diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp | 1990 |
1 files changed, 1990 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp new file mode 100644 index 000000000000..ae1fff0fa844 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp @@ -0,0 +1,1990 @@ +//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This transformation analyzes and transforms the induction variables (and +// computations derived from them) into simpler forms suitable for subsequent +// analysis and transformation. +// +// If the trip count of a loop is computable, this pass also makes the following +// changes: +// 1. The exit condition for the loop is canonicalized to compare the +// induction value against the exit value. This turns loops like: +// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' +// 2. Any use outside of the loop of an expression derived from the indvar +// is changed to compute the derived value outside of the loop, eliminating +// the dependence on the exit value of the induction variable. If the only +// purpose of the loop is to compute the exit value of some derived +// expression, this transformation will make the loop dead. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/IndVarSimplify.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Scalar/LoopPassManager.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" +#include "llvm/Transforms/Utils/SimplifyIndVar.h" +#include <cassert> +#include <cstdint> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "indvars" + +STATISTIC(NumWidened , "Number of indvars widened"); +STATISTIC(NumReplaced , "Number of exit values replaced"); +STATISTIC(NumLFTR , "Number of loop exit tests replaced"); +STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); +STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); + +// Trip count verification can be enabled by default under NDEBUG if we +// implement a strong expression equivalence checker in SCEV. Until then, we +// use the verify-indvars flag, which may assert in some cases. +static cl::opt<bool> VerifyIndvars( + "verify-indvars", cl::Hidden, + cl::desc("Verify the ScalarEvolution result after running indvars. Has no " + "effect in release builds. (Note: this adds additional SCEV " + "queries potentially changing the analysis result)")); + +static cl::opt<ReplaceExitVal> ReplaceExitValue( + "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), + cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), + cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), + clEnumValN(OnlyCheapRepl, "cheap", + "only replace exit value when the cost is cheap"), + clEnumValN(NoHardUse, "noharduse", + "only replace exit values when loop def likely dead"), + clEnumValN(AlwaysRepl, "always", + "always replace exit value whenever possible"))); + +static cl::opt<bool> UsePostIncrementRanges( + "indvars-post-increment-ranges", cl::Hidden, + cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), + cl::init(true)); + +static cl::opt<bool> +DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), + cl::desc("Disable Linear Function Test Replace optimization")); + +static cl::opt<bool> +LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), + cl::desc("Predicate conditions in read only loops")); + +static cl::opt<bool> +AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), + cl::desc("Allow widening of indvars to eliminate s/zext")); + +namespace { + +struct RewritePhi; + +class IndVarSimplify { + LoopInfo *LI; + ScalarEvolution *SE; + DominatorTree *DT; + const DataLayout &DL; + TargetLibraryInfo *TLI; + const TargetTransformInfo *TTI; + std::unique_ptr<MemorySSAUpdater> MSSAU; + + SmallVector<WeakTrackingVH, 16> DeadInsts; + bool WidenIndVars; + + bool handleFloatingPointIV(Loop *L, PHINode *PH); + bool rewriteNonIntegerIVs(Loop *L); + + bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); + /// Try to eliminate loop exits based on analyzeable exit counts + bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); + /// Try to form loop invariant tests for loop exits by changing how many + /// iterations of the loop run when that is unobservable. + bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); + + bool rewriteFirstIterationLoopExitValues(Loop *L); + + bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, + const SCEV *ExitCount, + PHINode *IndVar, SCEVExpander &Rewriter); + + bool sinkUnusedInvariants(Loop *L); + +public: + IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, + const DataLayout &DL, TargetLibraryInfo *TLI, + TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) + : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), + WidenIndVars(WidenIndVars) { + if (MSSA) + MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); + } + + bool run(Loop *L); +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// rewriteNonIntegerIVs and helpers. Prefer integer IVs. +//===----------------------------------------------------------------------===// + +/// Convert APF to an integer, if possible. +static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { + bool isExact = false; + // See if we can convert this to an int64_t + uint64_t UIntVal; + if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, + APFloat::rmTowardZero, &isExact) != APFloat::opOK || + !isExact) + return false; + IntVal = UIntVal; + return true; +} + +/// If the loop has floating induction variable then insert corresponding +/// integer induction variable if possible. +/// For example, +/// for(double i = 0; i < 10000; ++i) +/// bar(i) +/// is converted into +/// for(int i = 0; i < 10000; ++i) +/// bar((double)i); +bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { + unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); + unsigned BackEdge = IncomingEdge^1; + + // Check incoming value. + auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); + + int64_t InitValue; + if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) + return false; + + // Check IV increment. Reject this PN if increment operation is not + // an add or increment value can not be represented by an integer. + auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); + if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; + + // If this is not an add of the PHI with a constantfp, or if the constant fp + // is not an integer, bail out. + ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); + int64_t IncValue; + if (IncValueVal == nullptr || Incr->getOperand(0) != PN || + !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) + return false; + + // Check Incr uses. One user is PN and the other user is an exit condition + // used by the conditional terminator. + Value::user_iterator IncrUse = Incr->user_begin(); + Instruction *U1 = cast<Instruction>(*IncrUse++); + if (IncrUse == Incr->user_end()) return false; + Instruction *U2 = cast<Instruction>(*IncrUse++); + if (IncrUse != Incr->user_end()) return false; + + // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't + // only used by a branch, we can't transform it. + FCmpInst *Compare = dyn_cast<FCmpInst>(U1); + if (!Compare) + Compare = dyn_cast<FCmpInst>(U2); + if (!Compare || !Compare->hasOneUse() || + !isa<BranchInst>(Compare->user_back())) + return false; + + BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); + + // We need to verify that the branch actually controls the iteration count + // of the loop. If not, the new IV can overflow and no one will notice. + // The branch block must be in the loop and one of the successors must be out + // of the loop. + assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); + if (!L->contains(TheBr->getParent()) || + (L->contains(TheBr->getSuccessor(0)) && + L->contains(TheBr->getSuccessor(1)))) + return false; + + // If it isn't a comparison with an integer-as-fp (the exit value), we can't + // transform it. + ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); + int64_t ExitValue; + if (ExitValueVal == nullptr || + !