aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp3058
1 files changed, 3058 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp
new file mode 100644
index 000000000000..10b08b4e2224
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp
@@ -0,0 +1,3058 @@
+//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Jump Threading pass.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/JumpThreading.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <memory>
+#include <utility>
+
+using namespace llvm;
+using namespace jumpthreading;
+
+#define DEBUG_TYPE "jump-threading"
+
+STATISTIC(NumThreads, "Number of jumps threaded");
+STATISTIC(NumFolds, "Number of terminators folded");
+STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
+
+static cl::opt<unsigned>
+BBDuplicateThreshold("jump-threading-threshold",
+ cl::desc("Max block size to duplicate for jump threading"),
+ cl::init(6), cl::Hidden);
+
+static cl::opt<unsigned>
+ImplicationSearchThreshold(
+ "jump-threading-implication-search-threshold",
+ cl::desc("The number of predecessors to search for a stronger "
+ "condition to use to thread over a weaker condition"),
+ cl::init(3), cl::Hidden);
+
+static cl::opt<bool> PrintLVIAfterJumpThreading(
+ "print-lvi-after-jump-threading",
+ cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
+ cl::Hidden);
+
+static cl::opt<bool> JumpThreadingFreezeSelectCond(
+ "jump-threading-freeze-select-cond",
+ cl::desc("Freeze the condition when unfolding select"), cl::init(false),
+ cl::Hidden);
+
+static cl::opt<bool> ThreadAcrossLoopHeaders(
+ "jump-threading-across-loop-headers",
+ cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
+ cl::init(false), cl::Hidden);
+
+
+namespace {
+
+ /// This pass performs 'jump threading', which looks at blocks that have
+ /// multiple predecessors and multiple successors. If one or more of the
+ /// predecessors of the block can be proven to always jump to one of the
+ /// successors, we forward the edge from the predecessor to the successor by
+ /// duplicating the contents of this block.
+ ///
+ /// An example of when this can occur is code like this:
+ ///
+ /// if () { ...
+ /// X = 4;
+ /// }
+ /// if (X < 3) {
+ ///
+ /// In this case, the unconditional branch at the end of the first if can be
+ /// revectored to the false side of the second if.
+ class JumpThreading : public FunctionPass {
+ JumpThreadingPass Impl;
+
+ public:
+ static char ID; // Pass identification
+
+ JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
+ : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
+ initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<LazyValueInfoWrapperPass>();
+ AU.addPreserved<LazyValueInfoWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ }
+
+ void releaseMemory() override { Impl.releaseMemory(); }
+ };
+
+} // end anonymous namespace
+
+char JumpThreading::ID = 0;
+
+INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
+ "Jump Threading", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(JumpThreading, "jump-threading",
+ "Jump Threading", false, false)
+
+// Public interface to the Jump Threading pass
+FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
+ return new JumpThreading(InsertFr, Threshold);
+}
+
+JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
+ InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
+ DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
+}
+
+// Update branch probability information according to conditional
+// branch probability. This is usually made possible for cloned branches
+// in inline instances by the context specific profile in the caller.
+// For instance,
+//
+// [Block PredBB]
+// [Branch PredBr]
+// if (t) {
+// Block A;
+// } else {
+// Block B;
+// }
+//
+// [Block BB]
+// cond = PN([true, %A], [..., %B]); // PHI node
+// [Branch CondBr]
+// if (cond) {
+// ... // P(cond == true) = 1%
+// }
+//
+// Here we know that when block A is taken, cond must be true, which means
+// P(cond == true | A) = 1
+//
+// Given that P(cond == true) = P(cond == true | A) * P(A) +
+// P(cond == true | B) * P(B)
+// we get:
+// P(cond == true ) = P(A) + P(cond == true | B) * P(B)
+//
+// which gives us:
+// P(A) is less than P(cond == true), i.e.
+// P(t == true) <= P(cond == true)
+//
+// In other words, if we know P(cond == true) is unlikely, we know
+// that P(t == true) is also unlikely.
+//
+static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
+ BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!CondBr)
+ return;
+
+ uint64_t TrueWeight, FalseWeight;
+ if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
+ return;
+
+ if (TrueWeight + FalseWeight == 0)
+ // Zero branch_weights do not give a hint for getting branch probabilities.
+ // Technically it would result in division by zero denominator, which is
+ // TrueWeight + FalseWeight.
+ return;
+
+ // Returns the outgoing edge of the dominating predecessor block
+ // that leads to the PhiNode's incoming block:
+ auto GetPredOutEdge =
+ [](BasicBlock *IncomingBB,
+ BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
+ auto *PredBB = IncomingBB;
+ auto *SuccBB = PhiBB;
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ while (true) {
+ BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
+ if (PredBr && PredBr->isConditional())
+ return {PredBB, SuccBB};
+ Visited.insert(PredBB);
+ auto *SinglePredBB = PredBB->getSinglePredecessor();
+ if (!SinglePredBB)
+ return {nullptr, nullptr};
+
+ // Stop searching when SinglePredBB has been visited. It means we see
+ // an unreachable loop.
+ if (Visited.count(SinglePredBB))
+ return {nullptr, nullptr};
+
+ SuccBB = PredBB;
+ PredBB = SinglePredBB;
+ }
+ };
+
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *PhiOpnd = PN->getIncomingValue(i);
+ ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
+
+ if (!CI || !CI->getType()->isIntegerTy(1))
+ continue;
+
+ BranchProbability BP =
+ (CI->isOne() ? BranchProbability::getBranchProbability(
+ TrueWeight, TrueWeight + FalseWeight)
+ : BranchProbability::getBranchProbability(
+ FalseWeight, TrueWeight + FalseWeight));
+
+ auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
+ if (!PredOutEdge.first)
+ return;
+
+ BasicBlock *PredBB = PredOutEdge.first;
+ BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
+ if (!PredBr)
+ return;
+
+ uint64_t PredTrueWeight, PredFalseWeight;
+ // FIXME: We currently only set the profile data when it is missing.
+ // With PGO, this can be used to refine even existing profile data with
+ // context information. This needs to be done after more performance
+ // testing.
+ if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
+ continue;
+
+ // We can not infer anything useful when BP >= 50%, because BP is the
+ // upper bound probability value.
+ if (BP >= BranchProbability(50, 100))
+ continue;
+
+ SmallVector<uint32_t, 2> Weights;
+ if (PredBr->getSuccessor(0) == PredOutEdge.second) {
+ Weights.push_back(BP.getNumerator());
+ Weights.push_back(BP.getCompl().getNumerator());
+ } else {
+ Weights.push_back(BP.getCompl().getNumerator());
+ Weights.push_back(BP.getNumerator());
+ }
+ PredBr->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(PredBr->getParent()->getContext())
+ .createBranchWeights(Weights));
+ }
+}
+
+/// runOnFunction - Toplevel algorithm.
+bool JumpThreading::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+ auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ // Jump Threading has no sense for the targets with divergent CF
+ if (TTI->hasBranchDivergence())
+ return false;
+ auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
+ auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
+ std::unique_ptr<BlockFrequencyInfo> BFI;
+ std::unique_ptr<BranchProbabilityInfo> BPI;
+ if (F.hasProfileData()) {
+ LoopInfo LI{DominatorTree(F)};
+ BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
+ BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
+ }
+
+ bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
+ std::move(BFI), std::move(BPI));
+ if (PrintLVIAfterJumpThreading) {
+ dbgs() << "LVI for function '" << F.getName() << "':\n";
+ LVI->printLVI(F, DTU.getDomTree(), dbgs());
+ }
+ return Changed;
+}
+
+PreservedAnalyses JumpThreadingPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &TTI = AM.getResult<TargetIRAnalysis>(F);
+ // Jump Threading has no sense for the targets with divergent CF
+ if (TTI.hasBranchDivergence())
+ return PreservedAnalyses::all();
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &LVI = AM.getResult<LazyValueAnalysis>(F);
+ auto &AA = AM.getResult<AAManager>(F);
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+
+ std::unique_ptr<BlockFrequencyInfo> BFI;
+ std::unique_ptr<BranchProbabilityInfo> BPI;
+ if (F.hasProfileData()) {
+ LoopInfo LI{DominatorTree(F)};
+ BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
+ BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
+ }
+
+ bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
+ std::move(BFI), std::move(BPI));
+
+ if (PrintLVIAfterJumpThreading) {
+ dbgs() << "LVI for function '" << F.getName() << "':\n";
+ LVI.printLVI(F, DTU.getDomTree(), dbgs());
+ }
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+ PreservedAnalyses PA;
+ PA.preserve<GlobalsAA>();
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<LazyValueAnalysis>();
+ return PA;
+}
+
+bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
+ LazyValueInfo *LVI_, AliasAnalysis *AA_,
+ DomTreeUpdater *DTU_, bool HasProfileData_,
+ std::unique_ptr<BlockFrequencyInfo> BFI_,
+ std::unique_ptr<BranchProbabilityInfo> BPI_) {
+ LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
+ TLI = TLI_;
+ LVI = LVI_;
+ AA = AA_;
+ DTU = DTU_;
+ BFI.reset();
+ BPI.reset();
+ // When profile data is available, we need to update edge weights after
+ // successful jump threading, which requires both BPI and BFI being available.
+ HasProfileData = HasProfileData_;
+ auto *GuardDecl = F.getParent()->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_guard));
+ HasGuards = GuardDecl && !GuardDecl->use_empty();
+ if (HasProfileData) {
+ BPI = std::move(BPI_);
+ BFI = std::move(BFI_);
+ }
+
+ // Reduce the number of instructions duplicated when optimizing strictly for
+ // size.
+ if (BBDuplicateThreshold.getNumOccurrences())
+ BBDupThreshold = BBDuplicateThreshold;
+ else if (F.hasFnAttribute(Attribute::MinSize))
+ BBDupThreshold = 3;
+ else
+ BBDupThreshold = DefaultBBDupThreshold;
+
+ // JumpThreading must not processes blocks unreachable from entry. It's a
+ // waste of compute time and can potentially lead to hangs.
+ SmallPtrSet<BasicBlock *, 16> Unreachable;
+ assert(DTU && "DTU isn't passed into JumpThreading before using it.");
+ assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
+ DominatorTree &DT = DTU->getDomTree();
+ for (auto &BB : F)
+ if (!DT.isReachableFromEntry(&BB))
+ Unreachable.insert(&BB);
+
+ if (!ThreadAcrossLoopHeaders)
+ findLoopHeaders(F);
+
+ bool EverChanged = false;
+ bool Changed;
+ do {
+ Changed = false;
+ for (auto &BB : F) {
+ if (Unreachable.count(&BB))
+ continue;
+ while (processBlock(&BB)) // Thread all of the branches we can over BB.
+ Changed = true;
+
+ // Jump threading may have introduced redundant debug values into BB
+ // which should be removed.
+ if (Changed)
+ RemoveRedundantDbgInstrs(&BB);
+
+ // Stop processing BB if it's the entry or is now deleted. The following
+ // routines attempt to eliminate BB and locating a suitable replacement
+ // for the entry is non-trivial.
+ if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
+ continue;
+
+ if (pred_empty(&BB)) {
+ // When processBlock makes BB unreachable it doesn't bother to fix up
+ // the instructions in it. We must remove BB to prevent invalid IR.
+ LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
+ << "' with terminator: " << *BB.getTerminator()
+ << '\n');
+ LoopHeaders.erase(&BB);
+ LVI->eraseBlock(&BB);
+ DeleteDeadBlock(&BB, DTU);
+ Changed = true;
+ continue;
+ }
+
+ // processBlock doesn't thread BBs with unconditional TIs. However, if BB
+ // is "almost empty", we attempt to merge BB with its sole successor.
+ auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
+ if (BI && BI->isUnconditional()) {
+ BasicBlock *Succ = BI->getSuccessor(0);
+ if (
+ // The terminator must be the only non-phi instruction in BB.
+ BB.getFirstNonPHIOrDbg()->isTerminator() &&
+ // Don't alter Loop headers and latches to ensure another pass can
+ // detect and transform nested loops later.
+ !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
+ TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
+ RemoveRedundantDbgInstrs(Succ);
+ // BB is valid for cleanup here because we passed in DTU. F remains
+ // BB's parent until a DTU->getDomTree() event.
