aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp2223
1 files changed, 2223 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
new file mode 100644
index 000000000000..ec0482ac2cde
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
@@ -0,0 +1,2223 @@
+//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions perform manipulations on basic blocks, and
+// instructions contained within basic blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryDependenceAnalysis.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <cassert>
+#include <cstdint>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "basicblock-utils"
+
+static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
+ "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
+ cl::desc("Set the maximum path length when checking whether a basic block "
+ "is followed by a block that either has a terminating "
+ "deoptimizing call or is terminated with an unreachable"));
+
+void llvm::detachDeadBlocks(
+ ArrayRef<BasicBlock *> BBs,
+ SmallVectorImpl<DominatorTree::UpdateType> *Updates,
+ bool KeepOneInputPHIs) {
+ for (auto *BB : BBs) {
+ // Loop through all of our successors and make sure they know that one
+ // of their predecessors is going away.
+ SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
+ for (BasicBlock *Succ : successors(BB)) {
+ Succ->removePredecessor(BB, KeepOneInputPHIs);
+ if (Updates && UniqueSuccessors.insert(Succ).second)
+ Updates->push_back({DominatorTree::Delete, BB, Succ});
+ }
+
+ // Zap all the instructions in the block.
+ while (!BB->empty()) {
+ Instruction &I = BB->back();
+ // If this instruction is used, replace uses with an arbitrary value.
+ // Because control flow can't get here, we don't care what we replace the
+ // value with. Note that since this block is unreachable, and all values
+ // contained within it must dominate their uses, that all uses will
+ // eventually be removed (they are themselves dead).
+ if (!I.use_empty())
+ I.replaceAllUsesWith(PoisonValue::get(I.getType()));
+ BB->back().eraseFromParent();
+ }
+ new UnreachableInst(BB->getContext(), BB);
+ assert(BB->size() == 1 &&
+ isa<UnreachableInst>(BB->getTerminator()) &&
+ "The successor list of BB isn't empty before "
+ "applying corresponding DTU updates.");
+ }
+}
+
+void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
+ bool KeepOneInputPHIs) {
+ DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
+}
+
+void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
+ bool KeepOneInputPHIs) {
+#ifndef NDEBUG
+ // Make sure that all predecessors of each dead block is also dead.
+ SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
+ assert(Dead.size() == BBs.size() && "Duplicating blocks?");
+ for (auto *BB : Dead)
+ for (BasicBlock *Pred : predecessors(BB))
+ assert(Dead.count(Pred) && "All predecessors must be dead!");
+#endif
+
+ SmallVector<DominatorTree::UpdateType, 4> Updates;
+ detachDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
+
+ if (DTU)
+ DTU->applyUpdates(Updates);
+
+ for (BasicBlock *BB : BBs)
+ if (DTU)
+ DTU->deleteBB(BB);
+ else
+ BB->eraseFromParent();
+}
+
+bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
+ bool KeepOneInputPHIs) {
+ df_iterator_default_set<BasicBlock*> Reachable;
+
+ // Mark all reachable blocks.
+ for (BasicBlock *BB : depth_first_ext(&F, Reachable))
+ (void)BB/* Mark all reachable blocks */;
+
+ // Collect all dead blocks.
+ std::vector<BasicBlock*> DeadBlocks;
+ for (BasicBlock &BB : F)
+ if (!Reachable.count(&BB))
+ DeadBlocks.push_back(&BB);
+
+ // Delete the dead blocks.
+ DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
+
+ return !DeadBlocks.empty();
+}
+
+bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
+ MemoryDependenceResults *MemDep) {
+ if (!isa<PHINode>(BB->begin()))
+ return false;
+
+ while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+ if (PN->getIncomingValue(0) != PN)
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ else
+ PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
+
+ if (MemDep)
+ MemDep->removeInstruction(PN); // Memdep updates AA itself.
+
+ PN->eraseFromParent();
+ }
+ return true;
+}
+
+bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
+ MemorySSAUpdater *MSSAU) {
+ // Recursively deleting a PHI may cause multiple PHIs to be deleted
+ // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
+ SmallVector<WeakTrackingVH, 8> PHIs;
+ for (PHINode &PN : BB->phis())
+ PHIs.push_back(&PN);
+
+ bool Changed = false;
+ for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
+ if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
+ Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
+
+ return Changed;
+}
+
+bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
+ LoopInfo *LI, MemorySSAUpdater *MSSAU,
+ MemoryDependenceResults *MemDep,
+ bool PredecessorWithTwoSuccessors,
+ DominatorTree *DT) {
+ if (BB->hasAddressTaken())
+ return false;
+
+ // Can't merge if there are multiple predecessors, or no predecessors.
+ BasicBlock *PredBB = BB->getUniquePredecessor();
+ if (!PredBB) return false;
+
+ // Don't break self-loops.
+ if (PredBB == BB) return false;
+
+ // Don't break unwinding instructions or terminators with other side-effects.
+ Instruction *PTI = PredBB->getTerminator();
+ if (PTI->isSpecialTerminator() || PTI->mayHaveSideEffects())
+ return false;
+
+ // Can't merge if there are multiple distinct successors.
+ if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
+ return false;
+
+ // Currently only allow PredBB to have two predecessors, one being BB.
+ // Update BI to branch to BB's only successor instead of BB.
+ BranchInst *PredBB_BI;
+ BasicBlock *NewSucc = nullptr;
+ unsigned FallThruPath;
+ if (PredecessorWithTwoSuccessors) {
+ if (!(PredBB_BI = dyn_cast<BranchInst>(PTI)))
+ return false;
+ BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BB_JmpI || !BB_JmpI->isUnconditional())
+ return false;
+ NewSucc = BB_JmpI->getSuccessor(0);
+ FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
+ }
+
+ // Can't merge if there is PHI loop.
+ for (PHINode &PN : BB->phis())
+ if (llvm::is_contained(PN.incoming_values(), &PN))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
+ << PredBB->getName() << "\n");
+
+ // Begin by getting rid of unneeded PHIs.
+ SmallVector<AssertingVH<Value>, 4> IncomingValues;
+ if (isa<PHINode>(BB->front())) {
+ for (PHINode &PN : BB->phis())
+ if (!isa<PHINode>(PN.getIncomingValue(0)) ||
+ cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
+ IncomingValues.push_back(PN.getIncomingValue(0));
+ FoldSingleEntryPHINodes(BB, MemDep);
+ }
+
+ if (DT) {
+ assert(!DTU && "cannot use both DT and DTU for updates");
+ DomTreeNode *PredNode = DT->getNode(PredBB);
+ DomTreeNode *BBNode = DT->getNode(BB);
+ if (PredNode) {
+ assert(BBNode && "PredNode unreachable but BBNode reachable?");
+ for (DomTreeNode *C : to_vector(BBNode->children()))
+ C->setIDom(PredNode);
+ }
+ }
+ // DTU update: Collect all the edges that exit BB.
+ // These dominator edges will be redirected from Pred.
+ std::vector<DominatorTree::UpdateType> Updates;
+ if (DTU) {
+ assert(!DT && "cannot use both DT and DTU for updates");
+ // To avoid processing the same predecessor more than once.
+ SmallPtrSet<BasicBlock *, 8> SeenSuccs;
+ SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
+ succ_end(PredBB));
+ Updates.reserve(Updates.size() + 2 * succ_size(BB) + 1);
+ // Add insert edges first. Experimentally, for the particular case of two
+ // blocks that can be merged, with a single successor and single predecessor
+ // respectively, it is beneficial to have all insert updates first. Deleting
+ // edges first may lead to unreachable blocks, followed by inserting edges
+ // making the blocks reachable again. Such DT updates lead to high compile
+ // times. We add inserts before deletes here to reduce compile time.
+ for (BasicBlock *SuccOfBB : successors(BB))
+ // This successor of BB may already be a PredBB's successor.
+ if (!SuccsOfPredBB.contains(SuccOfBB))
+ if (SeenSuccs.insert(SuccOfBB).second)
+ Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
+ SeenSuccs.clear();
+ for (BasicBlock *SuccOfBB : successors(BB))
+ if (SeenSuccs.insert(SuccOfBB).second)
+ Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
+ Updates.push_back({DominatorTree::Delete, PredBB, BB});
+ }
+
+ Instruction *STI = BB->getTerminator();
+ Instruction *Start = &*BB->begin();
+ // If there's nothing to move, mark the starting instruction as the last
+ // instruction in the block. Terminator instruction is handled separately.
+ if (Start == STI)
+ Start = PTI;
+
+ // Move all definitions in the successor to the predecessor...
+ PredBB->splice(PTI->getIterator(), BB, BB->begin(), STI->getIterator());
+
+ if (MSSAU)
+ MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
+
+ // Make all PHI nodes that referred to BB now refer to Pred as their
+ // source...
+ BB->replaceAllUsesWith(PredBB);
+
+ if (PredecessorWithTwoSuccessors) {
+ // Delete the unconditional branch from BB.
+ BB->back().eraseFromParent();
+
+ // Update branch in the predecessor.
+ PredBB_BI->setSuccessor(FallThruPath, NewSucc);
+ } else {
+ // Delete the unconditional branch from the predecessor.
+ PredBB->back().eraseFromParent();
+
+ // Move terminator instruction.
+ BB->back().moveBeforePreserving(*PredBB, PredBB->end());
+
+ // Terminator may be a memory accessing instruction too.
+ if (MSSAU)
+ if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
+ MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
+ MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
+ }
+ // Add unreachable to now empty BB.
+ new UnreachableInst(BB->getContext(), BB);
+
+ // Inherit predecessors name if it exists.
+ if (!PredBB->hasName())
+ PredBB->takeName(BB);
+
+ if (LI)
+ LI->removeBlock(BB);
+
+ if (MemDep)
+ MemDep->invalidateCachedPredecessors();
+
+ if (DTU)
+ DTU->applyUpdates(Updates);
+
+ if (DT) {
+ assert(succ_empty(BB) &&
+ "successors should have been transferred to PredBB");
+ DT->eraseNode(BB);
+ }
+
+ // Finally, erase the old block and update dominator info.
