ // index by a scale factor.
+ uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
+ uint64_t ArrayEltSize =
+ DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
+ .getFixedSize();
+ if (ResSize && ArrayEltSize % ResSize == 0) {
+ Value *Idx = GEP.getOperand(1);
+ unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
+ uint64_t Scale = ArrayEltSize / ResSize;
+
+ // Earlier transforms ensure that the index has the right type
+ // according to the Data Layout, which considerably simplifies
+ // the logic by eliminating implicit casts.
+ assert(Idx->getType() == DL.getIndexType(GEPType) &&
+ "Index type does not match the Data Layout preferences");
+
+ bool NSW;
+ if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
+ // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
+ // If the multiplication NewIdx * Scale may overflow then the new
+ // GEP may not be "inbounds".
+ Type *IndTy = DL.getIndexType(GEPType);
+ Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
+
+ Value *NewGEP =
+ GEP.isInBounds() && NSW
+ ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
+ Off, GEP.getName())
+ : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
+ GEP.getName());
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
+ GEPType);
+ }
+ }
+ }
+ }
+ }
+
+ // addrspacecast between types is canonicalized as a bitcast, then an
+ // addrspacecast. To take advantage of the below bitcast + struct GEP, look
+ // through the addrspacecast.
+ Value *ASCStrippedPtrOp = PtrOp;
+ if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
+ // X = bitcast A addrspace(1)* to B addrspace(1)*
+ // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
+ // Z = gep Y, <...constant indices...>
+ // Into an addrspacecasted GEP of the struct.
+ if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
+ ASCStrippedPtrOp = BC;
+ }
+
+ if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
+ Value *SrcOp = BCI->getOperand(0);
+ PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
+ Type *SrcEltType = SrcType->getElementType();
+
+ // GEP directly using the source operand if this GEP is accessing an element
+ // of a bitcasted pointer to vector or array of the same dimensions:
+ // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
+ // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
+ auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
+ const DataLayout &DL) {
+ auto *VecVTy = cast<FixedVectorType>(VecTy);
+ return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
+ ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
+ DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
+ };
+ if (GEP.getNumOperands() == 3 &&
+ ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
+ areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
+ (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
+ areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
+
+ // Create a new GEP here, as using `setOperand()` followed by
+ // `setSourceElementType()` won't actually update the type of the
+ // existing GEP Value. Causing issues if this Value is accessed when
+ // constructing an AddrSpaceCastInst
+ Value *NGEP =
+ GEP.isInBounds()
+ ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
+ : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
+ NGEP->takeName(&GEP);
+
+ // Preserve GEP address space to satisfy users
+ if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(NGEP, GEPType);
+
+ return replaceInstUsesWith(GEP, NGEP);
+ }
+
+ // See if we can simplify:
+ // X = bitcast A* to B*
+ // Y = gep X, <...constant indices...>
+ // into a gep of the original struct. This is important for SROA and alias
+ // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
+ unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
+ APInt Offset(OffsetBits, 0);
+ if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
+ // If this GEP instruction doesn't move the pointer, just replace the GEP
+ // with a bitcast of the real input to the dest type.
+ if (!Offset) {
+ // If the bitcast is of an allocation, and the allocation will be
+ // converted to match the type of the cast, don't touch this.
+ if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
+ // See if the bitcast simplifies, if so, don't nuke this GEP yet.
+ if (Instruction *I = visitBitCast(*BCI)) {
+ if (I != BCI) {
+ I->takeName(BCI);
+ BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
+ replaceInstUsesWith(*BCI, I);
+ }
+ return &GEP;
+ }
+ }
+
+ if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(SrcOp, GEPType);
+ return new BitCastInst(SrcOp, GEPType);
+ }
+
+ // Otherwise, if the offset is non-zero, we need to find out if there is a
+ // field at Offset in 'A's type. If so, we can pull the cast through the
+ // GEP.
+ SmallVector<Value*, 8> NewIndices;
+ if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
+ Value *NGEP =
+ GEP.isInBounds()
+ ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
+ : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
+
+ if (NGEP->getType() == GEPType)
+ return replaceInstUsesWith(GEP, NGEP);
+ NGEP->takeName(&GEP);
+
+ if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(NGEP, GEPType);
+ return new BitCastInst(NGEP, GEPType);
+ }
+ }
+ }
+
+ if (!GEP.isInBounds()) {
+ unsigned IdxWidth =
+ DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
+ APInt BasePtrOffset(IdxWidth, 0);
+ Value *UnderlyingPtrOp =
+ PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
+ BasePtrOffset);
+ if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
+ if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
+ BasePtrOffset.isNonNegative()) {
+ APInt AllocSize(
+ IdxWidth,
+ DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
+ if (BasePtrOffset.ule(AllocSize)) {
+ return GetElementPtrInst::CreateInBounds(
+ GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
+ GEP.getName());
+ }
+ }
+ }
+ }
+
+ if (Instruction *R = foldSelectGEP(GEP, Builder))
+ return R;
+
+ return nullptr;
+}
+
+static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
+ Instruction *AI) {
+ if (isa<ConstantPointerNull>(V))
+ return true;
+ if (auto *LI = dyn_cast<LoadInst>(V))
+ return isa<GlobalVariable>(LI->getPointerOperand());
+ // Two distinct allocations will never be equal.
+ // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
+ // through bitcasts of V can cause
+ // the result statement below to be true, even when AI and V (ex:
+ // i8* ->i32* ->i8* of AI) are the same allocations.
+ return isAllocLikeFn(V, TLI) && V != AI;
+}
+
+static bool isAllocSiteRemovable(Instruction *AI,
+ SmallVectorImpl<WeakTrackingVH> &Users,
+ const TargetLibraryInfo *TLI) {
+ SmallVector<Instruction*, 4> Worklist;
+ Worklist.push_back(AI);
+
+ do {
+ Instruction *PI = Worklist.pop_back_val();
+ for (User *U : PI->users()) {
+ Instruction *I = cast<Instruction>(U);
+ switch (I->getOpcode()) {
+ default:
+ // Give up the moment we see something we can't handle.
+ return false;
+
+ case Instruction::AddrSpaceCast:
+ case Instruction::BitCast:
+ case Instruction::GetElementPtr:
+ Users.emplace_back(I);
+ Worklist.push_back(I);
+ continue;
+
+ case Instruction::ICmp: {
+ ICmpInst *ICI = cast<ICmpInst>(I);
+ // We can fold eq/ne comparisons with null to false/true, respectively.
+ // We also fold comparisons in some conditions provided the alloc has
+ // not escaped (see isNeverEqualToUnescapedAlloc).