+ LVI->eraseBlock(&BB);
+ Changed = true;
+ }
+ }
+ }
+ EverChanged |= Changed;
+ } while (Changed);
+
+ LoopHeaders.clear();
+ return EverChanged;
+}
+
+// Replace uses of Cond with ToVal when safe to do so. If all uses are
+// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
+// because we may incorrectly replace uses when guards/assumes are uses of
+// of `Cond` and we used the guards/assume to reason about the `Cond` value
+// at the end of block. RAUW unconditionally replaces all uses
+// including the guards/assumes themselves and the uses before the
+// guard/assume.
+static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
+ assert(Cond->getType() == ToVal->getType());
+ auto *BB = Cond->getParent();
+ // We can unconditionally replace all uses in non-local blocks (i.e. uses
+ // strictly dominated by BB), since LVI information is true from the
+ // terminator of BB.
+ replaceNonLocalUsesWith(Cond, ToVal);
+ for (Instruction &I : reverse(*BB)) {
+ // Reached the Cond whose uses we are trying to replace, so there are no
+ // more uses.
+ if (&I == Cond)
+ break;
+ // We only replace uses in instructions that are guaranteed to reach the end
+ // of BB, where we know Cond is ToVal.
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ break;
+ I.replaceUsesOfWith(Cond, ToVal);
+ }
+ if (Cond->use_empty() && !Cond->mayHaveSideEffects())
+ Cond->eraseFromParent();
+}
+
+/// Return the cost of duplicating a piece of this block from first non-phi
+/// and before StopAt instruction to thread across it. Stop scanning the block
+/// when exceeding the threshold. If duplication is impossible, returns ~0U.
+static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
+ Instruction *StopAt,
+ unsigned Threshold) {
+ assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
+ /// Ignore PHI nodes, these will be flattened when duplication happens.
+ BasicBlock::const_iterator I(BB->getFirstNonPHI());
+
+ // FIXME: THREADING will delete values that are just used to compute the
+ // branch, so they shouldn't count against the duplication cost.
+
+ unsigned Bonus = 0;
+ if (BB->getTerminator() == StopAt) {
+ // Threading through a switch statement is particularly profitable. If this
+ // block ends in a switch, decrease its cost to make it more likely to
+ // happen.
+ if (isa<SwitchInst>(StopAt))
+ Bonus = 6;
+
+ // The same holds for indirect branches, but slightly more so.
+ if (isa<IndirectBrInst>(StopAt))
+ Bonus = 8;
+ }
+
+ // Bump the threshold up so the early exit from the loop doesn't skip the
+ // terminator-based Size adjustment at the end.
+ Threshold += Bonus;
+
+ // Sum up the cost of each instruction until we get to the terminator. Don't
+ // include the terminator because the copy won't include it.
+ unsigned Size = 0;
+ for (; &*I != StopAt; ++I) {
+
+ // Stop scanning the block if we've reached the threshold.
+ if (Size > Threshold)
+ return Size;
+
+ // Debugger intrinsics don't incur code size.
+ if (isa<DbgInfoIntrinsic>(I)) continue;
+
+ // Pseudo-probes don't incur code size.
+ if (isa<PseudoProbeInst>(I))
+ continue;
+
+ // If this is a pointer->pointer bitcast, it is free.
+ if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
+ continue;
+
+ // Freeze instruction is free, too.
+ if (isa<FreezeInst>(I))
+ continue;
+
+ // Bail out if this instruction gives back a token type, it is not possible
+ // to duplicate it if it is used outside this BB.
+ if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
+ return ~0U;
+
+ // All other instructions count for at least one unit.
+ ++Size;
+
+ // Calls are more expensive. If they are non-intrinsic calls, we model them
+ // as having cost of 4. If they are a non-vector intrinsic, we model them
+ // as having cost of 2 total, and if they are a vector intrinsic, we model
+ // them as having cost 1.
+ if (const CallInst *CI = dyn_cast<CallInst>(I)) {
+ if (CI->cannotDuplicate() || CI->isConvergent())
+ // Blocks with NoDuplicate are modelled as having infinite cost, so they
+ // are never duplicated.
+ return ~0U;
+ else if (!isa<IntrinsicInst>(CI))
+ Size += 3;
+ else if (!CI->getType()->isVectorTy())
+ Size += 1;
+ }
+ }
+
+ return Size > Bonus ? Size - Bonus : 0;
+}
+
+/// findLoopHeaders - We do not want jump threading to turn proper loop
+/// structures into irreducible loops. Doing this breaks up the loop nesting
+/// hierarchy and pessimizes later transformations. To prevent this from
+/// happening, we first have to find the loop headers. Here we approximate this
+/// by finding targets of backedges in the CFG.
+///
+/// Note that there definitely are cases when we want to allow threading of
+/// edges across a loop header. For example, threading a jump from outside the
+/// loop (the preheader) to an exit block of the loop is definitely profitable.
+/// It is also almost always profitable to thread backedges from within the loop
+/// to exit blocks, and is often profitable to thread backedges to other blocks
+/// within the loop (forming a nested loop). This simple analysis is not rich
+/// enough to track all of these properties and keep it up-to-date as the CFG
+/// mutates, so we don't allow any of these transformations.
+void JumpThreadingPass::findLoopHeaders(Function &F) {
+ SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
+ FindFunctionBackedges(F, Edges);
+
+ for (const auto &Edge : Edges)
+ LoopHeaders.insert(Edge.second);
+}
+
+/// getKnownConstant - Helper method to determine if we can thread over a
+/// terminator with the given value as its condition, and if so what value to
+/// use for that. What kind of value this is depends on whether we want an
+/// integer or a block address, but an undef is always accepted.
+/// Returns null if Val is null or not an appropriate constant.
+static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
+ if (!Val)
+ return nullptr;
+
+ // Undef is "known" enough.
+ if (UndefValue *U = dyn_cast<UndefValue>(Val))
+ return U;
+
+ if (Preference == WantBlockAddress)
+ return dyn_cast<BlockAddress>(Val->stripPointerCasts());
+
+ return dyn_cast<ConstantInt>(Val);
+}
+
+/// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
+/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
+/// in any of our predecessors. If so, return the known list of value and pred
+/// BB in the result vector.
+///
+/// This returns true if there were any known values.
+bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
+ Value *V, BasicBlock *BB, PredValueInfo &Result,
+ ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
+ Instruction *CxtI) {
+ // This method walks up use-def chains recursively. Because of this, we could
+ // get into an infinite loop going around loops in the use-def chain. To
+ // prevent this, keep track of what (value, block) pairs we've already visited
+ // and terminate the search if we loop back to them
+ if (!RecursionSet.insert(V).second)
+ return false;
+
+ // If V is a constant, then it is known in all predecessors.
+ if (Constant *KC = getKnownConstant(V, Preference)) {
+ for (BasicBlock *Pred : predecessors(BB))
+ Result.emplace_back(KC, Pred);
+
+ return !Result.empty();
+ }
+
+ // If V is a non-instruction value, or an instruction in a different block,
+ // then it can't be derived from a PHI.
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || I->getParent() != BB) {
+
+ // Okay, if this is a live-in value, see if it has a known value at the end
+ // of any of our predecessors.
+ //
+ // FIXME: This should be an edge property, not a block end property.
+ /// TODO: Per PR2563, we could infer value range information about a
+ /// predecessor based on its terminator.
+ //
+ // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
+ // "I" is a non-local compare-with-a-constant instruction. This would be
+ // able to handle value inequalities better, for example if the compare is
+ // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
+ // Perhaps getConstantOnEdge should be smart enough to do this?
+ for (BasicBlock *P : predecessors(BB)) {
+ // If the value is known by LazyValueInfo to be a constant in a
+ // predecessor, use that information to try to thread this block.
+ Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
+ if (Constant *KC = getKnownConstant(PredCst, Preference))
+ Result.emplace_back(KC, P);
+ }
+
+ return !Result.empty();
+ }
+
+ /// If I is a PHI node, then we know the incoming values for any constants.
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *InVal = PN->getIncomingValue(i);
+ if (Constant *KC = getKnownConstant(InVal, Preference)) {
+ Result.emplace_back(KC, PN->getIncomingBlock(i));
+ } else {
+ Constant *CI = LVI->getConstantOnEdge(InVal,
+ PN->getIncomingBlock(i),
+ BB, CxtI);
+ if (Constant *KC = getKnownConstant(CI, Preference))
+ Result.emplace_back(KC, PN->getIncomingBlock(i));
+ }
+ }
+
+ return !Result.empty();
+ }
+
+ // Handle Cast instructions.
+ if (CastInst *CI = dyn_cast<CastInst>(I)) {
+ Value *Source = CI->getOperand(0);
+ computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
+ RecursionSet, CxtI);
+ if (Result.empty())
+ return false;
+
+ // Convert the known values.
+ for (auto &R : Result)
+ R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
+
+ return true;
+ }
+
+ if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
+ Value *Source = FI->getOperand(0);
+ computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
+ RecursionSet, CxtI);
+
+ erase_if(Result, [](auto &Pair) {
+ return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
+ });
+
+ return !Result.empty();
+ }
+
+ // Handle some boolean conditions.
+ if (I->getType()->getPrimitiveSizeInBits() == 1) {
+ assert(Preference == WantInteger && "One-bit non-integer type?");
+ // X | true -> true
+ // X & false -> false
+ if (I->getOpcode() == Instruction::Or ||
+ I->getOpcode() == Instruction::And) {
+ PredValueInfoTy LHSVals, RHSVals;
+
+ computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
+ WantInteger, RecursionSet, CxtI);
+ computeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
+ WantInteger, RecursionSet, CxtI);
+
+ if (LHSVals.empty() && RHSVals.empty())
+ return false;
+
+ ConstantInt *InterestingVal;
+ if (I->getOpcode() == Instruction::Or)
+ InterestingVal = ConstantInt::getTrue(I->getContext());
+ else
+ InterestingVal = ConstantInt::getFalse(I->getContext());
+
+ SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
+
+ // Scan for the sentinel. If we find an undef, force it to the
+ // interesting value: x|undef -> true and x&undef -> false.
+ for (const auto &LHSVal : LHSVals)
+ if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
+ Result.emplace_back(InterestingVal, LHSVal.second);
+ LHSKnownBBs.insert(LHSVal.second);
+ }
+ for (const auto &RHSVal : RHSVals)
+ if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
+ // If we already inferred a value for this block on the LHS, don't
+ // re-add it.
+ if (!LHSKnownBBs.count(RHSVal.second))
+ Result.emplace_back(InterestingVal, RHSVal.second);
+ }
+
+ return !Result.empty();
+ }
+
+ // Handle the NOT form of XOR.
+ if (I->getOpcode() == Instruction::Xor &&
+ isa<ConstantInt>(I->getOperand(1)) &&
+ cast<ConstantInt>(I->getOperand(1))->isOne()) {
+ computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
+ WantInteger, RecursionSet, CxtI);
+ if (Result.empty())
+ return false;
+
+ // Invert the known values.
+ for (auto &R : Result)
+ R.first = ConstantExpr::getNot(R.first);
+
+ return true;
+ }
+
+ // Try to simplify some other binary operator values.
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ assert(Preference != WantBlockAddress
+ && "A binary operator creating a block address?");
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ PredValueInfoTy LHSVals;
+ computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
+ WantInteger, RecursionSet, CxtI);
+
+ // Try to use constant folding to simplify the binary operator.
+ for (const auto &LHSVal : LHSVals) {
+ Constant *V = LHSVal.first;
+ Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
+
+ if (Constant *KC = getKnownConstant(Folded, WantInteger))
+ Result.emplace_back(KC, LHSVal.second);
+ }
+ }
+
+ return !Result.empty();
+ }
+
+ // Handle compare with phi operand, where the PHI is defined in this block.
+ if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
+ assert(Preference == WantInteger && "Compares only produce integers");
+ Type *CmpType = Cmp->getType();
+ Value *CmpLHS = Cmp->getOperand(0);
+ Value *CmpRHS = Cmp->getOperand(1);
+ CmpInst::Predicate Pred = Cmp->getPredicate();
+
+ PHINode *PN = dyn_cast<PHINode>(CmpLHS);
+ if (!PN)
+ PN = dyn_cast<PHINode>(CmpRHS);
+ if (PN && PN->getParent() == BB) {
+ const DataLayout &DL = PN->getModule()->getDataLayout();
+ // We can do this simplification if any comparisons fold to true or false.