+ DeleteDeadBlock(BB, DTU);
+
+ return true;
+}
+
+bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
+ SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
+ LoopInfo *LI) {
+ assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
+
+ bool BlocksHaveBeenMerged = false;
+ while (!MergeBlocks.empty()) {
+ BasicBlock *BB = *MergeBlocks.begin();
+ BasicBlock *Dest = BB->getSingleSuccessor();
+ if (Dest && (!L || L->contains(Dest))) {
+ BasicBlock *Fold = Dest->getUniquePredecessor();
+ (void)Fold;
+ if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
+ assert(Fold == BB &&
+ "Expecting BB to be unique predecessor of the Dest block");
+ MergeBlocks.erase(Dest);
+ BlocksHaveBeenMerged = true;
+ } else
+ MergeBlocks.erase(BB);
+ } else
+ MergeBlocks.erase(BB);
+ }
+ return BlocksHaveBeenMerged;
+}
+
+/// Remove redundant instructions within sequences of consecutive dbg.value
+/// instructions. This is done using a backward scan to keep the last dbg.value
+/// describing a specific variable/fragment.
+///
+/// BackwardScan strategy:
+/// ----------------------
+/// Given a sequence of consecutive DbgValueInst like this
+///
+/// dbg.value ..., "x", FragmentX1 (*)
+/// dbg.value ..., "y", FragmentY1
+/// dbg.value ..., "x", FragmentX2
+/// dbg.value ..., "x", FragmentX1 (**)
+///
+/// then the instruction marked with (*) can be removed (it is guaranteed to be
+/// obsoleted by the instruction marked with (**) as the latter instruction is
+/// describing the same variable using the same fragment info).
+///
+/// Possible improvements:
+/// - Check fully overlapping fragments and not only identical fragments.
+/// - Support dbg.declare. dbg.label, and possibly other meta instructions being
+/// part of the sequence of consecutive instructions.
+static bool DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
+ SmallVector<DPValue *, 8> ToBeRemoved;
+ SmallDenseSet<DebugVariable> VariableSet;
+ for (auto &I : reverse(*BB)) {
+ for (DPValue &DPV : reverse(I.getDbgValueRange())) {
+ // Skip declare-type records, as the debug intrinsic method only works
+ // on dbg.value intrinsics.
+ if (DPV.getType() == DPValue::LocationType::Declare) {
+ // The debug intrinsic method treats dbg.declares are "non-debug"
+ // instructions (i.e., a break in a consecutive range of debug
+ // intrinsics). Emulate that to create identical outputs. See
+ // "Possible improvements" above.
+ // FIXME: Delete the line below.
+ VariableSet.clear();
+ continue;
+ }
+
+ DebugVariable Key(DPV.getVariable(), DPV.getExpression(),
+ DPV.getDebugLoc()->getInlinedAt());
+ auto R = VariableSet.insert(Key);
+ // If the same variable fragment is described more than once it is enough
+ // to keep the last one (i.e. the first found since we for reverse
+ // iteration).
+ if (R.second)
+ continue;
+
+ if (DPV.isDbgAssign()) {
+ // Don't delete dbg.assign intrinsics that are linked to instructions.
+ if (!at::getAssignmentInsts(&DPV).empty())
+ continue;
+ // Unlinked dbg.assign intrinsics can be treated like dbg.values.
+ }
+
+ ToBeRemoved.push_back(&DPV);
+ continue;
+ }
+ // Sequence with consecutive dbg.value instrs ended. Clear the map to
+ // restart identifying redundant instructions if case we find another
+ // dbg.value sequence.
+ VariableSet.clear();
+ }
+
+ for (auto &DPV : ToBeRemoved)
+ DPV->eraseFromParent();
+
+ return !ToBeRemoved.empty();
+}
+
+static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
+ if (BB->IsNewDbgInfoFormat)
+ return DPValuesRemoveRedundantDbgInstrsUsingBackwardScan(BB);
+
+ SmallVector<DbgValueInst *, 8> ToBeRemoved;
+ SmallDenseSet<DebugVariable> VariableSet;
+ for (auto &I : reverse(*BB)) {
+ if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
+ DebugVariable Key(DVI->getVariable(),
+ DVI->getExpression(),
+ DVI->getDebugLoc()->getInlinedAt());
+ auto R = VariableSet.insert(Key);
+ // If the variable fragment hasn't been seen before then we don't want
+ // to remove this dbg intrinsic.
+ if (R.second)
+ continue;
+
+ if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) {
+ // Don't delete dbg.assign intrinsics that are linked to instructions.
+ if (!at::getAssignmentInsts(DAI).empty())
+ continue;
+ // Unlinked dbg.assign intrinsics can be treated like dbg.values.
+ }
+
+ // If the same variable fragment is described more than once it is enough
+ // to keep the last one (i.e. the first found since we for reverse
+ // iteration).
+ ToBeRemoved.push_back(DVI);
+ continue;
+ }
+ // Sequence with consecutive dbg.value instrs ended. Clear the map to
+ // restart identifying redundant instructions if case we find another
+ // dbg.value sequence.
+ VariableSet.clear();
+ }
+
+ for (auto &Instr : ToBeRemoved)
+ Instr->eraseFromParent();
+
+ return !ToBeRemoved.empty();
+}
+
+/// Remove redundant dbg.value instructions using a forward scan. This can
+/// remove a dbg.value instruction that is redundant due to indicating that a
+/// variable has the same value as already being indicated by an earlier
+/// dbg.value.
+///
+/// ForwardScan strategy:
+/// ---------------------
+/// Given two identical dbg.value instructions, separated by a block of
+/// instructions that isn't describing the same variable, like this
+///
+/// dbg.value X1, "x", FragmentX1 (**)
+/// <block of instructions, none being "dbg.value ..., "x", ...">
+/// dbg.value X1, "x", FragmentX1 (*)
+///
+/// then the instruction marked with (*) can be removed. Variable "x" is already
+/// described as being mapped to the SSA value X1.
+///
+/// Possible improvements:
+/// - Keep track of non-overlapping fragments.
+static bool DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
+ SmallVector<DPValue *, 8> ToBeRemoved;
+ DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
+ VariableMap;
+ for (auto &I : *BB) {
+ for (DPValue &DPV : I.getDbgValueRange()) {
+ if (DPV.getType() == DPValue::LocationType::Declare)
+ continue;
+ DebugVariable Key(DPV.getVariable(), std::nullopt,
+ DPV.getDebugLoc()->getInlinedAt());
+ auto VMI = VariableMap.find(Key);
+ // A dbg.assign with no linked instructions can be treated like a
+ // dbg.value (i.e. can be deleted).
+ bool IsDbgValueKind =
+ (!DPV.isDbgAssign() || at::getAssignmentInsts(&DPV).empty());
+
+ // Update the map if we found a new value/expression describing the
+ // variable, or if the variable wasn't mapped already.
+ SmallVector<Value *, 4> Values(DPV.location_ops());
+ if (VMI == VariableMap.end() || VMI->second.first != Values ||
+ VMI->second.second != DPV.getExpression()) {
+ if (IsDbgValueKind)
+ VariableMap[Key] = {Values, DPV.getExpression()};
+ else
+ VariableMap[Key] = {Values, nullptr};
+ continue;
+ }
+ // Don't delete dbg.assign intrinsics that are linked to instructions.
+ if (!IsDbgValueKind)
+ continue;
+ // Found an identical mapping. Remember the instruction for later removal.
+ ToBeRemoved.push_back(&DPV);
+ }
+ }
+
+ for (auto *DPV : ToBeRemoved)
+ DPV->eraseFromParent();
+
+ return !ToBeRemoved.empty();
+}
+
+static bool DPValuesRemoveUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
+ assert(BB->isEntryBlock() && "expected entry block");
+ SmallVector<DPValue *, 8> ToBeRemoved;
+ DenseSet<DebugVariable> SeenDefForAggregate;
+ // Returns the DebugVariable for DVI with no fragment info.
+ auto GetAggregateVariable = [](const DPValue &DPV) {
+ return DebugVariable(DPV.getVariable(), std::nullopt,
+ DPV.getDebugLoc().getInlinedAt());
+ };
+
+ // Remove undef dbg.assign intrinsics that are encountered before
+ // any non-undef intrinsics from the entry block.
+ for (auto &I : *BB) {
+ for (DPValue &DPV : I.getDbgValueRange()) {
+ if (!DPV.isDbgValue() && !DPV.isDbgAssign())
+ continue;
+ bool IsDbgValueKind =
+ (DPV.isDbgValue() || at::getAssignmentInsts(&DPV).empty());
+ DebugVariable Aggregate = GetAggregateVariable(DPV);
+ if (!SeenDefForAggregate.contains(Aggregate)) {
+ bool IsKill = DPV.isKillLocation() && IsDbgValueKind;
+ if (!IsKill) {
+ SeenDefForAggregate.insert(Aggregate);
+ } else if (DPV.isDbgAssign()) {
+ ToBeRemoved.push_back(&DPV);
+ }
+ }
+ }
+ }
+
+ for (DPValue *DPV : ToBeRemoved)
+ DPV->eraseFromParent();
+
+ return !ToBeRemoved.empty();
+}
+
+static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
+ if (BB->IsNewDbgInfoFormat)
+ return DPValuesRemoveRedundantDbgInstrsUsingForwardScan(BB);
+
+ SmallVector<DbgValueInst *, 8> ToBeRemoved;
+ DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
+ VariableMap;
+ for (auto &I : *BB) {
+ if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
+ DebugVariable Key(DVI->getVariable(), std::nullopt,
+ DVI->getDebugLoc()->getInlinedAt());
+ auto VMI = VariableMap.find(Key);
+ auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
+ // A dbg.assign with no linked instructions can be treated like a
+ // dbg.value (i.e. can be deleted).
+ bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
+
+ // Update the map if we found a new value/expression describing the
+ // variable, or if the variable wasn't mapped already.
+ SmallVector<Value *, 4> Values(DVI->getValues());
+ if (VMI == VariableMap.end() || VMI->second.first != Values ||
+ VMI->second.second != DVI->getExpression()) {
+ // Use a sentinel value (nullptr) for the DIExpression when we see a
+ // linked dbg.assign so that the next debug intrinsic will never match
+ // it (i.e. always treat linked dbg.assigns as if they're unique).
