aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp974
1 files changed, 974 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp
new file mode 100644
index 000000000000..c95984fe198f
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp
@@ -0,0 +1,974 @@
+//===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass converts vector operations into scalar operations, in order
+// to expose optimization opportunities on the individual scalar operations.
+// It is mainly intended for targets that do not have vector units, but it
+// may also be useful for revectorizing code to different vector widths.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/Scalarizer.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "scalarizer"
+
+static cl::opt<bool> ScalarizeVariableInsertExtract(
+ "scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
+ cl::desc("Allow the scalarizer pass to scalarize "
+ "insertelement/extractelement with variable index"));
+
+// This is disabled by default because having separate loads and stores
+// makes it more likely that the -combiner-alias-analysis limits will be
+// reached.
+static cl::opt<bool>
+ ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
+ cl::desc("Allow the scalarizer pass to scalarize loads and store"));
+
+namespace {
+
+// Used to store the scattered form of a vector.
+using ValueVector = SmallVector<Value *, 8>;
+
+// Used to map a vector Value to its scattered form. We use std::map
+// because we want iterators to persist across insertion and because the
+// values are relatively large.
+using ScatterMap = std::map<Value *, ValueVector>;
+
+// Lists Instructions that have been replaced with scalar implementations,
+// along with a pointer to their scattered forms.
+using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
+
+// Provides a very limited vector-like interface for lazily accessing one
+// component of a scattered vector or vector pointer.
+class Scatterer {
+public:
+ Scatterer() = default;
+
+ // Scatter V into Size components. If new instructions are needed,
+ // insert them before BBI in BB. If Cache is nonnull, use it to cache
+ // the results.
+ Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
+ ValueVector *cachePtr = nullptr);
+
+ // Return component I, creating a new Value for it if necessary.
+ Value *operator[](unsigned I);
+
+ // Return the number of components.
+ unsigned size() const { return Size; }
+
+private:
+ BasicBlock *BB;
+ BasicBlock::iterator BBI;
+ Value *V;
+ ValueVector *CachePtr;
+ PointerType *PtrTy;
+ ValueVector Tmp;
+ unsigned Size;
+};
+
+// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
+// called Name that compares X and Y in the same way as FCI.
+struct FCmpSplitter {
+ FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
+
+ Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
+ const Twine &Name) const {
+ return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
+ }
+
+ FCmpInst &FCI;
+};
+
+// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
+// called Name that compares X and Y in the same way as ICI.
+struct ICmpSplitter {
+ ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
+
+ Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
+ const Twine &Name) const {
+ return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
+ }
+
+ ICmpInst &ICI;
+};
+
+// UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
+// a unary operator like UO called Name with operand X.
+struct UnarySplitter {
+ UnarySplitter(UnaryOperator &uo) : UO(uo) {}
+
+ Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
+ return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
+ }
+
+ UnaryOperator &UO;
+};
+
+// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
+// a binary operator like BO called Name with operands X and Y.
+struct BinarySplitter {
+ BinarySplitter(BinaryOperator &bo) : BO(bo) {}
+
+ Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
+ const Twine &Name) const {
+ return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
+ }
+
+ BinaryOperator &BO;
+};
+
+// Information about a load or store that we're scalarizing.
+struct VectorLayout {
+ VectorLayout() = default;
+
+ // Return the alignment of element I.
+ Align getElemAlign(unsigned I) {
+ return commonAlignment(VecAlign, I * ElemSize);
+ }
+
+ // The type of the vector.
+ VectorType *VecTy = nullptr;
+
+ // The type of each element.
+ Type *ElemTy = nullptr;
+
+ // The alignment of the vector.
+ Align VecAlign;
+
+ // The size of each element.
+ uint64_t ElemSize = 0;
+};
+
+class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
+public:
+ ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT)
+ : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) {
+ }
+
+ bool visit(Function &F);
+
+ // InstVisitor methods. They return true if the instruction was scalarized,
+ // false if nothing changed.