+ // See if any do.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ Value *LHS, *RHS;
+ if (PN == CmpLHS) {
+ LHS = PN->getIncomingValue(i);
+ RHS = CmpRHS->DoPHITranslation(BB, PredBB);
+ } else {
+ LHS = CmpLHS->DoPHITranslation(BB, PredBB);
+ RHS = PN->getIncomingValue(i);
+ }
+ Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
+ if (!Res) {
+ if (!isa<Constant>(RHS))
+ continue;
+
+ // getPredicateOnEdge call will make no sense if LHS is defined in BB.
+ auto LHSInst = dyn_cast<Instruction>(LHS);
+ if (LHSInst && LHSInst->getParent() == BB)
+ continue;
+
+ LazyValueInfo::Tristate
+ ResT = LVI->getPredicateOnEdge(Pred, LHS,
+ cast<Constant>(RHS), PredBB, BB,
+ CxtI ? CxtI : Cmp);
+ if (ResT == LazyValueInfo::Unknown)
+ continue;
+ Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
+ }
+
+ if (Constant *KC = getKnownConstant(Res, WantInteger))
+ Result.emplace_back(KC, PredBB);
+ }
+
+ return !Result.empty();
+ }
+
+ // If comparing a live-in value against a constant, see if we know the
+ // live-in value on any predecessors.
+ if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
+ Constant *CmpConst = cast<Constant>(CmpRHS);
+
+ if (!isa<Instruction>(CmpLHS) ||
+ cast<Instruction>(CmpLHS)->getParent() != BB) {
+ for (BasicBlock *P : predecessors(BB)) {
+ // If the value is known by LazyValueInfo to be a constant in a
+ // predecessor, use that information to try to thread this block.
+ LazyValueInfo::Tristate Res =
+ LVI->getPredicateOnEdge(Pred, CmpLHS,
+ CmpConst, P, BB, CxtI ? CxtI : Cmp);
+ if (Res == LazyValueInfo::Unknown)
+ continue;
+
+ Constant *ResC = ConstantInt::get(CmpType, Res);
+ Result.emplace_back(ResC, P);
+ }
+
+ return !Result.empty();
+ }
+
+ // InstCombine can fold some forms of constant range checks into
+ // (icmp (add (x, C1)), C2). See if we have we have such a thing with
+ // x as a live-in.
+ {
+ using namespace PatternMatch;
+
+ Value *AddLHS;
+ ConstantInt *AddConst;
+ if (isa<ConstantInt>(CmpConst) &&
+ match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
+ if (!isa<Instruction>(AddLHS) ||
+ cast<Instruction>(AddLHS)->getParent() != BB) {
+ for (BasicBlock *P : predecessors(BB)) {
+ // If the value is known by LazyValueInfo to be a ConstantRange in
+ // a predecessor, use that information to try to thread this
+ // block.
+ ConstantRange CR = LVI->getConstantRangeOnEdge(
+ AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
+ // Propagate the range through the addition.
+ CR = CR.add(AddConst->getValue());
+
+ // Get the range where the compare returns true.
+ ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
+ Pred, cast<ConstantInt>(CmpConst)->getValue());
+
+ Constant *ResC;
+ if (CmpRange.contains(CR))
+ ResC = ConstantInt::getTrue(CmpType);
+ else if (CmpRange.inverse().contains(CR))
+ ResC = ConstantInt::getFalse(CmpType);
+ else
+ continue;
+
+ Result.emplace_back(ResC, P);
+ }
+
+ return !Result.empty();
+ }
+ }
+ }
+
+ // Try to find a constant value for the LHS of a comparison,
+ // and evaluate it statically if we can.
+ PredValueInfoTy LHSVals;
+ computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
+ WantInteger, RecursionSet, CxtI);
+
+ for (const auto &LHSVal : LHSVals) {
+ Constant *V = LHSVal.first;
+ Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
+ if (Constant *KC = getKnownConstant(Folded, WantInteger))
+ Result.emplace_back(KC, LHSVal.second);
+ }
+
+ return !Result.empty();
+ }
+ }
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+ // Handle select instructions where at least one operand is a known constant
+ // and we can figure out the condition value for any predecessor block.
+ Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
+ Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
+ PredValueInfoTy Conds;
+ if ((TrueVal || FalseVal) &&
+ computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
+ WantInteger, RecursionSet, CxtI)) {
+ for (auto &C : Conds) {
+ Constant *Cond = C.first;
+
+ // Figure out what value to use for the condition.
+ bool KnownCond;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
+ // A known boolean.
+ KnownCond = CI->isOne();
+ } else {
+ assert(isa<UndefValue>(Cond) && "Unexpected condition value");
+ // Either operand will do, so be sure to pick the one that's a known
+ // constant.
+ // FIXME: Do this more cleverly if both values are known constants?
+ KnownCond = (TrueVal != nullptr);
+ }
+
+ // See if the select has a known constant value for this predecessor.
+ if (Constant *Val = KnownCond ? TrueVal : FalseVal)
+ Result.emplace_back(Val, C.second);
+ }
+
+ return !Result.empty();
+ }
+ }
+
+ // If all else fails, see if LVI can figure out a constant value for us.
+ assert(CxtI->getParent() == BB && "CxtI should be in BB");
+ Constant *CI = LVI->getConstant(V, CxtI);
+ if (Constant *KC = getKnownConstant(CI, Preference)) {
+ for (BasicBlock *Pred : predecessors(BB))
+ Result.emplace_back(KC, Pred);
+ }
+
+ return !Result.empty();
+}
+
+/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
+/// in an undefined jump, decide which block is best to revector to.
+///
+/// Since we can pick an arbitrary destination, we pick the successor with the
+/// fewest predecessors. This should reduce the in-degree of the others.
+static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
+ Instruction *BBTerm = BB->getTerminator();
+ unsigned MinSucc = 0;
+ BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
+ // Compute the successor with the minimum number of predecessors.
+ unsigned MinNumPreds = pred_size(TestBB);
+ for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
+ TestBB = BBTerm->getSuccessor(i);
+ unsigned NumPreds = pred_size(TestBB);
+ if (NumPreds < MinNumPreds) {
+ MinSucc = i;
+ MinNumPreds = NumPreds;
+ }
+ }
+
+ return MinSucc;
+}
+
+static bool hasAddressTakenAndUsed(BasicBlock *BB) {
+ if (!BB->hasAddressTaken()) return false;
+
+ // If the block has its address taken, it may be a tree of dead constants
+ // hanging off of it. These shouldn't keep the block alive.
+ BlockAddress *BA = BlockAddress::get(BB);
+ BA->removeDeadConstantUsers();
+ return !BA->use_empty();
+}
+
+/// processBlock - If there are any predecessors whose control can be threaded
+/// through to a successor, transform them now.
+bool JumpThreadingPass::processBlock(BasicBlock *BB) {
+ // If the block is trivially dead, just return and let the caller nuke it.
+ // This simplifies other transformations.
+ if (DTU->isBBPendingDeletion(BB) ||
+ (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
+ return false;
+
+ // If this block has a single predecessor, and if that pred has a single
+ // successor, merge the blocks. This encourages recursive jump threading
+ // because now the condition in this block can be threaded through
+ // predecessors of our predecessor block.
+ if (maybeMergeBasicBlockIntoOnlyPred(BB))
+ return true;
+
+ if (tryToUnfoldSelectInCurrBB(BB))
+ return true;
+
+ // Look if we can propagate guards to predecessors.
+ if (HasGuards && processGuards(BB))
+ return true;
+
+ // What kind of constant we're looking for.
+ ConstantPreference Preference = WantInteger;
+
+ // Look to see if the terminator is a conditional branch, switch or indirect
+ // branch, if not we can't thread it.
+ Value *Condition;
+ Instruction *Terminator = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
+ // Can't thread an unconditional jump.
+ if (BI->isUnconditional()) return false;
+ Condition = BI->getCondition();
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
+ Condition = SI->getCondition();
+ } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
+ // Can't thread indirect branch with no successors.
+ if (IB->getNumSuccessors() == 0) return false;
+ Condition = IB->getAddress()->stripPointerCasts();
+ Preference = WantBlockAddress;
+ } else {
+ return false; // Must be an invoke or callbr.
+ }
+
+ // Keep track if we constant folded the condition in this invocation.
+ bool ConstantFolded = false;
+
+ // Run constant folding to see if we can reduce the condition to a simple
+ // constant.
+ if (Instruction *I = dyn_cast<Instruction>(Condition)) {
+ Value *SimpleVal =
+ ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
+ if (SimpleVal) {
+ I->replaceAllUsesWith(SimpleVal);
+ if (isInstructionTriviallyDead(I, TLI))
+ I->eraseFromParent();
+ Condition = SimpleVal;
+ ConstantFolded = true;
+ }
+ }
+
+ // If the terminator is branching on an undef or freeze undef, we can pick any
+ // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
+ auto *FI = dyn_cast<FreezeInst>(Condition);
+ if (isa<UndefValue>(Condition) ||
+ (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
+ unsigned BestSucc = getBestDestForJumpOnUndef(BB);
+ std::vector<DominatorTree::UpdateType> Updates;
+
+ // Fold the branch/switch.
+ Instruction *BBTerm = BB->getTerminator();
+ Updates.reserve(BBTerm->getNumSuccessors());
+ for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
+ if (i == BestSucc) continue;
+ BasicBlock *Succ = BBTerm->getSuccessor(i);
+ Succ->removePredecessor(BB, true);
+ Updates.push_back({DominatorTree::Delete, BB, Succ});
+ }
+
+ LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
+ << "' folding undef terminator: " << *BBTerm << '\n');
+ BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
+ BBTerm->eraseFromParent();
+ DTU->applyUpdatesPermissive(Updates);
+ if (FI)
+ FI->eraseFromParent();
+ return true;
+ }
+
+ // If the terminator of this block is branching on a constant, simplify the
+ // terminator to an unconditional branch. This can occur due to threading in
+ // other blocks.
+ if (getKnownConstant(Condition, Preference)) {
+ LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
+ << "' folding terminator: " << *BB->getTerminator()
+ << '\n');
+ ++NumFolds;
+ ConstantFoldTerminator(BB, true, nullptr, DTU);
+ if (HasProfileData)
+ BPI->eraseBlock(BB);
+ return true;
+ }
+
+ Instruction *CondInst = dyn_cast<Instruction>(Condition);
+
+ // All the rest of our checks depend on the condition being an instruction.
+ if (!CondInst) {
+ // FIXME: Unify this with code below.
+ if (processThreadableEdges(Condition, BB, Preference, Terminator))
+ return true;
+ return ConstantFolded;
+ }
+
+ if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
+ // If we're branching on a conditional, LVI might be able to determine
+ // it's value at the branch instruction. We only handle comparisons
+ // against a constant at this time.
+ // TODO: This should be extended to handle switches as well.
+ BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
+ Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
+ if (CondBr && CondConst) {
+ // We should have returned as soon as we turn a conditional branch to
+ // unconditional. Because its no longer interesting as far as jump
+ // threading is concerned.
+ assert(CondBr->isConditional() && "Threading on unconditional terminator");
+
+ LazyValueInfo::Tristate Ret =
+ LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
+ CondConst, CondBr);
+ if (Ret != LazyValueInfo::Unknown) {
+ unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
+ unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
+ BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
+ ToRemoveSucc->removePredecessor(BB, true);
+ BranchInst *UncondBr =
+ BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
+ UncondBr->setDebugLoc(CondBr->getDebugLoc());
+ CondBr->eraseFromParent();
+ if (CondCmp->use_empty())
+ CondCmp->eraseFromParent();
+ // We can safely replace *some* uses of the CondInst if it has
+ // exactly one value as returned by LVI. RAUW is incorrect in the
+ // presence of guards and assumes, that have the `Cond` as the use. This
+ // is because we use the guards/assume to reason about the `Cond` value
+ // at the end of block, but RAUW unconditionally replaces all uses
+ // including the guards/assumes themselves and the uses before the
+ // guard/assume.
+ else if (CondCmp->getParent() == BB) {
+ auto *CI = Ret == LazyValueInfo::True ?
+ ConstantInt::getTrue(CondCmp->getType()) :
+ ConstantInt::getFalse(CondCmp->getType());
+ replaceFoldableUses(CondCmp, CI);
+ }
+ DTU->applyUpdatesPermissive(
+ {{DominatorTree::Delete, BB, ToRemoveSucc}});
+ if (HasProfileData)
+ BPI->eraseBlock(BB);
+ return true;
+ }
+
+ // We did not manage to simplify this branch, try to see whether
+ // CondCmp depends on a known phi-select pattern.