+ if (IsDbgValueKind)
+ VariableMap[Key] = {Values, DVI->getExpression()};
+ else
+ VariableMap[Key] = {Values, nullptr};
+ continue;
+ }
+
+ // Don't delete dbg.assign intrinsics that are linked to instructions.
+ if (!IsDbgValueKind)
+ continue;
+ ToBeRemoved.push_back(DVI);
+ }
+ }
+
+ for (auto &Instr : ToBeRemoved)
+ Instr->eraseFromParent();
+
+ return !ToBeRemoved.empty();
+}
+
+/// Remove redundant undef dbg.assign intrinsic from an entry block using a
+/// forward scan.
+/// Strategy:
+/// ---------------------
+/// Scanning forward, delete dbg.assign intrinsics iff they are undef, not
+/// linked to an intrinsic, and don't share an aggregate variable with a debug
+/// intrinsic that didn't meet the criteria. In other words, undef dbg.assigns
+/// that come before non-undef debug intrinsics for the variable are
+/// deleted. Given:
+///
+/// dbg.assign undef, "x", FragmentX1 (*)
+/// <block of instructions, none being "dbg.value ..., "x", ...">
+/// dbg.value %V, "x", FragmentX2
+/// <block of instructions, none being "dbg.value ..., "x", ...">
+/// dbg.assign undef, "x", FragmentX1
+///
+/// then (only) the instruction marked with (*) can be removed.
+/// Possible improvements:
+/// - Keep track of non-overlapping fragments.
+static bool removeUndefDbgAssignsFromEntryBlock(BasicBlock *BB) {
+ if (BB->IsNewDbgInfoFormat)
+ return DPValuesRemoveUndefDbgAssignsFromEntryBlock(BB);
+
+ assert(BB->isEntryBlock() && "expected entry block");
+ SmallVector<DbgAssignIntrinsic *, 8> ToBeRemoved;
+ DenseSet<DebugVariable> SeenDefForAggregate;
+ // Returns the DebugVariable for DVI with no fragment info.
+ auto GetAggregateVariable = [](DbgValueInst *DVI) {
+ return DebugVariable(DVI->getVariable(), std::nullopt,
+ DVI->getDebugLoc()->getInlinedAt());
+ };
+
+ // Remove undef dbg.assign intrinsics that are encountered before
+ // any non-undef intrinsics from the entry block.
+ for (auto &I : *BB) {
+ DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I);
+ if (!DVI)
+ continue;
+ auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
+ bool IsDbgValueKind = (!DAI || at::getAssignmentInsts(DAI).empty());
+ DebugVariable Aggregate = GetAggregateVariable(DVI);
+ if (!SeenDefForAggregate.contains(Aggregate)) {
+ bool IsKill = DVI->isKillLocation() && IsDbgValueKind;
+ if (!IsKill) {
+ SeenDefForAggregate.insert(Aggregate);
+ } else if (DAI) {
+ ToBeRemoved.push_back(DAI);
+ }
+ }
+ }
+
+ for (DbgAssignIntrinsic *DAI : ToBeRemoved)
+ DAI->eraseFromParent();
+
+ return !ToBeRemoved.empty();
+}
+
+bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
+ bool MadeChanges = false;
+ // By using the "backward scan" strategy before the "forward scan" strategy we
+ // can remove both dbg.value (2) and (3) in a situation like this:
+ //
+ // (1) dbg.value V1, "x", DIExpression()
+ // ...
+ // (2) dbg.value V2, "x", DIExpression()
+ // (3) dbg.value V1, "x", DIExpression()
+ //
+ // The backward scan will remove (2), it is made obsolete by (3). After
+ // getting (2) out of the way, the foward scan will remove (3) since "x"
+ // already is described as having the value V1 at (1).
+ MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
+ if (BB->isEntryBlock() &&
+ isAssignmentTrackingEnabled(*BB->getParent()->getParent()))
+ MadeChanges |= removeUndefDbgAssignsFromEntryBlock(BB);
+ MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
+
+ if (MadeChanges)
+ LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
+ << BB->getName() << "\n");
+ return MadeChanges;
+}
+
+void llvm::ReplaceInstWithValue(BasicBlock::iterator &BI, Value *V) {
+ Instruction &I = *BI;
+ // Replaces all of the uses of the instruction with uses of the value
+ I.replaceAllUsesWith(V);
+
+ // Make sure to propagate a name if there is one already.
+ if (I.hasName() && !V->hasName())
+ V->takeName(&I);
+
+ // Delete the unnecessary instruction now...
+ BI = BI->eraseFromParent();
+}
+
+void llvm::ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI,
+ Instruction *I) {
+ assert(I->getParent() == nullptr &&
+ "ReplaceInstWithInst: Instruction already inserted into basic block!");
+
+ // Copy debug location to newly added instruction, if it wasn't already set
+ // by the caller.
+ if (!I->getDebugLoc())
+ I->setDebugLoc(BI->getDebugLoc());
+
+ // Insert the new instruction into the basic block...
+ BasicBlock::iterator New = I->insertInto(BB, BI);
+
+ // Replace all uses of the old instruction, and delete it.
+ ReplaceInstWithValue(BI, I);
+
+ // Move BI back to point to the newly inserted instruction
+ BI = New;
+}
+
+bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
+ // Remember visited blocks to avoid infinite loop
+ SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
+ unsigned Depth = 0;
+ while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
+ VisitedBlocks.insert(BB).second) {
+ if (isa<UnreachableInst>(BB->getTerminator()) ||
+ BB->getTerminatingDeoptimizeCall())
+ return true;
+ BB = BB->getUniqueSuccessor();
+ }
+ return false;
+}
+
+void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
+ BasicBlock::iterator BI(From);
+ ReplaceInstWithInst(From->getParent(), BI, To);
+}
+
+BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
+ LoopInfo *LI, MemorySSAUpdater *MSSAU,
+ const Twine &BBName) {
+ unsigned SuccNum = GetSuccessorNumber(BB, Succ);
+
+ Instruction *LatchTerm = BB->getTerminator();
+
+ CriticalEdgeSplittingOptions Options =
+ CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
+
+ if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
+ // If it is a critical edge, and the succesor is an exception block, handle
+ // the split edge logic in this specific function
+ if (Succ->isEHPad())
+ return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
+
+ // If this is a critical edge, let SplitKnownCriticalEdge do it.
+ return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
+ }
+
+ // If the edge isn't critical, then BB has a single successor or Succ has a
+ // single pred. Split the block.
+ if (BasicBlock *SP = Succ->getSinglePredecessor()) {
+ // If the successor only has a single pred, split the top of the successor
+ // block.
+ assert(SP == BB && "CFG broken");
+ SP = nullptr;
+ return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
+ /*Before=*/true);
+ }
+
+ // Otherwise, if BB has a single successor, split it at the bottom of the
+ // block.
+ assert(BB->getTerminator()->getNumSuccessors() == 1 &&
+ "Should have a single succ!");
+ return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
+}
+
+void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
+ if (auto *II = dyn_cast<InvokeInst>(TI))
+ II->setUnwindDest(Succ);
+ else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
+ CS->setUnwindDest(Succ);
+ else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
+ CR->setUnwindDest(Succ);
+ else
+ llvm_unreachable("unexpected terminator instruction");
+}
+
+void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
+ BasicBlock *NewPred, PHINode *Until) {
+ int BBIdx = 0;
+ for (PHINode &PN : DestBB->phis()) {
+ // We manually update the LandingPadReplacement PHINode and it is the last
+ // PHI Node. So, if we find it, we are done.
+ if (Until == &PN)
+ break;
+
+ // Reuse the previous value of BBIdx if it lines up. In cases where we
+ // have multiple phi nodes with *lots* of predecessors, this is a speed
+ // win because we don't have to scan the PHI looking for TIBB. This
+ // happens because the BB list of PHI nodes are usually in the same
+ // order.
+ if (PN.getIncomingBlock(BBIdx) != OldPred)
+ BBIdx = PN.getBasicBlockIndex(OldPred);
+
+ assert(BBIdx != -1 && "Invalid PHI Index!");
+ PN.setIncomingBlock(BBIdx, NewPred);
+ }
+}
+
+BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
+ LandingPadInst *OriginalPad,
+ PHINode *LandingPadReplacement,
+ const CriticalEdgeSplittingOptions &Options,
+ const Twine &BBName) {
+
+ auto *PadInst = Succ->getFirstNonPHI();
+ if (!LandingPadReplacement && !PadInst->isEHPad())
+ return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
+
+ auto *LI = Options.LI;
+ SmallVector<BasicBlock *, 4> LoopPreds;
+ // Check if extra modifications will be required to preserve loop-simplify
+ // form after splitting. If it would require splitting blocks with IndirectBr
+ // terminators, bail out if preserving loop-simplify form is requested.
+ if (Options.PreserveLoopSimplify && LI) {
+ if (Loop *BBLoop = LI->getLoopFor(BB)) {
+
+ // The only way that we can break LoopSimplify form by splitting a
+ // critical edge is when there exists some edge from BBLoop to Succ *and*
+ // the only edge into Succ from outside of BBLoop is that of NewBB after
+ // the split. If the first isn't true, then LoopSimplify still holds,
+ // NewBB is the new exit block and it has no non-loop predecessors. If the
+ // second isn't true, then Succ was not in LoopSimplify form prior to
+ // the split as it had a non-loop predecessor. In both of these cases,
+ // the predecessor must be directly in BBLoop, not in a subloop, or again
+ // LoopSimplify doesn't hold.
+ for (BasicBlock *P : predecessors(Succ)) {
+ if (P == BB)
+ continue; // The new block is known.
+ if (LI->getLoopFor(P) != BBLoop) {
+ // Loop is not in LoopSimplify form, no need to re simplify after
+ // splitting edge.
+ LoopPreds.clear();
+ break;
+ }
+ LoopPreds.push_back(P);
+ }
+ // Loop-simplify form can be preserved, if we can split all in-loop
+ // predecessors.