+ if (!ICI->isEquality())
+ return false;
+ unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
+ if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
+ return false;
+ Users.emplace_back(I);
+ continue;
+ }
+
+ case Instruction::Call:
+ // Ignore no-op and store intrinsics.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default:
+ return false;
+
+ case Intrinsic::memmove:
+ case Intrinsic::memcpy:
+ case Intrinsic::memset: {
+ MemIntrinsic *MI = cast<MemIntrinsic>(II);
+ if (MI->isVolatile() || MI->getRawDest() != PI)
+ return false;
+ LLVM_FALLTHROUGH;
+ }
+ case Intrinsic::assume:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ Users.emplace_back(I);
+ continue;
+ }
+ }
+
+ if (isFreeCall(I, TLI)) {
+ Users.emplace_back(I);
+ continue;
+ }
+ return false;
+
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(I);
+ if (SI->isVolatile() || SI->getPointerOperand() != PI)
+ return false;
+ Users.emplace_back(I);
+ continue;
+ }
+ }
+ llvm_unreachable("missing a return?");
+ }
+ } while (!Worklist.empty());
+ return true;
+}
+
+Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
+ // If we have a malloc call which is only used in any amount of comparisons to
+ // null and free calls, delete the calls and replace the comparisons with true
+ // or false as appropriate.
+
+ // This is based on the principle that we can substitute our own allocation
+ // function (which will never return null) rather than knowledge of the
+ // specific function being called. In some sense this can change the permitted
+ // outputs of a program (when we convert a malloc to an alloca, the fact that
+ // the allocation is now on the stack is potentially visible, for example),
+ // but we believe in a permissible manner.
+ SmallVector<WeakTrackingVH, 64> Users;
+
+ // If we are removing an alloca with a dbg.declare, insert dbg.value calls
+ // before each store.
+ SmallVector<DbgVariableIntrinsic *, 8> DVIs;
+ std::unique_ptr<DIBuilder> DIB;
+ if (isa<AllocaInst>(MI)) {
+ findDbgUsers(DVIs, &MI);
+ DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
+ }
+
+ if (isAllocSiteRemovable(&MI, Users, &TLI)) {
+ for (unsigned i = 0, e = Users.size(); i != e; ++i) {
+ // Lowering all @llvm.objectsize calls first because they may
+ // use a bitcast/GEP of the alloca we are removing.
+ if (!Users[i])
+ continue;
+
+ Instruction *I = cast<Instruction>(&*Users[i]);
+
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ if (II->getIntrinsicID() == Intrinsic::objectsize) {
+ Value *Result =
+ lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
+ replaceInstUsesWith(*I, Result);
+ eraseInstFromFunction(*I);
+ Users[i] = nullptr; // Skip examining in the next loop.
+ }
+ }
+ }
+ for (unsigned i = 0, e = Users.size(); i != e; ++i) {
+ if (!Users[i])
+ continue;
+
+ Instruction *I = cast<Instruction>(&*Users[i]);
+
+ if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
+ replaceInstUsesWith(*C,
+ ConstantInt::get(Type::getInt1Ty(C->getContext()),
+ C->isFalseWhenEqual()));
+ } else if (auto *SI = dyn_cast<StoreInst>(I)) {
+ for (auto *DVI : DVIs)
+ if (DVI->isAddressOfVariable())
+ ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
+ } else {
+ // Casts, GEP, or anything else: we're about to delete this instruction,
+ // so it can not have any valid uses.
+ replaceInstUsesWith(*I, UndefValue::get(I->getType()));
+ }
+ eraseInstFromFunction(*I);
+ }
+
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
+ // Replace invoke with a NOP intrinsic to maintain the original CFG
+ Module *M = II->getModule();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
+ InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
+ None, "", II->getParent());
+ }
+
+ // Remove debug intrinsics which describe the value contained within the
+ // alloca. In addition to removing dbg.{declare,addr} which simply point to
+ // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
+ //
+ // ```
+ // define void @foo(i32 %0) {
+ // %a = alloca i32 ; Deleted.
+ // store i32 %0, i32* %a
+ // dbg.value(i32 %0, "arg0") ; Not deleted.
+ // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
+ // call void @trivially_inlinable_no_op(i32* %a)
+ // ret void
+ // }
+ // ```
+ //
+ // This may not be required if we stop describing the contents of allocas
+ // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
+ // the LowerDbgDeclare utility.
+ //
+ // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
+ // "arg0" dbg.value may be stale after the call. However, failing to remove
+ // the DW_OP_deref dbg.value causes large gaps in location coverage.
+ for (auto *DVI : DVIs)
+ if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
+ DVI->eraseFromParent();
+
+ return eraseInstFromFunction(MI);
+ }
+ return nullptr;
+}
+
+/// Move the call to free before a NULL test.
+///
+/// Check if this free is accessed after its argument has been test
+/// against NULL (property 0).
+/// If yes, it is legal to move this call in its predecessor block.
+///
+/// The move is performed only if the block containing the call to free
+/// will be removed, i.e.:
+/// 1. it has only one predecessor P, and P has two successors
+/// 2. it contains the call, noops, and an unconditional branch
+/// 3. its successor is the same as its predecessor's successor
+///
+/// The profitability is out-of concern here and this function should
+/// be called only if the caller knows this transformation would be
+/// profitable (e.g., for code size).
+static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
+ const DataLayout &DL) {
+ Value *Op = FI.getArgOperand(0);
+ BasicBlock *FreeInstrBB = FI.getParent();
+ BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
+
+ // Validate part of constraint #1: Only one predecessor
+ // FIXME: We can extend the number of predecessor, but in that case, we
+ // would duplicate the call to free in each predecessor and it may
+ // not be profitable even for code size.
+ if (!PredBB)
+ return nullptr;
+
+ // Validate constraint #2: Does this block contains only the call to
+ // free, noops, and an unconditional branch?
+ BasicBlock *SuccBB;
+ Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
+ if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
+ return nullptr;
+
+ // If there are only 2 instructions in the block, at this point,
+ // this is the call to free and unconditional.
+ // If there are more than 2 instructions, check that they are noops
+ // i.e., they won't hurt the performance of the generated code.
+ if (FreeInstrBB->size() != 2) {
+ for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
+ if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
+ continue;
+ auto *Cast = dyn_cast<CastInst>(&Inst);
+ if (!Cast || !Cast->isNoopCast(DL))
+ return nullptr;
+ }
+ }
+ // Validate the rest of constraint #1 by matching on the pred branch.
+ Instruction *TI = PredBB->getTerminator();
+ BasicBlock *TrueBB, *FalseBB;
+ ICmpInst::Predicate Pred;
+ if (!match(TI, m_Br(m_ICmp(Pred,
+ m_CombineOr(m_Specific(Op),
+ m_Specific(Op->stripPointerCasts())),
+ m_Zero()),
+ TrueBB, FalseBB)))
+ return nullptr;
+ if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
+ return nullptr;
+
+ // Validate constraint #3: Ensure the null case just falls through.
+ if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
+ return nullptr;
+ assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
+ "Broken CFG: missing edge from predecessor to successor");
+
+ // At this point, we know that everything in FreeInstrBB can be moved
+ // before TI.
+ for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
+ It != End;) {
+ Instruction &Instr = *It++;
+ if (&Instr == FreeInstrBBTerminator)
+ break;
+ Instr.moveBefore(TI);
+ }
+ assert(FreeInstrBB->size() == 1 &&
+ "Only the branch instruction should remain");
+ return &FI;
+}
+
+Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
+ Value *Op = FI.getArgOperand(0);
+
+ // free undef -> unreachable.
+ if (isa<UndefValue>(Op)) {
+ // Leave a marker since we can't modify the CFG here.