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) + return false; + + // Find new predicate for integer comparison. + CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; + switch (Compare->getPredicate()) { + default: return false; // Unknown comparison. + case CmpInst::FCMP_OEQ: + case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; + case CmpInst::FCMP_ONE: + case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; + case CmpInst::FCMP_OGT: + case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; + case CmpInst::FCMP_OGE: + case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; + case CmpInst::FCMP_OLT: + case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; + case CmpInst::FCMP_OLE: + case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; + } + + // We convert the floating point induction variable to a signed i32 value if + // we can. This is only safe if the comparison will not overflow in a way + // that won't be trapped by the integer equivalent operations. Check for this + // now. + // TODO: We could use i64 if it is native and the range requires it. + + // The start/stride/exit values must all fit in signed i32. + if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) + return false; + + // If not actually striding (add x, 0.0), avoid touching the code. + if (IncValue == 0) + return false; + + // Positive and negative strides have different safety conditions. + if (IncValue > 0) { + // If we have a positive stride, we require the init to be less than the + // exit value. + if (InitValue >= ExitValue) + return false; + + uint32_t Range = uint32_t(ExitValue-InitValue); + // Check for infinite loop, either: + // while (i <= Exit) or until (i > Exit) + if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { + if (++Range == 0) return false; // Range overflows. + } + + unsigned Leftover = Range % uint32_t(IncValue); + + // If this is an equality comparison, we require that the strided value + // exactly land on the exit value, otherwise the IV condition will wrap + // around and do things the fp IV wouldn't. + if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && + Leftover != 0) + return false; + + // If the stride would wrap around the i32 before exiting, we can't + // transform the IV. + if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) + return false; + } else { + // If we have a negative stride, we require the init to be greater than the + // exit value. + if (InitValue <= ExitValue) + return false; + + uint32_t Range = uint32_t(InitValue-ExitValue); + // Check for infinite loop, either: + // while (i >= Exit) or until (i < Exit) + if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { + if (++Range == 0) return false; // Range overflows. + } + + unsigned Leftover = Range % uint32_t(-IncValue); + + // If this is an equality comparison, we require that the strided value + // exactly land on the exit value, otherwise the IV condition will wrap + // around and do things the fp IV wouldn't. + if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && + Leftover != 0) + return false; + + // If the stride would wrap around the i32 before exiting, we can't + // transform the IV. + if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) + return false; + } + + IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); + + // Insert new integer induction variable. + PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); + NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), + PN->getIncomingBlock(IncomingEdge)); + + Value *NewAdd = + BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), + Incr->getName()+".int", Incr); + NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); + + ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, + ConstantInt::get(Int32Ty, ExitValue), + Compare->getName()); + + // In the following deletions, PN may become dead and may be deleted. + // Use a WeakTrackingVH to observe whether this happens. + WeakTrackingVH WeakPH = PN; + + // Delete the old floating point exit comparison. The branch starts using the + // new comparison. + NewCompare->takeName(Compare); + Compare->replaceAllUsesWith(NewCompare); + RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); + + // Delete the old floating point increment. + Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); + RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); + + // If the FP induction variable still has uses, this is because something else + // in the loop uses its value. In order to canonicalize the induction + // variable, we chose to eliminate the IV and rewrite it in terms of an + // int->fp cast. + // + // We give preference to sitofp over uitofp because it is faster on most + // platforms. + if (WeakPH) { + Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", + &*PN->getParent()->getFirstInsertionPt()); + PN->replaceAllUsesWith(Conv); + RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); + } + return true; +} + +bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { + // First step. Check to see if there are any floating-point recurrences. + // If there are, change them into integer recurrences, permitting analysis by + // the SCEV routines. + BasicBlock *Header = L->getHeader(); + + SmallVector<WeakTrackingVH, 8> PHIs; + for (PHINode &PN : Header->phis()) + PHIs.push_back(&PN); + + bool Changed = false; + for (unsigned i = 0, e = PHIs.size(); i != e; ++i) + if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) + Changed |= handleFloatingPointIV(L, PN); + + // If the loop previously had floating-point IV, ScalarEvolution + // may not have been able to compute a trip count. Now that we've done some + // re-writing, the trip count may be computable. + if (Changed) + SE->forgetLoop(L); + return Changed; +} + +//===---------------------------------------------------------------------===// +// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know +// they will exit at the first iteration. +//===---------------------------------------------------------------------===// + +/// Check to see if this loop has loop invariant conditions which lead to loop +/// exits. If so, we know that if the exit path is taken, it is at the first +/// loop iteration. This lets us predict exit values of PHI nodes that live in +/// loop header. +bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { + // Verify the input to the pass is already in LCSSA form. + assert(L->isLCSSAForm(*DT)); + + SmallVector<BasicBlock *, 8> ExitBlocks; + L->getUniqueExitBlocks(ExitBlocks); + + bool MadeAnyChanges = false; + for (auto *ExitBB : ExitBlocks) { + // If there are no more PHI nodes in this exit block, then no more + // values defined inside the loop are used on this path. + for (PHINode &PN : ExitBB->phis()) { + for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); + IncomingValIdx != E; ++IncomingValIdx) { + auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); + + // Can we prove that the exit must run on the first iteration if it + // runs at all? (i.e. early exits are fine for our purposes, but + // traces which lead to this exit being taken on the 2nd iteration + // aren't.) Note that this is about whether the exit branch is + // executed, not about whether it is taken. + if (!L->getLoopLatch() || + !DT->dominates(IncomingBB, L->getLoopLatch())) + continue; + + // Get condition that leads to the exit path. + auto *TermInst = IncomingBB->getTerminator(); + + Value *Cond = nullptr; + if (auto *BI = dyn_cast<BranchInst>(TermInst)) { + // Must be a conditional branch, otherwise the block + // should not be in the loop. + Cond = BI->getCondition(); + } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) + Cond = SI->getCondition(); + else + continue; + + if (!L->isLoopInvariant(Cond)) + continue; + + auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); + + // Only deal with PHIs in the loop header. + if (!ExitVal || ExitVal->getParent() != L->getHeader()) + continue; + + // If ExitVal is a PHI on the loop header, then we know its + // value along this exit because the exit can only be taken + // on the first iteration. + auto *LoopPreheader = L->getLoopPreheader(); + assert(LoopPreheader && "Invalid loop"); + int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); + if (PreheaderIdx != -1) { + assert(ExitVal->getParent() == L->getHeader() && + "ExitVal must be in loop header"); + MadeAnyChanges = true; + PN.setIncomingValue(IncomingValIdx, + ExitVal->getIncomingValue(PreheaderIdx)); + } + } + } + } + return MadeAnyChanges; +} + +//===----------------------------------------------------------------------===// +// IV Widening - Extend the width of an IV to cover its widest uses. +//===----------------------------------------------------------------------===// + +/// Update information about the induction variable that is extended by this +/// sign or zero extend operation. This is used to determine the final width of +/// the IV before actually widening it. +static void visitIVCast(CastInst *Cast, WideIVInfo &WI, + ScalarEvolution *SE, + const TargetTransformInfo *TTI) { + bool IsSigned = Cast->getOpcode() == Instruction::SExt; + if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) + return; + + Type *Ty = Cast->getType(); + uint64_t Width = SE->getTypeSizeInBits(Ty); + if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) + return; + + // Check that `Cast` actually extends the induction variable (we rely on this + // later). This takes care of cases where `Cast` is extending a truncation of + // the narrow induction variable, and thus can end up being narrower than the + // "narrow" induction variable. + uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); + if (NarrowIVWidth >= Width) + return; + + // Cast is either an sext or zext up to this point. + // We should not widen an indvar if arithmetics on the wider indvar are more + // expensive than those on the narrower