+ if (any_of(LoopPreds, [](BasicBlock *Pred) {
+ return isa<IndirectBrInst>(Pred->getTerminator());
+ })) {
+ return nullptr;
+ }
+ }
+ }
+
+ auto *NewBB =
+ BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
+ setUnwindEdgeTo(BB->getTerminator(), NewBB);
+ updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
+
+ if (LandingPadReplacement) {
+ auto *NewLP = OriginalPad->clone();
+ auto *Terminator = BranchInst::Create(Succ, NewBB);
+ NewLP->insertBefore(Terminator);
+ LandingPadReplacement->addIncoming(NewLP, NewBB);
+ } else {
+ Value *ParentPad = nullptr;
+ if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
+ ParentPad = FuncletPad->getParentPad();
+ else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
+ ParentPad = CatchSwitch->getParentPad();
+ else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
+ ParentPad = CleanupPad->getParentPad();
+ else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
+ ParentPad = LandingPad->getParent();
+ else
+ llvm_unreachable("handling for other EHPads not implemented yet");
+
+ auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
+ CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
+ }
+
+ auto *DT = Options.DT;
+ auto *MSSAU = Options.MSSAU;
+ if (!DT && !LI)
+ return NewBB;
+
+ if (DT) {
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+ SmallVector<DominatorTree::UpdateType, 3> Updates;
+
+ Updates.push_back({DominatorTree::Insert, BB, NewBB});
+ Updates.push_back({DominatorTree::Insert, NewBB, Succ});
+ Updates.push_back({DominatorTree::Delete, BB, Succ});
+
+ DTU.applyUpdates(Updates);
+ DTU.flush();
+
+ if (MSSAU) {
+ MSSAU->applyUpdates(Updates, *DT);
+ if (VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ }
+ }
+
+ if (LI) {
+ if (Loop *BBLoop = LI->getLoopFor(BB)) {
+ // If one or the other blocks were not in a loop, the new block is not
+ // either, and thus LI doesn't need to be updated.
+ if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
+ if (BBLoop == SuccLoop) {
+ // Both in the same loop, the NewBB joins loop.
+ SuccLoop->addBasicBlockToLoop(NewBB, *LI);
+ } else if (BBLoop->contains(SuccLoop)) {
+ // Edge from an outer loop to an inner loop. Add to the outer loop.
+ BBLoop->addBasicBlockToLoop(NewBB, *LI);
+ } else if (SuccLoop->contains(BBLoop)) {
+ // Edge from an inner loop to an outer loop. Add to the outer loop.
+ SuccLoop->addBasicBlockToLoop(NewBB, *LI);
+ } else {
+ // Edge from two loops with no containment relation. Because these
+ // are natural loops, we know that the destination block must be the
+ // header of its loop (adding a branch into a loop elsewhere would
+ // create an irreducible loop).
+ assert(SuccLoop->getHeader() == Succ &&
+ "Should not create irreducible loops!");
+ if (Loop *P = SuccLoop->getParentLoop())
+ P->addBasicBlockToLoop(NewBB, *LI);
+ }
+ }
+
+ // If BB is in a loop and Succ is outside of that loop, we may need to
+ // update LoopSimplify form and LCSSA form.
+ if (!BBLoop->contains(Succ)) {
+ assert(!BBLoop->contains(NewBB) &&
+ "Split point for loop exit is contained in loop!");
+
+ // Update LCSSA form in the newly created exit block.
+ if (Options.PreserveLCSSA) {
+ createPHIsForSplitLoopExit(BB, NewBB, Succ);
+ }
+
+ if (!LoopPreds.empty()) {
+ BasicBlock *NewExitBB = SplitBlockPredecessors(
+ Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
+ if (Options.PreserveLCSSA)
+ createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
+ }
+ }
+ }
+ }
+
+ return NewBB;
+}
+
+void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
+ BasicBlock *SplitBB, BasicBlock *DestBB) {
+ // SplitBB shouldn't have anything non-trivial in it yet.
+ assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
+ SplitBB->isLandingPad()) &&
+ "SplitBB has non-PHI nodes!");
+
+ // For each PHI in the destination block.
+ for (PHINode &PN : DestBB->phis()) {
+ int Idx = PN.getBasicBlockIndex(SplitBB);
+ assert(Idx >= 0 && "Invalid Block Index");
+ Value *V = PN.getIncomingValue(Idx);
+
+ // If the input is a PHI which already satisfies LCSSA, don't create
+ // a new one.
+ if (const PHINode *VP = dyn_cast<PHINode>(V))
+ if (VP->getParent() == SplitBB)
+ continue;
+
+ // Otherwise a new PHI is needed. Create one and populate it.
+ PHINode *NewPN = PHINode::Create(PN.getType(), Preds.size(), "split");
+ BasicBlock::iterator InsertPos =
+ SplitBB->isLandingPad() ? SplitBB->begin()
+ : SplitBB->getTerminator()->getIterator();
+ NewPN->insertBefore(InsertPos);
+ for (BasicBlock *BB : Preds)
+ NewPN->addIncoming(V, BB);
+
+ // Update the original PHI.
+ PN.setIncomingValue(Idx, NewPN);
+ }
+}
+
+unsigned
+llvm::SplitAllCriticalEdges(Function &F,
+ const CriticalEdgeSplittingOptions &Options) {
+ unsigned NumBroken = 0;
+ for (BasicBlock &BB : F) {
+ Instruction *TI = BB.getTerminator();
+ if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ if (SplitCriticalEdge(TI, i, Options))
+ ++NumBroken;
+ }
+ return NumBroken;
+}
+
+static BasicBlock *SplitBlockImpl(BasicBlock *Old, BasicBlock::iterator SplitPt,
+ DomTreeUpdater *DTU, DominatorTree *DT,
+ LoopInfo *LI, MemorySSAUpdater *MSSAU,
+ const Twine &BBName, bool Before) {
+ if (Before) {
+ DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+ return splitBlockBefore(Old, SplitPt,
+ DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
+ BBName);
+ }
+ BasicBlock::iterator SplitIt = SplitPt;
+ while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
+ ++SplitIt;
+ assert(SplitIt != SplitPt->getParent()->end());
+ }
+ std::string Name = BBName.str();
+ BasicBlock *New = Old->splitBasicBlock(
+ SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
+
+ // The new block lives in whichever loop the old one did. This preserves
+ // LCSSA as well, because we force the split point to be after any PHI nodes.
+ if (LI)
+ if (Loop *L = LI->getLoopFor(Old))
+ L->addBasicBlockToLoop(New, *LI);
+
+ if (DTU) {
+ SmallVector<DominatorTree::UpdateType, 8> Updates;
+ // Old dominates New. New node dominates all other nodes dominated by Old.
+ SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld;
+ Updates.push_back({DominatorTree::Insert, Old, New});
+ Updates.reserve(Updates.size() + 2 * succ_size(New));
+ for (BasicBlock *SuccessorOfOld : successors(New))
+ if (UniqueSuccessorsOfOld.insert(SuccessorOfOld).second) {
+ Updates.push_back({DominatorTree::Insert, New, SuccessorOfOld});
+ Updates.push_back({DominatorTree::Delete, Old, SuccessorOfOld});
+ }
+
+ DTU->applyUpdates(Updates);
+ } else if (DT)
+ // Old dominates New. New node dominates all other nodes dominated by Old.
+ if (DomTreeNode *OldNode = DT->getNode(Old)) {
+ std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
+
+ DomTreeNode *NewNode = DT->addNewBlock(New, Old);
+ for (DomTreeNode *I : Children)
+ DT->changeImmediateDominator(I, NewNode);
+ }
+
+ // Move MemoryAccesses still tracked in Old, but part of New now.
+ // Update accesses in successor blocks accordingly.
+ if (MSSAU)
+ MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
+
+ return New;
+}
+
+BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
+ DominatorTree *DT, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU, const Twine &BBName,
+ bool Before) {
+ return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
+ Before);
+}
+BasicBlock *llvm::SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt,
+ DomTreeUpdater *DTU, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU, const Twine &BBName,
+ bool Before) {
+ return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
+ Before);
+}
+
+BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, BasicBlock::iterator SplitPt,
+ DomTreeUpdater *DTU, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU,
+ const Twine &BBName) {
+
+ BasicBlock::iterator SplitIt = SplitPt;
+ while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
+ ++SplitIt;
+ std::string Name = BBName.str();
+ BasicBlock *New = Old->splitBasicBlock(
+ SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
+ /* Before=*/true);
+
+ // The new block lives in whichever loop the old one did. This preserves
+ // LCSSA as well, because we force the split point to be after any PHI nodes.
+ if (LI)
+ if (Loop *L = LI->getLoopFor(Old))
+ L->addBasicBlockToLoop(New, *LI);
+
+ if (DTU) {
+ SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
+ // New dominates Old. The predecessor nodes of the Old node dominate
+ // New node.
+ SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld;
+ DTUpdates.push_back({DominatorTree::Insert, New, Old});
+ DTUpdates.reserve(DTUpdates.size() + 2 * pred_size(New));
+ for (BasicBlock *PredecessorOfOld : predecessors(New))
+ if (UniquePredecessorsOfOld.insert(PredecessorOfOld).second) {
+ DTUpdates.push_back({DominatorTree::Insert, PredecessorOfOld, New});
+ DTUpdates.push_back({DominatorTree::Delete, PredecessorOfOld, Old});
+ }
+
+ DTU->applyUpdates(DTUpdates);
+
+ // Move MemoryAccesses still tracked in Old, but part of New now.
+ // Update accesses in successor blocks accordingly.
+ if (MSSAU) {
+ MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
+ if (VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ }
+ }
+ return New;
+}
+
+/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
+static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
+ ArrayRef<BasicBlock *> Preds,
+ DomTreeUpdater *DTU, DominatorTree *DT,
+ LoopInfo *LI, MemorySSAUpdater *MSSAU,
+ bool PreserveLCSSA, bool &HasLoopExit) {
+ // Update dominator tree if available.
+ if (DTU) {
+ // Recalculation of DomTree is needed when updating a forward DomTree and
+ // the Entry BB is replaced.
+ if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
+ // The entry block was removed and there is no external interface for
+ // the dominator tree to be notified of this change. In this corner-case
+ // we recalculate the entire tree.
