aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp1990
1 files changed, 1990 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
new file mode 100644
index 000000000000..ae1fff0fa844
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -0,0 +1,1990 @@
+//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation analyzes and transforms the induction variables (and
+// computations derived from them) into simpler forms suitable for subsequent
+// analysis and transformation.
+//
+// If the trip count of a loop is computable, this pass also makes the following
+// changes:
+// 1. The exit condition for the loop is canonicalized to compare the
+// induction value against the exit value. This turns loops like:
+// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
+// 2. Any use outside of the loop of an expression derived from the indvar
+// is changed to compute the derived value outside of the loop, eliminating
+// the dependence on the exit value of the induction variable. If the only
+// purpose of the loop is to compute the exit value of some derived
+// expression, this transformation will make the loop dead.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/IndVarSimplify.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include <cassert>
+#include <cstdint>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "indvars"
+
+STATISTIC(NumWidened , "Number of indvars widened");
+STATISTIC(NumReplaced , "Number of exit values replaced");
+STATISTIC(NumLFTR , "Number of loop exit tests replaced");
+STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
+STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
+
+// Trip count verification can be enabled by default under NDEBUG if we
+// implement a strong expression equivalence checker in SCEV. Until then, we
+// use the verify-indvars flag, which may assert in some cases.
+static cl::opt<bool> VerifyIndvars(
+ "verify-indvars", cl::Hidden,
+ cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
+ "effect in release builds. (Note: this adds additional SCEV "
+ "queries potentially changing the analysis result)"));
+
+static cl::opt<ReplaceExitVal> ReplaceExitValue(
+ "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
+ cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
+ cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
+ clEnumValN(OnlyCheapRepl, "cheap",
+ "only replace exit value when the cost is cheap"),
+ clEnumValN(NoHardUse, "noharduse",
+ "only replace exit values when loop def likely dead"),
+ clEnumValN(AlwaysRepl, "always",
+ "always replace exit value whenever possible")));
+
+static cl::opt<bool> UsePostIncrementRanges(
+ "indvars-post-increment-ranges", cl::Hidden,
+ cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
+ cl::init(true));
+
+static cl::opt<bool>
+DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
+ cl::desc("Disable Linear Function Test Replace optimization"));
+
+static cl::opt<bool>
+LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
+ cl::desc("Predicate conditions in read only loops"));
+
+static cl::opt<bool>
+AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
+ cl::desc("Allow widening of indvars to eliminate s/zext"));
+
+namespace {
+
+struct RewritePhi;
+
+class IndVarSimplify {
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+ const DataLayout &DL;
+ TargetLibraryInfo *TLI;
+ const TargetTransformInfo *TTI;
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+
+ SmallVector<WeakTrackingVH, 16> DeadInsts;
+ bool WidenIndVars;
+
+ bool handleFloatingPointIV(Loop *L, PHINode *PH);
+ bool rewriteNonIntegerIVs(Loop *L);
+
+ bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
+ /// Try to eliminate loop exits based on analyzeable exit counts
+ bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
+ /// Try to form loop invariant tests for loop exits by changing how many
+ /// iterations of the loop run when that is unobservable.
+ bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
+
+ bool rewriteFirstIterationLoopExitValues(Loop *L);
+
+ bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
+ const SCEV *ExitCount,
+ PHINode *IndVar, SCEVExpander &Rewriter);
+
+ bool sinkUnusedInvariants(Loop *L);
+
+public:
+ IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
+ const DataLayout &DL, TargetLibraryInfo *TLI,
+ TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
+ : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
+ WidenIndVars(WidenIndVars) {
+ if (MSSA)
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+ }
+
+ bool run(Loop *L);
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
+//===----------------------------------------------------------------------===//
+
+/// Convert APF to an integer, if possible.
+static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
+ bool isExact = false;
+ // See if we can convert this to an int64_t
+ uint64_t UIntVal;
+ if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
+ APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
+ !isExact)
+ return false;
+ IntVal = UIntVal;
+ return true;
+}
+
+/// If the loop has floating induction variable then insert corresponding
+/// integer induction variable if possible.
+/// For example,
+/// for(double i = 0; i < 10000; ++i)
+/// bar(i)
+/// is converted into
+/// for(int i = 0; i < 10000; ++i)
+/// bar((double)i);
+bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
+ unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
+ unsigned BackEdge = IncomingEdge^1;
+
+ // Check incoming value.
+ auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
+
+ int64_t InitValue;
+ if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
+ return false;
+
+ // Check IV increment. Reject this PN if increment operation is not
+ // an add or increment value can not be represented by an integer.
+ auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
+ if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
+
+ // If this is not an add of the PHI with a constantfp, or if the constant fp
+ // is not an integer, bail out.
+ ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
+ int64_t IncValue;
+ if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
+ !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
+ return false;
+
+ // Check Incr uses. One user is PN and the other user is an exit condition
+ // used by the conditional terminator.
+ Value::user_iterator IncrUse = Incr->user_begin();
+ Instruction *U1 = cast<Instruction>(*IncrUse++);
+ if (IncrUse == Incr->user_end()) return false;
+ Instruction *U2 = cast<Instruction>(*IncrUse++);
+ if (IncrUse != Incr->user_end()) return false;
+
+ // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
+ // only used by a branch, we can't transform it.
+ FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
+ if (!Compare)
+ Compare = dyn_cast<FCmpInst>(U2);
+ if (!Compare || !Compare->hasOneUse() ||
+ !isa<BranchInst>(Compare->user_back()))
+ return false;
+
+ BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
+
+ // We need to verify that the branch actually controls the iteration count
+ // of the loop. If not, the new IV can overflow and no one will notice.
+ // The branch block must be in the loop and one of the successors must be out
+ // of the loop.
+ assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
+ if (!L->contains(TheBr->getParent()) ||
+ (L->contains(TheBr->getSuccessor(0)) &&
+ L->contains(TheBr->getSuccessor(1))))
+ return false;
+
+ // If it isn't a comparison with an integer-as-fp (the exit value), we can't
+ // transform it.
+ ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
+ int64_t ExitValue;
+ if (ExitValueVal == nullptr ||
+ !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
+ return false;
+
+ // Find new predicate for integer comparison.
+ CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
+ switch (Compare->getPredicate()) {
+ default: return false; // Unknown comparison.
+ case CmpInst::FCMP_OEQ:
+ case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
+ case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
+ case CmpInst::FCMP_OGE:
+ case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
+ case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
+ case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
+ }
+
+ // We convert the floating point induction variable to a signed i32 value if
+ // we can. This is only safe if the comparison will not overflow in a way
+ // that won't be trapped by the integer equivalent operations. Check for this
+ // now.
+ // TODO: We could use i64 if it is native and the range requires it.
+
+ // The start/stride/exit values must all fit in signed i32.
+ if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
+ return false;
+
+ // If not actually striding (add x, 0.0), avoid touching the code.
+ if (IncValue == 0)
+ return false;
+
+ // Positive and negative strides have different safety conditions.
+ if (IncValue > 0) {
+ // If we have a positive stride, we require the init to be less than the
+ // exit value.
+ if (InitValue >= ExitValue)
+ return false;
+
+ uint32_t Range = uint32_t(ExitValue-InitValue);
+ // Check for infinite loop, either:
+ // while (i <= Exit) or until (i > Exit)
+ if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
+ if (++Range == 0) return false; // Range overflows.
+ }
+
+ unsigned Leftover = Range % uint32_t(IncValue);
+
+ // If this is an equality comparison, we require that the strided value
+ // exactly land on the exit value, otherwise the IV condition will wrap
+ // around and do things the fp IV wouldn't.
+ if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
+ Leftover != 0)
+ return false;
+
+ // If the stride would wrap around the i32 before exiting, we can't
+ // transform the IV.