+ bool visitInstruction(Instruction &I) { return false; }
+ bool visitSelectInst(SelectInst &SI);
+ bool visitICmpInst(ICmpInst &ICI);
+ bool visitFCmpInst(FCmpInst &FCI);
+ bool visitUnaryOperator(UnaryOperator &UO);
+ bool visitBinaryOperator(BinaryOperator &BO);
+ bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
+ bool visitCastInst(CastInst &CI);
+ bool visitBitCastInst(BitCastInst &BCI);
+ bool visitInsertElementInst(InsertElementInst &IEI);
+ bool visitExtractElementInst(ExtractElementInst &EEI);
+ bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
+ bool visitPHINode(PHINode &PHI);
+ bool visitLoadInst(LoadInst &LI);
+ bool visitStoreInst(StoreInst &SI);
+ bool visitCallInst(CallInst &ICI);
+
+private:
+ Scatterer scatter(Instruction *Point, Value *V);
+ void gather(Instruction *Op, const ValueVector &CV);
+ bool canTransferMetadata(unsigned Kind);
+ void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
+ Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
+ const DataLayout &DL);
+ bool finish();
+
+ template<typename T> bool splitUnary(Instruction &, const T &);
+ template<typename T> bool splitBinary(Instruction &, const T &);
+
+ bool splitCall(CallInst &CI);
+
+ ScatterMap Scattered;
+ GatherList Gathered;
+
+ SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
+
+ unsigned ParallelLoopAccessMDKind;
+
+ DominatorTree *DT;
+};
+
+class ScalarizerLegacyPass : public FunctionPass {
+public:
+ static char ID;
+
+ ScalarizerLegacyPass() : FunctionPass(ID) {
+ initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage& AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+};
+
+} // end anonymous namespace
+
+char ScalarizerLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
+ "Scalarize vector operations", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
+ "Scalarize vector operations", false, false)
+
+Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
+ ValueVector *cachePtr)
+ : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
+ Type *Ty = V->getType();
+ PtrTy = dyn_cast<PointerType>(Ty);
+ if (PtrTy)
+ Ty = PtrTy->getElementType();
+ Size = cast<FixedVectorType>(Ty)->getNumElements();
+ if (!CachePtr)
+ Tmp.resize(Size, nullptr);
+ else if (CachePtr->empty())
+ CachePtr->resize(Size, nullptr);
+ else
+ assert(Size == CachePtr->size() && "Inconsistent vector sizes");
+}
+
+// Return component I, creating a new Value for it if necessary.
+Value *Scatterer::operator[](unsigned I) {
+ ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
+ // Try to reuse a previous value.
+ if (CV[I])
+ return CV[I];
+ IRBuilder<> Builder(BB, BBI);
+ if (PtrTy) {
+ Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType();
+ if (!CV[0]) {
+ Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
+ CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
+ }
+ if (I != 0)
+ CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
+ V->getName() + ".i" + Twine(I));
+ } else {
+ // Search through a chain of InsertElementInsts looking for element I.
+ // Record other elements in the cache. The new V is still suitable
+ // for all uncached indices.
+ while (true) {
+ InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
+ if (!Insert)
+ break;
+ ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
+ if (!Idx)
+ break;
+ unsigned J = Idx->getZExtValue();
+ V = Insert->getOperand(0);
+ if (I == J) {
+ CV[J] = Insert->getOperand(1);
+ return CV[J];
+ } else if (!CV[J]) {
+ // Only cache the first entry we find for each index we're not actively
+ // searching for. This prevents us from going too far up the chain and
+ // caching incorrect entries.