+ DTU->recalculate(*NewBB->getParent());
+ } else {
+ // Split block expects NewBB to have a non-empty set of predecessors.
+ SmallVector<DominatorTree::UpdateType, 8> Updates;
+ SmallPtrSet<BasicBlock *, 8> UniquePreds;
+ Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
+ Updates.reserve(Updates.size() + 2 * Preds.size());
+ for (auto *Pred : Preds)
+ if (UniquePreds.insert(Pred).second) {
+ Updates.push_back({DominatorTree::Insert, Pred, NewBB});
+ Updates.push_back({DominatorTree::Delete, Pred, OldBB});
+ }
+ DTU->applyUpdates(Updates);
+ }
+ } else if (DT) {
+ if (OldBB == DT->getRootNode()->getBlock()) {
+ assert(NewBB->isEntryBlock());
+ DT->setNewRoot(NewBB);
+ } else {
+ // Split block expects NewBB to have a non-empty set of predecessors.
+ DT->splitBlock(NewBB);
+ }
+ }
+
+ // Update MemoryPhis after split if MemorySSA is available
+ if (MSSAU)
+ MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
+
+ // The rest of the logic is only relevant for updating the loop structures.
+ if (!LI)
+ return;
+
+ if (DTU && DTU->hasDomTree())
+ DT = &DTU->getDomTree();
+ assert(DT && "DT should be available to update LoopInfo!");
+ Loop *L = LI->getLoopFor(OldBB);
+
+ // If we need to preserve loop analyses, collect some information about how
+ // this split will affect loops.
+ bool IsLoopEntry = !!L;
+ bool SplitMakesNewLoopHeader = false;
+ for (BasicBlock *Pred : Preds) {
+ // Preds that are not reachable from entry should not be used to identify if
+ // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
+ // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
+ // as true and make the NewBB the header of some loop. This breaks LI.
+ if (!DT->isReachableFromEntry(Pred))
+ continue;
+ // If we need to preserve LCSSA, determine if any of the preds is a loop
+ // exit.
+ if (PreserveLCSSA)
+ if (Loop *PL = LI->getLoopFor(Pred))
+ if (!PL->contains(OldBB))
+ HasLoopExit = true;
+
+ // If we need to preserve LoopInfo, note whether any of the preds crosses
+ // an interesting loop boundary.
+ if (!L)
+ continue;
+ if (L->contains(Pred))
+ IsLoopEntry = false;
+ else
+ SplitMakesNewLoopHeader = true;
+ }
+
+ // Unless we have a loop for OldBB, nothing else to do here.
+ if (!L)
+ return;
+
+ if (IsLoopEntry) {
+ // Add the new block to the nearest enclosing loop (and not an adjacent
+ // loop). To find this, examine each of the predecessors and determine which
+ // loops enclose them, and select the most-nested loop which contains the
+ // loop containing the block being split.
+ Loop *InnermostPredLoop = nullptr;
+ for (BasicBlock *Pred : Preds) {
+ if (Loop *PredLoop = LI->getLoopFor(Pred)) {
+ // Seek a loop which actually contains the block being split (to avoid
+ // adjacent loops).
+ while (PredLoop && !PredLoop->contains(OldBB))
+ PredLoop = PredLoop->getParentLoop();
+
+ // Select the most-nested of these loops which contains the block.
+ if (PredLoop && PredLoop->contains(OldBB) &&
+ (!InnermostPredLoop ||
+ InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
+ InnermostPredLoop = PredLoop;
+ }
+ }
+
+ if (InnermostPredLoop)
+ InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
+ } else {
+ L->addBasicBlockToLoop(NewBB, *LI);
+ if (SplitMakesNewLoopHeader)
+ L->moveToHeader(NewBB);
+ }
+}
+
+/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
+/// This also updates AliasAnalysis, if available.
+static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
+ ArrayRef<BasicBlock *> Preds, BranchInst *BI,
+ bool HasLoopExit) {
+ // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
+ SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
+ for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
+ PHINode *PN = cast<PHINode>(I++);
+
+ // Check to see if all of the values coming in are the same. If so, we
+ // don't need to create a new PHI node, unless it's needed for LCSSA.
+ Value *InVal = nullptr;
+ if (!HasLoopExit) {
+ InVal = PN->getIncomingValueForBlock(Preds[0]);
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ if (!PredSet.count(PN->getIncomingBlock(i)))
+ continue;
+ if (!InVal)
+ InVal = PN->getIncomingValue(i);
+ else if (InVal != PN->getIncomingValue(i)) {
+ InVal = nullptr;
+ break;
+ }
+ }
+ }
+
+ if (InVal) {
+ // If all incoming values for the new PHI would be the same, just don't
+ // make a new PHI. Instead, just remove the incoming values from the old
+ // PHI.
+ PN->removeIncomingValueIf(
+ [&](unsigned Idx) {
+ return PredSet.contains(PN->getIncomingBlock(Idx));
+ },
+ /* DeletePHIIfEmpty */ false);
+
+ // Add an incoming value to the PHI node in the loop for the preheader
+ // edge.
+ PN->addIncoming(InVal, NewBB);
+ continue;
+ }
+
+ // If the values coming into the block are not the same, we need a new
+ // PHI.
+ // Create the new PHI node, insert it into NewBB at the end of the block
+ PHINode *NewPHI =
+ PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
+
+ // NOTE! This loop walks backwards for a reason! First off, this minimizes
+ // the cost of removal if we end up removing a large number of values, and
+ // second off, this ensures that the indices for the incoming values aren't
+ // invalidated when we remove one.
+ for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
+ BasicBlock *IncomingBB = PN->getIncomingBlock(i);
+ if (PredSet.count(IncomingBB)) {
+ Value *V = PN->removeIncomingValue(i, false);
+ NewPHI->addIncoming(V, IncomingBB);
+ }
+ }
+
+ PN->addIncoming(NewPHI, NewBB);
+ }
+}
+
+static void SplitLandingPadPredecessorsImpl(
+ BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
+ const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
+ DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
+
+static BasicBlock *
+SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
+ const char *Suffix, DomTreeUpdater *DTU,
+ DominatorTree *DT, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
+ // Do not attempt to split that which cannot be split.
+ if (!BB->canSplitPredecessors())
+ return nullptr;
+
+ // For the landingpads we need to act a bit differently.
+ // Delegate this work to the SplitLandingPadPredecessors.
+ if (BB->isLandingPad()) {
+ SmallVector<BasicBlock*, 2> NewBBs;
+ std::string NewName = std::string(Suffix) + ".split-lp";
+
+ SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
+ DTU, DT, LI, MSSAU, PreserveLCSSA);
+ return NewBBs[0];
+ }
+
+ // Create new basic block, insert right before the original block.
+ BasicBlock *NewBB = BasicBlock::Create(
+ BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
+
+ // The new block unconditionally branches to the old block.
+ BranchInst *BI = BranchInst::Create(BB, NewBB);
+
+ Loop *L = nullptr;
+ BasicBlock *OldLatch = nullptr;
+ // Splitting the predecessors of a loop header creates a preheader block.
+ if (LI && LI->isLoopHeader(BB)) {
+ L = LI->getLoopFor(BB);
+ // Using the loop start line number prevents debuggers stepping into the
+ // loop body for this instruction.
+ BI->setDebugLoc(L->getStartLoc());
+
+ // If BB is the header of the Loop, it is possible that the loop is
+ // modified, such that the current latch does not remain the latch of the
+ // loop. If that is the case, the loop metadata from the current latch needs
+ // to be applied to the new latch.
+ OldLatch = L->getLoopLatch();
+ } else
+ BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
+
+ // Move the edges from Preds to point to NewBB instead of BB.
+ for (BasicBlock *Pred : Preds) {
+ // This is slightly more strict than necessary; the minimum requirement
+ // is that there be no more than one indirectbr branching to BB. And
+ // all BlockAddress uses would need to be updated.
+ assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
+ "Cannot split an edge from an IndirectBrInst");
+ Pred->getTerminator()->replaceSuccessorWith(BB, NewBB);
+ }
+
+ // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
+ // node becomes an incoming value for BB's phi node. However, if the Preds
+ // list is empty, we need to insert dummy entries into the PHI nodes in BB to
+ // account for the newly created predecessor.
+ if (Preds.empty()) {
+ // Insert dummy values as the incoming value.
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
+ cast<PHINode>(I)->addIncoming(PoisonValue::get(I->getType()), NewBB);
+ }
+
+ // Update DominatorTree, LoopInfo, and LCCSA analysis information.
+ bool HasLoopExit = false;
+ UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
+ HasLoopExit);
+
+ if (!Preds.empty()) {
+ // Update the PHI nodes in BB with the values coming from NewBB.
+ UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
+ }
+
+ if (OldLatch) {
+ BasicBlock *NewLatch = L->getLoopLatch();
+ if (NewLatch != OldLatch) {
+ MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
+ NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
+ // It's still possible that OldLatch is the latch of another inner loop,
+ // in which case we do not remove the metadata.
+ Loop *IL = LI->getLoopFor(OldLatch);
+ if (IL && IL->getLoopLatch() != OldLatch)
+ OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
+ }
+ }
+
+ return NewBB;
+}
+
+BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
+ ArrayRef<BasicBlock *> Preds,
+ const char *Suffix, DominatorTree *DT,
+ LoopInfo *LI, MemorySSAUpdater *MSSAU,
+ bool PreserveLCSSA) {
+ return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
+ MSSAU, PreserveLCSSA);
+}
+BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
+ ArrayRef<BasicBlock *> Preds,
+ const char *Suffix,
+ DomTreeUpdater *DTU, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU,
+ bool PreserveLCSSA) {
+ return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
+ /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
+}
+
+static void SplitLandingPadPredecessorsImpl(
+ BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
+ const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
+ DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
+ assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
+
+ // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
+ // it right before the original block.
+ BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
+ OrigBB->getName() + Suffix1,
+ OrigBB->getParent(), OrigBB);
+ NewBBs.push_back(NewBB1);
+
+ // The new block unconditionally branches to the old block.
+ BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
+ BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
+
+ // Move the edges from Preds to point to NewBB1 instead of OrigBB.