+ if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
+ return false;
+ } else {
+ // If we have a negative stride, we require the init to be greater than the
+ // exit value.
+ if (InitValue <= ExitValue)
+ return false;
+
+ uint32_t Range = uint32_t(InitValue-ExitValue);
+ // Check for infinite loop, either:
+ // while (i >= Exit) or until (i < Exit)
+ if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
+ if (++Range == 0) return false; // Range overflows.
+ }
+
+ unsigned Leftover = Range % uint32_t(-IncValue);
+
+ // If this is an equality comparison, we require that the strided value
+ // exactly land on the exit value, otherwise the IV condition will wrap
+ // around and do things the fp IV wouldn't.
+ if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
+ Leftover != 0)
+ return false;
+
+ // If the stride would wrap around the i32 before exiting, we can't
+ // transform the IV.
+ if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
+ return false;
+ }
+
+ IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
+
+ // Insert new integer induction variable.
+ PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
+ NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
+ PN->getIncomingBlock(IncomingEdge));
+
+ Value *NewAdd =
+ BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
+ Incr->getName()+".int", Incr);
+ NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
+
+ ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
+ ConstantInt::get(Int32Ty, ExitValue),
+ Compare->getName());
+
+ // In the following deletions, PN may become dead and may be deleted.
+ // Use a WeakTrackingVH to observe whether this happens.
+ WeakTrackingVH WeakPH = PN;
+
+ // Delete the old floating point exit comparison. The branch starts using the
+ // new comparison.
+ NewCompare->takeName(Compare);
+ Compare->replaceAllUsesWith(NewCompare);
+ RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
+
+ // Delete the old floating point increment.
+ Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
+ RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
+
+ // If the FP induction variable still has uses, this is because something else
+ // in the loop uses its value. In order to canonicalize the induction
+ // variable, we chose to eliminate the IV and rewrite it in terms of an
+ // int->fp cast.
+ //
+ // We give preference to sitofp over uitofp because it is faster on most
+ // platforms.
+ if (WeakPH) {
+ Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
+ &*PN->getParent()->getFirstInsertionPt());
+ PN->replaceAllUsesWith(Conv);
+ RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
+ }
+ return true;
+}
+
+bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
+ // First step. Check to see if there are any floating-point recurrences.
+ // If there are, change them into integer recurrences, permitting analysis by
+ // the SCEV routines.
+ BasicBlock *Header = L->getHeader();
+
+ SmallVector<WeakTrackingVH, 8> PHIs;
+ for (PHINode &PN : Header->phis())
+ PHIs.push_back(&PN);
+
+ bool Changed = false;
+ for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
+ if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
+ Changed |= handleFloatingPointIV(L, PN);
+
+ // If the loop previously had floating-point IV, ScalarEvolution
+ // may not have been able to compute a trip count. Now that we've done some
+ // re-writing, the trip count may be computable.
+ if (Changed)
+ SE->forgetLoop(L);
+ return Changed;
+}
+
+//===---------------------------------------------------------------------===//
+// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
+// they will exit at the first iteration.
+//===---------------------------------------------------------------------===//
+
+/// Check to see if this loop has loop invariant conditions which lead to loop
+/// exits. If so, we know that if the exit path is taken, it is at the first
+/// loop iteration. This lets us predict exit values of PHI nodes that live in
+/// loop header.
+bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
+ // Verify the input to the pass is already in LCSSA form.
+ assert(L->isLCSSAForm(*DT));
+
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ bool MadeAnyChanges = false;
+ for (auto *ExitBB : ExitBlocks) {
+ // If there are no more PHI nodes in this exit block, then no more
+ // values defined inside the loop are used on this path.
+ for (PHINode &PN : ExitBB->phis()) {
+ for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
+ IncomingValIdx != E; ++IncomingValIdx) {
+ auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
+
+ // Can we prove that the exit must run on the first iteration if it
+ // runs at all? (i.e. early exits are fine for our purposes, but
+ // traces which lead to this exit being taken on the 2nd iteration
+ // aren't.) Note that this is about whether the exit branch is
+ // executed, not about whether it is taken.
+ if (!L->getLoopLatch() ||
+ !DT->dominates(IncomingBB, L->getLoopLatch()))
+ continue;
+
+ // Get condition that leads to the exit path.
+ auto *TermInst = IncomingBB->getTerminator();
+
+ Value *Cond = nullptr;
+ if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
+ // Must be a conditional branch, otherwise the block
+ // should not be in the loop.
+ Cond = BI->getCondition();
+ } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
+ Cond = SI->getCondition();
+ else
+ continue;
+
+ if (!L->isLoopInvariant(Cond))
+ continue;
+
+ auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
+
+ // Only deal with PHIs in the loop header.
+ if (!ExitVal || ExitVal->getParent() != L->getHeader())
+ continue;
+
+ // If ExitVal is a PHI on the loop header, then we know its
+ // value along this exit because the exit can only be taken
+ // on the first iteration.
+ auto *LoopPreheader = L->getLoopPreheader();
+ assert(LoopPreheader && "Invalid loop");
+ int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
+ if (PreheaderIdx != -1) {
+ assert(ExitVal->getParent() == L->getHeader() &&
+ "ExitVal must be in loop header");
+ MadeAnyChanges = true;
+ PN.setIncomingValue(IncomingValIdx,
+ ExitVal->getIncomingValue(PreheaderIdx));
+ }
+ }
+ }
+ }
+ return MadeAnyChanges;
+}
+
+//===----------------------------------------------------------------------===//
+// IV Widening - Extend the width of an IV to cover its widest uses.
+//===----------------------------------------------------------------------===//
+
+/// Update information about the induction variable that is extended by this
+/// sign or zero extend operation. This is used to determine the final width of
+/// the IV before actually widening it.
+static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
+ ScalarEvolution *SE,
+ const TargetTransformInfo *TTI) {
+ bool IsSigned = Cast->getOpcode() == Instruction::SExt;
+ if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
+ return;
+
+ Type *Ty = Cast->getType();
+ uint64_t Width = SE->getTypeSizeInBits(Ty);
+ if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
+ return;
+
+ // Check that `Cast` actually extends the induction variable (we rely on this
+ // later). This takes care of cases where `Cast` is extending a truncation of
+ // the narrow induction variable, and thus can end up being narrower than the
+ // "narrow" induction variable.
+ uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
+ if (NarrowIVWidth >= Width)
+ return;
+
+ // Cast is either an sext or zext up to this point.
+ // We should not widen an indvar if arithmetics on the wider indvar are more
+ // expensive than those on the narrower indvar. We check only the cost of ADD
+ // because at least an ADD is required to increment the induction variable. We
+ // could compute more comprehensively the cost of all instructions on the
+ // induction variable when necessary.
+ if (TTI &&
+ TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
+ TTI->getArithmeticInstrCost(Instruction::Add,
+ Cast->getOperand(0)->getType())) {
+ return;
+ }
+
+ if (!WI.WidestNativeType) {
+ WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
+ WI.IsSigned = IsSigned;
+ return;
+ }
+
+ // We extend the IV to satisfy the sign of its first user, arbitrarily.
+ if (WI.IsSigned != IsSigned)
+ return;
+
+ if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
+ WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
+}
+
+//===----------------------------------------------------------------------===//
+// Live IV Reduction - Minimize IVs live across the loop.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Simplification of IV users based on SCEV evaluation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class IndVarSimplifyVisitor : public IVVisitor {
+ ScalarEvolution *SE;
+ const TargetTransformInfo *TTI;
+ PHINode *IVPhi;
+
+public:
+ WideIVInfo WI;
+
+ IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
+ const TargetTransformInfo *TTI,
+ const DominatorTree *DTree)
+ : SE(SCEV), TTI(TTI), IVPhi(IV) {
+ DT = DTree;
+ WI.NarrowIV = IVPhi;
+ }
+
+ // Implement the interface used by simplifyUsersOfIV.