+ if (tryToUnfoldSelect(CondCmp, BB))
+ return true;
+ }
+ }
+
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
+ if (tryToUnfoldSelect(SI, BB))
+ return true;
+
+ // Check for some cases that are worth simplifying. Right now we want to look
+ // for loads that are used by a switch or by the condition for the branch. If
+ // we see one, check to see if it's partially redundant. If so, insert a PHI
+ // which can then be used to thread the values.
+ Value *SimplifyValue = CondInst;
+
+ if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
+ // Look into freeze's operand
+ SimplifyValue = FI->getOperand(0);
+
+ if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
+ if (isa<Constant>(CondCmp->getOperand(1)))
+ SimplifyValue = CondCmp->getOperand(0);
+
+ // TODO: There are other places where load PRE would be profitable, such as
+ // more complex comparisons.
+ if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
+ if (simplifyPartiallyRedundantLoad(LoadI))
+ return true;
+
+ // Before threading, try to propagate profile data backwards:
+ if (PHINode *PN = dyn_cast<PHINode>(CondInst))
+ if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
+ updatePredecessorProfileMetadata(PN, BB);
+
+ // Handle a variety of cases where we are branching on something derived from
+ // a PHI node in the current block. If we can prove that any predecessors
+ // compute a predictable value based on a PHI node, thread those predecessors.
+ if (processThreadableEdges(CondInst, BB, Preference, Terminator))
+ return true;
+
+ // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
+ // the current block, see if we can simplify.
+ PHINode *PN = dyn_cast<PHINode>(
+ isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
+ : CondInst);
+
+ if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
+ return processBranchOnPHI(PN);
+
+ // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
+ if (CondInst->getOpcode() == Instruction::Xor &&
+ CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
+ return processBranchOnXOR(cast<BinaryOperator>(CondInst));
+
+ // Search for a stronger dominating condition that can be used to simplify a
+ // conditional branch leaving BB.
+ if (processImpliedCondition(BB))
+ return true;
+
+ return false;
+}
+
+bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
+ auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+
+ Value *Cond = BI->getCondition();
+ BasicBlock *CurrentBB = BB;
+ BasicBlock *CurrentPred = BB->getSinglePredecessor();
+ unsigned Iter = 0;
+
+ auto &DL = BB->getModule()->getDataLayout();
+
+ while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
+ auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
+ if (!PBI || !PBI->isConditional())
+ return false;
+ if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
+ return false;
+
+ bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
+ Optional<bool> Implication =
+ isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
+ if (Implication) {
+ BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
+ BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
+ RemoveSucc->removePredecessor(BB);
+ BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
+ UncondBI->setDebugLoc(BI->getDebugLoc());
+ BI->eraseFromParent();
+ DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
+ if (HasProfileData)
+ BPI->eraseBlock(BB);
+ return true;
+ }
+ CurrentBB = CurrentPred;
+ CurrentPred = CurrentBB->getSinglePredecessor();
+ }
+
+ return false;
+}
+
+/// Return true if Op is an instruction defined in the given block.
+static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
+ if (Instruction *OpInst = dyn_cast<Instruction>(Op))
+ if (OpInst->getParent() == BB)
+ return true;
+ return false;
+}
+
+/// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
+/// redundant load instruction, eliminate it by replacing it with a PHI node.
+/// This is an important optimization that encourages jump threading, and needs
+/// to be run interlaced with other jump threading tasks.
+bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
+ // Don't hack volatile and ordered loads.
+ if (!LoadI->isUnordered()) return false;
+
+ // If the load is defined in a block with exactly one predecessor, it can't be
+ // partially redundant.
+ BasicBlock *LoadBB = LoadI->getParent();
+ if (LoadBB->getSinglePredecessor())
+ return false;
+
+ // If the load is defined in an EH pad, it can't be partially redundant,
+ // because the edges between the invoke and the EH pad cannot have other
+ // instructions between them.
+ if (LoadBB->isEHPad())
+ return false;
+
+ Value *LoadedPtr = LoadI->getOperand(0);
+
+ // If the loaded operand is defined in the LoadBB and its not a phi,
+ // it can't be available in predecessors.
+ if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
+ return false;
+
+ // Scan a few instructions up from the load, to see if it is obviously live at
+ // the entry to its block.
+ BasicBlock::iterator BBIt(LoadI);
+ bool IsLoadCSE;
+ if (Value *AvailableVal = FindAvailableLoadedValue(
+ LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
+ // If the value of the load is locally available within the block, just use
+ // it. This frequently occurs for reg2mem'd allocas.
+
+ if (IsLoadCSE) {
+ LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
+ combineMetadataForCSE(NLoadI, LoadI, false);
+ };
+
+ // If the returned value is the load itself, replace with an undef. This can
+ // only happen in dead loops.
+ if (AvailableVal == LoadI)
+ AvailableVal = UndefValue::get(LoadI->getType());
+ if (AvailableVal->getType() != LoadI->getType())
+ AvailableVal = CastInst::CreateBitOrPointerCast(
+ AvailableVal, LoadI->getType(), "", LoadI);
+ LoadI->replaceAllUsesWith(AvailableVal);
+ LoadI->eraseFromParent();
+ return true;
+ }
+
+ // Otherwise, if we scanned the whole block and got to the top of the block,
+ // we know the block is locally transparent to the load. If not, something
+ // might clobber its value.
+ if (BBIt != LoadBB->begin())
+ return false;
+
+ // If all of the loads and stores that feed the value have the same AA tags,
+ // then we can propagate them onto any newly inserted loads.
+ AAMDNodes AATags;
+ LoadI->getAAMetadata(AATags);
+
+ SmallPtrSet<BasicBlock*, 8> PredsScanned;
+
+ using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
+
+ AvailablePredsTy AvailablePreds;
+ BasicBlock *OneUnavailablePred = nullptr;
+ SmallVector<LoadInst*, 8> CSELoads;
+
+ // If we got here, the loaded value is transparent through to the start of the
+ // block. Check to see if it is available in any of the predecessor blocks.
+ for (BasicBlock *PredBB : predecessors(LoadBB)) {
+ // If we already scanned this predecessor, skip it.
+ if (!PredsScanned.insert(PredBB).second)
+ continue;
+
+ BBIt = PredBB->end();
+ unsigned NumScanedInst = 0;
+ Value *PredAvailable = nullptr;
+ // NOTE: We don't CSE load that is volatile or anything stronger than
+ // unordered, that should have been checked when we entered the function.
+ assert(LoadI->isUnordered() &&
+ "Attempting to CSE volatile or atomic loads");
+ // If this is a load on a phi pointer, phi-translate it and search
+ // for available load/store to the pointer in predecessors.
+ Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
+ PredAvailable = FindAvailablePtrLoadStore(
+ Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
+ DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
+
+ // If PredBB has a single predecessor, continue scanning through the
+ // single predecessor.
+ BasicBlock *SinglePredBB = PredBB;
+ while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
+ NumScanedInst < DefMaxInstsToScan) {
+ SinglePredBB = SinglePredBB->getSinglePredecessor();
+ if (SinglePredBB) {
+ BBIt = SinglePredBB->end();
+ PredAvailable = FindAvailablePtrLoadStore(
+ Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
+ (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
+ &NumScanedInst);
+ }
+ }
+
+ if (!PredAvailable) {
+ OneUnavailablePred = PredBB;
+ continue;
+ }
+
+ if (IsLoadCSE)
+ CSELoads.push_back(cast<LoadInst>(PredAvailable));
+
+ // If so, this load is partially redundant. Remember this info so that we
+ // can create a PHI node.
+ AvailablePreds.emplace_back(PredBB, PredAvailable);
+ }
+
+ // If the loaded value isn't available in any predecessor, it isn't partially
+ // redundant.
+ if (AvailablePreds.empty()) return false;
+
+ // Okay, the loaded value is available in at least one (and maybe all!)
+ // predecessors. If the value is unavailable in more than one unique
+ // predecessor, we want to insert a merge block for those common predecessors.
+ // This ensures that we only have to insert one reload, thus not increasing
+ // code size.
+ BasicBlock *UnavailablePred = nullptr;
+
+ // If the value is unavailable in one of predecessors, we will end up
+ // inserting a new instruction into them. It is only valid if all the
+ // instructions before LoadI are guaranteed to pass execution to its
+ // successor, or if LoadI is safe to speculate.
+ // TODO: If this logic becomes more complex, and we will perform PRE insertion
+ // farther than to a predecessor, we need to reuse the code from GVN's PRE.
+ // It requires domination tree analysis, so for this simple case it is an
+ // overkill.
+ if (PredsScanned.size() != AvailablePreds.size() &&
+ !isSafeToSpeculativelyExecute(LoadI))
+ for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
+ if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
+ return false;
+
+ // If there is exactly one predecessor where the value is unavailable, the
+ // already computed 'OneUnavailablePred' block is it. If it ends in an
+ // unconditional branch, we know that it isn't a critical edge.
+ if (PredsScanned.size() == AvailablePreds.size()+1 &&
+ OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
+ UnavailablePred = OneUnavailablePred;
+ } else if (PredsScanned.size() != AvailablePreds.size()) {
+ // Otherwise, we had multiple unavailable predecessors or we had a critical
+ // edge from the one.
+ SmallVector<BasicBlock*, 8> PredsToSplit;
+ SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
+
+ for (const auto &AvailablePred : AvailablePreds)
+ AvailablePredSet.insert(AvailablePred.first);
+
+ // Add all the unavailable predecessors to the PredsToSplit list.
+ for (BasicBlock *P : predecessors(LoadBB)) {
+ // If the predecessor is an indirect goto, we can't split the edge.
+ // Same for CallBr.
+ if (isa<IndirectBrInst>(P->getTerminator()) ||
+ isa<CallBrInst>(P->getTerminator()))
+ return false;
+
+ if (!AvailablePredSet.count(P))
+ PredsToSplit.push_back(P);
+ }
+
+ // Split them out to their own block.
+ UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
+ }
+
+ // If the value isn't available in all predecessors, then there will be
+ // exactly one where it isn't available. Insert a load on that edge and add
+ // it to the AvailablePreds list.
+ if (UnavailablePred) {
+ assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
+ "Can't handle critical edge here!");
+ LoadInst *NewVal = new LoadInst(
+ LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
+ LoadI->getName() + ".pr", false, LoadI->getAlign(),
+ LoadI->getOrdering(), LoadI->getSyncScopeID(),
+ UnavailablePred->getTerminator());
+ NewVal->setDebugLoc(LoadI->getDebugLoc());
+ if (AATags)
+ NewVal->setAAMetadata(AATags);
+
+ AvailablePreds.emplace_back(UnavailablePred, NewVal);
+ }
+
+ // Now we know that each predecessor of this block has a value in
+ // AvailablePreds, sort them for efficient access as we're walking the preds.
+ array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
+
+ // Create a PHI node at the start of the block for the PRE'd load value.
+ pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
+ PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
+ &LoadBB->front());
+ PN->takeName(LoadI);
+ PN->setDebugLoc(LoadI->getDebugLoc());
+
+ // Insert new entries into the PHI for each predecessor. A single block may
+ // have multiple entries here.
+ for (pred_iterator PI = PB; PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ AvailablePredsTy::iterator I =
+ llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
+
+ assert(I != AvailablePreds.end() && I->first == P &&
+ "Didn't find entry for predecessor!");
+
+ // If we have an available predecessor but it requires casting, insert the
+ // cast in the predecessor and use the cast. Note that we have to update the
+ // AvailablePreds vector as we go so that all of the PHI entries for this
+ // predecessor use the same bitcast.
+ Value *&PredV = I->second;
+ if (PredV->getType() != LoadI->getType())
+ PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
+ P->getTerminator());
+
+ PN->addIncoming(PredV, I->first);
+ }
+
+ for (LoadInst *PredLoadI : CSELoads) {
+ combineMetadataForCSE(PredLoadI, LoadI, true);
+ }
+
+ LoadI->replaceAllUsesWith(PN);
+ LoadI->eraseFromParent();
+
+ return true;
+}
+
+/// findMostPopularDest - The specified list contains multiple possible
+/// threadable destinations. Pick the one that occurs the most frequently in
+/// the list.
+static BasicBlock *
+findMostPopularDest(BasicBlock *BB,
+ const SmallVectorImpl<std::pair<BasicBlock *,
+ BasicBlock *>> &PredToDestList) {
+ assert(!PredToDestList.empty());
+
+ // Determine popularity. If there are multiple possible destinations, we
+ // explicitly choose to ignore 'undef' destinations. We prefer to thread
+ // blocks with known and real destinations to threading undef. We'll handle
+ // them later if interesting.