+ CreateNonTerminatorUnreachable(&FI);
+ return eraseInstFromFunction(FI);
+ }
+
+ // If we have 'free null' delete the instruction. This can happen in stl code
+ // when lots of inlining happens.
+ if (isa<ConstantPointerNull>(Op))
+ return eraseInstFromFunction(FI);
+
+ // If we optimize for code size, try to move the call to free before the null
+ // test so that simplify cfg can remove the empty block and dead code
+ // elimination the branch. I.e., helps to turn something like:
+ // if (foo) free(foo);
+ // into
+ // free(foo);
+ //
+ // Note that we can only do this for 'free' and not for any flavor of
+ // 'operator delete'; there is no 'operator delete' symbol for which we are
+ // permitted to invent a call, even if we're passing in a null pointer.
+ if (MinimizeSize) {
+ LibFunc Func;
+ if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
+ if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
+ return I;
+ }
+
+ return nullptr;
+}
+
+static bool isMustTailCall(Value *V) {
+ if (auto *CI = dyn_cast<CallInst>(V))
+ return CI->isMustTailCall();
+ return false;
+}
+
+Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
+ if (RI.getNumOperands() == 0) // ret void
+ return nullptr;
+
+ Value *ResultOp = RI.getOperand(0);
+ Type *VTy = ResultOp->getType();
+ if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
+ return nullptr;
+
+ // Don't replace result of musttail calls.
+ if (isMustTailCall(ResultOp))
+ return nullptr;
+
+ // There might be assume intrinsics dominating this return that completely
+ // determine the value. If so, constant fold it.
+ KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
+ if (Known.isConstant())
+ return replaceOperand(RI, 0,
+ Constant::getIntegerValue(VTy, Known.getConstant()));
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
+ // Try to remove the previous instruction if it must lead to unreachable.
+ // This includes instructions like stores and "llvm.assume" that may not get
+ // removed by simple dead code elimination.
+ Instruction *Prev = I.getPrevNonDebugInstruction();
+ if (Prev && !Prev->isEHPad() &&
+ isGuaranteedToTransferExecutionToSuccessor(Prev)) {
+ // Temporarily disable removal of volatile stores preceding unreachable,
+ // pending a potential LangRef change permitting volatile stores to trap.
+ // TODO: Either remove this code, or properly integrate the check into
+ // isGuaranteedToTransferExecutionToSuccessor().
+ if (auto *SI = dyn_cast<StoreInst>(Prev))
+ if (SI->isVolatile())
+ return nullptr;
+
+ // A value may still have uses before we process it here (for example, in
+ // another unreachable block), so convert those to undef.
+ replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType()));
+ eraseInstFromFunction(*Prev);
+ return &I;
+ }
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
+ assert(BI.isUnconditional() && "Only for unconditional branches.");
+
+ // If this store is the second-to-last instruction in the basic block
+ // (excluding debug info and bitcasts of pointers) and if the block ends with
+ // an unconditional branch, try to move the store to the successor block.
+
+ auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
+ auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
+ return isa<DbgInfoIntrinsic>(BBI) ||
+ (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
+ };
+
+ BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
+ do {
+ if (BBI != FirstInstr)
+ --BBI;
+ } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
+
+ return dyn_cast<StoreInst>(BBI);
+ };
+
+ if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
+ if (mergeStoreIntoSuccessor(*SI))
+ return &BI;
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
+ if (BI.isUnconditional())
+ return visitUnconditionalBranchInst(BI);
+
+ // Change br (not X), label True, label False to: br X, label False, True
+ Value *X = nullptr;
+ if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
+ !isa<Constant>(X)) {
+ // Swap Destinations and condition...
+ BI.swapSuccessors();
+ return replaceOperand(BI, 0, X);
+ }
+
+ // If the condition is irrelevant, remove the use so that other
+ // transforms on the condition become more effective.
+ if (!isa<ConstantInt>(BI.getCondition()) &&
+ BI.getSuccessor(0) == BI.getSuccessor(1))
+ return replaceOperand(
+ BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
+
+ // Canonicalize, for example, fcmp_one -> fcmp_oeq.
+ CmpInst::Predicate Pred;
+ if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
+ m_BasicBlock(), m_BasicBlock())) &&
+ !isCanonicalPredicate(Pred)) {
+ // Swap destinations and condition.
+ CmpInst *Cond = cast<CmpInst>(BI.getCondition());
+ Cond->setPredicate(CmpInst::getInversePredicate(Pred));
+ BI.swapSuccessors();
+ Worklist.push(Cond);
+ return &BI;
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
+ Value *Cond = SI.getCondition();
+ Value *Op0;
+ ConstantInt *AddRHS;
+ if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
+ // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
+ for (auto Case : SI.cases()) {
+ Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
+ assert(isa<ConstantInt>(NewCase) &&
+ "Result of expression should be constant");
+ Case.setValue(cast<ConstantInt>(NewCase));
+ }
+ return replaceOperand(SI, 0, Op0);
+ }
+
+ KnownBits Known = computeKnownBits(Cond, 0, &SI);
+ unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
+ unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
+
+ // Compute the number of leading bits we can ignore.
+ // TODO: A better way to determine this would use ComputeNumSignBits().
+ for (auto &C : SI.cases()) {
+ LeadingKnownZeros = std::min(
+ LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
+ LeadingKnownOnes = std::min(
+ LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
+ }
+
+ unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
+
+ // Shrink the condition operand if the new type is smaller than the old type.
+ // But do not shrink to a non-standard type, because backend can't generate
+ // good code for that yet.
+ // TODO: We can make it aggressive again after fixing PR39569.
+ if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
+ shouldChangeType(Known.getBitWidth(), NewWidth)) {
+ IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
+ Builder.SetInsertPoint(&SI);
+ Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
+
+ for (auto Case : SI.cases()) {
+ APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
+ Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
+ }
+ return replaceOperand(SI, 0, NewCond);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
+ Value *Agg = EV.getAggregateOperand();
+
+ if (!EV.hasIndices())
+ return replaceInstUsesWith(EV, Agg);
+
+ if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
+ SQ.getWithInstruction(&EV)))
+ return replaceInstUsesWith(EV, V);
+
+ if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
+ // We're extracting from an insertvalue instruction, compare the indices
+ const unsigned *exti, *exte, *insi, *inse;
+ for (exti = EV.idx_begin(), insi = IV->idx_begin(),
+ exte = EV.idx_end(), inse = IV->idx_end();
+ exti != exte && insi != inse;
+ ++exti, ++insi) {
+ if (*insi != *exti)
+ // The insert and extract both reference distinctly different elements.
+ // This means the extract is not influenced by the insert, and we can
+ // replace the aggregate operand of the extract with the aggregate
+ // operand of the insert. i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 0
+ // with
+ // %E = extractvalue { i32, { i32 } } %A, 0
+ return ExtractValueInst::Create(IV->getAggregateOperand(),
+ EV.getIndices());
+ }
+ if (exti == exte && insi == inse)
+ // Both iterators are at the end: Index lists are identical. Replace
+ // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %C = extractvalue { i32, { i32 } } %B, 1, 0
+ // with "i32 42"
+ return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
+ if (exti == exte) {
+ // The extract list is a prefix of the insert list. i.e. replace
+ // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %E = extractvalue { i32, { i32 } } %I, 1
+ // with
+ // %X = extractvalue { i32, { i32 } } %A, 1
+ // %E = insertvalue { i32 } %X, i32 42, 0
+ // by switching the order of the insert and extract (though the
+ // insertvalue should be left in, since it may have other uses).
+ Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
+ EV.getIndices());
+ return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
+ makeArrayRef(insi, inse));
+ }
+ if (insi == inse)
+ // The insert list is a prefix of the extract list
+ // We can simply remove the common indices from the extract and make it
+ // operate on the inserted value instead of the insertvalue result.
+ // i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 1, 0
+ // with
+ // %E extractvalue { i32 } { i32 42 }, 0
+ return ExtractValueInst::Create(IV->getInsertedValueOperand(),
+ makeArrayRef(exti, exte));
+ }
+ if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
+ // We're extracting from an overflow intrinsic, see if we're the only user,
+ // which allows us to simplify multiple result intrinsics to simpler
+ // things that just get one value.
+ if (WO->hasOneUse()) {
+ // Check if we're grabbing only the result of a 'with overflow' intrinsic
+ // and replace it with a traditional binary instruction.
+ if (*EV.idx_begin() == 0) {
+ Instruction::BinaryOps BinOp = WO->getBinaryOp();
+ Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
+ replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
+ eraseInstFromFunction(*WO);
+ return BinaryOperator::Create(BinOp, LHS, RHS);
+ }
+
+ // If the normal result of the add is dead, and the RHS is a constant,
+ // we can transform this into a range comparison.
+ // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
+ if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
+ return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
+ ConstantExpr::getNot(CI));
+ }
+ }
+ if (LoadInst *L = dyn_cast<LoadInst>(Agg))
+ // If the (non-volatile) load only has one use, we can rewrite this to a
+ // load from a GEP. This reduces the size of the load. If a load is used
+ // only by extractvalue instructions then this either must have been
+ // optimized before, or it is a struct with padding, in which case we
+ // don't want to do the transformation as it loses padding knowledge.
+ if (L->isSimple() && L->hasOneUse()) {
+ // extractvalue has integer indices, getelementptr has Value*s. Convert.
+ SmallVector<Value*, 4> Indices;
+ // Prefix an i32 0 since we need the first element.
+ Indices.push_back(Builder.getInt32(0));
+ for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
+ I != E; ++I)
+ Indices.push_back(Builder.getInt32(*I));
+
+ // We need to insert these at the location of the old load, not at that of
+ // the extractvalue.
+ Builder.SetInsertPoint(L);
+ Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
+ L->getPointerOperand(), Indices);
+ Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
+ // Whatever aliasing information we had for the orignal load must also
+ // hold for the smaller load, so propagate the annotations.
+ AAMDNodes Nodes;
+ L->getAAMetadata(Nodes);
+ NL->setAAMetadata(Nodes);
+ // Returning the load directly will cause the main loop to insert it in
+ // the wrong spot, so use replaceInstUsesWith().
+ return replaceInstUsesWith(EV, NL);
+ }
+ // We could simplify extracts from other values. Note that nested extracts may
+ // already be simplified implicitly by the above: extract (extract (insert) )
+ // will be translated into extract ( insert ( extract ) ) first and then just
+ // the value inserted, if appropriate. Similarly for extracts from single-use
+ // loads: extract (extract (load)) will be translated to extract (load (gep))
+ // and if again single-use then via load (gep (gep)) to load (gep).
+ // However, double extracts from e.g. function arguments or return values
+ // aren't handled yet.
+ return nullptr;
+}
+
+/// Return 'true' if the given typeinfo will match anything.
+static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
+ switch (Personality) {
+ case EHPersonality::GNU_C:
+ case EHPersonality::GNU_C_SjLj:
+ case EHPersonality::Rust:
+ // The GCC C EH and Rust personality only exists to support cleanups, so
+ // it's not clear what the semantics of catch clauses are.
+ return false;
+ case EHPersonality::Unknown:
+ return false;
+ case EHPersonality::GNU_Ada:
+ // While __gnat_all_others_value will match any Ada exception, it doesn't
+ // match foreign exceptions (or didn't, before gcc-4.7).
+ return false;
+ case EHPersonality::GNU_CXX:
+ case EHPersonality::GNU_CXX_SjLj:
+ case EHPersonality::GNU_ObjC:
+ case EHPersonality::MSVC_X86SEH:
+ case EHPersonality::MSVC_TableSEH:
+ case EHPersonality::MSVC_CXX:
+ case EHPersonality::CoreCLR:
+ case EHPersonality::Wasm_CXX:
+ case EHPersonality::XL_CXX:
+ return TypeInfo->isNullValue();
+ }
+ llvm_unreachable("invalid enum");
+}
+
+static bool shorter_filter(const Value *LHS, const Value *RHS) {
+ return
+ cast<ArrayType>(LHS->getType())->getNumElements()
+ <
+ cast<ArrayType>(RHS->getType())->getNumElements();
+}
+
+Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
+ // The logic here should be correct for any real-world personality function.
+ // However if that turns out not to be true, the offending logic can always
+ // be conditioned on the personality function, like the catch-all logic is.
+ EHPersonality Personality =
+ classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
+
+ // Simplify the list of clauses, eg by removing repeated catch clauses
+ // (these are often created by inlining).
+ bool MakeNewInstruction = false; // If true, recreate using the following:
+ SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
+ bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
+
+ SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
+ for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
+ bool isLastClause = i + 1 == e;
+ if (LI.isCatch(i)) {
+ // A catch clause.
+ Constant *CatchClause = LI.getClause(i);
+ Constant *TypeInfo = CatchClause->stripPointerCasts();
+
+ // If we already saw this clause, there is no point in having a second
+ // copy of it.
+ if (AlreadyCaught.insert(TypeInfo).second) {
+ // This catch clause was not already seen.
+ NewClauses.push_back(CatchClause);
+ } else {
+ // Repeated catch clause - drop the redundant copy.
+ MakeNewInstruction = true;
+ }
+
+ // If this is a catch-all then there is no point in keeping any following
+ // clauses or marking the landingpad as having a cleanup.
+ if (isCatchAll(Personality, TypeInfo)) {
+ if (!isLastClause)
+ MakeNewInstruction = true;
+ CleanupFlag = false;
+ break;
+ }
+ } else {
+ // A filter clause. If any of the filter elements were already caught
+ // then they can be dropped from the filter. It is tempting to try to
+ // exploit the filter further by saying that any typeinfo that does not
+ // occur in the filter can't be caught later (and thus can be dropped).
+ // However this would be wrong, since typeinfos can match without being
+ // equal (for example if one represents a C++ class, and the other some
+ // class derived from it).
+ assert(LI.isFilter(i) && "Unsupported landingpad clause!");
+ Constant *FilterClause = LI.getClause(i);
+ ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
+ unsigned NumTypeInfos = FilterType->getNumElements();
+
+ // An empty filter catches everything, so there is no point in keeping any
+ // following clauses or marking the landingpad as having a cleanup. By
+ // dealing with this case here the following code is made a bit simpler.