+ void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
+};
+
+} // end anonymous namespace
+
+/// Iteratively perform simplification on a worklist of IV users. Each
+/// successive simplification may push more users which may themselves be
+/// candidates for simplification.
+///
+/// Sign/Zero extend elimination is interleaved with IV simplification.
+bool IndVarSimplify::simplifyAndExtend(Loop *L,
+ SCEVExpander &Rewriter,
+ LoopInfo *LI) {
+ SmallVector<WideIVInfo, 8> WideIVs;
+
+ auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_guard));
+ bool HasGuards = GuardDecl && !GuardDecl->use_empty();
+
+ SmallVector<PHINode*, 8> LoopPhis;
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ LoopPhis.push_back(cast<PHINode>(I));
+ }
+ // Each round of simplification iterates through the SimplifyIVUsers worklist
+ // for all current phis, then determines whether any IVs can be
+ // widened. Widening adds new phis to LoopPhis, inducing another round of
+ // simplification on the wide IVs.
+ bool Changed = false;
+ while (!LoopPhis.empty()) {
+ // Evaluate as many IV expressions as possible before widening any IVs. This
+ // forces SCEV to set no-wrap flags before evaluating sign/zero
+ // extension. The first time SCEV attempts to normalize sign/zero extension,
+ // the result becomes final. So for the most predictable results, we delay
+ // evaluation of sign/zero extend evaluation until needed, and avoid running
+ // other SCEV based analysis prior to simplifyAndExtend.
+ do {
+ PHINode *CurrIV = LoopPhis.pop_back_val();
+
+ // Information about sign/zero extensions of CurrIV.
+ IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
+
+ Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
+ &Visitor);
+
+ if (Visitor.WI.WidestNativeType) {
+ WideIVs.push_back(Visitor.WI);
+ }
+ } while(!LoopPhis.empty());
+
+ // Continue if we disallowed widening.
+ if (!WidenIndVars)
+ continue;
+
+ for (; !WideIVs.empty(); WideIVs.pop_back()) {
+ unsigned ElimExt;
+ unsigned Widened;
+ if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
+ DT, DeadInsts, ElimExt, Widened,
+ HasGuards, UsePostIncrementRanges)) {
+ NumElimExt += ElimExt;
+ NumWidened += Widened;
+ Changed = true;
+ LoopPhis.push_back(WidePhi);
+ }
+ }
+ }
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
+//===----------------------------------------------------------------------===//
+
+/// Given an Value which is hoped to be part of an add recurance in the given
+/// loop, return the associated Phi node if so. Otherwise, return null. Note
+/// that this is less general than SCEVs AddRec checking.
+static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
+ Instruction *IncI = dyn_cast<Instruction>(IncV);
+ if (!IncI)
+ return nullptr;
+
+ switch (IncI->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ break;
+ case Instruction::GetElementPtr:
+ // An IV counter must preserve its type.
+ if (IncI->getNumOperands() == 2)
+ break;
+ LLVM_FALLTHROUGH;
+ default:
+ return nullptr;
+ }
+
+ PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
+ if (Phi && Phi->getParent() == L->getHeader()) {
+ if (L->isLoopInvariant(IncI->getOperand(1)))
+ return Phi;
+ return nullptr;
+ }
+ if (IncI->getOpcode() == Instruction::GetElementPtr)
+ return nullptr;
+
+ // Allow add/sub to be commuted.
+ Phi = dyn_cast<PHINode>(IncI->getOperand(1));
+ if (Phi && Phi->getParent() == L->getHeader()) {
+ if (L->isLoopInvariant(IncI->getOperand(0)))
+ return Phi;
+ }
+ return nullptr;
+}
+
+/// Whether the current loop exit test is based on this value. Currently this
+/// is limited to a direct use in the loop condition.
+static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
+ // TODO: Allow non-icmp loop test.
+ if (!ICmp)
+ return false;
+
+ // TODO: Allow indirect use.
+ return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
+}
+
+/// linearFunctionTestReplace policy. Return true unless we can show that the
+/// current exit test is already sufficiently canonical.
+static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
+ assert(L->getLoopLatch() && "Must be in simplified form");
+
+ // Avoid converting a constant or loop invariant test back to a runtime
+ // test. This is critical for when SCEV's cached ExitCount is less precise
+ // than the current IR (such as after we've proven a particular exit is
+ // actually dead and thus the BE count never reaches our ExitCount.)
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ if (L->isLoopInvariant(BI->getCondition()))
+ return false;
+
+ // Do LFTR to simplify the exit condition to an ICMP.
+ ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!Cond)
+ return true;
+
+ // Do LFTR to simplify the exit ICMP to EQ/NE
+ ICmpInst::Predicate Pred = Cond->getPredicate();
+ if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
+ return true;
+
+ // Look for a loop invariant RHS
+ Value *LHS = Cond->getOperand(0);
+ Value *RHS = Cond->getOperand(1);
+ if (!L->isLoopInvariant(RHS)) {
+ if (!L->isLoopInvariant(LHS))
+ return true;
+ std::swap(LHS, RHS);
+ }
+ // Look for a simple IV counter LHS
+ PHINode *Phi = dyn_cast<PHINode>(LHS);
+ if (!Phi)
+ Phi = getLoopPhiForCounter(LHS, L);
+
+ if (!Phi)
+ return true;
+
+ // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
+ int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
+ if (Idx < 0)
+ return true;
+
+ // Do LFTR if the exit condition's IV is *not* a simple counter.
+ Value *IncV = Phi->getIncomingValue(Idx);
+ return Phi != getLoopPhiForCounter(IncV, L);
+}
+
+/// Return true if undefined behavior would provable be executed on the path to
+/// OnPathTo if Root produced a posion result. Note that this doesn't say
+/// anything about whether OnPathTo is actually executed or whether Root is
+/// actually poison. This can be used to assess whether a new use of Root can
+/// be added at a location which is control equivalent with OnPathTo (such as
+/// immediately before it) without introducing UB which didn't previously
+/// exist. Note that a false result conveys no information.
+static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
+ Instruction *OnPathTo,
+ DominatorTree *DT) {
+ // Basic approach is to assume Root is poison, propagate poison forward
+ // through all users we can easily track, and then check whether any of those
+ // users are provable UB and must execute before out exiting block might
+ // exit.
+
+ // The set of all recursive users we've visited (which are assumed to all be
+ // poison because of said visit)
+ SmallSet<const Value *, 16> KnownPoison;
+ SmallVector<const Instruction*, 16> Worklist;
+ Worklist.push_back(Root);
+ while (!Worklist.empty()) {
+ const Instruction *I = Worklist.pop_back_val();
+
+ // If we know this must trigger UB on a path leading our target.
+ if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
+ return true;
+
+ // If we can't analyze propagation through this instruction, just skip it
+ // and transitive users. Safe as false is a conservative result.
+ if (!propagatesPoison(cast<Operator>(I)) && I != Root)
+ continue;
+
+ if (KnownPoison.insert(I).second)
+ for (const User *User : I->users())
+ Worklist.push_back(cast<Instruction>(User));
+ }
+
+ // Might be non-UB, or might have a path we couldn't prove must execute on
+ // way to exiting bb.
+ return false;
+}
+
+/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
+/// down to checking that all operands are constant and listing instructions
+/// that may hide undef.
+static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
+ unsigned Depth) {
+ if (isa<Constant>(V))
+ return !isa<UndefValue>(V);
+
+ if (Depth >= 6)
+ return false;
+
+ // Conservatively handle non-constant non-instructions. For example, Arguments
+ // may be undef.
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return false;
+
+ // Load and return values may be undef.