+ MapVector<BasicBlock *, unsigned> DestPopularity;
+
+ // Populate DestPopularity with the successors in the order they appear in the
+ // successor list. This way, we ensure determinism by iterating it in the
+ // same order in std::max_element below. We map nullptr to 0 so that we can
+ // return nullptr when PredToDestList contains nullptr only.
+ DestPopularity[nullptr] = 0;
+ for (auto *SuccBB : successors(BB))
+ DestPopularity[SuccBB] = 0;
+
+ for (const auto &PredToDest : PredToDestList)
+ if (PredToDest.second)
+ DestPopularity[PredToDest.second]++;
+
+ // Find the most popular dest.
+ using VT = decltype(DestPopularity)::value_type;
+ auto MostPopular = std::max_element(
+ DestPopularity.begin(), DestPopularity.end(),
+ [](const VT &L, const VT &R) { return L.second < R.second; });
+
+ // Okay, we have finally picked the most popular destination.
+ return MostPopular->first;
+}
+
+// Try to evaluate the value of V when the control flows from PredPredBB to
+// BB->getSinglePredecessor() and then on to BB.
+Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
+ BasicBlock *PredPredBB,
+ Value *V) {
+ BasicBlock *PredBB = BB->getSinglePredecessor();
+ assert(PredBB && "Expected a single predecessor");
+
+ if (Constant *Cst = dyn_cast<Constant>(V)) {
+ return Cst;
+ }
+
+ // Consult LVI if V is not an instruction in BB or PredBB.
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
+ return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
+ }
+
+ // Look into a PHI argument.
+ if (PHINode *PHI = dyn_cast<PHINode>(V)) {
+ if (PHI->getParent() == PredBB)
+ return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
+ return nullptr;
+ }
+
+ // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
+ if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
+ if (CondCmp->getParent() == BB) {
+ Constant *Op0 =
+ evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
+ Constant *Op1 =
+ evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
+ if (Op0 && Op1) {
+ return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
+ }
+ }
+ return nullptr;
+ }
+
+ return nullptr;
+}
+
+bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
+ ConstantPreference Preference,
+ Instruction *CxtI) {
+ // If threading this would thread across a loop header, don't even try to
+ // thread the edge.
+ if (LoopHeaders.count(BB))
+ return false;
+
+ PredValueInfoTy PredValues;
+ if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
+ CxtI)) {
+ // We don't have known values in predecessors. See if we can thread through
+ // BB and its sole predecessor.
+ return maybethreadThroughTwoBasicBlocks(BB, Cond);
+ }
+
+ assert(!PredValues.empty() &&
+ "computeValueKnownInPredecessors returned true with no values");
+
+ LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
+ for (const auto &PredValue : PredValues) {
+ dbgs() << " BB '" << BB->getName()
+ << "': FOUND condition = " << *PredValue.first
+ << " for pred '" << PredValue.second->getName() << "'.\n";
+ });
+
+ // Decide what we want to thread through. Convert our list of known values to
+ // a list of known destinations for each pred. This also discards duplicate
+ // predecessors and keeps track of the undefined inputs (which are represented
+ // as a null dest in the PredToDestList).
+ SmallPtrSet<BasicBlock*, 16> SeenPreds;
+ SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
+
+ BasicBlock *OnlyDest = nullptr;
+ BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
+ Constant *OnlyVal = nullptr;
+ Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
+
+ for (const auto &PredValue : PredValues) {
+ BasicBlock *Pred = PredValue.second;
+ if (!SeenPreds.insert(Pred).second)
+ continue; // Duplicate predecessor entry.
+
+ Constant *Val = PredValue.first;
+
+ BasicBlock *DestBB;
+ if (isa<UndefValue>(Val))
+ DestBB = nullptr;
+ else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+ assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
+ DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
+ DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
+ } else {
+ assert(isa<IndirectBrInst>(BB->getTerminator())
+ && "Unexpected terminator");
+ assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
+ DestBB = cast<BlockAddress>(Val)->getBasicBlock();
+ }
+
+ // If we have exactly one destination, remember it for efficiency below.
+ if (PredToDestList.empty()) {
+ OnlyDest = DestBB;
+ OnlyVal = Val;
+ } else {
+ if (OnlyDest != DestBB)
+ OnlyDest = MultipleDestSentinel;
+ // It possible we have same destination, but different value, e.g. default
+ // case in switchinst.
+ if (Val != OnlyVal)
+ OnlyVal = MultipleVal;
+ }
+
+ // If the predecessor ends with an indirect goto, we can't change its
+ // destination. Same for CallBr.
+ if (isa<IndirectBrInst>(Pred->getTerminator()) ||
+ isa<CallBrInst>(Pred->getTerminator()))
+ continue;
+
+ PredToDestList.emplace_back(Pred, DestBB);
+ }
+
+ // If all edges were unthreadable, we fail.
+ if (PredToDestList.empty())
+ return false;
+
+ // If all the predecessors go to a single known successor, we want to fold,
+ // not thread. By doing so, we do not need to duplicate the current block and
+ // also miss potential opportunities in case we dont/cant duplicate.
+ if (OnlyDest && OnlyDest != MultipleDestSentinel) {
+ if (BB->hasNPredecessors(PredToDestList.size())) {
+ bool SeenFirstBranchToOnlyDest = false;
+ std::vector <DominatorTree::UpdateType> Updates;
+ Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
+ for (BasicBlock *SuccBB : successors(BB)) {
+ if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
+ SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
+ } else {
+ SuccBB->removePredecessor(BB, true); // This is unreachable successor.
+ Updates.push_back({DominatorTree::Delete, BB, SuccBB});
+ }
+ }
+
+ // Finally update the terminator.
+ Instruction *Term = BB->getTerminator();
+ BranchInst::Create(OnlyDest, Term);
+ Term->eraseFromParent();
+ DTU->applyUpdatesPermissive(Updates);
+ if (HasProfileData)
+ BPI->eraseBlock(BB);
+
+ // If the condition is now dead due to the removal of the old terminator,
+ // erase it.
+ if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
+ if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
+ CondInst->eraseFromParent();
+ // We can safely replace *some* uses of the CondInst if it has
+ // exactly one value as returned by LVI. RAUW is incorrect in the
+ // presence of guards and assumes, that have the `Cond` as the use. This
+ // is because we use the guards/assume to reason about the `Cond` value
+ // at the end of block, but RAUW unconditionally replaces all uses
+ // including the guards/assumes themselves and the uses before the
+ // guard/assume.
+ else if (OnlyVal && OnlyVal != MultipleVal &&
+ CondInst->getParent() == BB)
+ replaceFoldableUses(CondInst, OnlyVal);
+ }
+ return true;
+ }
+ }
+
+ // Determine which is the most common successor. If we have many inputs and
+ // this block is a switch, we want to start by threading the batch that goes
+ // to the most popular destination first. If we only know about one
+ // threadable destination (the common case) we can avoid this.
+ BasicBlock *MostPopularDest = OnlyDest;
+
+ if (MostPopularDest == MultipleDestSentinel) {
+ // Remove any loop headers from the Dest list, threadEdge conservatively
+ // won't process them, but we might have other destination that are eligible
+ // and we still want to process.
+ erase_if(PredToDestList,
+ [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
+ return LoopHeaders.contains(PredToDest.second);
+ });
+
+ if (PredToDestList.empty())
+ return false;
+
+ MostPopularDest = findMostPopularDest(BB, PredToDestList);
+ }
+
+ // Now that we know what the most popular destination is, factor all
+ // predecessors that will jump to it into a single predecessor.
+ SmallVector<BasicBlock*, 16> PredsToFactor;
+ for (const auto &PredToDest : PredToDestList)
+ if (PredToDest.second == MostPopularDest) {
+ BasicBlock *Pred = PredToDest.first;
+
+ // This predecessor may be a switch or something else that has multiple
+ // edges to the block. Factor each of these edges by listing them
+ // according to # occurrences in PredsToFactor.
+ for (BasicBlock *Succ : successors(Pred))
+ if (Succ == BB)
+ PredsToFactor.push_back(Pred);
+ }
+
+ // If the threadable edges are branching on an undefined value, we get to pick
+ // the destination that these predecessors should get to.
+ if (!MostPopularDest)
+ MostPopularDest = BB->getTerminator()->
+ getSuccessor(getBestDestForJumpOnUndef(BB));
+
+ // Ok, try to thread it!
+ return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
+}
+
+/// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
+/// a PHI node (or freeze PHI) in the current block. See if there are any
+/// simplifications we can do based on inputs to the phi node.
+bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
+ BasicBlock *BB = PN->getParent();
+
+ // TODO: We could make use of this to do it once for blocks with common PHI
+ // values.
+ SmallVector<BasicBlock*, 1> PredBBs;
+ PredBBs.resize(1);
+
+ // If any of the predecessor blocks end in an unconditional branch, we can
+ // *duplicate* the conditional branch into that block in order to further
+ // encourage jump threading and to eliminate cases where we have branch on a
+ // phi of an icmp (branch on icmp is much better).
+ // This is still beneficial when a frozen phi is used as the branch condition
+ // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
+ // to br(icmp(freeze ...)).
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
+ if (PredBr->isUnconditional()) {
+ PredBBs[0] = PredBB;
+ // Try to duplicate BB into PredBB.
+ if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
+/// a xor instruction in the current block. See if there are any
+/// simplifications we can do based on inputs to the xor.
+bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
+ BasicBlock *BB = BO->getParent();
+
+ // If either the LHS or RHS of the xor is a constant, don't do this
+ // optimization.
+ if (isa<ConstantInt>(BO->getOperand(0)) ||
+ isa<ConstantInt>(BO->getOperand(1)))
+ return false;
+
+ // If the first instruction in BB isn't a phi, we won't be able to infer
+ // anything special about any particular predecessor.
+ if (!isa<PHINode>(BB->front()))
+ return false;
+
+ // If this BB is a landing pad, we won't be able to split the edge into it.
+ if (BB->isEHPad())
+ return false;
+
+ // If we have a xor as the branch input to this block, and we know that the
+ // LHS or RHS of the xor in any predecessor is true/false, then we can clone
+ // the condition into the predecessor and fix that value to true, saving some
+ // logical ops on that path and encouraging other paths to simplify.
+ //
+ // This copies something like this:
+ //
+ // BB:
+ // %X = phi i1 [1], [%X']
+ // %Y = icmp eq i32 %A, %B
+ // %Z = xor i1 %X, %Y
+ // br i1 %Z, ...
+ //
+ // Into:
+ // BB':
+ // %Y = icmp ne i32 %A, %B
+ // br i1 %Y, ...
+
+ PredValueInfoTy XorOpValues;
+ bool isLHS = true;
+ if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
+ WantInteger, BO)) {
+ assert(XorOpValues.empty());
+ if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
+ WantInteger, BO))
+ return false;
+ isLHS = false;
+ }
+
+ assert(!XorOpValues.empty() &&
+ "computeValueKnownInPredecessors returned true with no values");
+
+ // Scan the information to see which is most popular: true or false. The
+ // predecessors can be of the set true, false, or undef.
+ unsigned NumTrue = 0, NumFalse = 0;
+ for (const auto &XorOpValue : XorOpValues) {
+ if (isa<UndefValue>(XorOpValue.first))
+ // Ignore undefs for the count.
+ continue;
+ if (cast<ConstantInt>(XorOpValue.first)->isZero())
+ ++NumFalse;
+ else
+ ++NumTrue;
+ }
+
+ // Determine which value to split on, true, false, or undef if neither.
+ ConstantInt *SplitVal = nullptr;
+ if (NumTrue > NumFalse)
+ SplitVal = ConstantInt::getTrue(BB->getContext());
+ else if (NumTrue != 0 || NumFalse != 0)
+ SplitVal = ConstantInt::getFalse(BB->getContext());
+
+ // Collect all of the blocks that this can be folded into so that we can
+ // factor this once and clone it once.
+ SmallVector<BasicBlock*, 8> BlocksToFoldInto;
+ for (const auto &XorOpValue : XorOpValues) {
+ if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
+ continue;
+
+ BlocksToFoldInto.push_back(XorOpValue.second);
+ }
+
+ // If we inferred a value for all of the predecessors, then duplication won't
+ // help us. However, we can just replace the LHS or RHS with the constant.