indvar. We check only the cost of ADD + // because at least an ADD is required to increment the induction variable. We + // could compute more comprehensively the cost of all instructions on the + // induction variable when necessary. + if (TTI && + TTI->getArithmeticInstrCost(Instruction::Add, Ty) > + TTI->getArithmeticInstrCost(Instruction::Add, + Cast->getOperand(0)->getType())) { + return; + } + + if (!WI.WidestNativeType) { + WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); + WI.IsSigned = IsSigned; + return; + } + + // We extend the IV to satisfy the sign of its first user, arbitrarily. + if (WI.IsSigned != IsSigned) + return; + + if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) + WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); +} + +//===----------------------------------------------------------------------===// +// Live IV Reduction - Minimize IVs live across the loop. +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Simplification of IV users based on SCEV evaluation. +//===----------------------------------------------------------------------===// + +namespace { + +class IndVarSimplifyVisitor : public IVVisitor { + ScalarEvolution *SE; + const TargetTransformInfo *TTI; + PHINode *IVPhi; + +public: + WideIVInfo WI; + + IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, + const TargetTransformInfo *TTI, + const DominatorTree *DTree) + : SE(SCEV), TTI(TTI), IVPhi(IV) { + DT = DTree; + WI.NarrowIV = IVPhi; + } + + // Implement the interface used by simplifyUsersOfIV. + void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } +}; + +} // end anonymous namespace + +/// Iteratively perform simplification on a worklist of IV users. Each +/// successive simplification may push more users which may themselves be +/// candidates for simplification. +/// +/// Sign/Zero extend elimination is interleaved with IV simplification. +bool IndVarSimplify::simplifyAndExtend(Loop *L, + SCEVExpander &Rewriter, + LoopInfo *LI) { + SmallVector<WideIVInfo, 8> WideIVs; + + auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( + Intrinsic::getName(Intrinsic::experimental_guard)); + bool HasGuards = GuardDecl && !GuardDecl->use_empty(); + + SmallVector<PHINode*, 8> LoopPhis; + for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { + LoopPhis.push_back(cast<PHINode>(I)); + } + // Each round of simplification iterates through the SimplifyIVUsers worklist + // for all current phis, then determines whether any IVs can be + // widened. Widening adds new phis to LoopPhis, inducing another round of + // simplification on the wide IVs. + bool Changed = false; + while (!LoopPhis.empty()) { + // Evaluate as many IV expressions as possible before widening any IVs. This + // forces SCEV to set no-wrap flags before evaluating sign/zero + // extension. The first time SCEV attempts to normalize sign/zero extension, + // the result becomes final. So for the most predictable results, we delay + // evaluation of sign/zero extend evaluation until needed, and avoid running + // other SCEV based analysis prior to simplifyAndExtend. + do { + PHINode *CurrIV = LoopPhis.pop_back_val(); + + // Information about sign/zero extensions of CurrIV. + IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); + + Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, + &Visitor); + + if (Visitor.WI.WidestNativeType) { + WideIVs.push_back(Visitor.WI); + } + } while(!LoopPhis.empty()); + + // Continue if we disallowed widening. + if (!WidenIndVars) + continue; + + for (; !WideIVs.empty(); WideIVs.pop_back()) { + unsigned ElimExt; + unsigned Widened; + if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, + DT, DeadInsts, ElimExt, Widened, + HasGuards, UsePostIncrementRanges)) { + NumElimExt += ElimExt; + NumWidened += Widened; + Changed = true; + LoopPhis.push_back(WidePhi); + } + } + } + return Changed; +} + +//===----------------------------------------------------------------------===// +// linearFunctionTestReplace and its kin. Rewrite the loop exit condition. +//===----------------------------------------------------------------------===// + +/// Given an Value which is hoped to be part of an add recurance in the given +/// loop, return the associated Phi node if so. Otherwise, return null. Note +/// that this is less general than SCEVs AddRec checking. +static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { + Instruction *IncI = dyn_cast<Instruction>(IncV); + if (!IncI) + return nullptr; + + switch (IncI->getOpcode()) { + case Instruction::Add: + case Instruction::Sub: + break; + case Instruction::GetElementPtr: + // An IV counter must preserve its type. + if (IncI->getNumOperands() == 2) + break; + LLVM_FALLTHROUGH; + default: + return nullptr; + } + + PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); + if (Phi && Phi->getParent() == L->getHeader()) { + if (L->isLoopInvariant(IncI->getOperand(1))) + return Phi; + return nullptr; + } + if (IncI->getOpcode() == Instruction::GetElementPtr) + return nullptr; + + // Allow add/sub to be commuted. + Phi = dyn_cast<PHINode>(IncI->getOperand(1)); + if (Phi && Phi->getParent() == L->getHeader()) { + if (L->isLoopInvariant(IncI->getOperand(0))) + return Phi; + } + return nullptr; +} + +/// Whether the current loop exit test is based on this value. Currently this +/// is limited to a direct use in the loop condition. +static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); + // TODO: Allow non-icmp loop test. + if (!ICmp) + return false; + + // TODO: Allow indirect use. + return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; +} + +/// linearFunctionTestReplace policy. Return true unless we can show that the +/// current exit test is already sufficiently canonical. +static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { + assert(L->getLoopLatch() && "Must be in simplified form"); + + // Avoid converting a constant or loop invariant test back to a runtime + // test. This is critical for when SCEV's cached ExitCount is less precise + // than the current IR (such as after we've proven a particular exit is + // actually dead and thus the BE count never reaches our ExitCount.) + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + if (L->isLoopInvariant(BI->getCondition())) + return false; + + // Do LFTR to simplify the exit condition to an ICMP. + ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); + if (!Cond) + return true; + + // Do LFTR to simplify the exit ICMP to EQ/NE + ICmpInst::Predicate Pred = Cond->getPredicate(); + if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) + return true; + + // Look for a loop invariant RHS + Value *LHS = Cond->getOperand(0); + Value *RHS = Cond->getOperand(1); + if (!L->isLoopInvariant(RHS)) { + if (!L->isLoopInvariant(LHS)) + return true; + std::swap(LHS, RHS); + } + // Look for a simple IV counter LHS + PHINode *Phi = dyn_cast<PHINode>(LHS); + if (!Phi) + Phi = getLoopPhiForCounter(LHS, L); + + if (!Phi) + return true; + + // Do LFTR if PHI node is defined in the loop, but is *not* a counter. + int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); + if (Idx < 0) + return true; + + // Do LFTR if the exit condition's IV is *not* a simple counter. + Value *IncV = Phi->getIncomingValue(Idx); + return Phi != getLoopPhiForCounter(IncV, L); +} + +/// Return true if undefined behavior would provable be executed on the path to +/// OnPathTo if Root produced a posion result. Note that this doesn't say +/// anything about whether OnPathTo is actually executed or whether Root is +/// actually poison. This can be used to assess whether a new use of Root can +/// be added at a location which is control equivalent with OnPathTo (such as +/// immediately before it) without introducing UB which didn't previously +/// exist. Note that a false result conveys no information. +static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, + Instruction *OnPathTo, + DominatorTree *DT) { + // Basic approach is to assume Root is poison, propagate poison forward + // through all users we can easily track, and then check whether any of those + // users are provable UB and must execute before out exiting block might + // exit. + + // The set of all recursive users we've visited (which are assumed to all be + // poison because of said visit) + SmallSet<const Value *, 16> KnownPoison; + SmallVector<const Instruction*, 16> Worklist; + Worklist.push_back(Root); + while (!Worklist.empty()) { + const Instruction *I = Worklist.pop_back_val(); + + // If we know this must trigger UB on a path leading our target. + if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) + return true; + + // If we can't analyze propagation through this instruction, just skip it + // and transitive users. Safe as false is a conservative result. + if (!propagatesPoison(cast<Operator>(I)) && I != Root) + continue; + + if (KnownPoison.insert(I).second) + for (const User *User : I->users()) + Worklist.push_back(cast<Instruction>(User)); + } + + // Might be non-UB, or might have a path we couldn't prove must execute on + // way to exiting bb. + return false; +} + +/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils +/// down to checking that all operands are constant and listing instructions +/// that may hide undef. +static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, + unsigned Depth) { + if (isa<Constant>(V)) + return !isa<UndefValue>(V); + + if (Depth >= 6) + return false; + + // Conservatively handle non-constant non-instructions. For example, Arguments + // may be undef. + Instruction *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + // Load and return values may be undef. + if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) + return false; + + // Optimistically handle other instructions. + for (Value *Op : I->operands()) { + if (!Visited.insert(Op).second) + continue; + if (!hasConcreteDefImpl(Op, Visited, Depth+1)) + return false; + } + return true; +} + +/// Return true if the given value is concrete. We must prove that undef can +/// never reach it. +/// +/// TODO: If we decide that this is a good approach to checking for undef, we +/// may factor it into a common location. +static bool hasConcreteDef(Value *V) { + SmallPtrSet<Value*, 8> Visited; + Visited.insert(V); + return hasConcreteDefImpl(V, Visited, 0); +} + +/// Return true if this IV has any uses other than the (soon to be rewritten) +/// loop exit test. +static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { + int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); + Value *IncV = Phi->getIncomingValue(LatchIdx); + + for (User *U : Phi->users()) + if (U != Cond && U != IncV) return false; + + for (User *U : IncV->users()) + if (U != Cond && U != Phi) return false; + return true; +} + +/// Return true if the given phi is a "counter" in L. A counter is an +/// add recurance (of integer or pointer type) with an arbitrary start, and a +/// step of 1. Note that L must have exactly one latch. +static bool isLoopCounter(PHINode* Phi, Loop *L, + ScalarEvolution *SE) { + assert(Phi->getParent() == L->getHeader()); + assert(L->getLoopLatch()); + + if (!SE->isSCEVable(Phi->getType())) + return false; + + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); + if (!AR || AR->getLoop() != L || !AR->isAffine()) + return false; + + const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); + if (!Step || !Step->isOne()) + return false; + + int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); + Value *IncV = Phi->getIncomingValue(LatchIdx); + return (getLoopPhiForCounter(IncV, L) == Phi); +} + +/// Search the loop header for a loop counter (anadd rec w/step of one) +/// suitable for use by LFTR. If multiple counters are available, select the +/// "best" one based profitable heuristics. +/// +/// BECount may be an i8* pointer type. The pointer difference is already +/// valid count without scaling the address stride, so it remains a pointer +/// expression as far as SCEV is concerned. +static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, + const SCEV *BECount, + ScalarEvolution *SE, DominatorTree *DT) { + uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); + + Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); + + // Loop over all of the PHI nodes, looking for a simple counter. + PHINode *BestPhi = nullptr; + const SCEV *BestInit = nullptr; + BasicBlock *LatchBlock = L->getLoopLatch(); + assert(LatchBlock && "Must be in simplified form"); + const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + + for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { + PHINode *Phi = cast<PHINode>(I); + if (!isLoopCounter(Phi, L, SE)) + continue; + + // Avoid comparing an integer IV against a pointer Limit. + if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) + continue; + + const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); + + // AR may be a pointer type, while BECount is an integer type. + // AR may be wider than BECount. With eq/ne tests overflow is immaterial. + // AR may not be a narrower type, or we may never exit. + uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); + if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) + continue; + + // Avoid reusing a potentially undef value to compute other values that may + // have originally had a concrete definition. + if (!hasConcreteDef(Phi)) { + // We explicitly allow unknown phis as long as they are already used by + // the loop exit test. This is legal since performing LFTR could not + // increase the number of undef users. + Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); + if (!isLoopExitTestBasedOn(Phi, ExitingBB) && + !isLoopExitTestBasedOn(IncPhi, ExitingBB)) + continue; + } + + // Avoid introducing undefined behavior due to poison which didn't exist in + // the original program. (Annoyingly, the rules for poison and undef + // propagation are distinct, so this does NOT cover the undef case above.) + // We have to ensure that we don't introduce UB by introducing a use on an + // iteration where said IV produces poison. Our strategy here differs for + // pointers and integer IVs. For integers, we strip and reinfer as needed, + // see code in linearFunctionTestReplace. For pointers, we restrict + // transforms as there is no good way to reinfer inbounds once lost. + if (!Phi->getType()->isIntegerTy() && + !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) + continue; + + const SCEV *Init = AR->getStart(); + + if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { + // Don't force a live loop counter if another IV can be used. + if (AlmostDeadIV(Phi, LatchBlock, Cond)) + continue; + + // Prefer to count-from-zero. This is a more "canonical" counter form. It + // also prefers integer to pointer IVs. + if (BestInit->isZero() != Init->isZero()) { + if (BestInit->isZero()) + continue; + } + // If two IVs both count from zero or both count from nonzero then the + // narrower is likely a dead phi that has been widened. Use the wider phi + // to allow the other to be eliminated. + else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) + continue; + } + BestPhi = Phi; + BestInit = Init; + } + return BestPhi; +} + +/// Insert an IR expression which computes the value held by the IV IndVar +/// (which must be an loop counter w/unit stride) after the backedge of loop L +/// is taken ExitCount times. +static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, + const SCEV *ExitCount, bool UsePostInc, Loop *L, + SCEVExpander &Rewriter, ScalarEvolution *SE) { + assert(isLoopCounter(IndVar, L, SE)); + const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); + const SCEV *IVInit = AR->getStart(); + + // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter + // finds a valid pointer IV. Sign extend ExitCount in order to materialize a + // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing + // the existing GEPs whenever possible. + if (IndVar->getType()->isPointerTy() && + !ExitCount->getType()->isPointerTy()) { + // IVOffset will be the new GEP offset that is interpreted by GEP as a + // signed value. ExitCount on the other hand represents the loop trip count, + // which is an unsigned value. FindLoopCounter only allows induction + // variables that have a positive unit stride of one. This means we don't + // have to handle the case of negative offsets (yet) and just need to zero + // extend ExitCount. + Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); + const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); + if (UsePostInc) + IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); + + // Expand the code for the iteration count. + assert(SE->isLoopInvariant(IVOffset, L) && + "Computed iteration count is not loop invariant!"); + + // We could handle pointer IVs other than i8*, but we need to compensate for + // gep index scaling. + assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), + cast<PointerType>(IndVar->getType()) + ->getElementType())->isOne() && + "unit stride pointer IV must be i8*"); + + const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); + } else { + // In any other case, convert both IVInit and ExitCount to integers before + // comparing. This may result in SCEV expansion of pointers, but in practice + // SCEV will fold the pointer arithmetic away as such: + // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). + // + // Valid Cases: (1) both integers is most common; (2) both may be pointers + // for simple memset-style loops. + // + // IVInit integer and ExitCount pointer would only occur if a canonical IV + // were generated on top of case #2, which is not expected. + + assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); + // For unit stride, IVCount = Start + ExitCount with 2's complement + // overflow. + + // For integer IVs, truncate the IV before computing IVInit + BECount, + // unless we know apriori that the limit must