+ CV[J] = Insert->getOperand(1);
+ }
+ }
+ CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
+ V->getName() + ".i" + Twine(I));
+ }
+ return CV[I];
+}
+
+bool ScalarizerLegacyPass::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ Module &M = *F.getParent();
+ unsigned ParallelLoopAccessMDKind =
+ M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
+ DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
+ return Impl.visit(F);
+}
+
+FunctionPass *llvm::createScalarizerPass() {
+ return new ScalarizerLegacyPass();
+}
+
+bool ScalarizerVisitor::visit(Function &F) {
+ assert(Gathered.empty() && Scattered.empty());
+
+ // To ensure we replace gathered components correctly we need to do an ordered
+ // traversal of the basic blocks in the function.
+ ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
+ for (BasicBlock *BB : RPOT) {
+ for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
+ Instruction *I = &*II;
+ bool Done = InstVisitor::visit(I);
+ ++II;
+ if (Done && I->getType()->isVoidTy())
+ I->eraseFromParent();
+ }
+ }
+ return finish();
+}
+
+// Return a scattered form of V that can be accessed by Point. V must be a
+// vector or a pointer to a vector.
+Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
+ if (Argument *VArg = dyn_cast<Argument>(V)) {
+ // Put the scattered form of arguments in the entry block,
+ // so that it can be used everywhere.
+ Function *F = VArg->getParent();
+ BasicBlock *BB = &F->getEntryBlock();
+ return Scatterer(BB, BB->begin(), V, &Scattered[V]);
+ }
+ if (Instruction *VOp = dyn_cast<Instruction>(V)) {
+ // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
+ // nodes in predecessors. If those predecessors are unreachable from entry,
+ // then the IR in those blocks could have unexpected properties resulting in
+ // infinite loops in Scatterer::operator[]. By simply treating values
+ // originating from instructions in unreachable blocks as undef we do not
+ // need to analyse them further.
+ if (!DT->isReachableFromEntry(VOp->getParent()))
+ return Scatterer(Point->getParent(), Point->getIterator(),
+ UndefValue::get(V->getType()));
+ // Put the scattered form of an instruction directly after the
+ // instruction.
+ BasicBlock *BB = VOp->getParent();
+ return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
+ V, &Scattered[V]);
+ }
+ // In the fallback case, just put the scattered before Point and
+ // keep the result local to Point.
+ return Scatterer(Point->getParent(), Point->getIterator(), V);
+}
+
+// Replace Op with the gathered form of the components in CV. Defer the
+// deletion of Op and creation of the gathered form to the end of the pass,
+// so that we can avoid creating the gathered form if all uses of Op are
+// replaced with uses of CV.
+void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
+ transferMetadataAndIRFlags(Op, CV);
+
+ // If we already have a scattered form of Op (created from ExtractElements
+ // of Op itself), replace them with the new form.
+ ValueVector &SV = Scattered[Op];
+ if (!SV.empty()) {
+ for (unsigned I = 0, E = SV.size(); I != E; ++I) {
+ Value *V = SV[I];
+ if (V == nullptr || SV[I] == CV[I])
+ continue;
+
+ Instruction *Old = cast<Instruction>(V);
+ if (isa<Instruction>(CV[I]))
+ CV[I]->takeName(Old);
+ Old->replaceAllUsesWith(CV[I]);
+ PotentiallyDeadInstrs.emplace_back(Old);
+ }
+ }
+ SV = CV;
+ Gathered.push_back(GatherList::value_type(Op, &SV));
+}
+
+// Return true if it is safe to transfer the given metadata tag from
+// vector to scalar instructions.
+bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
+ return (Tag == LLVMContext::MD_tbaa
+ || Tag == LLVMContext::MD_fpmath
+ || Tag == LLVMContext::MD_tbaa_struct
+ || Tag == LLVMContext::MD_invariant_load
+ || Tag == LLVMContext::MD_alias_scope
+ || Tag == LLVMContext::MD_noalias
+ || Tag == ParallelLoopAccessMDKind
+ || Tag == LLVMContext::MD_access_group);
+}
+
+// Transfer metadata from Op to the instructions in CV if it is known
+// to be safe to do so.