+ if (BlocksToFoldInto.size() ==
+ cast<PHINode>(BB->front()).getNumIncomingValues()) {
+ if (!SplitVal) {
+ // If all preds provide undef, just nuke the xor, because it is undef too.
+ BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
+ BO->eraseFromParent();
+ } else if (SplitVal->isZero()) {
+ // If all preds provide 0, replace the xor with the other input.
+ BO->replaceAllUsesWith(BO->getOperand(isLHS));
+ BO->eraseFromParent();
+ } else {
+ // If all preds provide 1, set the computed value to 1.
+ BO->setOperand(!isLHS, SplitVal);
+ }
+
+ return true;
+ }
+
+ // If any of predecessors end with an indirect goto, we can't change its
+ // destination. Same for CallBr.
+ if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
+ return isa<IndirectBrInst>(Pred->getTerminator()) ||
+ isa<CallBrInst>(Pred->getTerminator());
+ }))
+ return false;
+
+ // Try to duplicate BB into PredBB.
+ return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
+}
+
+/// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
+/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
+/// NewPred using the entries from OldPred (suitably mapped).
+static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
+ BasicBlock *OldPred,
+ BasicBlock *NewPred,
+ DenseMap<Instruction*, Value*> &ValueMap) {
+ for (PHINode &PN : PHIBB->phis()) {
+ // Ok, we have a PHI node. Figure out what the incoming value was for the
+ // DestBlock.
+ Value *IV = PN.getIncomingValueForBlock(OldPred);
+
+ // Remap the value if necessary.
+ if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
+ DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
+ if (I != ValueMap.end())
+ IV = I->second;
+ }
+
+ PN.addIncoming(IV, NewPred);
+ }
+}
+
+/// Merge basic block BB into its sole predecessor if possible.
+bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
+ BasicBlock *SinglePred = BB->getSinglePredecessor();
+ if (!SinglePred)
+ return false;
+
+ const Instruction *TI = SinglePred->getTerminator();
+ if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
+ SinglePred == BB || hasAddressTakenAndUsed(BB))
+ return false;
+
+ // If SinglePred was a loop header, BB becomes one.
+ if (LoopHeaders.erase(SinglePred))
+ LoopHeaders.insert(BB);
+
+ LVI->eraseBlock(SinglePred);
+ MergeBasicBlockIntoOnlyPred(BB, DTU);
+
+ // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
+ // BB code within one basic block `BB`), we need to invalidate the LVI
+ // information associated with BB, because the LVI information need not be
+ // true for all of BB after the merge. For example,
+ // Before the merge, LVI info and code is as follows:
+ // SinglePred: <LVI info1 for %p val>
+ // %y = use of %p
+ // call @exit() // need not transfer execution to successor.
+ // assume(%p) // from this point on %p is true
+ // br label %BB
+ // BB: <LVI info2 for %p val, i.e. %p is true>
+ // %x = use of %p
+ // br label exit
+ //
+ // Note that this LVI info for blocks BB and SinglPred is correct for %p
+ // (info2 and info1 respectively). After the merge and the deletion of the
+ // LVI info1 for SinglePred. We have the following code:
+ // BB: <LVI info2 for %p val>
+ // %y = use of %p
+ // call @exit()
+ // assume(%p)
+ // %x = use of %p <-- LVI info2 is correct from here onwards.
+ // br label exit
+ // LVI info2 for BB is incorrect at the beginning of BB.
+
+ // Invalidate LVI information for BB if the LVI is not provably true for
+ // all of BB.
+ if (!isGuaranteedToTransferExecutionToSuccessor(BB))
+ LVI->eraseBlock(BB);
+ return true;
+}
+
+/// Update the SSA form. NewBB contains instructions that are copied from BB.
+/// ValueMapping maps old values in BB to new ones in NewBB.
+void JumpThreadingPass::updateSSA(
+ BasicBlock *BB, BasicBlock *NewBB,
+ DenseMap<Instruction *, Value *> &ValueMapping) {
+ // If there were values defined in BB that are used outside the block, then we
+ // now have to update all uses of the value to use either the original value,
+ // the cloned value, or some PHI derived value. This can require arbitrary
+ // PHI insertion, of which we are prepared to do, clean these up now.
+ SSAUpdater SSAUpdate;
+ SmallVector<Use *, 16> UsesToRename;
+
+ for (Instruction &I : *BB) {
+ // Scan all uses of this instruction to see if it is used outside of its
+ // block, and if so, record them in UsesToRename.
+ for (Use &U : I.uses()) {
+ Instruction *User = cast<Instruction>(U.getUser());
+ if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
+ if (UserPN->getIncomingBlock(U) == BB)
+ continue;
+ } else if (User->getParent() == BB)
+ continue;
+
+ UsesToRename.push_back(&U);
+ }
+
+ // If there are no uses outside the block, we're done with this instruction.
+ if (UsesToRename.empty())
+ continue;
+ LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
+
+ // We found a use of I outside of BB. Rename all uses of I that are outside
+ // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
+ // with the two values we know.
+ SSAUpdate.Initialize(I.getType(), I.getName());
+ SSAUpdate.AddAvailableValue(BB, &I);
+ SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
+
+ while (!UsesToRename.empty())
+ SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
+ LLVM_DEBUG(dbgs() << "\n");
+ }
+}
+
+/// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
+/// arguments that come from PredBB. Return the map from the variables in the
+/// source basic block to the variables in the newly created basic block.
+DenseMap<Instruction *, Value *>
+JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
+ BasicBlock::iterator BE, BasicBlock *NewBB,
+ BasicBlock *PredBB) {
+ // We are going to have to map operands from the source basic block to the new
+ // copy of the block 'NewBB'. If there are PHI nodes in the source basic
+ // block, evaluate them to account for entry from PredBB.
+ DenseMap<Instruction *, Value *> ValueMapping;
+
+ // Clone the phi nodes of the source basic block into NewBB. The resulting
+ // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
+ // might need to rewrite the operand of the cloned phi.
+ for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
+ PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
+ NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
+ ValueMapping[PN] = NewPN;
+ }
+
+ // Clone noalias scope declarations in the threaded block. When threading a
+ // loop exit, we would otherwise end up with two idential scope declarations
+ // visible at the same time.
+ SmallVector<MDNode *> NoAliasScopes;
+ DenseMap<MDNode *, MDNode *> ClonedScopes;
+ LLVMContext &Context = PredBB->getContext();
+ identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
+ cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
+
+ // Clone the non-phi instructions of the source basic block into NewBB,
+ // keeping track of the mapping and using it to remap operands in the cloned
+ // instructions.
+ for (; BI != BE; ++BI) {
+ Instruction *New = BI->clone();
+ New->setName(BI->getName());
+ NewBB->getInstList().push_back(New);
+ ValueMapping[&*BI] = New;
+ adaptNoAliasScopes(New, ClonedScopes, Context);
+
+ // Remap operands to patch up intra-block references.
+ for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
+ if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
+ DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
+ if (I != ValueMapping.end())
+ New->setOperand(i, I->second);
+ }
+ }
+
+ return ValueMapping;
+}
+
+/// Attempt to thread through two successive basic blocks.
+bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
+ Value *Cond) {
+ // Consider:
+ //
+ // PredBB:
+ // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
+ // %tobool = icmp eq i32 %cond, 0
+ // br i1 %tobool, label %BB, label ...
+ //
+ // BB:
+ // %cmp = icmp eq i32* %var, null
+ // br i1 %cmp, label ..., label ...
+ //
+ // We don't know the value of %var at BB even if we know which incoming edge
+ // we take to BB. However, once we duplicate PredBB for each of its incoming
+ // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
+ // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
+
+ // Require that BB end with a Branch for simplicity.
+ BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!CondBr)
+ return false;
+
+ // BB must have exactly one predecessor.
+ BasicBlock *PredBB = BB->getSinglePredecessor();
+ if (!PredBB)
+ return false;
+
+ // Require that PredBB end with a conditional Branch. If PredBB ends with an
+ // unconditional branch, we should be merging PredBB and BB instead. For
+ // simplicity, we don't deal with a switch.
+ BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
+ if (!PredBBBranch || PredBBBranch->isUnconditional())
+ return false;
+
+ // If PredBB has exactly one incoming edge, we don't gain anything by copying
+ // PredBB.
+ if (PredBB->getSinglePredecessor())
+ return false;
+
+ // Don't thread through PredBB if it contains a successor edge to itself, in
+ // which case we would infinite loop. Suppose we are threading an edge from
+ // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
+ // successor edge to itself. If we allowed jump threading in this case, we
+ // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
+ // PredBB.thread has a successor edge to PredBB, we would immediately come up
+ // with another jump threading opportunity from PredBB.thread through PredBB
+ // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
+ // would keep peeling one iteration from PredBB.
+ if (llvm::is_contained(successors(PredBB), PredBB))
+ return false;
+
+ // Don't thread across a loop header.
+ if (LoopHeaders.count(PredBB))
+ return false;
+
+ // Avoid complication with duplicating EH pads.
+ if (PredBB->isEHPad())
+ return false;
+
+ // Find a predecessor that we can thread. For simplicity, we only consider a
+ // successor edge out of BB to which we thread exactly one incoming edge into
+ // PredBB.
+ unsigned ZeroCount = 0;
+ unsigned OneCount = 0;
+ BasicBlock *ZeroPred = nullptr;
+ BasicBlock *OnePred = nullptr;
+ for (BasicBlock *P : predecessors(PredBB)) {
+ if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
+ evaluateOnPredecessorEdge(BB, P, Cond))) {
+ if (CI->isZero()) {
+ ZeroCount++;
+ ZeroPred = P;
+ } else if (CI->isOne()) {
+ OneCount++;
+ OnePred = P;
+ }
+ }
+ }
+
+ // Disregard complicated cases where we have to thread multiple edges.
+ BasicBlock *PredPredBB;
+ if (ZeroCount == 1) {
+ PredPredBB = ZeroPred;
+ } else if (OneCount == 1) {
+ PredPredBB = OnePred;
+ } else {
+ return false;
+ }
+
+ BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
+
+ // If threading to the same block as we come from, we would infinite loop.
+ if (SuccBB == BB) {
+ LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
+ << "' - would thread to self!\n");
+ return false;
+ }
+
+ // If threading this would thread across a loop header, don't thread the edge.
+ // See the comments above findLoopHeaders for justifications and caveats.
+ if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
+ LLVM_DEBUG({
+ bool BBIsHeader = LoopHeaders.count(BB);
+ bool SuccIsHeader = LoopHeaders.count(SuccBB);
+ dbgs() << " Not threading across "
+ << (BBIsHeader ? "loop header BB '" : "block BB '")
+ << BB->getName() << "' to dest "
+ << (SuccIsHeader ? "loop header BB '" : "block BB '")
+ << SuccBB->getName()
+ << "' - it might create an irreducible loop!\n";
+ });
+ return false;
+ }
+
+ // Compute the cost of duplicating BB and PredBB.
+ unsigned BBCost =
+ getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
+ unsigned PredBBCost = getJumpThreadDuplicationCost(
+ PredBB, PredBB->getTerminator(), BBDupThreshold);
+
+ // Give up if costs are too high. We need to check BBCost and PredBBCost
+ // individually before checking their sum because getJumpThreadDuplicationCost
+ // return (unsigned)~0 for those basic blocks that cannot be duplicated.
+ if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
+ BBCost + PredBBCost > BBDupThreshold) {
+ LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
+ << "' - Cost is too high: " << PredBBCost
+ << " for PredBB, " << BBCost << "for BB\n");
+ return false;
+ }
+
+ // Now we are ready to duplicate PredBB.
+ threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
+ return true;
+}
+
+void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
+ BasicBlock *PredBB,
+ BasicBlock *BB,
+ BasicBlock *SuccBB) {
+ LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"
+ << BB->getName() << "'\n");
+
+ BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
+ BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
+
+ BasicBlock *NewBB =
+ BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
+ PredBB->getParent(), PredBB);
+ NewBB->moveAfter(PredBB);
+
+ // Set the block frequency of NewBB.
+ if (HasProfileData) {
+ auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
+ BPI->getEdgeProbability(PredPredBB, PredBB);
+ BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
+ }
+
+ // We are going to have to map operands from the original BB block to the new
+ // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
+ // to account for entry from PredPredBB.
+ DenseMap<Instruction *, Value *> ValueMapping =
+ cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
+
+ // Copy the edge probabilities from PredBB to NewBB.