be a constant when evaluated + // in the bitwidth of the IV. We prefer (potentially) keeping a truncate + // of the IV in the loop over a (potentially) expensive expansion of the + // widened exit count add(zext(add)) expression. + if (SE->getTypeSizeInBits(IVInit->getType()) + > SE->getTypeSizeInBits(ExitCount->getType())) { + if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) + ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); + else + IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); + } + + const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); + + if (UsePostInc) + IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); + + // Expand the code for the iteration count. + assert(SE->isLoopInvariant(IVLimit, L) && + "Computed iteration count is not loop invariant!"); + // Ensure that we generate the same type as IndVar, or a smaller integer + // type. In the presence of null pointer values, we have an integer type + // SCEV expression (IVInit) for a pointer type IV value (IndVar). + Type *LimitTy = ExitCount->getType()->isPointerTy() ? + IndVar->getType() : ExitCount->getType(); + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); + } +} + +/// This method rewrites the exit condition of the loop to be a canonical != +/// comparison against the incremented loop induction variable. This pass is +/// able to rewrite the exit tests of any loop where the SCEV analysis can +/// determine a loop-invariant trip count of the loop, which is actually a much +/// broader range than just linear tests. +bool IndVarSimplify:: +linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, + const SCEV *ExitCount, + PHINode *IndVar, SCEVExpander &Rewriter) { + assert(L->getLoopLatch() && "Loop no longer in simplified form?"); + assert(isLoopCounter(IndVar, L, SE)); + Instruction * const IncVar = + cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); + + // Initialize CmpIndVar to the preincremented IV. + Value *CmpIndVar = IndVar; + bool UsePostInc = false; + + // If the exiting block is the same as the backedge block, we prefer to + // compare against the post-incremented value, otherwise we must compare + // against the preincremented value. + if (ExitingBB == L->getLoopLatch()) { + // For pointer IVs, we chose to not strip inbounds which requires us not + // to add a potentially UB introducing use. We need to either a) show + // the loop test we're modifying is already in post-inc form, or b) show + // that adding a use must not introduce UB. + bool SafeToPostInc = + IndVar->getType()->isIntegerTy() || + isLoopExitTestBasedOn(IncVar, ExitingBB) || + mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); + if (SafeToPostInc) { + UsePostInc = true; + CmpIndVar = IncVar; + } + } + + // It may be necessary to drop nowrap flags on the incrementing instruction + // if either LFTR moves from a pre-inc check to a post-inc check (in which + // case the increment might have previously been poison on the last iteration + // only) or if LFTR switches to a different IV that was previously dynamically + // dead (and as such may be arbitrarily poison). We remove any nowrap flags + // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc + // check), because the pre-inc addrec flags may be adopted from the original + // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. + // TODO: This handling is inaccurate for one case: If we switch to a + // dynamically dead IV that wraps on the first loop iteration only, which is + // not covered by the post-inc addrec. (If the new IV was not dynamically + // dead, it could not be poison on the first iteration in the first place.) + if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { + const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); + if (BO->hasNoUnsignedWrap()) + BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); + if (BO->hasNoSignedWrap()) + BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); + } + + Value *ExitCnt = genLoopLimit( + IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); + assert(ExitCnt->getType()->isPointerTy() == + IndVar->getType()->isPointerTy() && + "genLoopLimit missed a cast"); + + // Insert a new icmp_ne or icmp_eq instruction before the branch. + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + ICmpInst::Predicate P; + if (L->contains(BI->getSuccessor(0))) + P = ICmpInst::ICMP_NE; + else + P = ICmpInst::ICMP_EQ; + + IRBuilder<> Builder(BI); + + // The new loop exit condition should reuse the debug location of the + // original loop exit condition. + if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) + Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); + + // For integer IVs, if we evaluated the limit in the narrower bitwidth to + // avoid the expensive expansion of the limit expression in the wider type, + // emit a truncate to narrow the IV to the ExitCount type. This is safe + // since we know (from the exit count bitwidth), that we can't self-wrap in + // the narrower type. + unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); + unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); + if (CmpIndVarSize > ExitCntSize) { + assert(!CmpIndVar->getType()->isPointerTy() && + !ExitCnt->getType()->isPointerTy()); + + // Before resorting to actually inserting the truncate, use the same + // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend + // the other side of the comparison instead. We still evaluate the limit + // in the narrower bitwidth, we just prefer a zext/sext outside the loop to + // a truncate within in. + bool Extended = false; + const SCEV *IV = SE->getSCEV(CmpIndVar); + const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), + ExitCnt->getType()); + const SCEV *ZExtTrunc = + SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); + + if (ZExtTrunc == IV) { + Extended = true; + ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), + "wide.trip.count"); + } else { + const SCEV *SExtTrunc = + SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); + if (SExtTrunc == IV) { + Extended = true; + ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), + "wide.trip.count"); + } + } + + if (Extended) { + bool Discard; + L->makeLoopInvariant(ExitCnt, Discard); + } else + CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), + "lftr.wideiv"); + } + LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" + << " LHS:" << *CmpIndVar << '\n' + << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") + << "\n" + << " RHS:\t" << *ExitCnt << "\n" + << "ExitCount:\t" << *ExitCount << "\n" + << " was: " << *BI->getCondition() << "\n"); + + Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); + Value *OrigCond = BI->getCondition(); + // It's tempting to use replaceAllUsesWith here to fully replace the old + // comparison, but that's not immediately safe, since users of the old + // comparison may not be dominated by the new comparison. Instead, just + // update the branch to use the new comparison; in the common case this + // will make old comparison dead. + BI->setCondition(Cond); + DeadInsts.emplace_back(OrigCond); + + ++NumLFTR; + return true; +} + +//===----------------------------------------------------------------------===// +// sinkUnusedInvariants. A late subpass to cleanup loop preheaders. +//===----------------------------------------------------------------------===// + +/// If there's a single exit block, sink any loop-invariant values that +/// were defined in the preheader but not used inside the loop into the +/// exit block to reduce register pressure in the loop. +bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { + BasicBlock *ExitBlock = L->getExitBlock(); + if (!ExitBlock) return false; + + BasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) return false; + + bool MadeAnyChanges = false; + BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); + BasicBlock::iterator I(Preheader->getTerminator()); + while (I != Preheader->begin()) { + --I; + // New instructions were inserted at the end of the preheader. + if (isa<PHINode>(I)) + break; + + // Don't move instructions which might have side effects, since the side + // effects need to complete before instructions inside the loop. Also don't + // move instructions which might read memory, since the loop may modify + // memory. Note that it's okay if the instruction might have undefined + // behavior: LoopSimplify guarantees that the preheader dominates the exit + // block. + if (I->mayHaveSideEffects() || I->mayReadFromMemory()) + continue; + + // Skip debug info intrinsics. + if (isa<DbgInfoIntrinsic>(I)) + continue; + + // Skip eh pad instructions. + if (I->isEHPad()) + continue; + + // Don't sink alloca: we never want to sink static alloca's out of the + // entry block, and correctly sinking dynamic alloca's requires + // checks for stacksave/stackrestore intrinsics. + // FIXME: Refactor this check somehow? + if (isa<AllocaInst>(I)) + continue; + + // Determine