+void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
+ const ValueVector &CV) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ Op->getAllMetadataOtherThanDebugLoc(MDs);
+ for (unsigned I = 0, E = CV.size(); I != E; ++I) {
+ if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
+ for (const auto &MD : MDs)
+ if (canTransferMetadata(MD.first))
+ New->setMetadata(MD.first, MD.second);
+ New->copyIRFlags(Op);
+ if (Op->getDebugLoc() && !New->getDebugLoc())
+ New->setDebugLoc(Op->getDebugLoc());
+ }
+ }
+}
+
+// Try to fill in Layout from Ty, returning true on success. Alignment is
+// the alignment of the vector, or None if the ABI default should be used.
+Optional<VectorLayout>
+ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
+ const DataLayout &DL) {
+ VectorLayout Layout;
+ // Make sure we're dealing with a vector.
+ Layout.VecTy = dyn_cast<VectorType>(Ty);
+ if (!Layout.VecTy)
+ return None;
+ // Check that we're dealing with full-byte elements.
+ Layout.ElemTy = Layout.VecTy->getElementType();
+ if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
+ return None;
+ Layout.VecAlign = Alignment;
+ Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
+ return Layout;
+}
+
+// Scalarize one-operand instruction I, using Split(Builder, X, Name)
+// to create an instruction like I with operand X and name Name.
+template<typename Splitter>
+bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
+ VectorType *VT = dyn_cast<VectorType>(I.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ IRBuilder<> Builder(&I);
+ Scatterer Op = scatter(&I, I.getOperand(0));
+ assert(Op.size() == NumElems && "Mismatched unary operation");
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned Elem = 0; Elem < NumElems; ++Elem)
+ Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
+ gather(&I, Res);
+ return true;
+}
+
+// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
+// to create an instruction like I with operands X and Y and name Name.
+template<typename Splitter>
+bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
+ VectorType *VT = dyn_cast<VectorType>(I.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ IRBuilder<> Builder(&I);
+ Scatterer VOp0 = scatter(&I, I.getOperand(0));
+ Scatterer VOp1 = scatter(&I, I.getOperand(1));
+ assert(VOp0.size() == NumElems && "Mismatched binary operation");
+ assert(VOp1.size() == NumElems && "Mismatched binary operation");
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
+ Value *Op0 = VOp0[Elem];
+ Value *Op1 = VOp1[Elem];
+ Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
+ }
+ gather(&I, Res);
+ return true;
+}
+
+static bool isTriviallyScalariable(Intrinsic::ID ID) {
+ return isTriviallyVectorizable(ID);
+}
+
+// All of the current scalarizable intrinsics only have one mangled type.
+static Function *getScalarIntrinsicDeclaration(Module *M,
+ Intrinsic::ID ID,
+ VectorType *Ty) {
+ return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
+}
+
+/// If a call to a vector typed intrinsic function, split into a scalar call per
+/// element if possible for the intrinsic.
+bool ScalarizerVisitor::splitCall(CallInst &CI) {
+ VectorType *VT = dyn_cast<VectorType>(CI.getType());
+ if (!VT)
+ return false;
+
+ Function *F = CI.getCalledFunction();
+ if (!F)
+ return false;
+
+ Intrinsic::ID ID = F->getIntrinsicID();
+ if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ unsigned NumArgs = CI.getNumArgOperands();
+
+ ValueVector ScalarOperands(NumArgs);
+ SmallVector<Scatterer, 8> Scattered(NumArgs);
+
+ Scattered.resize(NumArgs);
+
+ // Assumes that any vector type has the same number of elements as the return
+ // vector type, which is true for all current intrinsics.