+ if (HasProfileData)
+ BPI->copyEdgeProbabilities(PredBB, NewBB);
+
+ // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
+ // This eliminates predecessors from PredPredBB, which requires us to simplify
+ // any PHI nodes in PredBB.
+ Instruction *PredPredTerm = PredPredBB->getTerminator();
+ for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
+ if (PredPredTerm->getSuccessor(i) == PredBB) {
+ PredBB->removePredecessor(PredPredBB, true);
+ PredPredTerm->setSuccessor(i, NewBB);
+ }
+
+ addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
+ ValueMapping);
+ addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
+ ValueMapping);
+
+ DTU->applyUpdatesPermissive(
+ {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
+ {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
+ {DominatorTree::Insert, PredPredBB, NewBB},
+ {DominatorTree::Delete, PredPredBB, PredBB}});
+
+ updateSSA(PredBB, NewBB, ValueMapping);
+
+ // Clean up things like PHI nodes with single operands, dead instructions,
+ // etc.
+ SimplifyInstructionsInBlock(NewBB, TLI);
+ SimplifyInstructionsInBlock(PredBB, TLI);
+
+ SmallVector<BasicBlock *, 1> PredsToFactor;
+ PredsToFactor.push_back(NewBB);
+ threadEdge(BB, PredsToFactor, SuccBB);
+}
+
+/// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
+bool JumpThreadingPass::tryThreadEdge(
+ BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
+ BasicBlock *SuccBB) {
+ // If threading to the same block as we come from, we would infinite loop.
+ if (SuccBB == BB) {
+ LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
+ << "' - would thread to self!\n");
+ return false;
+ }
+
+ // If threading this would thread across a loop header, don't thread the edge.
+ // See the comments above findLoopHeaders for justifications and caveats.
+ if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
+ LLVM_DEBUG({
+ bool BBIsHeader = LoopHeaders.count(BB);
+ bool SuccIsHeader = LoopHeaders.count(SuccBB);
+ dbgs() << " Not threading across "
+ << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
+ << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
+ << SuccBB->getName() << "' - it might create an irreducible loop!\n";
+ });
+ return false;
+ }
+
+ unsigned JumpThreadCost =
+ getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
+ if (JumpThreadCost > BBDupThreshold) {
+ LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
+ << "' - Cost is too high: " << JumpThreadCost << "\n");
+ return false;
+ }
+
+ threadEdge(BB, PredBBs, SuccBB);
+ return true;
+}
+
+/// threadEdge - We have decided that it is safe and profitable to factor the
+/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
+/// across BB. Transform the IR to reflect this change.
+void JumpThreadingPass::threadEdge(BasicBlock *BB,
+ const SmallVectorImpl<BasicBlock *> &PredBBs,
+ BasicBlock *SuccBB) {
+ assert(SuccBB != BB && "Don't create an infinite loop");
+
+ assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
+ "Don't thread across loop headers");
+
+ // And finally, do it! Start by factoring the predecessors if needed.
+ BasicBlock *PredBB;
+ if (PredBBs.size() == 1)
+ PredBB = PredBBs[0];
+ else {
+ LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
+ << " common predecessors.\n");
+ PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
+ }
+
+ // And finally, do it!
+ LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
+ << "' to '" << SuccBB->getName()
+ << ", across block:\n " << *BB << "\n");
+
+ LVI->threadEdge(PredBB, BB, SuccBB);
+
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
+ BB->getName()+".thread",
+ BB->getParent(), BB);
+ NewBB->moveAfter(PredBB);
+
+ // Set the block frequency of NewBB.
+ if (HasProfileData) {
+ auto NewBBFreq =
+ BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
+ BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
+ }
+
+ // Copy all the instructions from BB to NewBB except the terminator.
+ DenseMap<Instruction *, Value *> ValueMapping =
+ cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
+
+ // We didn't copy the terminator from BB over to NewBB, because there is now
+ // an unconditional jump to SuccBB. Insert the unconditional jump.
+ BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
+ NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
+
+ // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
+ // PHI nodes for NewBB now.
+ addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
+
+ // Update the terminator of PredBB to jump to NewBB instead of BB. This
+ // eliminates predecessors from BB, which requires us to simplify any PHI
+ // nodes in BB.
+ Instruction *PredTerm = PredBB->getTerminator();
+ for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
+ if (PredTerm->getSuccessor(i) == BB) {
+ BB->removePredecessor(PredBB, true);
+ PredTerm->setSuccessor(i, NewBB);
+ }
+
+ // Enqueue required DT updates.
+ DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
+ {DominatorTree::Insert, PredBB, NewBB},
+ {DominatorTree::Delete, PredBB, BB}});
+
+ updateSSA(BB, NewBB, ValueMapping);
+
+ // At this point, the IR is fully up to date and consistent. Do a quick scan
+ // over the new instructions and zap any that are constants or dead. This
+ // frequently happens because of phi translation.
+ SimplifyInstructionsInBlock(NewBB, TLI);
+
+ // Update the edge weight from BB to SuccBB, which should be less than before.
+ updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
+
+ // Threaded an edge!
+ ++NumThreads;
+}
+
+/// Create a new basic block that will be the predecessor of BB and successor of
+/// all blocks in Preds. When profile data is available, update the frequency of
+/// this new block.
+BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
+ ArrayRef<BasicBlock *> Preds,
+ const char *Suffix) {
+ SmallVector<BasicBlock *, 2> NewBBs;
+
+ // Collect the frequencies of all predecessors of BB, which will be used to
+ // update the edge weight of the result of splitting predecessors.
+ DenseMap<BasicBlock *, BlockFrequency> FreqMap;
+ if (HasProfileData)
+ for (auto Pred : Preds)
+ FreqMap.insert(std::make_pair(
+ Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
+
+ // In the case when BB is a LandingPad block we create 2 new predecessors
+ // instead of just one.
+ if (BB->isLandingPad()) {
+ std::string NewName = std::string(Suffix) + ".split-lp";
+ SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
+ } else {
+ NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
+ }
+
+ std::vector<DominatorTree::UpdateType> Updates;
+ Updates.reserve((2 * Preds.size()) + NewBBs.size());
+ for (auto NewBB : NewBBs) {
+ BlockFrequency NewBBFreq(0);
+ Updates.push_back({DominatorTree::Insert, NewBB, BB});
+ for (auto Pred : predecessors(NewBB)) {
+ Updates.push_back({DominatorTree::Delete, Pred, BB});
+ Updates.push_back({DominatorTree::Insert, Pred, NewBB});
+ if (HasProfileData) // Update frequencies between Pred -> NewBB.
+ NewBBFreq += FreqMap.lookup(Pred);
+ }
+ if (HasProfileData) // Apply the summed frequency to NewBB.
+ BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
+ }
+
+ DTU->applyUpdatesPermissive(Updates);
+ return NewBBs[0];
+}
+
+bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
+ const Instruction *TI = BB->getTerminator();
+ assert(TI->getNumSuccessors() > 1 && "not a split");
+
+ MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
+ if (!WeightsNode)
+ return false;
+
+ MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
+ if (MDName->getString() != "branch_weights")
+ return false;
+
+ // Ensure there are weights for all of the successors. Note that the first
+ // operand to the metadata node is a name, not a weight.
+ return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
+}
+
+/// Update the block frequency of BB and branch weight and the metadata on the
+/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
+/// Freq(PredBB->BB) / Freq(BB->SuccBB).
+void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
+ BasicBlock *BB,
+ BasicBlock *NewBB,
+ BasicBlock *SuccBB) {
+ if (!HasProfileData)
+ return;
+
+ assert(BFI && BPI && "BFI & BPI should have been created here");
+
+ // As the edge from PredBB to BB is deleted, we have to update the block
+ // frequency of BB.
+ auto BBOrigFreq = BFI->getBlockFreq(BB);
+ auto NewBBFreq = BFI->getBlockFreq(NewBB);
+ auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
+ auto BBNewFreq = BBOrigFreq - NewBBFreq;
+ BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
+
+ // Collect updated outgoing edges' frequencies from BB and use them to update
+ // edge probabilities.
+ SmallVector<uint64_t, 4> BBSuccFreq;
+ for (BasicBlock *Succ : successors(BB)) {
+ auto SuccFreq = (Succ == SuccBB)
+ ? BB2SuccBBFreq - NewBBFreq
+ : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
+ BBSuccFreq.push_back(SuccFreq.getFrequency());
+ }
+
+ uint64_t MaxBBSuccFreq =
+ *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
+
+ SmallVector<BranchProbability, 4> BBSuccProbs;
+ if (MaxBBSuccFreq == 0)
+ BBSuccProbs.assign(BBSuccFreq.size(),
+ {1, static_cast<unsigned>(BBSuccFreq.size())});
+ else {
+ for (uint64_t Freq : BBSuccFreq)
+ BBSuccProbs.push_back(
+ BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
+ // Normalize edge probabilities so that they sum up to one.
+ BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
+ BBSuccProbs.end());
+ }
+
+ // Update edge probabilities in BPI.
+ BPI->setEdgeProbability(BB, BBSuccProbs);
+
+ // Update the profile metadata as well.
+ //
+ // Don't do this if the profile of the transformed blocks was statically
+ // estimated. (This could occur despite the function having an entry
+ // frequency in completely cold parts of the CFG.)
+ //
+ // In this case we don't want to suggest to subsequent passes that the
+ // calculated weights are fully consistent. Consider this graph:
+ //
+ // check_1
+ // 50% / |
+ // eq_1 | 50%
+ // \ |
+ // check_2
+ // 50% / |
+ // eq_2 | 50%
+ // \ |
+ // check_3
+ // 50% / |
+ // eq_3 | 50%
+ // \ |
+ //
+ // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
+ // the overall probabilities are inconsistent; the total probability that the
+ // value is either 1, 2 or 3 is 150%.
+ //
+ // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
+ // becomes 0%. This is even worse if the edge whose probability becomes 0% is
+ // the loop exit edge. Then based solely on static estimation we would assume
+ // the loop was extremely hot.
+ //
+ // FIXME this locally as well so that BPI and BFI are consistent as well. We
+ // shouldn't make edges extremely likely or unlikely based solely on static
+ // estimation.
+ if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
+ SmallVector<uint32_t, 4> Weights;
+ for (auto Prob : BBSuccProbs)
+ Weights.push_back(Prob.getNumerator());
+
+ auto TI = BB->getTerminator();
+ TI->setMetadata(
+ LLVMContext::MD_prof,
+ MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
+ }
+}
+
+/// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
+/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
+/// If we can duplicate the contents of BB up into PredBB do so now, this
+/// improves the odds that the branch will be on an analyzable instruction like
+/// a compare.
+bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
+ BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
+ assert(!PredBBs.empty() && "Can't handle an empty set");
+
+ // If BB is a loop header, then duplicating this block outside the loop would
+ // cause us to transform this into an irreducible loop, don't do this.
+ // See the comments above findLoopHeaders for justifications and caveats.
+ if (LoopHeaders.count(BB)) {
+ LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
+ << "' into predecessor block '" << PredBBs[0]->getName()
+ << "' - it might create an irreducible loop!\n");
+ return false;
+ }
+
+ unsigned DuplicationCost =
+ getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
+ if (DuplicationCost > BBDupThreshold) {
+ LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
+ << "' - Cost is too high: " << DuplicationCost << "\n");
+ return false;
+ }
+
+ // And finally, do it! Start by factoring the predecessors if needed.
+ std::vector<DominatorTree::UpdateType> Updates;
+ BasicBlock *PredBB;
+ if (PredBBs.size() == 1)
+ PredBB = PredBBs[0];
+ else {
+ LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
+ << " common predecessors.\n");
+ PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
+ }
+ Updates.push_back({DominatorTree::Delete, PredBB, BB});
+
+ // Okay, we decided to do this! Clone all the instructions in BB onto the end
+ // of PredBB.
+ LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
+ << "' into end of '" << PredBB->getName()
+ << "' to eliminate branch on phi. Cost: "
+ << DuplicationCost << " block is:" << *BB << "\n");
+
+ // Unless PredBB ends with an unconditional branch, split the edge so that we
+ // can just clone the bits from BB into the end of the new PredBB.
+ BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
+
+ if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
+ BasicBlock *OldPredBB = PredBB;
+ PredBB = SplitEdge(OldPredBB, BB);
+ Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
+ Updates.push_back({DominatorTree::Insert, PredBB, BB});
+ Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
+ OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
+ }
+
+ // We are going to have to map operands from the original BB block into the
+ // PredBB block. Evaluate PHI nodes in BB.