if there is a use in or before the loop (direct or + // otherwise). + bool UsedInLoop = false; + for (Use &U : I->uses()) { + Instruction *User = cast<Instruction>(U.getUser()); + BasicBlock *UseBB = User->getParent(); + if (PHINode *P = dyn_cast<PHINode>(User)) { + unsigned i = + PHINode::getIncomingValueNumForOperand(U.getOperandNo()); + UseBB = P->getIncomingBlock(i); + } + if (UseBB == Preheader || L->contains(UseBB)) { + UsedInLoop = true; + break; + } + } + + // If there is, the def must remain in the preheader. + if (UsedInLoop) + continue; + + // Otherwise, sink it to the exit block. + Instruction *ToMove = &*I; + bool Done = false; + + if (I != Preheader->begin()) { + // Skip debug info intrinsics. + do { + --I; + } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); + + if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) + Done = true; + } else { + Done = true; + } + + MadeAnyChanges = true; + ToMove->moveBefore(*ExitBlock, InsertPt); + if (Done) break; + InsertPt = ToMove->getIterator(); + } + + return MadeAnyChanges; +} + +static void replaceExitCond(BranchInst *BI, Value *NewCond, + SmallVectorImpl<WeakTrackingVH> &DeadInsts) { + auto *OldCond = BI->getCondition(); + BI->setCondition(NewCond); + if (OldCond->use_empty()) + DeadInsts.emplace_back(OldCond); +} + +static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, + SmallVectorImpl<WeakTrackingVH> &DeadInsts) { + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); + auto *OldCond = BI->getCondition(); + auto *NewCond = + ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue); + replaceExitCond(BI, NewCond, DeadInsts); +} + +static void replaceWithInvariantCond( + const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, + const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter, + SmallVectorImpl<WeakTrackingVH> &DeadInsts) { + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + Rewriter.setInsertPoint(BI); + auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); + auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); + bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); + if (ExitIfTrue) + InvariantPred = ICmpInst::getInversePredicate(InvariantPred); + IRBuilder<> Builder(BI); + auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, + BI->getCondition()->getName()); + replaceExitCond(BI, NewCond, DeadInsts); +} + +static bool optimizeLoopExitWithUnknownExitCount( + const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, + const SCEV *MaxIter, bool Inverted, bool SkipLastIter, + ScalarEvolution *SE, SCEVExpander &Rewriter, + SmallVectorImpl<WeakTrackingVH> &DeadInsts) { + ICmpInst::Predicate Pred; + Value *LHS, *RHS; + using namespace PatternMatch; + BasicBlock *TrueSucc, *FalseSucc; + if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), + m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) + return false; + + assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && + "Not a loop exit!"); + + // 'LHS pred RHS' should now mean that we stay in loop. + if (L->contains(FalseSucc)) + Pred = CmpInst::getInversePredicate(Pred); + + // If we are proving loop exit, invert the predicate. + if (Inverted) + Pred = CmpInst::getInversePredicate(Pred); + + const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); + const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); + // Can we prove it to be trivially true? + if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) { + foldExit(L, ExitingBB, Inverted, DeadInsts); + return true; + } + // Further logic works for non-inverted condition only. + if (Inverted) + return false; + + auto *ARTy = LHSS->getType(); + auto *MaxIterTy = MaxIter->getType(); + // If possible, adjust types. + if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) + MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); + else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { + const SCEV *MinusOne = SE->getMinusOne(ARTy); + auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); + if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) + MaxIter = SE->getTruncateExpr(MaxIter, ARTy); + } + + if (SkipLastIter) { + const SCEV *One = SE->getOne(MaxIter->getType()); + MaxIter = SE->getMinusSCEV(MaxIter, One); + } + + // Check if there is a loop-invariant predicate equivalent to our check. + auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, + L, BI, MaxIter); + if (!LIP) + return false; + + // Can we prove it to be trivially true? + if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) + foldExit(L, ExitingBB, Inverted, DeadInsts); + else + replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS, + Rewriter, DeadInsts); + + return true; +} + +bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { + SmallVector<BasicBlock*, 16> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + + // Remove all exits which aren't both rewriteable and execute on every + // iteration. + llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { + // If our exitting block exits multiple loops, we can only rewrite the + // innermost one. Otherwise, we're changing how many times the innermost + // loop runs before it exits. + if (LI->getLoopFor(ExitingBB) != L) + return true; + + // Can't rewrite non-branch yet. + BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); + if (!BI) + return true; + + // If already constant, nothing to do. + if (isa<Constant>(BI->getCondition())) + return true; + + // Likewise, the loop latch must be dominated by the exiting BB. + if (!DT->dominates(ExitingBB, L->getLoopLatch())) + return true; + + return false; + }); + + if (ExitingBlocks.empty()) + return false; + + // Get a symbolic upper bound on the loop backedge taken count. + const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); + if (isa<SCEVCouldNotCompute>(MaxExitCount)) + return false; + + // Visit our exit blocks in order of dominance. We know from the fact that + // all exits must dominate the latch, so there is a total dominance order + // between them. + llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { + // std::sort sorts in ascending order, so we want the inverse of + // the normal dominance relation. + if (A == B) return false; + if (DT->properlyDominates(A, B)) + return true; + else { + assert(DT->properlyDominates(B, A) && + "expected total dominance order!"); + return false; + } + }); +#ifdef ASSERT + for (unsigned i = 1; i < ExitingBlocks.size(); i++) { + assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); + } +#endif + + bool Changed = false; + bool SkipLastIter = false; + SmallSet<const SCEV*, 8> DominatingExitCounts; + for (BasicBlock *ExitingBB : ExitingBlocks) { + const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); + if (isa<SCEVCouldNotCompute>(ExitCount)) { + // Okay, we do not know the exit count here. Can we at least prove that it + // will remain the same within iteration space? + auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); + auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) { + return optimizeLoopExitWithUnknownExitCount( + L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE, + Rewriter, DeadInsts); + }; + + // TODO: We might have proved that we can skip the last iteration for + // this check. In this case, we only want to check the condition on the + // pre-last iteration (MaxExitCount - 1). However, there is a nasty + // corner case: + // + // for (i = len; i != 0; i--) { ... check (i ult X) ... } + // + // If we could not prove that len != 0, then we also could not prove that + // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then + // OptimizeCond will likely not prove anything for it, even if it could + // prove the same fact for len. + // + // As a temporary solution, we query both last and pre-last iterations in + // hope that we will be able to prove triviality for at least one of + // them. We can stop querying MaxExitCount for this case once SCEV + // understands that (MaxExitCount - 1) will not overflow here. + if (OptimizeCond(false, false) || OptimizeCond(true, false)) + Changed = true; + else if (SkipLastIter) + if (OptimizeCond(false, true) || OptimizeCond(true, true)) + Changed = true; + continue; + } + + if (MaxExitCount == ExitCount) + // If the loop has more than 1 iteration, all further checks will be + // executed 1 iteration less. + SkipLastIter = true; + + // If we know we'd exit on the first iteration, rewrite the exit to + // reflect this. This does not imply the loop must exit through this + // exit; there may be an earlier one taken on the first iteration. + // TODO: Given we know the backedge can't be taken, we should go ahead + // and break it. Or at least, kill all the header phis and simplify. + if (ExitCount->isZero()) { + foldExit(L, ExitingBB, true, DeadInsts); + Changed = true; + continue; + } + + // If we end up with a pointer exit count, bail. Note that we can end up + // with a pointer exit count for one exiting block, and