+ if (!NumTypeInfos) {
+ NewClauses.push_back(FilterClause);
+ if (!isLastClause)
+ MakeNewInstruction = true;
+ CleanupFlag = false;
+ break;
+ }
+
+ bool MakeNewFilter = false; // If true, make a new filter.
+ SmallVector<Constant *, 16> NewFilterElts; // New elements.
+ if (isa<ConstantAggregateZero>(FilterClause)) {
+ // Not an empty filter - it contains at least one null typeinfo.
+ assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
+ Constant *TypeInfo =
+ Constant::getNullValue(FilterType->getElementType());
+ // If this typeinfo is a catch-all then the filter can never match.
+ if (isCatchAll(Personality, TypeInfo)) {
+ // Throw the filter away.
+ MakeNewInstruction = true;
+ continue;
+ }
+
+ // There is no point in having multiple copies of this typeinfo, so
+ // discard all but the first copy if there is more than one.
+ NewFilterElts.push_back(TypeInfo);
+ if (NumTypeInfos > 1)
+ MakeNewFilter = true;
+ } else {
+ ConstantArray *Filter = cast<ConstantArray>(FilterClause);
+ SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
+ NewFilterElts.reserve(NumTypeInfos);
+
+ // Remove any filter elements that were already caught or that already
+ // occurred in the filter. While there, see if any of the elements are
+ // catch-alls. If so, the filter can be discarded.
+ bool SawCatchAll = false;
+ for (unsigned j = 0; j != NumTypeInfos; ++j) {
+ Constant *Elt = Filter->getOperand(j);
+ Constant *TypeInfo = Elt->stripPointerCasts();
+ if (isCatchAll(Personality, TypeInfo)) {
+ // This element is a catch-all. Bail out, noting this fact.
+ SawCatchAll = true;
+ break;
+ }
+
+ // Even if we've seen a type in a catch clause, we don't want to
+ // remove it from the filter. An unexpected type handler may be
+ // set up for a call site which throws an exception of the same
+ // type caught. In order for the exception thrown by the unexpected
+ // handler to propagate correctly, the filter must be correctly
+ // described for the call site.
+ //
+ // Example:
+ //
+ // void unexpected() { throw 1;}
+ // void foo() throw (int) {
+ // std::set_unexpected(unexpected);
+ // try {
+ // throw 2.0;
+ // } catch (int i) {}
+ // }
+
+ // There is no point in having multiple copies of the same typeinfo in
+ // a filter, so only add it if we didn't already.
+ if (SeenInFilter.insert(TypeInfo).second)
+ NewFilterElts.push_back(cast<Constant>(Elt));
+ }
+ // A filter containing a catch-all cannot match anything by definition.
+ if (SawCatchAll) {
+ // Throw the filter away.
+ MakeNewInstruction = true;
+ continue;
+ }
+
+ // If we dropped something from the filter, make a new one.
+ if (NewFilterElts.size() < NumTypeInfos)
+ MakeNewFilter = true;
+ }
+ if (MakeNewFilter) {
+ FilterType = ArrayType::get(FilterType->getElementType(),
+ NewFilterElts.size());
+ FilterClause = ConstantArray::get(FilterType, NewFilterElts);
+ MakeNewInstruction = true;
+ }
+
+ NewClauses.push_back(FilterClause);
+
+ // If the new filter is empty then it will catch everything so there is
+ // no point in keeping any following clauses or marking the landingpad
+ // as having a cleanup. The case of the original filter being empty was
+ // already handled above.
+ if (MakeNewFilter && !NewFilterElts.size()) {
+ assert(MakeNewInstruction && "New filter but not a new instruction!");
+ CleanupFlag = false;
+ break;
+ }
+ }
+ }
+
+ // If several filters occur in a row then reorder them so that the shortest
+ // filters come first (those with the smallest number of elements). This is
+ // advantageous because shorter filters are more likely to match, speeding up
+ // unwinding, but mostly because it increases the effectiveness of the other
+ // filter optimizations below.
+ for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
+ unsigned j;
+ // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
+ for (j = i; j != e; ++j)
+ if (!isa<ArrayType>(NewClauses[j]->getType()))
+ break;
+
+ // Check whether the filters are already sorted by length. We need to know
+ // if sorting them is actually going to do anything so that we only make a
+ // new landingpad instruction if it does.
+ for (unsigned k = i; k + 1 < j; ++k)
+ if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
+ // Not sorted, so sort the filters now. Doing an unstable sort would be
+ // correct too but reordering filters pointlessly might confuse users.
+ std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
+ shorter_filter);
+ MakeNewInstruction = true;
+ break;
+ }
+
+ // Look for the next batch of filters.
+ i = j + 1;
+ }
+
+ // If typeinfos matched if and only if equal, then the elements of a filter L
+ // that occurs later than a filter F could be replaced by the intersection of
+ // the elements of F and L. In reality two typeinfos can match without being
+ // equal (for example if one represents a C++ class, and the other some class
+ // derived from it) so it would be wrong to perform this transform in general.
+ // However the transform is correct and useful if F is a subset of L. In that
+ // case L can be replaced by F, and thus removed altogether since repeating a
+ // filter is pointless. So here we look at all pairs of filters F and L where
+ // L follows F in the list of clauses, and remove L if every element of F is
+ // an element of L. This can occur when inlining C++ functions with exception
+ // specifications.
+ for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
+ // Examine each filter in turn.
+ Value *Filter = NewClauses[i];
+ ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
+ if (!FTy)
+ // Not a filter - skip it.
+ continue;
+ unsigned FElts = FTy->getNumElements();
+ // Examine each filter following this one. Doing this backwards means that
+ // we don't have to worry about filters disappearing under us when removed.
+ for (unsigned j = NewClauses.size() - 1; j != i; --j) {
+ Value *LFilter = NewClauses[j];
+ ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
+ if (!LTy)
+ // Not a filter - skip it.
+ continue;
+ // If Filter is a subset of LFilter, i.e. every element of Filter is also
+ // an element of LFilter, then discard LFilter.
+ SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
+ // If Filter is empty then it is a subset of LFilter.
+ if (!FElts) {
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ // Move on to the next filter.
+ continue;
+ }
+ unsigned LElts = LTy->getNumElements();
+ // If Filter is longer than LFilter then it cannot be a subset of it.
+ if (FElts > LElts)
+ // Move on to the next filter.
+ continue;
+ // At this point we know that LFilter has at least one element.
+ if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
+ // Filter is a subset of LFilter iff Filter contains only zeros (as we
+ // already know that Filter is not longer than LFilter).
+ if (isa<ConstantAggregateZero>(Filter)) {
+ assert(FElts <= LElts && "Should have handled this case earlier!");
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ }
+ // Move on to the next filter.
+ continue;
+ }
+ ConstantArray *LArray = cast<ConstantArray>(LFilter);
+ if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
+ // Since Filter is non-empty and contains only zeros, it is a subset of
+ // LFilter iff LFilter contains a zero.
+ assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
+ for (unsigned l = 0; l != LElts; ++l)
+ if (LArray->getOperand(l)->isNullValue()) {
+ // LFilter contains a zero - discard it.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ break;
+ }
+ // Move on to the next filter.