+ if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
+ return false;
+
+ // Optimistically handle other instructions.
+ for (Value *Op : I->operands()) {
+ if (!Visited.insert(Op).second)
+ continue;
+ if (!hasConcreteDefImpl(Op, Visited, Depth+1))
+ return false;
+ }
+ return true;
+}
+
+/// Return true if the given value is concrete. We must prove that undef can
+/// never reach it.
+///
+/// TODO: If we decide that this is a good approach to checking for undef, we
+/// may factor it into a common location.
+static bool hasConcreteDef(Value *V) {
+ SmallPtrSet<Value*, 8> Visited;
+ Visited.insert(V);
+ return hasConcreteDefImpl(V, Visited, 0);
+}
+
+/// Return true if this IV has any uses other than the (soon to be rewritten)
+/// loop exit test.
+static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
+ int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
+ Value *IncV = Phi->getIncomingValue(LatchIdx);
+
+ for (User *U : Phi->users())
+ if (U != Cond && U != IncV) return false;
+
+ for (User *U : IncV->users())
+ if (U != Cond && U != Phi) return false;
+ return true;
+}
+
+/// Return true if the given phi is a "counter" in L. A counter is an
+/// add recurance (of integer or pointer type) with an arbitrary start, and a
+/// step of 1. Note that L must have exactly one latch.
+static bool isLoopCounter(PHINode* Phi, Loop *L,
+ ScalarEvolution *SE) {
+ assert(Phi->getParent() == L->getHeader());
+ assert(L->getLoopLatch());
+
+ if (!SE->isSCEVable(Phi->getType()))
+ return false;
+
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
+ if (!AR || AR->getLoop() != L || !AR->isAffine())
+ return false;
+
+ const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
+ if (!Step || !Step->isOne())
+ return false;
+
+ int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
+ Value *IncV = Phi->getIncomingValue(LatchIdx);
+ return (getLoopPhiForCounter(IncV, L) == Phi);
+}
+
+/// Search the loop header for a loop counter (anadd rec w/step of one)
+/// suitable for use by LFTR. If multiple counters are available, select the
+/// "best" one based profitable heuristics.
+///
+/// BECount may be an i8* pointer type. The pointer difference is already
+/// valid count without scaling the address stride, so it remains a pointer
+/// expression as far as SCEV is concerned.
+static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
+ const SCEV *BECount,
+ ScalarEvolution *SE, DominatorTree *DT) {
+ uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
+
+ Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
+
+ // Loop over all of the PHI nodes, looking for a simple counter.
+ PHINode *BestPhi = nullptr;
+ const SCEV *BestInit = nullptr;
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ assert(LatchBlock && "Must be in simplified form");
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ PHINode *Phi = cast<PHINode>(I);
+ if (!isLoopCounter(Phi, L, SE))
+ continue;
+
+ // Avoid comparing an integer IV against a pointer Limit.
+ if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
+ continue;
+
+ const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
+
+ // AR may be a pointer type, while BECount is an integer type.
+ // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
+ // AR may not be a narrower type, or we may never exit.
+ uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
+ if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
+ continue;
+
+ // Avoid reusing a potentially undef value to compute other values that may
+ // have originally had a concrete definition.
+ if (!hasConcreteDef(Phi)) {
+ // We explicitly allow unknown phis as long as they are already used by
+ // the loop exit test. This is legal since performing LFTR could not
+ // increase the number of undef users.
+ Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
+ if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
+ !isLoopExitTestBasedOn(IncPhi, ExitingBB))
+ continue;
+ }
+
+ // Avoid introducing undefined behavior due to poison which didn't exist in
+ // the original program. (Annoyingly, the rules for poison and undef
+ // propagation are distinct, so this does NOT cover the undef case above.)
+ // We have to ensure that we don't introduce UB by introducing a use on an
+ // iteration where said IV produces poison. Our strategy here differs for
+ // pointers and integer IVs. For integers, we strip and reinfer as needed,
+ // see code in linearFunctionTestReplace. For pointers, we restrict
+ // transforms as there is no good way to reinfer inbounds once lost.
+ if (!Phi->getType()->isIntegerTy() &&
+ !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
+ continue;
+
+ const SCEV *Init = AR->getStart();
+
+ if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
+ // Don't force a live loop counter if another IV can be used.
+ if (AlmostDeadIV(Phi, LatchBlock, Cond))
+ continue;
+
+ // Prefer to count-from-zero. This is a more "canonical" counter form. It
+ // also prefers integer to pointer IVs.
+ if (BestInit->isZero() != Init->isZero()) {
+ if (BestInit->isZero())
+ continue;
+ }
+ // If two IVs both count from zero or both count from nonzero then the
+ // narrower is likely a dead phi that has been widened. Use the wider phi
+ // to allow the other to be eliminated.
+ else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
+ continue;
+ }
+ BestPhi = Phi;
+ BestInit = Init;
+ }
+ return BestPhi;
+}
+
+/// Insert an IR expression which computes the value held by the IV IndVar
+/// (which must be an loop counter w/unit stride) after the backedge of loop L
+/// is taken ExitCount times.
+static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
+ const SCEV *ExitCount, bool UsePostInc, Loop *L,
+ SCEVExpander &Rewriter, ScalarEvolution *SE) {
+ assert(isLoopCounter(IndVar, L, SE));
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
+ const SCEV *IVInit = AR->getStart();
+
+ // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
+ // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
+ // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
+ // the existing GEPs whenever possible.
+ if (IndVar->getType()->isPointerTy() &&
+ !ExitCount->getType()->isPointerTy()) {
+ // IVOffset will be the new GEP offset that is interpreted by GEP as a
+ // signed value. ExitCount on the other hand represents the loop trip count,
+ // which is an unsigned value. FindLoopCounter only allows induction
+ // variables that have a positive unit stride of one. This means we don't
+ // have to handle the case of negative offsets (yet) and just need to zero
+ // extend ExitCount.
+ Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
+ const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
+ if (UsePostInc)
+ IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
+
+ // Expand the code for the iteration count.
+ assert(SE->isLoopInvariant(IVOffset, L) &&
+ "Computed iteration count is not loop invariant!");
+
+ // We could handle pointer IVs other than i8*, but we need to compensate for
+ // gep index scaling.
+ assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
+ cast<PointerType>(IndVar->getType())
+ ->getElementType())->isOne() &&
+ "unit stride pointer IV must be i8*");
+
+ const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
+ } else {
+ // In any other case, convert both IVInit and ExitCount to integers before
+ // comparing. This may result in SCEV expansion of pointers, but in practice
+ // SCEV will fold the pointer arithmetic away as such:
+ // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
+ //
+ // Valid Cases: (1) both integers is most common; (2) both may be pointers
+ // for simple memset-style loops.
+ //
+ // IVInit integer and ExitCount pointer would only occur if a canonical IV
+ // were generated on top of case #2, which is not expected.
+
+ assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
+ // For unit stride, IVCount = Start + ExitCount with 2's complement
+ // overflow.
+
+ // For integer IVs, truncate the IV before computing IVInit + BECount,
+ // unless we know apriori that the limit must be a constant when evaluated
+ // in the bitwidth of the IV. We prefer (potentially) keeping a truncate
+ // of the IV in the loop over a (potentially) expensive expansion of the
+ // widened exit count add(zext(add)) expression.
+ if (SE->getTypeSizeInBits(IVInit->getType())
+ > SE->getTypeSizeInBits(ExitCount->getType())) {
+ if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
+ ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
+ else
+ IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
+ }
+
+ const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
+
+ if (UsePostInc)
+ IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
+
+ // Expand the code for the iteration count.