not for another in + // the same loop. + if (!ExitCount->getType()->isIntegerTy() || + !MaxExitCount->getType()->isIntegerTy()) + continue; + + Type *WiderType = + SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); + ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); + MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); + assert(MaxExitCount->getType() == ExitCount->getType()); + + // Can we prove that some other exit must be taken strictly before this + // one? + if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, + MaxExitCount, ExitCount)) { + foldExit(L, ExitingBB, false, DeadInsts); + Changed = true; + continue; + } + + // As we run, keep track of which exit counts we've encountered. If we + // find a duplicate, we've found an exit which would have exited on the + // exiting iteration, but (from the visit order) strictly follows another + // which does the same and is thus dead. + if (!DominatingExitCounts.insert(ExitCount).second) { + foldExit(L, ExitingBB, false, DeadInsts); + Changed = true; + continue; + } + + // TODO: There might be another oppurtunity to leverage SCEV's reasoning + // here. If we kept track of the min of dominanting exits so far, we could + // discharge exits with EC >= MDEC. This is less powerful than the existing + // transform (since later exits aren't considered), but potentially more + // powerful for any case where SCEV can prove a >=u b, but neither a == b + // or a >u b. Such a case is not currently known. + } + return Changed; +} + +bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { + SmallVector<BasicBlock*, 16> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + + // Finally, see if we can rewrite our exit conditions into a loop invariant + // form. If we have a read-only loop, and we can tell that we must exit down + // a path which does not need any of the values computed within the loop, we + // can rewrite the loop to exit on the first iteration. Note that this + // doesn't either a) tell us the loop exits on the first iteration (unless + // *all* exits are predicateable) or b) tell us *which* exit might be taken. + // This transformation looks a lot like a restricted form of dead loop + // elimination, but restricted to read-only loops and without neccesssarily + // needing to kill the loop entirely. + if (!LoopPredication) + return false; + + if (!SE->hasLoopInvariantBackedgeTakenCount(L)) + return false; + + // Note: ExactBTC is the exact backedge taken count *iff* the loop exits + // through *explicit* control flow. We have to eliminate the possibility of + // implicit exits (see below) before we know it's truly exact. + const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); + if (isa<SCEVCouldNotCompute>(ExactBTC) || + !SE->isLoopInvariant(ExactBTC, L) || + !isSafeToExpand(ExactBTC, *SE)) + return false; + + // If we end up with a pointer exit count, bail. It may be unsized. + if (!ExactBTC->getType()->isIntegerTy()) + return false; + + auto BadExit = [&](BasicBlock *ExitingBB) { + // If our exiting block exits multiple loops, we can only rewrite the + // innermost one. Otherwise, we're changing how many times the innermost + // loop runs before it exits. + if (LI->getLoopFor(ExitingBB) != L) + return true; + + // Can't rewrite non-branch yet. + BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); + if (!BI) + return true; + + // If already constant, nothing to do. + if (isa<Constant>(BI->getCondition())) + return true; + + // If the exit block has phis, we need to be able to compute the values + // within the loop which contains them. This assumes trivially lcssa phis + // have already been removed; TODO: generalize + BasicBlock *ExitBlock = + BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); + if (!ExitBlock->phis().empty()) + return true; + + const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); + assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count"); + if (!SE->isLoopInvariant(ExitCount, L) || + !isSafeToExpand(ExitCount, *SE)) + return true; + + // If we end up with a pointer exit count, bail. It may be unsized. + if (!ExitCount->getType()->isIntegerTy()) + return true; + + return false; + }; + + // If we have any exits which can't be predicated themselves, than we can't + // predicate any exit which isn't guaranteed to execute before it. Consider + // two exits (a) and (b) which would both exit on the same iteration. If we + // can predicate (b), but not (a), and (a) preceeds (b) along some path, then + // we could convert a loop from exiting through (a) to one exiting through + // (b). Note that this problem exists only for exits with the same exit + // count, and we could be more aggressive when exit counts are known inequal. + llvm::sort(ExitingBlocks, + [&](BasicBlock *A, BasicBlock *B) { + // std::sort sorts in ascending order, so we want the inverse of + // the normal dominance relation, plus a tie breaker for blocks + // unordered by dominance. + if (DT->properlyDominates(A, B)) return true; + if (DT->properlyDominates(B, A)) return false; + return A->getName() < B->getName(); + }); + // Check to see if our exit blocks are a total order (i.e. a linear chain of + // exits before the backedge). If they aren't, reasoning about reachability + // is complicated and we choose not to for now. + for (unsigned i = 1; i < ExitingBlocks.size(); i++) + if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) + return false; + + // Given our sorted total order, we know that exit[j] must be evaluated + // after all exit[i] such j > i. + for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) + if (BadExit(ExitingBlocks[i])) { + ExitingBlocks.resize(i); + break; + } + + if (ExitingBlocks.empty()) + return false; + + // We rely on not being able to reach an exiting block on a later iteration + // then it's statically compute exit count. The implementaton of + // getExitCount currently has this invariant, but assert it here so that + // breakage is obvious if this ever changes.. + assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { + return DT->dominates(ExitingBB, L->getLoopLatch()); + })); + + // At this point, ExitingBlocks consists of only those blocks which are + // predicatable. Given that, we know we have at least one exit we can + // predicate if the loop is doesn't have side effects and doesn't have any + // implicit exits (because then our exact BTC isn't actually exact). + // @Reviewers - As structured, this is O(I^2) for loop nests. Any + // suggestions on how to improve this? I can obviously bail out for outer + // loops, but that seems less than ideal. MemorySSA can find memory writes, + // is that enough for *all* side effects? + for (BasicBlock *BB : L->blocks()) + for (auto &I : *BB) + // TODO:isGuaranteedToTransfer + if (I.mayHaveSideEffects() || I.mayThrow()) + return false; + + bool Changed = false; + // Finally, do the actual predication for all predicatable blocks. A couple + // of notes here: + // 1) We don't bother to constant fold dominated exits with identical exit + // counts; that's simply a form of CSE/equality propagation and we leave + // it for dedicated passes. + // 2) We insert the comparison at the branch. Hoisting introduces additional + // legality constraints and we leave that to dedicated logic. We want to + // predicate even if we can't insert a loop invariant expression as + // peeling or unrolling will likely reduce the cost of the otherwise loop + // varying check. + Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); + IRBuilder<> B(L->getLoopPreheader()->getTerminator()); + Value *ExactBTCV = nullptr; // Lazily generated if needed. + for (BasicBlock *ExitingBB : ExitingBlocks) { + const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); + + auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); + Value *NewCond; + if (ExitCount == ExactBTC) { + NewCond = L->contains(BI->getSuccessor(0)) ? + B.getFalse() : B.getTrue(); + } else { + Value *ECV = Rewriter.expandCodeFor(ExitCount); + if (!ExactBTCV) + ExactBTCV = Rewriter.expandCodeFor(ExactBTC); + Value *RHS = ExactBTCV; + if (ECV->getType() != RHS->getType()) { + Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); + ECV = B.CreateZExt(ECV, WiderTy); + RHS = B.CreateZExt(RHS, WiderTy); + } + auto Pred = L->contains(BI->getSuccessor(0)) ? + ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; + NewCond = B.CreateICmp(Pred, ECV, RHS); + } + Value *OldCond = BI->getCondition(); + BI->setCondition(NewCond); + if (OldCond->use_empty()) + DeadInsts.emplace_back(OldCond); + Changed = true; + } + + return Changed; +} + +//===----------------------------------------------------------------------===// +// IndVarSimplify driver. Manage several subpasses of IV simplification. +//===----------------------------------------------------------------------===// + +bool IndVarSimplify::run(Loop *L) { + // We need (and expect!) the incoming loop to be in