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ Value *OpI = CI.getOperand(I);
+ if (OpI->getType()->isVectorTy()) {
+ Scattered[I] = scatter(&CI, OpI);
+ assert(Scattered[I].size() == NumElems && "mismatched call operands");
+ } else {
+ ScalarOperands[I] = OpI;
+ }
+ }
+
+ ValueVector Res(NumElems);
+ ValueVector ScalarCallOps(NumArgs);
+
+ Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
+ IRBuilder<> Builder(&CI);
+
+ // Perform actual scalarization, taking care to preserve any scalar operands.
+ for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
+ ScalarCallOps.clear();
+
+ for (unsigned J = 0; J != NumArgs; ++J) {
+ if (hasVectorInstrinsicScalarOpd(ID, J))
+ ScalarCallOps.push_back(ScalarOperands[J]);
+ else
+ ScalarCallOps.push_back(Scattered[J][Elem]);
+ }
+
+ Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
+ CI.getName() + ".i" + Twine(Elem));
+ }
+
+ gather(&CI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
+ VectorType *VT = dyn_cast<VectorType>(SI.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ IRBuilder<> Builder(&SI);
+ Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
+ Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
+ assert(VOp1.size() == NumElems && "Mismatched select");
+ assert(VOp2.size() == NumElems && "Mismatched select");
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ if (SI.getOperand(0)->getType()->isVectorTy()) {
+ Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
+ assert(VOp0.size() == NumElems && "Mismatched select");
+ for (unsigned I = 0; I < NumElems; ++I) {
+ Value *Op0 = VOp0[I];
+ Value *Op1 = VOp1[I];
+ Value *Op2 = VOp2[I];
+ Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
+ SI.getName() + ".i" + Twine(I));
+ }
+ } else {
+ Value *Op0 = SI.getOperand(0);
+ for (unsigned I = 0; I < NumElems; ++I) {
+ Value *Op1 = VOp1[I];
+ Value *Op2 = VOp2[I];
+ Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
+ SI.getName() + ".i" + Twine(I));
+ }
+ }
+ gather(&SI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
+ return splitBinary(ICI, ICmpSplitter(ICI));
+}
+
+bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
+ return splitBinary(FCI, FCmpSplitter(FCI));
+}
+
+bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
+ return splitUnary(UO, UnarySplitter(UO));
+}
+
+bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
+ return splitBinary(BO, BinarySplitter(BO));
+}
+
+bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
+ VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
+ if (!VT)
+ return false;
+
+ IRBuilder<> Builder(&GEPI);
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ unsigned NumIndices = GEPI.getNumIndices();
+
+ // The base pointer might be scalar even if it's a vector GEP. In those cases,
+ // splat the pointer into a vector value, and scatter that vector.
+ Value *Op0 = GEPI.getOperand(0);
+ if (!Op0->getType()->isVectorTy())
+ Op0 = Builder.CreateVectorSplat(NumElems, Op0);
+ Scatterer Base = scatter(&GEPI, Op0);
+
+ SmallVector<Scatterer, 8> Ops;
+ Ops.resize(NumIndices);
+ for (unsigned I = 0; I < NumIndices; ++I) {
+ Value *Op = GEPI.getOperand(I + 1);
+
+ // The indices might be scalars even if it's a vector GEP. In those cases,
+ // splat the scalar into a vector value, and scatter that vector.