+ assert(SE->isLoopInvariant(IVLimit, L) &&
+ "Computed iteration count is not loop invariant!");
+ // Ensure that we generate the same type as IndVar, or a smaller integer
+ // type. In the presence of null pointer values, we have an integer type
+ // SCEV expression (IVInit) for a pointer type IV value (IndVar).
+ Type *LimitTy = ExitCount->getType()->isPointerTy() ?
+ IndVar->getType() : ExitCount->getType();
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
+ }
+}
+
+/// This method rewrites the exit condition of the loop to be a canonical !=
+/// comparison against the incremented loop induction variable. This pass is
+/// able to rewrite the exit tests of any loop where the SCEV analysis can
+/// determine a loop-invariant trip count of the loop, which is actually a much
+/// broader range than just linear tests.
+bool IndVarSimplify::
+linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
+ const SCEV *ExitCount,
+ PHINode *IndVar, SCEVExpander &Rewriter) {
+ assert(L->getLoopLatch() && "Loop no longer in simplified form?");
+ assert(isLoopCounter(IndVar, L, SE));
+ Instruction * const IncVar =
+ cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
+
+ // Initialize CmpIndVar to the preincremented IV.
+ Value *CmpIndVar = IndVar;
+ bool UsePostInc = false;
+
+ // If the exiting block is the same as the backedge block, we prefer to
+ // compare against the post-incremented value, otherwise we must compare
+ // against the preincremented value.
+ if (ExitingBB == L->getLoopLatch()) {
+ // For pointer IVs, we chose to not strip inbounds which requires us not
+ // to add a potentially UB introducing use. We need to either a) show
+ // the loop test we're modifying is already in post-inc form, or b) show
+ // that adding a use must not introduce UB.
+ bool SafeToPostInc =
+ IndVar->getType()->isIntegerTy() ||
+ isLoopExitTestBasedOn(IncVar, ExitingBB) ||
+ mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
+ if (SafeToPostInc) {
+ UsePostInc = true;
+ CmpIndVar = IncVar;
+ }
+ }
+
+ // It may be necessary to drop nowrap flags on the incrementing instruction
+ // if either LFTR moves from a pre-inc check to a post-inc check (in which
+ // case the increment might have previously been poison on the last iteration
+ // only) or if LFTR switches to a different IV that was previously dynamically
+ // dead (and as such may be arbitrarily poison). We remove any nowrap flags
+ // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
+ // check), because the pre-inc addrec flags may be adopted from the original
+ // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
+ // TODO: This handling is inaccurate for one case: If we switch to a
+ // dynamically dead IV that wraps on the first loop iteration only, which is
+ // not covered by the post-inc addrec. (If the new IV was not dynamically
+ // dead, it could not be poison on the first iteration in the first place.)
+ if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
+ if (BO->hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
+ if (BO->hasNoSignedWrap())
+ BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
+ }
+
+ Value *ExitCnt = genLoopLimit(
+ IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
+ assert(ExitCnt->getType()->isPointerTy() ==
+ IndVar->getType()->isPointerTy() &&
+ "genLoopLimit missed a cast");
+
+ // Insert a new icmp_ne or icmp_eq instruction before the branch.
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ ICmpInst::Predicate P;
+ if (L->contains(BI->getSuccessor(0)))
+ P = ICmpInst::ICMP_NE;
+ else
+ P = ICmpInst::ICMP_EQ;
+
+ IRBuilder<> Builder(BI);
+
+ // The new loop exit condition should reuse the debug location of the
+ // original loop exit condition.
+ if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
+ Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
+
+ // For integer IVs, if we evaluated the limit in the narrower bitwidth to
+ // avoid the expensive expansion of the limit expression in the wider type,
+ // emit a truncate to narrow the IV to the ExitCount type. This is safe
+ // since we know (from the exit count bitwidth), that we can't self-wrap in
+ // the narrower type.
+ unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
+ unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
+ if (CmpIndVarSize > ExitCntSize) {
+ assert(!CmpIndVar->getType()->isPointerTy() &&
+ !ExitCnt->getType()->isPointerTy());
+
+ // Before resorting to actually inserting the truncate, use the same
+ // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
+ // the other side of the comparison instead. We still evaluate the limit
+ // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
+ // a truncate within in.
+ bool Extended = false;
+ const SCEV *IV = SE->getSCEV(CmpIndVar);
+ const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
+ ExitCnt->getType());
+ const SCEV *ZExtTrunc =
+ SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
+
+ if (ZExtTrunc == IV) {
+ Extended = true;
+ ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
+ "wide.trip.count");
+ } else {
+ const SCEV *SExtTrunc =
+ SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
+ if (SExtTrunc == IV) {
+ Extended = true;
+ ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
+ "wide.trip.count");
+ }
+ }
+
+ if (Extended) {
+ bool Discard;
+ L->makeLoopInvariant(ExitCnt, Discard);
+ } else
+ CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
+ "lftr.wideiv");
+ }
+ LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
+ << " LHS:" << *CmpIndVar << '\n'
+ << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
+ << "\n"
+ << " RHS:\t" << *ExitCnt << "\n"
+ << "ExitCount:\t" << *ExitCount << "\n"
+ << " was: " << *BI->getCondition() << "\n");
+
+ Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
+ Value *OrigCond = BI->getCondition();
+ // It's tempting to use replaceAllUsesWith here to fully replace the old
+ // comparison, but that's not immediately safe, since users of the old
+ // comparison may not be dominated by the new comparison. Instead, just
+ // update the branch to use the new comparison; in the common case this
+ // will make old comparison dead.
+ BI->setCondition(Cond);
+ DeadInsts.emplace_back(OrigCond);
+
+ ++NumLFTR;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
+//===----------------------------------------------------------------------===//
+
+/// If there's a single exit block, sink any loop-invariant values that
+/// were defined in the preheader but not used inside the loop into the
+/// exit block to reduce register pressure in the loop.
+bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
+ BasicBlock *ExitBlock = L->getExitBlock();
+ if (!ExitBlock) return false;
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) return false;
+
+ bool MadeAnyChanges = false;
+ BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
+ BasicBlock::iterator I(Preheader->getTerminator());
+ while (I != Preheader->begin()) {
+ --I;
+ // New instructions were inserted at the end of the preheader.
+ if (isa<PHINode>(I))
+ break;
+
+ // Don't move instructions which might have side effects, since the side
+ // effects need to complete before instructions inside the loop. Also don't
+ // move instructions which might read memory, since the loop may modify
+ // memory. Note that it's okay if the instruction might have undefined
+ // behavior: LoopSimplify guarantees that the preheader dominates the exit
+ // block.
+ if (I->mayHaveSideEffects() || I->mayReadFromMemory())
+ continue;
+
+ // Skip debug info intrinsics.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ // Skip eh pad instructions.
+ if (I->isEHPad())
+ continue;
+
+ // Don't sink alloca: we never want to sink static alloca's out of the
+ // entry block, and correctly sinking dynamic alloca's requires
+ // checks for stacksave/stackrestore intrinsics.
+ // FIXME: Refactor this check somehow?
+ if (isa<AllocaInst>(I))
+ continue;
+
+ // Determine if there is a use in or before the loop (direct or
+ // otherwise).
+ bool UsedInLoop = false;
+ for (Use &U : I->uses()) {
+ Instruction *User = cast<Instruction>(U.getUser());
+ BasicBlock *UseBB = User->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(User)) {
+ unsigned i =
+ PHINode::getIncomingValueNumForOperand(U.getOperandNo());
+ UseBB = P->getIncomingBlock(i);
+ }
+ if (UseBB == Preheader || L->contains(UseBB)) {
+ UsedInLoop = true;
+ break;
+ }
+ }
+
+ // If there is, the def must remain in the preheader.
+ if (UsedInLoop)
+ continue;
+
+ // Otherwise, sink it to the exit block.