LCSSA. + assert(L->isRecursivelyLCSSAForm(*DT, *LI) && + "LCSSA required to run indvars!"); + + // If LoopSimplify form is not available, stay out of trouble. Some notes: + // - LSR currently only supports LoopSimplify-form loops. Indvars' + // canonicalization can be a pessimization without LSR to "clean up" + // afterwards. + // - We depend on having a preheader; in particular, + // Loop::getCanonicalInductionVariable only supports loops with preheaders, + // and we're in trouble if we can't find the induction variable even when + // we've manually inserted one. + // - LFTR relies on having a single backedge. + if (!L->isLoopSimplifyForm()) + return false; + +#ifndef NDEBUG + // Used below for a consistency check only + // Note: Since the result returned by ScalarEvolution may depend on the order + // in which previous results are added to its cache, the call to + // getBackedgeTakenCount() may change following SCEV queries. + const SCEV *BackedgeTakenCount; + if (VerifyIndvars) + BackedgeTakenCount = SE->getBackedgeTakenCount(L); +#endif + + bool Changed = false; + // If there are any floating-point recurrences, attempt to + // transform them to use integer recurrences. + Changed |= rewriteNonIntegerIVs(L); + + // Create a rewriter object which we'll use to transform the code with. + SCEVExpander Rewriter(*SE, DL, "indvars"); +#ifndef NDEBUG + Rewriter.setDebugType(DEBUG_TYPE); +#endif + + // Eliminate redundant IV users. + // + // Simplification works best when run before other consumers of SCEV. We + // attempt to avoid evaluating SCEVs for sign/zero extend operations until + // other expressions involving loop IVs have been evaluated. This helps SCEV + // set no-wrap flags before normalizing sign/zero extension. + Rewriter.disableCanonicalMode(); + Changed |= simplifyAndExtend(L, Rewriter, LI); + + // Check to see if we can compute the final value of any expressions + // that are recurrent in the loop, and substitute the exit values from the + // loop into any instructions outside of the loop that use the final values + // of the current expressions. + if (ReplaceExitValue != NeverRepl) { + if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, + ReplaceExitValue, DeadInsts)) { + NumReplaced += Rewrites; + Changed = true; + } + } + + // Eliminate redundant IV cycles. + NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); + + // Try to eliminate loop exits based on analyzeable exit counts + if (optimizeLoopExits(L, Rewriter)) { + Changed = true; + // Given we've changed exit counts, notify SCEV + // Some nested loops may share same folded exit basic block, + // thus we need to notify top most loop. + SE->forgetTopmostLoop(L); + } + + // Try to form loop invariant tests for loop exits by changing how many + // iterations of the loop run when that is unobservable. + if (predicateLoopExits(L, Rewriter)) { + Changed = true; + // Given we've changed exit counts, notify SCEV + SE->forgetLoop(L); + } + + // If we have a trip count expression, rewrite the loop's exit condition + // using it. + if (!DisableLFTR) { + BasicBlock *PreHeader = L->getLoopPreheader(); + BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); + + SmallVector<BasicBlock*, 16> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + for (BasicBlock *ExitingBB : ExitingBlocks) { + // Can't rewrite non-branch yet. + if (!isa<BranchInst>(ExitingBB->getTerminator())) + continue; + + // If our exitting block exits multiple loops, we can only rewrite the + // innermost one. Otherwise, we're changing how many times the innermost + // loop runs before it exits. + if (LI->getLoopFor(ExitingBB) != L) + continue; + + if (!needsLFTR(L, ExitingBB)) + continue; + + const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); + if (isa<SCEVCouldNotCompute>(ExitCount)) + continue; + + // This was handled above, but as we form SCEVs, we can sometimes refine + // existing ones; this allows exit counts to be folded to zero which + // weren't when optimizeLoopExits saw them. Arguably, we should iterate + // until stable to handle cases like this better. + if (ExitCount->isZero()) + continue; + + PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); + if (!IndVar) + continue; + + // Avoid high cost expansions. Note: This heuristic is questionable in + // that our definition of "high cost" is not exactly principled. + if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, + TTI, PreHeaderBR)) + continue; + + // Check preconditions for proper SCEVExpander operation. SCEV does not + // express SCEVExpander's dependencies, such as LoopSimplify. Instead + // any pass that uses the SCEVExpander must do it. This does not work + // well for loop passes because SCEVExpander makes assumptions about + // all loops, while LoopPassManager only forces the current loop to be + // simplified. + // + // FIXME: SCEV expansion has no way to bail out, so the caller must + // explicitly check any assumptions made by SCEV. Brittle. + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); + if (!AR || AR->getLoop()->getLoopPreheader()) + Changed |= linearFunctionTestReplace(L, ExitingBB, + ExitCount, IndVar, + Rewriter); + } + } + // Clear the rewriter cache, because values that are in the rewriter's cache + // can be deleted in the loop below, causing the AssertingVH in the cache to + // trigger. + Rewriter.clear(); + + // Now that we're done iterating through lists, clean up any instructions + // which are now dead. + while (!DeadInsts.empty()) { + Value *V = DeadInsts.pop_back_val(); + + if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) + Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); + else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) + Changed |= + RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); + } + + // The Rewriter may not be used from this point on. + + // Loop-invariant instructions in the preheader that aren't used in the + // loop may be sunk below the loop to reduce register pressure. + Changed |= sinkUnusedInvariants(L); + + // rewriteFirstIterationLoopExitValues does not rely on the computation of + // trip count and therefore can further simplify exit values in addition to + // rewriteLoopExitValues. + Changed |= rewriteFirstIterationLoopExitValues(L); + + // Clean up dead instructions. + Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); + + // Check a post-condition. + assert(L->isRecursivelyLCSSAForm(*DT, *LI) && + "Indvars did not preserve LCSSA!"); + + // Verify that LFTR, and any other change have not interfered with SCEV's + // ability to compute trip count. We may have *changed* the exit count, but + // only by reducing it. +#ifndef NDEBUG + if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { + SE->forgetLoop(L); + const SCEV *NewBECount = SE->getBackedgeTakenCount(L); + if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < + SE->getTypeSizeInBits(NewBECount->getType())) + NewBECount = SE->getTruncateOrNoop(NewBECount, + BackedgeTakenCount->getType()); + else + BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, + NewBECount->getType()); + assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, + NewBECount) && "indvars must preserve SCEV"); + } + if (VerifyMemorySSA && MSSAU) + MSSAU->getMemorySSA()->verifyMemorySSA(); +#endif + + return Changed; +} + +PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR, + LPMUpdater &) { + Function *F = L.getHeader()->getParent(); + const DataLayout &DL = F->getParent()->getDataLayout(); + + IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, + WidenIndVars && AllowIVWidening); + if (!IVS.run(&L)) + return PreservedAnalyses::all(); + + auto PA = getLoopPassPreservedAnalyses(); + PA.preserveSet<CFGAnalyses>(); + if (AR.MSSA) + PA.preserve<MemorySSAAnalysis>(); + return PA; +} + +namespace { + +struct IndVarSimplifyLegacyPass : public LoopPass { + static char ID; // Pass identification, replacement for typeid + + IndVarSimplifyLegacyPass() : LoopPass(ID) { + initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + + auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); + auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; + auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); + auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; + const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); + MemorySSA *MSSA = nullptr; + if (MSSAAnalysis) + MSSA = &MSSAAnalysis->getMSSA(); + + IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); + return IVS.run(L); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addPreserved<MemorySSAWrapperPass>(); + getLoopAnalysisUsage(AU); + } +}; + +} // end anonymous namespace + +char IndVarSimplifyLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", + "Induction Variable Simplification", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", + "Induction Variable Simplification", false, false) + +Pass *llvm::createIndVarSimplifyPass() { + return new IndVarSimplifyLegacyPass(); +} |