+ continue;
+ }
+ // At this point we know that both filters are ConstantArrays. Loop over
+ // operands to see whether every element of Filter is also an element of
+ // LFilter. Since filters tend to be short this is probably faster than
+ // using a method that scales nicely.
+ ConstantArray *FArray = cast<ConstantArray>(Filter);
+ bool AllFound = true;
+ for (unsigned f = 0; f != FElts; ++f) {
+ Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
+ AllFound = false;
+ for (unsigned l = 0; l != LElts; ++l) {
+ Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
+ if (LTypeInfo == FTypeInfo) {
+ AllFound = true;
+ break;
+ }
+ }
+ if (!AllFound)
+ break;
+ }
+ if (AllFound) {
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ }
+ // Move on to the next filter.
+ }
+ }
+
+ // If we changed any of the clauses, replace the old landingpad instruction
+ // with a new one.
+ if (MakeNewInstruction) {
+ LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
+ NewClauses.size());
+ for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
+ NLI->addClause(NewClauses[i]);
+ // A landing pad with no clauses must have the cleanup flag set. It is
+ // theoretically possible, though highly unlikely, that we eliminated all
+ // clauses. If so, force the cleanup flag to true.
+ if (NewClauses.empty())
+ CleanupFlag = true;
+ NLI->setCleanup(CleanupFlag);
+ return NLI;
+ }
+
+ // Even if none of the clauses changed, we may nonetheless have understood
+ // that the cleanup flag is pointless. Clear it if so.
+ if (LI.isCleanup() != CleanupFlag) {
+ assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
+ LI.setCleanup(CleanupFlag);
+ return &LI;
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
+ Value *Op0 = I.getOperand(0);
+
+ if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ // freeze (phi const, x) --> phi const, (freeze x)
+ if (auto *PN = dyn_cast<PHINode>(Op0)) {
+ if (Instruction *NV = foldOpIntoPhi(I, PN))
+ return NV;
+ }
+
+ if (match(Op0, m_Undef())) {
+ // If I is freeze(undef), see its uses and fold it to the best constant.
+ // - or: pick -1
+ // - select's condition: pick the value that leads to choosing a constant
+ // - other ops: pick 0
+ Constant *BestValue = nullptr;
+ Constant *NullValue = Constant::getNullValue(I.getType());
+ for (const auto *U : I.users()) {
+ Constant *C = NullValue;
+
+ if (match(U, m_Or(m_Value(), m_Value())))
+ C = Constant::getAllOnesValue(I.getType());
+ else if (const auto *SI = dyn_cast<SelectInst>(U)) {
+ if (SI->getCondition() == &I) {
+ APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
+ C = Constant::getIntegerValue(I.getType(), CondVal);
+ }
+ }
+
+ if (!BestValue)
+ BestValue = C;
+ else if (BestValue != C)
+ BestValue = NullValue;
+ }
+
+ return replaceInstUsesWith(I, BestValue);
+ }
+
+ return nullptr;
+}
+
+/// Try to move the specified instruction from its current block into the
+/// beginning of DestBlock, which can only happen if it's safe to move the
+/// instruction past all of the instructions between it and the end of its
+/// block.
+static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
+ assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
+ BasicBlock *SrcBlock = I->getParent();
+
+ // Cannot move control-flow-involving, volatile loads, vaarg, etc.
+ if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
+ I->isTerminator())
+ return false;
+
+ // Do not sink static or dynamic alloca instructions. Static allocas must
+ // remain in the entry block, and dynamic allocas must not be sunk in between
+ // a stacksave / stackrestore pair, which would incorrectly shorten its
+ // lifetime.
+ if (isa<AllocaInst>(I))
+ return false;
+
+ // Do not sink into catchswitch blocks.
+ if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
+ return false;
+
+ // Do not sink convergent call instructions.
+ if (auto *CI = dyn_cast<CallInst>(I)) {
+ if (CI->isConvergent())
+ return false;
+ }
+ // We can only sink load instructions if there is nothing between the load and
+ // the end of block that could change the value.
+ if (I->mayReadFromMemory()) {
+ // We don't want to do any sophisticated alias analysis, so we only check
+ // the instructions after I in I's parent block if we try to sink to its
+ // successor block.
+ if (DestBlock->getUniquePredecessor() != I->getParent())
+ return false;
+ for (BasicBlock::iterator Scan = I->getIterator(),
+ E = I->getParent()->end();
+ Scan != E; ++Scan)
+ if (Scan->mayWriteToMemory())
+ return false;
+ }
+
+ I->dropDroppableUses([DestBlock](const Use *U) {
+ if (auto *I = dyn_cast<Instruction>(U->getUser()))
+ return I->getParent() != DestBlock;
+ return true;
+ });
+ /// FIXME: We could remove droppable uses that are not dominated by
+ /// the new position.
+
+ BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
+ I->moveBefore(&*InsertPos);
+ ++NumSunkInst;
+
+ // Also sink all related debug uses from the source basic block. Otherwise we
+ // get debug use before the def. Attempt to salvage debug uses first, to
+ // maximise the range variables have location for. If we cannot salvage, then
+ // mark the location undef: we know it was supposed to receive a new location
+ // here, but that computation has been sunk.
+ SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
+ findDbgUsers(DbgUsers, I);
+
+ // Update the arguments of a dbg.declare instruction, so that it
+ // does not point into a sunk instruction.
+ auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
+ if (!isa<DbgDeclareInst>(DII))
+ return false;
+
+ if (isa<CastInst>(I))
+ DII->setOperand(
+ 0, MetadataAsValue::get(I->getContext(),
+ ValueAsMetadata::get(I->getOperand(0))));
+ return true;
+ };
+
+ SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
+ for (auto User : DbgUsers) {
+ // A dbg.declare instruction should not be cloned, since there can only be
+ // one per variable fragment. It should be left in the original place
+ // because the sunk instruction is not an alloca (otherwise we could not be
+ // here).
+ if (User->getParent() != SrcBlock || updateDbgDeclare(User))
+ continue;
+
+ DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
+ LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
+ }
+
+ // Perform salvaging without the clones, then sink the clones.
+ if (!DIIClones.empty()) {
+ salvageDebugInfoForDbgValues(*I, DbgUsers);
+ for (auto &DIIClone : DIIClones) {
+ DIIClone->insertBefore(&*InsertPos);
+ LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
+ }
+ }
+
+ return true;
+}
+
+bool InstCombinerImpl::run() {
+ while (!Worklist.isEmpty()) {
+ // Walk deferred instructions in reverse order, and push them to the
+ // worklist, which means they'll end up popped from the worklist in-order.
+ while (Instruction *I = Worklist.popDeferred()) {
+ // Check to see if we can DCE the instruction. We do this already here to
+ // reduce the number of uses and thus allow other folds to trigger.
+ // Note that eraseInstFromFunction() may push additional instructions on
+ // the deferred worklist, so this will DCE whole instruction chains.
+ if (isInstructionTriviallyDead(I, &TLI)) {
+ eraseInstFromFunction(*I);
+ ++NumDeadInst;
+ continue;
+ }
+
+ Worklist.push(I);
+ }
+
+ Instruction *I = Worklist.removeOne();
+ if (I == nullptr) continue; // skip null values.
+
+ // Check to see if we can DCE the instruction.