+ if (!Op->getType()->isVectorTy())
+ Op = Builder.CreateVectorSplat(NumElems, Op);
+
+ Ops[I] = scatter(&GEPI, Op);
+ }
+
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned I = 0; I < NumElems; ++I) {
+ SmallVector<Value *, 8> Indices;
+ Indices.resize(NumIndices);
+ for (unsigned J = 0; J < NumIndices; ++J)
+ Indices[J] = Ops[J][I];
+ Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
+ GEPI.getName() + ".i" + Twine(I));
+ if (GEPI.isInBounds())
+ if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
+ NewGEPI->setIsInBounds();
+ }
+ gather(&GEPI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
+ VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ IRBuilder<> Builder(&CI);
+ Scatterer Op0 = scatter(&CI, CI.getOperand(0));
+ assert(Op0.size() == NumElems && "Mismatched cast");
+ ValueVector Res;
+ Res.resize(NumElems);
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
+ CI.getName() + ".i" + Twine(I));
+ gather(&CI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
+ VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
+ VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
+ if (!DstVT || !SrcVT)
+ return false;
+
+ unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements();
+ unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements();
+ IRBuilder<> Builder(&BCI);
+ Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
+ ValueVector Res;
+ Res.resize(DstNumElems);
+
+ if (DstNumElems == SrcNumElems) {
+ for (unsigned I = 0; I < DstNumElems; ++I)
+ Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
+ BCI.getName() + ".i" + Twine(I));
+ } else if (DstNumElems > SrcNumElems) {
+ // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
+ // individual elements to the destination.
+ unsigned FanOut = DstNumElems / SrcNumElems;
+ auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
+ unsigned ResI = 0;
+ for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
+ Value *V = Op0[Op0I];
+ Instruction *VI;
+ // Look through any existing bitcasts before converting to <N x t2>.
+ // In the best case, the resulting conversion might be a no-op.
+ while ((VI = dyn_cast<Instruction>(V)) &&
+ VI->getOpcode() == Instruction::BitCast)
+ V = VI->getOperand(0);
+ V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
+ Scatterer Mid = scatter(&BCI, V);
+ for (unsigned MidI = 0; MidI < FanOut; ++MidI)
+ Res[ResI++] = Mid[MidI];
+ }
+ } else {
+ // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
+ unsigned FanIn = SrcNumElems / DstNumElems;
+ auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
+ unsigned Op0I = 0;
+ for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
+ Value *V = PoisonValue::get(MidTy);
+ for (unsigned MidI = 0; MidI < FanIn; ++MidI)
+ V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
+ BCI.getName() + ".i" + Twine(ResI)
+ + ".upto" + Twine(MidI));
+ Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
+ BCI.getName() + ".i" + Twine(ResI));
+ }
+ }
+ gather(&BCI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
+ VectorType *VT = dyn_cast<VectorType>(IEI.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ IRBuilder<> Builder(&IEI);
+ Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
+ Value *NewElt = IEI.getOperand(1);
+ Value *InsIdx = IEI.getOperand(2);
+
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
+ } else {
+ if (!ScalarizeVariableInsertExtract)
+ return false;
+
+ for (unsigned I = 0; I < NumElems; ++I) {
+ Value *ShouldReplace =
+ Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
+ InsIdx->getName() + ".is." + Twine(I));
+ Value *OldElt = Op0[I];
+ Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
+ IEI.getName() + ".i" + Twine(I));
+ }
+ }
+
+ gather(&IEI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
+ VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType());
+ if (!VT)
+ return false;
+
+ unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements();
+ IRBuilder<> Builder(&EEI);
+ Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
+ Value *ExtIdx = EEI.getOperand(1);
+
+ if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
+ Value *Res = Op0[CI->getValue().getZExtValue()];
+ gather(&EEI, {Res});
+ return true;
+ }
+
+ if (!ScalarizeVariableInsertExtract)
+ return false;
+
+ Value *Res = UndefValue::get(VT->getElementType());
+ for (unsigned I = 0; I < NumSrcElems; ++I) {
+ Value *ShouldExtract =
+ Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
+ ExtIdx->getName() + ".is." + Twine(I));
+ Value *Elt = Op0[I];
+ Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
+ EEI.getName() + ".upto" + Twine(I));
+ }
+ gather(&EEI, {Res});
+ return true;
+}
+
+bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
+ VectorType *VT = dyn_cast<VectorType>(SVI.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
+ Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ for (unsigned I = 0; I < NumElems; ++I) {
+ int Selector = SVI.getMaskValue(I);
+ if (Selector < 0)
+ Res[I] = UndefValue::get(VT->getElementType());
+ else if (unsigned(Selector) < Op0.size())
+ Res[I] = Op0[Selector];
+ else
+ Res[I] = Op1[Selector - Op0.size()];
+ }
+ gather(&SVI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
+ VectorType *VT = dyn_cast<VectorType>(PHI.getType());
+ if (!VT)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
+ IRBuilder<> Builder(&PHI);
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ unsigned NumOps = PHI.getNumOperands();
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
+ PHI.getName() + ".i" + Twine(I));
+
+ for (unsigned I = 0; I < NumOps; ++I) {
+ Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
+ BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
+ for (unsigned J = 0; J < NumElems; ++J)
+ cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
+ }
+ gather(&PHI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
+ if (!ScalarizeLoadStore)
+ return false;
+ if (!LI.isSimple())
+ return false;
+
+ Optional<VectorLayout> Layout = getVectorLayout(
+ LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
+ if (!Layout)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
+ IRBuilder<> Builder(&LI);
+ Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
+ ValueVector Res;
+ Res.resize(NumElems);
+
+ for (unsigned I = 0; I < NumElems; ++I)
+ Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
+ Align(Layout->getElemAlign(I)),
+ LI.getName() + ".i" + Twine(I));
+ gather(&LI, Res);
+ return true;
+}
+
+bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
+ if (!ScalarizeLoadStore)
+ return false;
+ if (!SI.isSimple())
+ return false;
+
+ Value *FullValue = SI.getValueOperand();
+ Optional<VectorLayout> Layout = getVectorLayout(
+ FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
+ if (!Layout)
+ return false;
+
+ unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
+ IRBuilder<> Builder(&SI);
+ Scatterer VPtr = scatter(&SI, SI.getPointerOperand());
+ Scatterer VVal = scatter(&SI, FullValue);
+
+ ValueVector Stores;
+ Stores.resize(NumElems);
+ for (unsigned I = 0; I < NumElems; ++I) {
+ Value *Val = VVal[I];
+ Value *Ptr = VPtr[I];
+ Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
+ }
+ transferMetadataAndIRFlags(&SI, Stores);
+ return true;
+}
+
+bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
+ return splitCall(CI);
+}
+
+// Delete the instructions that we scalarized. If a full vector result
+// is still needed, recreate it using InsertElements.
+bool ScalarizerVisitor::finish() {
+ // The presence of data in Gathered or Scattered indicates changes
+ // made to the Function.
+ if (Gathered.empty() && Scattered.empty())
+ return false;
+ for (const auto &GMI : Gathered) {
+ Instruction *Op = GMI.first;
+ ValueVector &CV = *GMI.second;
+ if (!Op->use_empty()) {
+ // The value is still needed, so recreate it using a series of
+ // InsertElements.
+ Value *Res = PoisonValue::get(Op->getType());
+ if (auto *Ty = dyn_cast<VectorType>(Op->getType())) {
+ BasicBlock *BB = Op->getParent();
+ unsigned Count = cast<FixedVectorType>(Ty)->getNumElements();
+ IRBuilder<> Builder(Op);
+ if (isa<PHINode>(Op))
+ Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
+ for (unsigned I = 0; I < Count; ++I)
+ Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
+ Op->getName() + ".upto" + Twine(I));
+ Res->takeName(Op);
+ } else {
+ assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
+ Res = CV[0];
+ if (Op == Res)
+ continue;
+ }
+ Op->replaceAllUsesWith(Res);
+ }
+ PotentiallyDeadInstrs.emplace_back(Op);
+ }
+ Gathered.clear();
+ Scattered.clear();
+
+ RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
+
+ return true;
+}
+
+PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
+ Module &M = *F.getParent();
+ unsigned ParallelLoopAccessMDKind =
+ M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
+ DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
+ ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
+ bool Changed = Impl.visit(F);
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ return Changed ? PA : PreservedAnalyses::all();
+}