+ Instruction *ToMove = &*I;
+ bool Done = false;
+
+ if (I != Preheader->begin()) {
+ // Skip debug info intrinsics.
+ do {
+ --I;
+ } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
+
+ if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
+ Done = true;
+ } else {
+ Done = true;
+ }
+
+ MadeAnyChanges = true;
+ ToMove->moveBefore(*ExitBlock, InsertPt);
+ if (Done) break;
+ InsertPt = ToMove->getIterator();
+ }
+
+ return MadeAnyChanges;
+}
+
+static void replaceExitCond(BranchInst *BI, Value *NewCond,
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
+ auto *OldCond = BI->getCondition();
+ BI->setCondition(NewCond);
+ if (OldCond->use_empty())
+ DeadInsts.emplace_back(OldCond);
+}
+
+static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
+ auto *OldCond = BI->getCondition();
+ auto *NewCond =
+ ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
+ replaceExitCond(BI, NewCond, DeadInsts);
+}
+
+static void replaceWithInvariantCond(
+ const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
+ const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ Rewriter.setInsertPoint(BI);
+ auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
+ auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
+ bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
+ if (ExitIfTrue)
+ InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
+ IRBuilder<> Builder(BI);
+ auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
+ BI->getCondition()->getName());
+ replaceExitCond(BI, NewCond, DeadInsts);
+}
+
+static bool optimizeLoopExitWithUnknownExitCount(
+ const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
+ const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
+ ScalarEvolution *SE, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
+ ICmpInst::Predicate Pred;
+ Value *LHS, *RHS;
+ using namespace PatternMatch;
+ BasicBlock *TrueSucc, *FalseSucc;
+ if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
+ m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
+ return false;
+
+ assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
+ "Not a loop exit!");
+
+ // 'LHS pred RHS' should now mean that we stay in loop.
+ if (L->contains(FalseSucc))
+ Pred = CmpInst::getInversePredicate(Pred);
+
+ // If we are proving loop exit, invert the predicate.
+ if (Inverted)
+ Pred = CmpInst::getInversePredicate(Pred);
+
+ const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
+ const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
+ // Can we prove it to be trivially true?
+ if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
+ foldExit(L, ExitingBB, Inverted, DeadInsts);
+ return true;
+ }
+ // Further logic works for non-inverted condition only.
+ if (Inverted)
+ return false;
+
+ auto *ARTy = LHSS->getType();
+ auto *MaxIterTy = MaxIter->getType();
+ // If possible, adjust types.
+ if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
+ MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
+ else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
+ const SCEV *MinusOne = SE->getMinusOne(ARTy);
+ auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
+ if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
+ MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
+ }
+
+ if (SkipLastIter) {
+ const SCEV *One = SE->getOne(MaxIter->getType());
+ MaxIter = SE->getMinusSCEV(MaxIter, One);
+ }
+
+ // Check if there is a loop-invariant predicate equivalent to our check.
+ auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
+ L, BI, MaxIter);
+ if (!LIP)
+ return false;
+
+ // Can we prove it to be trivially true?
+ if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
+ foldExit(L, ExitingBB, Inverted, DeadInsts);
+ else
+ replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
+ Rewriter, DeadInsts);
+
+ return true;
+}
+
+bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
+ SmallVector<BasicBlock*, 16> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ // Remove all exits which aren't both rewriteable and execute on every
+ // iteration.
+ llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
+ // If our exitting block exits multiple loops, we can only rewrite the
+ // innermost one. Otherwise, we're changing how many times the innermost
+ // loop runs before it exits.
+ if (LI->getLoopFor(ExitingBB) != L)
+ return true;
+
+ // Can't rewrite non-branch yet.
+ BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
+ if (!BI)
+ return true;
+
+ // If already constant, nothing to do.
+ if (isa<Constant>(BI->getCondition()))
+ return true;
+
+ // Likewise, the loop latch must be dominated by the exiting BB.
+ if (!DT->dominates(ExitingBB, L->getLoopLatch()))
+ return true;
+
+ return false;
+ });
+
+ if (ExitingBlocks.empty())
+ return false;
+
+ // Get a symbolic upper bound on the loop backedge taken count.
+ const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(MaxExitCount))
+ return false;
+
+ // Visit our exit blocks in order of dominance. We know from the fact that
+ // all exits must dominate the latch, so there is a total dominance order
+ // between them.
+ llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
+ // std::sort sorts in ascending order, so we want the inverse of
+ // the normal dominance relation.
+ if (A == B) return false;
+ if (DT->properlyDominates(A, B))
+ return true;
+ else {
+ assert(DT->properlyDominates(B, A) &&
+ "expected total dominance order!");
+ return false;
+ }
+ });
+#ifdef ASSERT
+ for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
+ assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
+ }
+#endif
+
+ bool Changed = false;
+ bool SkipLastIter = false;
+ SmallSet<const SCEV*, 8> DominatingExitCounts;
+ for (BasicBlock *ExitingBB : ExitingBlocks) {
+ const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
+ if (isa<SCEVCouldNotCompute>(ExitCount)) {
+ // Okay, we do not know the exit count here. Can we at least prove that it
+ // will remain the same within iteration space?
+ auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
+ return optimizeLoopExitWithUnknownExitCount(
+ L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
+ Rewriter, DeadInsts);
+ };
+
+ // TODO: We might have proved that we can skip the last iteration for
+ // this check. In this case, we only want to check the condition on the
+ // pre-last iteration (MaxExitCount - 1). However, there is a nasty
+ // corner case:
+ //
+ // for (i = len; i != 0; i--) { ... check (i ult X) ... }
+ //
+ // If we could not prove that len != 0, then we also could not prove that
+ // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
+ // OptimizeCond will likely not prove anything for it, even if it could
+ // prove the same fact for len.
+ //
+ // As a temporary solution, we query both last and pre-last iterations in
+ // hope that we will be able to prove triviality for at least one of
+ // them. We can stop querying MaxExitCount for this case once SCEV
+ // understands that (MaxExitCount - 1) will not overflow here.
+ if (OptimizeCond(false, false) || OptimizeCond(true, false))
+ Changed = true;
+ else if (SkipLastIter)
+ if (OptimizeCond(false, true) || OptimizeCond(true, true))
+ Changed = true;
+ continue;
+ }
+
+ if (MaxExitCount == ExitCount)
+ // If the loop has more than 1 iteration, all further checks will be
+ // executed 1 iteration less.
+ SkipLastIter = true;
+
+ // If we know we'd exit on the first iteration, rewrite the exit to
+ // reflect this. This does not imply the loop must exit through this
+ // exit; there may be an earlier one taken on the first iteration.
+ // TODO: Given we know the backedge can't be taken, we should go ahead
+ // and break it. Or at least, kill all the header phis and simplify.
+ if (ExitCount->isZero()) {
+ foldExit(L, ExitingBB, true, DeadInsts);
+ Changed = true;
+ continue;
+ }
+
+ // If we end up with a pointer exit count, bail. Note that we can end up
+ // with a pointer exit count for one exiting block, and not for another in
+ // the same loop.
+ if (!ExitCount->getType()->isIntegerTy() ||
+ !MaxExitCount->getType()->isIntegerTy())
+ continue;
+
+ Type *WiderType =
+ SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
+ ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
+ MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
+ assert(MaxExitCount->getType() == ExitCount->getType());
+
+ // Can we prove that some other exit must be taken strictly before this
+ // one?
+ if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
+ MaxExitCount, ExitCount)) {
+ foldExit(L, ExitingBB, false, DeadInsts);
+ Changed = true;
+ continue;
+ }
+
+ // As we run, keep track of which exit counts we've encountered. If we
+ // find a duplicate, we've found an exit which would have exited on the
+ // exiting iteration, but (from the visit order) strictly follows another
+ // which does the same and is thus dead.