+ DenseMap<Instruction*, Value*> ValueMapping;
+
+ BasicBlock::iterator BI = BB->begin();
+ for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+ ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
+ // Clone the non-phi instructions of BB into PredBB, keeping track of the
+ // mapping and using it to remap operands in the cloned instructions.
+ for (; BI != BB->end(); ++BI) {
+ Instruction *New = BI->clone();
+
+ // Remap operands to patch up intra-block references.
+ for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
+ if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
+ DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
+ if (I != ValueMapping.end())
+ New->setOperand(i, I->second);
+ }
+
+ // If this instruction can be simplified after the operands are updated,
+ // just use the simplified value instead. This frequently happens due to
+ // phi translation.
+ if (Value *IV = SimplifyInstruction(
+ New,
+ {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
+ ValueMapping[&*BI] = IV;
+ if (!New->mayHaveSideEffects()) {
+ New->deleteValue();
+ New = nullptr;
+ }
+ } else {
+ ValueMapping[&*BI] = New;
+ }
+ if (New) {
+ // Otherwise, insert the new instruction into the block.
+ New->setName(BI->getName());
+ PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
+ // Update Dominance from simplified New instruction operands.
+ for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
+ if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
+ Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
+ }
+ }
+
+ // Check to see if the targets of the branch had PHI nodes. If so, we need to
+ // add entries to the PHI nodes for branch from PredBB now.
+ BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
+ addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
+ ValueMapping);
+ addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
+ ValueMapping);
+
+ updateSSA(BB, PredBB, ValueMapping);
+
+ // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
+ // that we nuked.
+ BB->removePredecessor(PredBB, true);
+
+ // Remove the unconditional branch at the end of the PredBB block.
+ OldPredBranch->eraseFromParent();
+ if (HasProfileData)
+ BPI->copyEdgeProbabilities(BB, PredBB);
+ DTU->applyUpdatesPermissive(Updates);
+
+ ++NumDupes;
+ return true;
+}
+
+// Pred is a predecessor of BB with an unconditional branch to BB. SI is
+// a Select instruction in Pred. BB has other predecessors and SI is used in
+// a PHI node in BB. SI has no other use.
+// A new basic block, NewBB, is created and SI is converted to compare and
+// conditional branch. SI is erased from parent.
+void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
+ SelectInst *SI, PHINode *SIUse,
+ unsigned Idx) {
+ // Expand the select.
+ //
+ // Pred --
+ // | v
+ // | NewBB
+ // | |
+ // |-----
+ // v
+ // BB
+ BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
+ BB->getParent(), BB);
+ // Move the unconditional branch to NewBB.
+ PredTerm->removeFromParent();
+ NewBB->getInstList().insert(NewBB->end(), PredTerm);
+ // Create a conditional branch and update PHI nodes.
+ BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
+ SIUse->setIncomingValue(Idx, SI->getFalseValue());
+ SIUse->addIncoming(SI->getTrueValue(), NewBB);
+
+ // The select is now dead.
+ SI->eraseFromParent();
+ DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
+ {DominatorTree::Insert, Pred, NewBB}});
+
+ // Update any other PHI nodes in BB.
+ for (BasicBlock::iterator BI = BB->begin();
+ PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
+ if (Phi != SIUse)
+ Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
+}
+
+bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
+ PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
+
+ if (!CondPHI || CondPHI->getParent() != BB)
+ return false;
+
+ for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
+ BasicBlock *Pred = CondPHI->getIncomingBlock(I);
+ SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
+
+ // The second and third condition can be potentially relaxed. Currently
+ // the conditions help to simplify the code and allow us to reuse existing
+ // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
+ if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
+ continue;
+
+ BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
+ if (!PredTerm || !PredTerm->isUnconditional())
+ continue;
+
+ unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
+ return true;
+ }
+ return false;
+}
+
+/// tryToUnfoldSelect - Look for blocks of the form
+/// bb1:
+/// %a = select
+/// br bb2
+///
+/// bb2:
+/// %p = phi [%a, %bb1] ...
+/// %c = icmp %p
+/// br i1 %c
+///
+/// And expand the select into a branch structure if one of its arms allows %c
+/// to be folded. This later enables threading from bb1 over bb2.
+bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
+ BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
+ PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
+ Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
+
+ if (!CondBr || !CondBr->isConditional() || !CondLHS ||
+ CondLHS->getParent() != BB)
+ return false;
+
+ for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
+ BasicBlock *Pred = CondLHS->getIncomingBlock(I);
+ SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
+
+ // Look if one of the incoming values is a select in the corresponding
+ // predecessor.
+ if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
+ continue;
+
+ BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
+ if (!PredTerm || !PredTerm->isUnconditional())
+ continue;
+
+ // Now check if one of the select values would allow us to constant fold the
+ // terminator in BB. We don't do the transform if both sides fold, those
+ // cases will be threaded in any case.
+ LazyValueInfo::Tristate LHSFolds =
+ LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
+ CondRHS, Pred, BB, CondCmp);
+ LazyValueInfo::Tristate RHSFolds =
+ LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
+ CondRHS, Pred, BB, CondCmp);
+ if ((LHSFolds != LazyValueInfo::Unknown ||
+ RHSFolds != LazyValueInfo::Unknown) &&
+ LHSFolds != RHSFolds) {
+ unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
+ return true;
+ }
+ }
+ return false;
+}
+
+/// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
+/// same BB in the form
+/// bb:
+/// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
+/// %s = select %p, trueval, falseval
+///
+/// or
+///
+/// bb:
+/// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
+/// %c = cmp %p, 0
+/// %s = select %c, trueval, falseval
+///
+/// And expand the select into a branch structure. This later enables
+/// jump-threading over bb in this pass.
+///
+/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
+/// select if the associated PHI has at least one constant. If the unfolded
+/// select is not jump-threaded, it will be folded again in the later
+/// optimizations.
+bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
+ // This transform would reduce the quality of msan diagnostics.
+ // Disable this transform under MemorySanitizer.
+ if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
+ return false;
+
+ // If threading this would thread across a loop header, don't thread the edge.
+ // See the comments above findLoopHeaders for justifications and caveats.
+ if (LoopHeaders.count(BB))
+ return false;
+
+ for (BasicBlock::iterator BI = BB->begin();
+ PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
+ // Look for a Phi having at least one constant incoming value.
+ if (llvm::all_of(PN->incoming_values(),
+ [](Value *V) { return !isa<ConstantInt>(V); }))
+ continue;
+
+ auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
+ // Check if SI is in BB and use V as condition.
+ if (SI->getParent() != BB)
+ return false;
+ Value *Cond = SI->getCondition();
+ return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
+ };
+
+ SelectInst *SI = nullptr;
+ for (Use &U : PN->uses()) {
+ if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
+ // Look for a ICmp in BB that compares PN with a constant and is the
+ // condition of a Select.
+ if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
+ isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
+ if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
+ if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
+ SI = SelectI;
+ break;
+ }
+ } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
+ // Look for a Select in BB that uses PN as condition.
+ if (isUnfoldCandidate(SelectI, U.get())) {
+ SI = SelectI;
+ break;
+ }
+ }
+ }
+
+ if (!SI)
+ continue;
+ // Expand the select.
+ Value *Cond = SI->getCondition();
+ if (InsertFreezeWhenUnfoldingSelect &&
+ !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
+ &DTU->getDomTree()))
+ Cond = new FreezeInst(Cond, "cond.fr", SI);
+ Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
+ BasicBlock *SplitBB = SI->getParent();
+ BasicBlock *NewBB = Term->getParent();
+ PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
+ NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
+ NewPN->addIncoming(SI->getFalseValue(), BB);
+ SI->replaceAllUsesWith(NewPN);
+ SI->eraseFromParent();
+ // NewBB and SplitBB are newly created blocks which require insertion.
+ std::vector<DominatorTree::UpdateType> Updates;
+ Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
+ Updates.push_back({DominatorTree::Insert, BB, SplitBB});
+ Updates.push_back({DominatorTree::Insert, BB, NewBB});
+ Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
+ // BB's successors were moved to SplitBB, update DTU accordingly.
+ for (auto *Succ : successors(SplitBB)) {
+ Updates.push_back({DominatorTree::Delete, BB, Succ});
+ Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
+ }
+ DTU->applyUpdatesPermissive(Updates);
+ return true;
+ }
+ return false;
+}
+
+/// Try to propagate a guard from the current BB into one of its predecessors
+/// in case if another branch of execution implies that the condition of this
+/// guard is always true. Currently we only process the simplest case that
+/// looks like:
+///
+/// Start:
+/// %cond = ...
+/// br i1 %cond, label %T1, label %F1
+/// T1:
+/// br label %Merge
+/// F1:
+/// br label %Merge
+/// Merge:
+/// %condGuard = ...
+/// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
+///
+/// And cond either implies condGuard or !condGuard. In this case all the
+/// instructions before the guard can be duplicated in both branches, and the
+/// guard is then threaded to one of them.
+bool JumpThreadingPass::processGuards(BasicBlock *BB) {
+ using namespace PatternMatch;
+
+ // We only want to deal with two predecessors.
+ BasicBlock *Pred1, *Pred2;
+ auto PI = pred_begin(BB), PE = pred_end(BB);
+ if (PI == PE)
+ return false;
+ Pred1 = *PI++;
+ if (PI == PE)
+ return false;
+ Pred2 = *PI++;
+ if (PI != PE)
+ return false;
+ if (Pred1 == Pred2)
+ return false;
+
+ // Try to thread one of the guards of the block.
+ // TODO: Look up deeper than to immediate predecessor?
+ auto *Parent = Pred1->getSinglePredecessor();
+ if (!Parent || Parent != Pred2->getSinglePredecessor())
+ return false;
+
+ if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
+ for (auto &I : *BB)
+ if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
+ return true;
+
+ return false;
+}
+
+/// Try to propagate the guard from BB which is the lower block of a diamond
+/// to one of its branches, in case if diamond's condition implies guard's
+/// condition.
+bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
+ BranchInst *BI) {
+ assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
+ assert(BI->isConditional() && "Unconditional branch has 2 successors?");
+ Value *GuardCond = Guard->getArgOperand(0);
+ Value *BranchCond = BI->getCondition();
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = BI->getSuccessor(1);
+
+ auto &DL = BB->getModule()->getDataLayout();
+ bool TrueDestIsSafe = false;
+ bool FalseDestIsSafe = false;
+
+ // True dest is safe if BranchCond => GuardCond.
+ auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
+ if (Impl && *Impl)
+ TrueDestIsSafe = true;
+ else {
+ // False dest is safe if !BranchCond => GuardCond.
+ Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
+ if (Impl && *Impl)
+ FalseDestIsSafe = true;
+ }
+
+ if (!TrueDestIsSafe && !FalseDestIsSafe)
+ return false;
+
+ BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
+ BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
+
+ ValueToValueMapTy UnguardedMapping, GuardedMapping;
+ Instruction *AfterGuard = Guard->getNextNode();
+ unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
+ if (Cost > BBDupThreshold)
+ return false;
+ // Duplicate all instructions before the guard and the guard itself to the
+ // branch where implication is not proved.
+ BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
+ BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
+ assert(GuardedBlock && "Could not create the guarded block?");
+ // Duplicate all instructions before the guard in the unguarded branch.
+ // Since we have successfully duplicated the guarded block and this block
+ // has fewer instructions, we expect it to succeed.
+ BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
+ BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
+ assert(UnguardedBlock && "Could not create the unguarded block?");
+ LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
+ << GuardedBlock->getName() << "\n");
+ // Some instructions before the guard may still have uses. For them, we need
+ // to create Phi nodes merging their copies in both guarded and unguarded
+ // branches. Those instructions that have no uses can be just removed.
+ SmallVector<Instruction *, 4> ToRemove;
+ for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
+ if (!isa<PHINode>(&*BI))
+ ToRemove.push_back(&*BI);
+
+ Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
+ assert(InsertionPoint && "Empty block?");
+ // Substitute with Phis & remove.
+ for (auto *Inst : reverse(ToRemove)) {
+ if (!Inst->use_empty()) {
+ PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
+ NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
+ NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
+ NewPN->insertBefore(InsertionPoint);
+ Inst->replaceAllUsesWith(NewPN);
+ }
+ Inst->eraseFromParent();
+ }
+ return true;
+}