+ if (isInstructionTriviallyDead(I, &TLI)) {
+ eraseInstFromFunction(*I);
+ ++NumDeadInst;
+ continue;
+ }
+
+ if (!DebugCounter::shouldExecute(VisitCounter))
+ continue;
+
+ // Instruction isn't dead, see if we can constant propagate it.
+ if (!I->use_empty() &&
+ (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
+ if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
+ LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
+ << '\n');
+
+ // Add operands to the worklist.
+ replaceInstUsesWith(*I, C);
+ ++NumConstProp;
+ if (isInstructionTriviallyDead(I, &TLI))
+ eraseInstFromFunction(*I);
+ MadeIRChange = true;
+ continue;
+ }
+ }
+
+ // See if we can trivially sink this instruction to its user if we can
+ // prove that the successor is not executed more frequently than our block.
+ if (EnableCodeSinking)
+ if (Use *SingleUse = I->getSingleUndroppableUse()) {
+ BasicBlock *BB = I->getParent();
+ Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
+ BasicBlock *UserParent;
+
+ // Get the block the use occurs in.
+ if (PHINode *PN = dyn_cast<PHINode>(UserInst))
+ UserParent = PN->getIncomingBlock(*SingleUse);
+ else
+ UserParent = UserInst->getParent();
+
+ // Try sinking to another block. If that block is unreachable, then do
+ // not bother. SimplifyCFG should handle it.
+ if (UserParent != BB && DT.isReachableFromEntry(UserParent)) {
+ // See if the user is one of our successors that has only one
+ // predecessor, so that we don't have to split the critical edge.
+ bool ShouldSink = UserParent->getUniquePredecessor() == BB;
+ // Another option where we can sink is a block that ends with a
+ // terminator that does not pass control to other block (such as
+ // return or unreachable). In this case:
+ // - I dominates the User (by SSA form);
+ // - the User will be executed at most once.
+ // So sinking I down to User is always profitable or neutral.
+ if (!ShouldSink) {
+ auto *Term = UserParent->getTerminator();
+ ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
+ }
+ if (ShouldSink) {
+ assert(DT.dominates(BB, UserParent) &&
+ "Dominance relation broken?");
+ // Okay, the CFG is simple enough, try to sink this instruction.
+ if (TryToSinkInstruction(I, UserParent)) {
+ LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
+ MadeIRChange = true;
+ // We'll add uses of the sunk instruction below, but since sinking
+ // can expose opportunities for it's *operands* add them to the
+ // worklist
+ for (Use &U : I->operands())
+ if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
+ Worklist.push(OpI);
+ }
+ }
+ }
+ }
+
+ // Now that we have an instruction, try combining it to simplify it.
+ Builder.SetInsertPoint(I);
+ Builder.CollectMetadataToCopy(
+ I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
+
+#ifndef NDEBUG
+ std::string OrigI;
+#endif
+ LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+ LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
+
+ if (Instruction *Result = visit(*I)) {
+ ++NumCombined;
+ // Should we replace the old instruction with a new one?
+ if (Result != I) {
+ LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
+ << " New = " << *Result << '\n');
+
+ Result->copyMetadata(*I,
+ {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
+ // Everything uses the new instruction now.
+ I->replaceAllUsesWith(Result);
+
+ // Move the name to the new instruction first.
+ Result->takeName(I);
+
+ // Insert the new instruction into the basic block...
+ BasicBlock *InstParent = I->getParent();
+ BasicBlock::iterator InsertPos = I->getIterator();
+
+ // Are we replace a PHI with something that isn't a PHI, or vice versa?
+ if (isa<PHINode>(Result) != isa<PHINode>(I)) {
+ // We need to fix up the insertion point.
+ if (isa<PHINode>(I)) // PHI -> Non-PHI
+ InsertPos = InstParent->getFirstInsertionPt();
+ else // Non-PHI -> PHI
+ InsertPos = InstParent->getFirstNonPHI()->getIterator();
+ }
+
+ InstParent->getInstList().insert(InsertPos, Result);
+
+ // Push the new instruction and any users onto the worklist.
+ Worklist.pushUsersToWorkList(*Result);
+ Worklist.push(Result);
+
+ eraseInstFromFunction(*I);
+ } else {
+ LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
+ << " New = " << *I << '\n');
+
+ // If the instruction was modified, it's possible that it is now dead.
+ // if so, remove it.
+ if (isInstructionTriviallyDead(I, &TLI)) {
+ eraseInstFromFunction(*I);
+ } else {
+ Worklist.pushUsersToWorkList(*I);
+ Worklist.push(I);
+ }
+ }
+ MadeIRChange = true;
+ }
+ }
+
+ Worklist.zap();
+ return MadeIRChange;
+}
+
+// Track the scopes used by !alias.scope and !noalias. In a function, a
+// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
+// by both sets. If not, the declaration of the scope can be safely omitted.
+// The MDNode of the scope can be omitted as well for the instructions that are
+// part of this function. We do not do that at this point, as this might become
+// too time consuming to do.
+class AliasScopeTracker {
+ SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
+ SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
+
+public:
+ void analyse(Instruction *I) {
+ // This seems to be faster than checking 'mayReadOrWriteMemory()'.
+ if (!I->hasMetadataOtherThanDebugLoc())
+ return;
+
+ auto Track = [](Metadata *ScopeList, auto &Container) {
+ const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
+ if (!MDScopeList || !Container.insert(MDScopeList).second)
+ return;
+ for (auto &MDOperand : MDScopeList->operands())
+ if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
+ Container.insert(MDScope);
+ };
+
+ Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
+ Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
+ }
+
+ bool isNoAliasScopeDeclDead(Instruction *Inst) {
+ NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
+ if (!Decl)
+ return false;
+
+ assert(Decl->use_empty() &&
+ "llvm.experimental.noalias.scope.decl in use ?");
+ const MDNode *MDSL = Decl->getScopeList();
+ assert(MDSL->getNumOperands() == 1 &&
+ "llvm.experimental.noalias.scope should refer to a single scope");
+ auto &MDOperand = MDSL->getOperand(0);
+ if (auto *MD = dyn_cast<MDNode>(MDOperand))
+ return !UsedAliasScopesAndLists.contains(MD) ||
+ !UsedNoAliasScopesAndLists.contains(MD);
+
+ // Not an MDNode ? throw away.
+ return true;
+ }
+};
+
+/// Populate the IC worklist from a function, by walking it in depth-first
+/// order and adding all reachable code to the worklist.
+///
+/// This has a couple of tricks to make the code faster and more powerful. In
+/// particular, we constant fold and DCE instructions as we go, to avoid adding
+/// them to the worklist (this significantly speeds up instcombine on code where
+/// many instructions are dead or constant). Additionally, if we find a branch
+/// whose condition is a known constant, we only visit the reachable successors.
+static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
+ const TargetLibraryInfo *TLI,
+ InstCombineWorklist &ICWorklist) {
+ bool MadeIRChange = false;
+ SmallPtrSet<BasicBlock *, 32> Visited;
+ SmallVector<BasicBlock*, 256> Worklist;
+ Worklist.push_back(&F.front());
+
+ SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
+ DenseMap<Constant *, Constant *> FoldedConstants;
+ AliasScopeTracker SeenAliasScopes;
+
+ do {
+ BasicBlock *BB = Worklist.pop_back_val();
+
+ // We have now visited this block! If we've already been here, ignore it.