+ if (!DominatingExitCounts.insert(ExitCount).second) {
+ foldExit(L, ExitingBB, false, DeadInsts);
+ Changed = true;
+ continue;
+ }
+
+ // TODO: There might be another oppurtunity to leverage SCEV's reasoning
+ // here. If we kept track of the min of dominanting exits so far, we could
+ // discharge exits with EC >= MDEC. This is less powerful than the existing
+ // transform (since later exits aren't considered), but potentially more
+ // powerful for any case where SCEV can prove a >=u b, but neither a == b
+ // or a >u b. Such a case is not currently known.
+ }
+ return Changed;
+}
+
+bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
+ SmallVector<BasicBlock*, 16> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ // Finally, see if we can rewrite our exit conditions into a loop invariant
+ // form. If we have a read-only loop, and we can tell that we must exit down
+ // a path which does not need any of the values computed within the loop, we
+ // can rewrite the loop to exit on the first iteration. Note that this
+ // doesn't either a) tell us the loop exits on the first iteration (unless
+ // *all* exits are predicateable) or b) tell us *which* exit might be taken.
+ // This transformation looks a lot like a restricted form of dead loop
+ // elimination, but restricted to read-only loops and without neccesssarily
+ // needing to kill the loop entirely.
+ if (!LoopPredication)
+ return false;
+
+ if (!SE->hasLoopInvariantBackedgeTakenCount(L))
+ return false;
+
+ // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
+ // through *explicit* control flow. We have to eliminate the possibility of
+ // implicit exits (see below) before we know it's truly exact.
+ const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(ExactBTC) ||
+ !SE->isLoopInvariant(ExactBTC, L) ||
+ !isSafeToExpand(ExactBTC, *SE))
+ return false;
+
+ // If we end up with a pointer exit count, bail. It may be unsized.
+ if (!ExactBTC->getType()->isIntegerTy())
+ return false;
+
+ auto BadExit = [&](BasicBlock *ExitingBB) {
+ // If our exiting block exits multiple loops, we can only rewrite the
+ // innermost one. Otherwise, we're changing how many times the innermost
+ // loop runs before it exits.
+ if (LI->getLoopFor(ExitingBB) != L)
+ return true;
+
+ // Can't rewrite non-branch yet.
+ BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
+ if (!BI)
+ return true;
+
+ // If already constant, nothing to do.
+ if (isa<Constant>(BI->getCondition()))
+ return true;
+
+ // If the exit block has phis, we need to be able to compute the values
+ // within the loop which contains them. This assumes trivially lcssa phis
+ // have already been removed; TODO: generalize
+ BasicBlock *ExitBlock =
+ BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
+ if (!ExitBlock->phis().empty())
+ return true;
+
+ const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
+ assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count");
+ if (!SE->isLoopInvariant(ExitCount, L) ||
+ !isSafeToExpand(ExitCount, *SE))
+ return true;
+
+ // If we end up with a pointer exit count, bail. It may be unsized.
+ if (!ExitCount->getType()->isIntegerTy())
+ return true;
+
+ return false;
+ };
+
+ // If we have any exits which can't be predicated themselves, than we can't
+ // predicate any exit which isn't guaranteed to execute before it. Consider
+ // two exits (a) and (b) which would both exit on the same iteration. If we
+ // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
+ // we could convert a loop from exiting through (a) to one exiting through
+ // (b). Note that this problem exists only for exits with the same exit
+ // count, and we could be more aggressive when exit counts are known inequal.
+ llvm::sort(ExitingBlocks,
+ [&](BasicBlock *A, BasicBlock *B) {
+ // std::sort sorts in ascending order, so we want the inverse of
+ // the normal dominance relation, plus a tie breaker for blocks
+ // unordered by dominance.
+ if (DT->properlyDominates(A, B)) return true;
+ if (DT->properlyDominates(B, A)) return false;
+ return A->getName() < B->getName();
+ });
+ // Check to see if our exit blocks are a total order (i.e. a linear chain of
+ // exits before the backedge). If they aren't, reasoning about reachability
+ // is complicated and we choose not to for now.
+ for (unsigned i = 1; i < ExitingBlocks.size(); i++)
+ if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
+ return false;
+
+ // Given our sorted total order, we know that exit[j] must be evaluated
+ // after all exit[i] such j > i.
+ for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
+ if (BadExit(ExitingBlocks[i])) {
+ ExitingBlocks.resize(i);
+ break;
+ }
+
+ if (ExitingBlocks.empty())
+ return false;
+
+ // We rely on not being able to reach an exiting block on a later iteration
+ // then it's statically compute exit count. The implementaton of
+ // getExitCount currently has this invariant, but assert it here so that
+ // breakage is obvious if this ever changes..
+ assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
+ return DT->dominates(ExitingBB, L->getLoopLatch());
+ }));
+
+ // At this point, ExitingBlocks consists of only those blocks which are
+ // predicatable. Given that, we know we have at least one exit we can
+ // predicate if the loop is doesn't have side effects and doesn't have any
+ // implicit exits (because then our exact BTC isn't actually exact).
+ // @Reviewers - As structured, this is O(I^2) for loop nests. Any
+ // suggestions on how to improve this? I can obviously bail out for outer
+ // loops, but that seems less than ideal. MemorySSA can find memory writes,
+ // is that enough for *all* side effects?
+ for (BasicBlock *BB : L->blocks())
+ for (auto &I : *BB)
+ // TODO:isGuaranteedToTransfer
+ if (I.mayHaveSideEffects() || I.mayThrow())
+ return false;
+
+ bool Changed = false;
+ // Finally, do the actual predication for all predicatable blocks. A couple
+ // of notes here:
+ // 1) We don't bother to constant fold dominated exits with identical exit
+ // counts; that's simply a form of CSE/equality propagation and we leave
+ // it for dedicated passes.
+ // 2) We insert the comparison at the branch. Hoisting introduces additional
+ // legality constraints and we leave that to dedicated logic. We want to
+ // predicate even if we can't insert a loop invariant expression as
+ // peeling or unrolling will likely reduce the cost of the otherwise loop
+ // varying check.
+ Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
+ IRBuilder<> B(L->getLoopPreheader()->getTerminator());
+ Value *ExactBTCV = nullptr; // Lazily generated if needed.
+ for (BasicBlock *ExitingBB : ExitingBlocks) {
+ const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
+
+ auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ Value *NewCond;
+ if (ExitCount == ExactBTC) {
+ NewCond = L->contains(BI->getSuccessor(0)) ?
+ B.getFalse() : B.getTrue();
+ } else {
+ Value *ECV = Rewriter.expandCodeFor(ExitCount);
+ if (!ExactBTCV)
+ ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
+ Value *RHS = ExactBTCV;
+ if (ECV->getType() != RHS->getType()) {
+ Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
+ ECV = B.CreateZExt(ECV, WiderTy);
+ RHS = B.CreateZExt(RHS, WiderTy);
+ }
+ auto Pred = L->contains(BI->getSuccessor(0)) ?
+ ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
+ NewCond = B.CreateICmp(Pred, ECV, RHS);
+ }
+ Value *OldCond = BI->getCondition();
+ BI->setCondition(NewCond);
+ if (OldCond->use_empty())
+ DeadInsts.emplace_back(OldCond);
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// IndVarSimplify driver. Manage several subpasses of IV simplification.
+//===----------------------------------------------------------------------===//
+
+bool IndVarSimplify::run(Loop *L) {
+ // We need (and expect!) the incoming loop to be in LCSSA.
+ assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "LCSSA required to run indvars!");
+
+ // If LoopSimplify form is not available, stay out of trouble. Some notes:
+ // - LSR currently only supports LoopSimplify-form loops. Indvars'
+ // canonicalization can be a pessimization without LSR to "clean up"
+ // afterwards.