+ for (BasicBlock *Pred : Preds) {
+ // This is slightly more strict than necessary; the minimum requirement
+ // is that there be no more than one indirectbr branching to BB. And
+ // all BlockAddress uses would need to be updated.
+ assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
+ "Cannot split an edge from an IndirectBrInst");
+ Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
+ }
+
+ bool HasLoopExit = false;
+ UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
+ PreserveLCSSA, HasLoopExit);
+
+ // Update the PHI nodes in OrigBB with the values coming from NewBB1.
+ UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
+
+ // Move the remaining edges from OrigBB to point to NewBB2.
+ SmallVector<BasicBlock*, 8> NewBB2Preds;
+ for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
+ i != e; ) {
+ BasicBlock *Pred = *i++;
+ if (Pred == NewBB1) continue;
+ assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
+ "Cannot split an edge from an IndirectBrInst");
+ NewBB2Preds.push_back(Pred);
+ e = pred_end(OrigBB);
+ }
+
+ BasicBlock *NewBB2 = nullptr;
+ if (!NewBB2Preds.empty()) {
+ // Create another basic block for the rest of OrigBB's predecessors.
+ NewBB2 = BasicBlock::Create(OrigBB->getContext(),
+ OrigBB->getName() + Suffix2,
+ OrigBB->getParent(), OrigBB);
+ NewBBs.push_back(NewBB2);
+
+ // The new block unconditionally branches to the old block.
+ BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
+ BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
+
+ // Move the remaining edges from OrigBB to point to NewBB2.
+ for (BasicBlock *NewBB2Pred : NewBB2Preds)
+ NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
+
+ // Update DominatorTree, LoopInfo, and LCCSA analysis information.
+ HasLoopExit = false;
+ UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
+ PreserveLCSSA, HasLoopExit);
+
+ // Update the PHI nodes in OrigBB with the values coming from NewBB2.
+ UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
+ }
+
+ LandingPadInst *LPad = OrigBB->getLandingPadInst();
+ Instruction *Clone1 = LPad->clone();
+ Clone1->setName(Twine("lpad") + Suffix1);
+ Clone1->insertInto(NewBB1, NewBB1->getFirstInsertionPt());
+
+ if (NewBB2) {
+ Instruction *Clone2 = LPad->clone();
+ Clone2->setName(Twine("lpad") + Suffix2);
+ Clone2->insertInto(NewBB2, NewBB2->getFirstInsertionPt());
+
+ // Create a PHI node for the two cloned landingpad instructions only
+ // if the original landingpad instruction has some uses.
+ if (!LPad->use_empty()) {
+ assert(!LPad->getType()->isTokenTy() &&
+ "Split cannot be applied if LPad is token type. Otherwise an "
+ "invalid PHINode of token type would be created.");
+ PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
+ PN->addIncoming(Clone1, NewBB1);
+ PN->addIncoming(Clone2, NewBB2);
+ LPad->replaceAllUsesWith(PN);
+ }
+ LPad->eraseFromParent();
+ } else {
+ // There is no second clone. Just replace the landing pad with the first
+ // clone.
+ LPad->replaceAllUsesWith(Clone1);
+ LPad->eraseFromParent();
+ }
+}
+
+void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
+ ArrayRef<BasicBlock *> Preds,
+ const char *Suffix1, const char *Suffix2,
+ SmallVectorImpl<BasicBlock *> &NewBBs,
+ DomTreeUpdater *DTU, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU,
+ bool PreserveLCSSA) {
+ return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
+ NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
+ PreserveLCSSA);
+}
+
+ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
+ BasicBlock *Pred,
+ DomTreeUpdater *DTU) {
+ Instruction *UncondBranch = Pred->getTerminator();
+ // Clone the return and add it to the end of the predecessor.
+ Instruction *NewRet = RI->clone();
+ NewRet->insertInto(Pred, Pred->end());
+
+ // If the return instruction returns a value, and if the value was a
+ // PHI node in "BB", propagate the right value into the return.
+ for (Use &Op : NewRet->operands()) {
+ Value *V = Op;
+ Instruction *NewBC = nullptr;
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
+ // Return value might be bitcasted. Clone and insert it before the
+ // return instruction.
+ V = BCI->getOperand(0);
+ NewBC = BCI->clone();
+ NewBC->insertInto(Pred, NewRet->getIterator());
+ Op = NewBC;
+ }
+
+ Instruction *NewEV = nullptr;
+ if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
+ V = EVI->getOperand(0);
+ NewEV = EVI->clone();
+ if (NewBC) {
+ NewBC->setOperand(0, NewEV);
+ NewEV->insertInto(Pred, NewBC->getIterator());
+ } else {
+ NewEV->insertInto(Pred, NewRet->getIterator());
+ Op = NewEV;
+ }
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (PN->getParent() == BB) {
+ if (NewEV) {
+ NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
+ } else if (NewBC)
+ NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
+ else
+ Op = PN->getIncomingValueForBlock(Pred);
+ }
+ }
+ }
+
+ // Update any PHI nodes in the returning block to realize that we no
+ // longer branch to them.
+ BB->removePredecessor(Pred);
+ UncondBranch->eraseFromParent();
+
+ if (DTU)
+ DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
+
+ return cast<ReturnInst>(NewRet);
+}
+
+Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
+ BasicBlock::iterator SplitBefore,
+ bool Unreachable,
+ MDNode *BranchWeights,
+ DomTreeUpdater *DTU, LoopInfo *LI,
+ BasicBlock *ThenBlock) {
+ SplitBlockAndInsertIfThenElse(
+ Cond, SplitBefore, &ThenBlock, /* ElseBlock */ nullptr,
+ /* UnreachableThen */ Unreachable,
+ /* UnreachableElse */ false, BranchWeights, DTU, LI);
+ return ThenBlock->getTerminator();
+}
+
+Instruction *llvm::SplitBlockAndInsertIfElse(Value *Cond,
+ BasicBlock::iterator SplitBefore,
+ bool Unreachable,
+ MDNode *BranchWeights,
+ DomTreeUpdater *DTU, LoopInfo *LI,
+ BasicBlock *ElseBlock) {
+ SplitBlockAndInsertIfThenElse(
+ Cond, SplitBefore, /* ThenBlock */ nullptr, &ElseBlock,
+ /* UnreachableThen */ false,
+ /* UnreachableElse */ Unreachable, BranchWeights, DTU, LI);
+ return ElseBlock->getTerminator();
+}
+
+void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, BasicBlock::iterator SplitBefore,
+ Instruction **ThenTerm,
+ Instruction **ElseTerm,
+ MDNode *BranchWeights,
+ DomTreeUpdater *DTU, LoopInfo *LI) {
+ BasicBlock *ThenBlock = nullptr;
+ BasicBlock *ElseBlock = nullptr;
+ SplitBlockAndInsertIfThenElse(
+ Cond, SplitBefore, &ThenBlock, &ElseBlock, /* UnreachableThen */ false,
+ /* UnreachableElse */ false, BranchWeights, DTU, LI);
+
+ *ThenTerm = ThenBlock->getTerminator();
+ *ElseTerm = ElseBlock->getTerminator();
+}
+
+void llvm::SplitBlockAndInsertIfThenElse(
+ Value *Cond, BasicBlock::iterator SplitBefore, BasicBlock **ThenBlock,
+ BasicBlock **ElseBlock, bool UnreachableThen, bool UnreachableElse,
+ MDNode *BranchWeights, DomTreeUpdater *DTU, LoopInfo *LI) {
+ assert((ThenBlock || ElseBlock) &&
+ "At least one branch block must be created");
+ assert((!UnreachableThen || !UnreachableElse) &&
+ "Split block tail must be reachable");
+
+ SmallVector<DominatorTree::UpdateType, 8> Updates;
+ SmallPtrSet<BasicBlock *, 8> UniqueOrigSuccessors;
+ BasicBlock *Head = SplitBefore->getParent();
+ if (DTU) {
+ UniqueOrigSuccessors.insert(succ_begin(Head), succ_end(Head));
+ Updates.reserve(4 + 2 * UniqueOrigSuccessors.size());
+ }
+
+ LLVMContext &C = Head->getContext();
+ BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
+ BasicBlock *TrueBlock = Tail;
+ BasicBlock *FalseBlock = Tail;
+ bool ThenToTailEdge = false;
+ bool ElseToTailEdge = false;
+
+ // Encapsulate the logic around creation/insertion/etc of a new block.
+ auto handleBlock = [&](BasicBlock **PBB, bool Unreachable, BasicBlock *&BB,
+ bool &ToTailEdge) {
+ if (PBB == nullptr)
+ return; // Do not create/insert a block.
+
+ if (*PBB)
+ BB = *PBB; // Caller supplied block, use it.
+ else {
+ // Create a new block.
+ BB = BasicBlock::Create(C, "", Head->getParent(), Tail);
+ if (Unreachable)
+ (void)new UnreachableInst(C, BB);
+ else {
+ (void)BranchInst::Create(Tail, BB);
+ ToTailEdge = true;
+ }
+ BB->getTerminator()->setDebugLoc(SplitBefore->getDebugLoc());
+ // Pass the new block back to the caller.