+ if (!Visited.insert(BB).second)
+ continue;
+
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+ Instruction *Inst = &*BBI++;
+
+ // ConstantProp instruction if trivially constant.
+ if (!Inst->use_empty() &&
+ (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
+ if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
+ LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
+ << '\n');
+ Inst->replaceAllUsesWith(C);
+ ++NumConstProp;
+ if (isInstructionTriviallyDead(Inst, TLI))
+ Inst->eraseFromParent();
+ MadeIRChange = true;
+ continue;
+ }
+
+ // See if we can constant fold its operands.
+ for (Use &U : Inst->operands()) {
+ if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
+ continue;
+
+ auto *C = cast<Constant>(U);
+ Constant *&FoldRes = FoldedConstants[C];
+ if (!FoldRes)
+ FoldRes = ConstantFoldConstant(C, DL, TLI);
+
+ if (FoldRes != C) {
+ LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
+ << "\n Old = " << *C
+ << "\n New = " << *FoldRes << '\n');
+ U = FoldRes;
+ MadeIRChange = true;
+ }
+ }
+
+ // Skip processing debug and pseudo intrinsics in InstCombine. Processing
+ // these call instructions consumes non-trivial amount of time and
+ // provides no value for the optimization.
+ if (!Inst->isDebugOrPseudoInst()) {
+ InstrsForInstCombineWorklist.push_back(Inst);
+ SeenAliasScopes.analyse(Inst);
+ }
+ }
+
+ // Recursively visit successors. If this is a branch or switch on a
+ // constant, only visit the reachable successor.
+ Instruction *TI = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
+ bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
+ BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
+ Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
+ continue;
+ }
+ }
+
+ append_range(Worklist, successors(TI));
+ } while (!Worklist.empty());
+
+ // Remove instructions inside unreachable blocks. This prevents the
+ // instcombine code from having to deal with some bad special cases, and
+ // reduces use counts of instructions.
+ for (BasicBlock &BB : F) {
+ if (Visited.count(&BB))
+ continue;
+
+ unsigned NumDeadInstInBB;
+ unsigned NumDeadDbgInstInBB;
+ std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
+ removeAllNonTerminatorAndEHPadInstructions(&BB);
+
+ MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
+ NumDeadInst += NumDeadInstInBB;
+ }
+
+ // Once we've found all of the instructions to add to instcombine's worklist,
+ // add them in reverse order. This way instcombine will visit from the top
+ // of the function down. This jives well with the way that it adds all uses
+ // of instructions to the worklist after doing a transformation, thus avoiding
+ // some N^2 behavior in pathological cases.
+ ICWorklist.reserve(InstrsForInstCombineWorklist.size());
+ for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
+ // DCE instruction if trivially dead. As we iterate in reverse program
+ // order here, we will clean up whole chains of dead instructions.
+ if (isInstructionTriviallyDead(Inst, TLI) ||
+ SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
+ ++NumDeadInst;
+ LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
+ salvageDebugInfo(*Inst);
+ Inst->eraseFromParent();
+ MadeIRChange = true;
+ continue;
+ }
+
+ ICWorklist.push(Inst);
+ }
+
+ return MadeIRChange;
+}
+
+static bool combineInstructionsOverFunction(
+ Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
+ AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
+ DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
+ ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
+ auto &DL = F.getParent()->getDataLayout();
+ MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
+ F.getContext(), TargetFolder(DL),
+ IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
+ Worklist.add(I);
+ if (match(I, m_Intrinsic<Intrinsic::assume>()))
+ AC.registerAssumption(cast<CallInst>(I));
+ }));
+
+ // Lower dbg.declare intrinsics otherwise their value may be clobbered
+ // by instcombiner.
+ bool MadeIRChange = false;
+ if (ShouldLowerDbgDeclare)
+ MadeIRChange = LowerDbgDeclare(F);
+
+ // Iterate while there is work to do.
+ unsigned Iteration = 0;
+ while (true) {
+ ++NumWorklistIterations;
+ ++Iteration;
+
+ if (Iteration > InfiniteLoopDetectionThreshold) {
+ report_fatal_error(
+ "Instruction Combining seems stuck in an infinite loop after " +
+ Twine(InfiniteLoopDetectionThreshold) + " iterations.");
+ }
+
+ if (Iteration > MaxIterations) {
+ LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
+ << " on " << F.getName()
+ << " reached; stopping before reaching a fixpoint\n");
+ break;
+ }
+
+ LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getName() << "\n");
+
+ MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
+
+ InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
+ ORE, BFI, PSI, DL, LI);
+ IC.MaxArraySizeForCombine = MaxArraySize;
+
+ if (!IC.run())
+ break;
+
+ MadeIRChange = true;
+ }
+
+ return MadeIRChange;
+}
+
+InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
+
+InstCombinePass::InstCombinePass(unsigned MaxIterations)
+ : MaxIterations(MaxIterations) {}
+
+PreservedAnalyses InstCombinePass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
+ auto &TTI = AM.getResult<TargetIRAnalysis>(F);
+
+ auto *LI = AM.getCachedResult<LoopAnalysis>(F);
+
+ auto *AA = &AM.getResult<AAManager>(F);
+ auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
+ ProfileSummaryInfo *PSI =
+ MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
+ auto *BFI = (PSI && PSI->hasProfileSummary()) ?
+ &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
+
+ if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
+ BFI, PSI, MaxIterations, LI))
+ // No changes, all analyses are preserved.
+ return PreservedAnalyses::all();
+
+ // Mark all the analyses that instcombine updates as preserved.
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ PA.preserve<AAManager>();
+ PA.preserve<BasicAA>();
+ PA.preserve<GlobalsAA>();
+ return PA;
+}
+
+void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addPreserved<BasicAAWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
+}
+
+bool InstructionCombiningPass::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ // Required analyses.
+ auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
+
+ // Optional analyses.
+ auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+ auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
+ ProfileSummaryInfo *PSI =
+ &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ BlockFrequencyInfo *BFI =
+ (PSI && PSI->hasProfileSummary()) ?
+ &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
+ nullptr;
+
+ return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
+ BFI, PSI, MaxIterations, LI);
+}
+
+char InstructionCombiningPass::ID = 0;
+
+InstructionCombiningPass::InstructionCombiningPass()
+ : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
+ initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
+}
+
+InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
+ : FunctionPass(ID), MaxIterations(MaxIterations) {
+ initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
+}
+
+INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
+ "Combine redundant instructions", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
+ "Combine redundant instructions", false, false)
+
+// Initialization Routines
+void llvm::initializeInstCombine(PassRegistry &Registry) {
+ initializeInstructionCombiningPassPass(Registry);
+}
+
+void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
+ initializeInstructionCombiningPassPass(*unwrap(R));
+}
+
+FunctionPass *llvm::createInstructionCombiningPass() {
+ return new InstructionCombiningPass();
+}
+
+FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
+ return new InstructionCombiningPass(MaxIterations);
+}
+
+void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
+ unwrap(PM)->add(createInstructionCombiningPass());
+}