+ // - We depend on having a preheader; in particular,
+ // Loop::getCanonicalInductionVariable only supports loops with preheaders,
+ // and we're in trouble if we can't find the induction variable even when
+ // we've manually inserted one.
+ // - LFTR relies on having a single backedge.
+ if (!L->isLoopSimplifyForm())
+ return false;
+
+#ifndef NDEBUG
+ // Used below for a consistency check only
+ // Note: Since the result returned by ScalarEvolution may depend on the order
+ // in which previous results are added to its cache, the call to
+ // getBackedgeTakenCount() may change following SCEV queries.
+ const SCEV *BackedgeTakenCount;
+ if (VerifyIndvars)
+ BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+#endif
+
+ bool Changed = false;
+ // If there are any floating-point recurrences, attempt to
+ // transform them to use integer recurrences.
+ Changed |= rewriteNonIntegerIVs(L);
+
+ // Create a rewriter object which we'll use to transform the code with.
+ SCEVExpander Rewriter(*SE, DL, "indvars");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
+
+ // Eliminate redundant IV users.
+ //
+ // Simplification works best when run before other consumers of SCEV. We
+ // attempt to avoid evaluating SCEVs for sign/zero extend operations until
+ // other expressions involving loop IVs have been evaluated. This helps SCEV
+ // set no-wrap flags before normalizing sign/zero extension.
+ Rewriter.disableCanonicalMode();
+ Changed |= simplifyAndExtend(L, Rewriter, LI);
+
+ // Check to see if we can compute the final value of any expressions
+ // that are recurrent in the loop, and substitute the exit values from the
+ // loop into any instructions outside of the loop that use the final values
+ // of the current expressions.
+ if (ReplaceExitValue != NeverRepl) {
+ if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
+ ReplaceExitValue, DeadInsts)) {
+ NumReplaced += Rewrites;
+ Changed = true;
+ }
+ }
+
+ // Eliminate redundant IV cycles.
+ NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
+
+ // Try to eliminate loop exits based on analyzeable exit counts
+ if (optimizeLoopExits(L, Rewriter)) {
+ Changed = true;
+ // Given we've changed exit counts, notify SCEV
+ // Some nested loops may share same folded exit basic block,
+ // thus we need to notify top most loop.
+ SE->forgetTopmostLoop(L);
+ }
+
+ // Try to form loop invariant tests for loop exits by changing how many
+ // iterations of the loop run when that is unobservable.
+ if (predicateLoopExits(L, Rewriter)) {
+ Changed = true;
+ // Given we've changed exit counts, notify SCEV
+ SE->forgetLoop(L);
+ }
+
+ // If we have a trip count expression, rewrite the loop's exit condition
+ // using it.
+ if (!DisableLFTR) {
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
+
+ SmallVector<BasicBlock*, 16> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ for (BasicBlock *ExitingBB : ExitingBlocks) {
+ // Can't rewrite non-branch yet.
+ if (!isa<BranchInst>(ExitingBB->getTerminator()))
+ continue;
+
+ // If our exitting block exits multiple loops, we can only rewrite the
+ // innermost one. Otherwise, we're changing how many times the innermost
+ // loop runs before it exits.
+ if (LI->getLoopFor(ExitingBB) != L)
+ continue;
+
+ if (!needsLFTR(L, ExitingBB))
+ continue;
+
+ const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
+ if (isa<SCEVCouldNotCompute>(ExitCount))
+ continue;
+
+ // This was handled above, but as we form SCEVs, we can sometimes refine
+ // existing ones; this allows exit counts to be folded to zero which
+ // weren't when optimizeLoopExits saw them. Arguably, we should iterate
+ // until stable to handle cases like this better.
+ if (ExitCount->isZero())
+ continue;
+
+ PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
+ if (!IndVar)
+ continue;
+
+ // Avoid high cost expansions. Note: This heuristic is questionable in
+ // that our definition of "high cost" is not exactly principled.
+ if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
+ TTI, PreHeaderBR))
+ continue;
+
+ // Check preconditions for proper SCEVExpander operation. SCEV does not
+ // express SCEVExpander's dependencies, such as LoopSimplify. Instead
+ // any pass that uses the SCEVExpander must do it. This does not work
+ // well for loop passes because SCEVExpander makes assumptions about
+ // all loops, while LoopPassManager only forces the current loop to be
+ // simplified.
+ //
+ // FIXME: SCEV expansion has no way to bail out, so the caller must
+ // explicitly check any assumptions made by SCEV. Brittle.
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
+ if (!AR || AR->getLoop()->getLoopPreheader())
+ Changed |= linearFunctionTestReplace(L, ExitingBB,
+ ExitCount, IndVar,
+ Rewriter);
+ }
+ }
+ // Clear the rewriter cache, because values that are in the rewriter's cache
+ // can be deleted in the loop below, causing the AssertingVH in the cache to
+ // trigger.
+ Rewriter.clear();
+
+ // Now that we're done iterating through lists, clean up any instructions
+ // which are now dead.
+ while (!DeadInsts.empty()) {
+ Value *V = DeadInsts.pop_back_val();
+
+ if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
+ Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
+ else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
+ Changed |=
+ RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
+ }
+
+ // The Rewriter may not be used from this point on.
+
+ // Loop-invariant instructions in the preheader that aren't used in the
+ // loop may be sunk below the loop to reduce register pressure.
+ Changed |= sinkUnusedInvariants(L);
+
+ // rewriteFirstIterationLoopExitValues does not rely on the computation of
+ // trip count and therefore can further simplify exit values in addition to
+ // rewriteLoopExitValues.
+ Changed |= rewriteFirstIterationLoopExitValues(L);
+
+ // Clean up dead instructions.
+ Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
+
+ // Check a post-condition.
+ assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "Indvars did not preserve LCSSA!");
+
+ // Verify that LFTR, and any other change have not interfered with SCEV's
+ // ability to compute trip count. We may have *changed* the exit count, but
+ // only by reducing it.
+#ifndef NDEBUG
+ if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
+ SE->forgetLoop(L);
+ const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
+ if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
+ SE->getTypeSizeInBits(NewBECount->getType()))
+ NewBECount = SE->getTruncateOrNoop(NewBECount,
+ BackedgeTakenCount->getType());
+ else
+ BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
+ NewBECount->getType());
+ assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
+ NewBECount) && "indvars must preserve SCEV");
+ }
+ if (VerifyMemorySSA && MSSAU)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+#endif
+
+ return Changed;
+}
+
+PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &) {
+ Function *F = L.getHeader()->getParent();
+ const DataLayout &DL = F->getParent()->getDataLayout();
+
+ IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
+ WidenIndVars && AllowIVWidening);
+ if (!IVS.run(&L))
+ return PreservedAnalyses::all();
+
+ auto PA = getLoopPassPreservedAnalyses();
+ PA.preserveSet<CFGAnalyses>();
+ if (AR.MSSA)
+ PA.preserve<MemorySSAAnalysis>();
+ return PA;
+}
+
+namespace {
+
+struct IndVarSimplifyLegacyPass : public LoopPass {
+ static char ID; // Pass identification, replacement for typeid
+
+ IndVarSimplifyLegacyPass() : LoopPass(ID) {
+ initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+
+ auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+ auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
+ auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
+ auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
+ MemorySSA *MSSA = nullptr;
+ if (MSSAAnalysis)
+ MSSA = &MSSAAnalysis->getMSSA();
+
+ IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
+ return IVS.run(L);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ getLoopAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char IndVarSimplifyLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
+ "Induction Variable Simplification", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
+ "Induction Variable Simplification", false, false)
+
+Pass *llvm::createIndVarSimplifyPass() {
+ return new IndVarSimplifyLegacyPass();
+}