+ *PBB = BB;
+ }
+ };
+
+ handleBlock(ThenBlock, UnreachableThen, TrueBlock, ThenToTailEdge);
+ handleBlock(ElseBlock, UnreachableElse, FalseBlock, ElseToTailEdge);
+
+ Instruction *HeadOldTerm = Head->getTerminator();
+ BranchInst *HeadNewTerm =
+ BranchInst::Create(/*ifTrue*/ TrueBlock, /*ifFalse*/ FalseBlock, Cond);
+ HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
+ ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
+
+ if (DTU) {
+ Updates.emplace_back(DominatorTree::Insert, Head, TrueBlock);
+ Updates.emplace_back(DominatorTree::Insert, Head, FalseBlock);
+ if (ThenToTailEdge)
+ Updates.emplace_back(DominatorTree::Insert, TrueBlock, Tail);
+ if (ElseToTailEdge)
+ Updates.emplace_back(DominatorTree::Insert, FalseBlock, Tail);
+ for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
+ Updates.emplace_back(DominatorTree::Insert, Tail, UniqueOrigSuccessor);
+ for (BasicBlock *UniqueOrigSuccessor : UniqueOrigSuccessors)
+ Updates.emplace_back(DominatorTree::Delete, Head, UniqueOrigSuccessor);
+ DTU->applyUpdates(Updates);
+ }
+
+ if (LI) {
+ if (Loop *L = LI->getLoopFor(Head); L) {
+ if (ThenToTailEdge)
+ L->addBasicBlockToLoop(TrueBlock, *LI);
+ if (ElseToTailEdge)
+ L->addBasicBlockToLoop(FalseBlock, *LI);
+ L->addBasicBlockToLoop(Tail, *LI);
+ }
+ }
+}
+
+std::pair<Instruction*, Value*>
+llvm::SplitBlockAndInsertSimpleForLoop(Value *End, Instruction *SplitBefore) {
+ BasicBlock *LoopPred = SplitBefore->getParent();
+ BasicBlock *LoopBody = SplitBlock(SplitBefore->getParent(), SplitBefore);
+ BasicBlock *LoopExit = SplitBlock(SplitBefore->getParent(), SplitBefore);
+
+ auto *Ty = End->getType();
+ auto &DL = SplitBefore->getModule()->getDataLayout();
+ const unsigned Bitwidth = DL.getTypeSizeInBits(Ty);
+
+ IRBuilder<> Builder(LoopBody->getTerminator());
+ auto *IV = Builder.CreatePHI(Ty, 2, "iv");
+ auto *IVNext =
+ Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
+ /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
+ auto *IVCheck = Builder.CreateICmpEQ(IVNext, End,
+ IV->getName() + ".check");
+ Builder.CreateCondBr(IVCheck, LoopExit, LoopBody);
+ LoopBody->getTerminator()->eraseFromParent();
+
+ // Populate the IV PHI.
+ IV->addIncoming(ConstantInt::get(Ty, 0), LoopPred);
+ IV->addIncoming(IVNext, LoopBody);
+
+ return std::make_pair(LoopBody->getFirstNonPHI(), IV);
+}
+
+void llvm::SplitBlockAndInsertForEachLane(ElementCount EC,
+ Type *IndexTy, Instruction *InsertBefore,
+ std::function<void(IRBuilderBase&, Value*)> Func) {
+
+ IRBuilder<> IRB(InsertBefore);
+
+ if (EC.isScalable()) {
+ Value *NumElements = IRB.CreateElementCount(IndexTy, EC);
+
+ auto [BodyIP, Index] =
+ SplitBlockAndInsertSimpleForLoop(NumElements, InsertBefore);
+
+ IRB.SetInsertPoint(BodyIP);
+ Func(IRB, Index);
+ return;
+ }
+
+ unsigned Num = EC.getFixedValue();
+ for (unsigned Idx = 0; Idx < Num; ++Idx) {
+ IRB.SetInsertPoint(InsertBefore);
+ Func(IRB, ConstantInt::get(IndexTy, Idx));
+ }
+}
+
+void llvm::SplitBlockAndInsertForEachLane(
+ Value *EVL, Instruction *InsertBefore,
+ std::function<void(IRBuilderBase &, Value *)> Func) {
+
+ IRBuilder<> IRB(InsertBefore);
+ Type *Ty = EVL->getType();
+
+ if (!isa<ConstantInt>(EVL)) {
+ auto [BodyIP, Index] = SplitBlockAndInsertSimpleForLoop(EVL, InsertBefore);
+ IRB.SetInsertPoint(BodyIP);
+ Func(IRB, Index);
+ return;
+ }
+
+ unsigned Num = cast<ConstantInt>(EVL)->getZExtValue();
+ for (unsigned Idx = 0; Idx < Num; ++Idx) {
+ IRB.SetInsertPoint(InsertBefore);
+ Func(IRB, ConstantInt::get(Ty, Idx));
+ }
+}
+
+BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
+ BasicBlock *&IfFalse) {
+ PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
+ BasicBlock *Pred1 = nullptr;
+ BasicBlock *Pred2 = nullptr;
+
+ if (SomePHI) {
+ if (SomePHI->getNumIncomingValues() != 2)
+ return nullptr;
+ Pred1 = SomePHI->getIncomingBlock(0);
+ Pred2 = SomePHI->getIncomingBlock(1);
+ } else {
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+ if (PI == PE) // No predecessor
+ return nullptr;
+ Pred1 = *PI++;
+ if (PI == PE) // Only one predecessor
+ return nullptr;
+ Pred2 = *PI++;
+ if (PI != PE) // More than two predecessors
+ return nullptr;
+ }
+
+ // We can only handle branches. Other control flow will be lowered to
+ // branches if possible anyway.
+ BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
+ BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
+ if (!Pred1Br || !Pred2Br)
+ return nullptr;
+
+ // Eliminate code duplication by ensuring that Pred1Br is conditional if
+ // either are.
+ if (Pred2Br->isConditional()) {
+ // If both branches are conditional, we don't have an "if statement". In
+ // reality, we could transform this case, but since the condition will be
+ // required anyway, we stand no chance of eliminating it, so the xform is
+ // probably not profitable.
+ if (Pred1Br->isConditional())
+ return nullptr;
+
+ std::swap(Pred1, Pred2);
+ std::swap(Pred1Br, Pred2Br);
+ }
+
+ if (Pred1Br->isConditional()) {
+ // The only thing we have to watch out for here is to make sure that Pred2
+ // doesn't have incoming edges from other blocks. If it does, the condition
+ // doesn't dominate BB.
+ if (!Pred2->getSinglePredecessor())
+ return nullptr;
+
+ // If we found a conditional branch predecessor, make sure that it branches
+ // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
+ if (Pred1Br->getSuccessor(0) == BB &&
+ Pred1Br->getSuccessor(1) == Pred2) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else if (Pred1Br->getSuccessor(0) == Pred2 &&
+ Pred1Br->getSuccessor(1) == BB) {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ } else {
+ // We know that one arm of the conditional goes to BB, so the other must
+ // go somewhere unrelated, and this must not be an "if statement".
+ return nullptr;
+ }
+
+ return Pred1Br;
+ }
+
+ // Ok, if we got here, both predecessors end with an unconditional branch to
+ // BB. Don't panic! If both blocks only have a single (identical)
+ // predecessor, and THAT is a conditional branch, then we're all ok!
+ BasicBlock *CommonPred = Pred1->getSinglePredecessor();
+ if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
+ return nullptr;
+
+ // Otherwise, if this is a conditional branch, then we can use it!
+ BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
+ if (!BI) return nullptr;
+
+ assert(BI->isConditional() && "Two successors but not conditional?");
+ if (BI->getSuccessor(0) == Pred1) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ }
+ return BI;
+}
+
+// After creating a control flow hub, the operands of PHINodes in an outgoing
+// block Out no longer match the predecessors of that block. Predecessors of Out
+// that are incoming blocks to the hub are now replaced by just one edge from
+// the hub. To match this new control flow, the corresponding values from each
+// PHINode must now be moved a new PHINode in the first guard block of the hub.
+//
+// This operation cannot be performed with SSAUpdater, because it involves one
+// new use: If the block Out is in the list of Incoming blocks, then the newly
+// created PHI in the Hub will use itself along that edge from Out to Hub.
+static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
+ const SetVector<BasicBlock *> &Incoming,
+ BasicBlock *FirstGuardBlock) {
+ auto I = Out->begin();
+ while (I != Out->end() && isa<PHINode>(I)) {
+ auto Phi = cast<PHINode>(I);
+ auto NewPhi =
+ PHINode::Create(Phi->getType(), Incoming.size(),
+ Phi->getName() + ".moved", &FirstGuardBlock->front());
+ for (auto *In : Incoming) {
+ Value *V = UndefValue::get(Phi->getType());
+ if (In == Out) {
+ V = NewPhi;
+ } else if (Phi->getBasicBlockIndex(In) != -1) {
+ V = Phi->removeIncomingValue(In, false);
+ }
+ NewPhi->addIncoming(V, In);
+ }
+ assert(NewPhi->getNumIncomingValues() == Incoming.size());
+ if (Phi->getNumOperands() == 0) {
+ Phi->replaceAllUsesWith(NewPhi);
+ I = Phi->eraseFromParent();
+ continue;
+ }
+ Phi->addIncoming(NewPhi, GuardBlock);
+ ++I;
+ }
+}
+
+using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
+using BBSetVector = SetVector<BasicBlock *>;
+
+// Redirects the terminator of the incoming block to the first guard
+// block in the hub. The condition of the original terminator (if it
+// was conditional) and its original successors are returned as a
+// tuple <condition, succ0, succ1>. The function additionally filters
+// out successors that are not in the set of outgoing blocks.
+//
+// - condition is non-null iff the branch is conditional.
+// - Succ1 is non-null iff the sole/taken target is an outgoing block.
+// - Succ2 is non-null iff condition is non-null and the fallthrough
+// target is an outgoing block.
+static std::tuple<Value *, BasicBlock *, BasicBlock *>
+redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
+ const BBSetVector &Outgoing) {
+ assert(isa<BranchInst>(BB->getTerminator()) &&
+ "Only support branch terminator.");
+ auto Branch = cast<BranchInst>(BB->getTerminator());
+ auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
+
+ BasicBlock *Succ0 = Branch->getSuccessor(0);
+ BasicBlock *Succ1 = nullptr;
+ Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
+
+ if (Branch->isUnconditional()) {
+ Branch->setSuccessor(0, FirstGuardBlock);
+ assert(Succ0);
+ } else {
+ Succ1 = Branch->getSuccessor(1);
+ Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
+ assert(Succ0 || Succ1);
+ if (Succ0 && !Succ1) {
+ Branch->setSuccessor(0, FirstGuardBlock);
+ } else if (Succ1 && !Succ0) {
+ Branch->setSuccessor(1, FirstGuardBlock);
+ } else {
+ Branch->eraseFromParent();
+ BranchInst::Create(FirstGuardBlock, BB);
+ }
+ }
+
+ assert(Succ0 || Succ1);
+ return std::make_tuple(Condition, Succ0, Succ1);
+}
+// Setup the branch instructions for guard blocks.
+//
+// Each guard block terminates in a conditional branch that transfers
+// control to the corresponding outgoing block or the next guard
+// block. The last guard block has two outgoing blocks as successors
+// since the condition for the final outgoing block is trivially
+// true. So we create one less block (including the first guard block)
+// than the number of outgoing blocks.
+static void setupBranchForGuard(SmallVectorImpl<BasicBlock *> &GuardBlocks,
+ const BBSetVector &Outgoing,
+ BBPredicates &GuardPredicates) {
+ // To help keep the loop simple, temporarily append the last
+ // outgoing block to the list of guard blocks.
+ GuardBlocks.push_back(Outgoing.back());
+
+ for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
+ auto Out = Outgoing[i];
+ assert(GuardPredicates.count(Out));
+ BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
+ GuardBlocks[i]);
+ }
+
+ // Remove the last block from the guard list.
+ GuardBlocks.pop_back();
+}
+
+/// We are using one integer to represent the block we are branching to. Then at
+/// each guard block, the predicate was calcuated using a simple `icmp eq`.
+static void calcPredicateUsingInteger(
+ const BBSetVector &Incoming, const BBSetVector &Outgoing,
+ SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates) {
+ auto &Context = Incoming.front()->getContext();
+ auto FirstGuardBlock = GuardBlocks.front();
+
+ auto Phi = PHINode::Create(Type::getInt32Ty(Context), Incoming.size(),
+ "merged.bb.idx", FirstGuardBlock);
+
+ for (auto In : Incoming) {
+ Value *Condition;
+ BasicBlock *Succ0;
+ BasicBlock *Succ1;
+ std::tie(Condition, Succ0, Succ1) =
+ redirectToHub(In, FirstGuardBlock, Outgoing);
+ Value *IncomingId = nullptr;
+ if (Succ0 && Succ1) {
+ // target_bb_index = Condition ? index_of_succ0 : index_of_succ1.
+ auto Succ0Iter = find(Outgoing, Succ0);
+ auto Succ1Iter = find(Outgoing, Succ1);
+ Value *Id0 = ConstantInt::get(Type::getInt32Ty(Context),
+ std::distance(Outgoing.begin(), Succ0Iter));
+ Value *Id1 = ConstantInt::get(Type::getInt32Ty(Context),
+ std::distance(Outgoing.begin(), Succ1Iter));
+ IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
+ In->getTerminator());
+ } else {
+ // Get the index of the non-null successor.
+ auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
+ IncomingId = ConstantInt::get(Type::getInt32Ty(Context),
+ std::distance(Outgoing.begin(), SuccIter));
+ }
+ Phi->addIncoming(IncomingId, In);
+ }
+
+ for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
+ auto Out = Outgoing[i];
+ auto Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
+ ConstantInt::get(Type::getInt32Ty(Context), i),
+ Out->getName() + ".predicate", GuardBlocks[i]);
+ GuardPredicates[Out] = Cmp;
+ }
+}
+
+/// We record the predicate of each outgoing block using a phi of boolean.
+static void calcPredicateUsingBooleans(
+ const BBSetVector &Incoming, const BBSetVector &Outgoing,
+ SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
+ SmallVectorImpl<WeakVH> &DeletionCandidates) {
+ auto &Context = Incoming.front()->getContext();
+ auto BoolTrue = ConstantInt::getTrue(Context);
+ auto BoolFalse = ConstantInt::getFalse(Context);
+ auto FirstGuardBlock = GuardBlocks.front();
+
+ // The predicate for the last outgoing is trivially true, and so we
+ // process only the first N-1 successors.
+ for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
+ auto Out = Outgoing[i];
+ LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
+
+ auto Phi =
+ PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
+ StringRef("Guard.") + Out->getName(), FirstGuardBlock);
+ GuardPredicates[Out] = Phi;
+ }
+
+ for (auto *In : Incoming) {
+ Value *Condition;
+ BasicBlock *Succ0;
+ BasicBlock *Succ1;
+ std::tie(Condition, Succ0, Succ1) =
+ redirectToHub(In, FirstGuardBlock, Outgoing);
+
+ // Optimization: Consider an incoming block A with both successors
+ // Succ0 and Succ1 in the set of outgoing blocks. The predicates
+ // for Succ0 and Succ1 complement each other. If Succ0 is visited
+ // first in the loop below, control will branch to Succ0 using the
+ // corresponding predicate. But if that branch is not taken, then
+ // control must reach Succ1, which means that the incoming value of
+ // the predicate from `In` is true for Succ1.
+ bool OneSuccessorDone = false;
+ for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
+ auto Out = Outgoing[i];
+ PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
+ if (Out != Succ0 && Out != Succ1) {
+ Phi->addIncoming(BoolFalse, In);
+ } else if (!Succ0 || !Succ1 || OneSuccessorDone) {
+ // Optimization: When only one successor is an outgoing block,
+ // the incoming predicate from `In` is always true.
+ Phi->addIncoming(BoolTrue, In);
+ } else {
+ assert(Succ0 && Succ1);
+ if (Out == Succ0) {
+ Phi->addIncoming(Condition, In);
+ } else {
+ auto Inverted = invertCondition(Condition);
+ DeletionCandidates.push_back(Condition);
+ Phi->addIncoming(Inverted, In);
+ }
+ OneSuccessorDone = true;
+ }
+ }
+ }
+}
+
+// Capture the existing control flow as guard predicates, and redirect
+// control flow from \p Incoming block through the \p GuardBlocks to the
+// \p Outgoing blocks.
+//
+// There is one guard predicate for each outgoing block OutBB. The
+// predicate represents whether the hub should transfer control flow
+// to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
+// them in the same order as the Outgoing set-vector, and control
+// branches to the first outgoing block whose predicate evaluates to true.
+static void
+convertToGuardPredicates(SmallVectorImpl<BasicBlock *> &GuardBlocks,
+ SmallVectorImpl<WeakVH> &DeletionCandidates,
+ const BBSetVector &Incoming,
+ const BBSetVector &Outgoing, const StringRef Prefix,
+ std::optional<unsigned> MaxControlFlowBooleans) {
+ BBPredicates GuardPredicates;
+ auto F = Incoming.front()->getParent();
+
+ for (int i = 0, e = Outgoing.size() - 1; i != e; ++i)
+ GuardBlocks.push_back(
+ BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
+
+ // When we are using an integer to record which target block to jump to, we
+ // are creating less live values, actually we are using one single integer to
+ // store the index of the target block. When we are using booleans to store
+ // the branching information, we need (N-1) boolean values, where N is the
+ // number of outgoing block.
+ if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
+ calcPredicateUsingBooleans(Incoming, Outgoing, GuardBlocks, GuardPredicates,
+ DeletionCandidates);
+ else
+ calcPredicateUsingInteger(Incoming, Outgoing, GuardBlocks, GuardPredicates);
+
+ setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
+}
+
+BasicBlock *llvm::CreateControlFlowHub(
+ DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
+ const BBSetVector &Incoming, const BBSetVector &Outgoing,
+ const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
+ if (Outgoing.size() < 2)
+ return Outgoing.front();
+
+ SmallVector<DominatorTree::UpdateType, 16> Updates;
+ if (DTU) {
+ for (auto *In : Incoming) {
+ for (auto Succ : successors(In))
+ if (Outgoing.count(Succ))
+ Updates.push_back({DominatorTree::Delete, In, Succ});
+ }
+ }
+
+ SmallVector<WeakVH, 8> DeletionCandidates;
+ convertToGuardPredicates(GuardBlocks, DeletionCandidates, Incoming, Outgoing,
+ Prefix, MaxControlFlowBooleans);
+ auto FirstGuardBlock = GuardBlocks.front();
+
+ // Update the PHINodes in each outgoing block to match the new control flow.
+ for (int i = 0, e = GuardBlocks.size(); i != e; ++i)
+ reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
+
+ reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
+
+ if (DTU) {
+ int NumGuards = GuardBlocks.size();
+ assert((int)Outgoing.size() == NumGuards + 1);
+
+ for (auto In : Incoming)
+ Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
+
+ for (int i = 0; i != NumGuards - 1; ++i) {
+ Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
+ Updates.push_back(
+ {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
+ }
+ Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
+ Outgoing[NumGuards - 1]});
+ Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
+ Outgoing[NumGuards]});
+ DTU->applyUpdates(Updates);
+ }
+
+ for (auto I : DeletionCandidates) {
+ if (I->use_empty())
+ if (auto Inst = dyn_cast_or_null<Instruction>(I))
+ Inst->eraseFromParent();
+ }
+
+ return FirstGuardBlock;
+}
+
+void llvm::InvertBranch(BranchInst *PBI, IRBuilderBase &Builder) {
+ Value *NewCond = PBI->getCondition();
+ // If this is a "cmp" instruction, only used for branching (and nowhere
+ // else), then we can simply invert the predicate.
+ if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
+ CmpInst *CI = cast<CmpInst>(NewCond);
+ CI->setPredicate(CI->getInversePredicate());
+ } else
+ NewCond = Builder.CreateNot(NewCond, NewCond->getName() + ".not");
+
+ PBI->setCondition(NewCond);
+ PBI->swapSuccessors();
+}
+
+bool llvm::hasOnlySimpleTerminator(const Function &F) {
+ for (auto &BB : F) {
+ auto *Term = BB.getTerminator();
+ if (!(isa<ReturnInst>(Term) || isa<UnreachableInst>(Term) ||
+ isa<BranchInst>(Term)))
+ return false;
+ }
+ return true;
+}
+
+bool llvm::isPresplitCoroSuspendExitEdge(const BasicBlock &Src,
+ const BasicBlock &Dest) {
+ assert(Src.getParent() == Dest.getParent());
+ if (!Src.getParent()->isPresplitCoroutine())
+ return false;
+ if (auto *SW = dyn_cast<SwitchInst>(Src.getTerminator()))
+ if (auto *Intr = dyn_cast<IntrinsicInst>(SW->getCondition()))
+ return Intr->getIntrinsicID() == Intrinsic::coro_suspend &&
+ SW->getDefaultDest() == &Dest;
+ return false;
+}