diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp | 1194 |
1 files changed, 1194 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp new file mode 100644 index 000000000000..87822ee85c2b --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp @@ -0,0 +1,1194 @@ +//===- CloneFunction.cpp - Clone a function into another function ---------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the CloneFunctionInto interface, which is used as the +// low-level function cloner. This is used by the CloneFunction and function +// inliner to do the dirty work of copying the body of a function around. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/ValueMapper.h" +#include <map> +#include <optional> +using namespace llvm; + +#define DEBUG_TYPE "clone-function" + +/// See comments in Cloning.h. +BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, + const Twine &NameSuffix, Function *F, + ClonedCodeInfo *CodeInfo, + DebugInfoFinder *DIFinder) { + BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); + if (BB->hasName()) + NewBB->setName(BB->getName() + NameSuffix); + + bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false; + Module *TheModule = F ? F->getParent() : nullptr; + + // Loop over all instructions, and copy them over. + for (const Instruction &I : *BB) { + if (DIFinder && TheModule) + DIFinder->processInstruction(*TheModule, I); + + Instruction *NewInst = I.clone(); + if (I.hasName()) + NewInst->setName(I.getName() + NameSuffix); + NewInst->insertInto(NewBB, NewBB->end()); + VMap[&I] = NewInst; // Add instruction map to value. + + if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) { + hasCalls = true; + hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof); + } + if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { + if (!AI->isStaticAlloca()) { + hasDynamicAllocas = true; + } + } + } + + if (CodeInfo) { + CodeInfo->ContainsCalls |= hasCalls; + CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; + CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; + } + return NewBB; +} + +// Clone OldFunc into NewFunc, transforming the old arguments into references to +// VMap values. +// +void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, + ValueToValueMapTy &VMap, + CloneFunctionChangeType Changes, + SmallVectorImpl<ReturnInst *> &Returns, + const char *NameSuffix, ClonedCodeInfo *CodeInfo, + ValueMapTypeRemapper *TypeMapper, + ValueMaterializer *Materializer) { + assert(NameSuffix && "NameSuffix cannot be null!"); + +#ifndef NDEBUG + for (const Argument &I : OldFunc->args()) + assert(VMap.count(&I) && "No mapping from source argument specified!"); +#endif + + bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly; + + // Copy all attributes other than those stored in the AttributeList. We need + // to remap the parameter indices of the AttributeList. + AttributeList NewAttrs = NewFunc->getAttributes(); + NewFunc->copyAttributesFrom(OldFunc); + NewFunc->setAttributes(NewAttrs); + + const RemapFlags FuncGlobalRefFlags = + ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; + + // Fix up the personality function that got copied over. + if (OldFunc->hasPersonalityFn()) + NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap, + FuncGlobalRefFlags, TypeMapper, + Materializer)); + + if (OldFunc->hasPrefixData()) { + NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap, + FuncGlobalRefFlags, TypeMapper, + Materializer)); + } + + if (OldFunc->hasPrologueData()) { + NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap, + FuncGlobalRefFlags, TypeMapper, + Materializer)); + } + + SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); + AttributeList OldAttrs = OldFunc->getAttributes(); + + // Clone any argument attributes that are present in the VMap. + for (const Argument &OldArg : OldFunc->args()) { + if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { + NewArgAttrs[NewArg->getArgNo()] = + OldAttrs.getParamAttrs(OldArg.getArgNo()); + } + } + + NewFunc->setAttributes( + AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(), + OldAttrs.getRetAttrs(), NewArgAttrs)); + + // Everything else beyond this point deals with function instructions, + // so if we are dealing with a function declaration, we're done. + if (OldFunc->isDeclaration()) + return; + + // When we remap instructions within the same module, we want to avoid + // duplicating inlined DISubprograms, so record all subprograms we find as we + // duplicate instructions and then freeze them in the MD map. We also record + // information about dbg.value and dbg.declare to avoid duplicating the + // types. + std::optional<DebugInfoFinder> DIFinder; + + // Track the subprogram attachment that needs to be cloned to fine-tune the + // mapping within the same module. + DISubprogram *SPClonedWithinModule = nullptr; + if (Changes < CloneFunctionChangeType::DifferentModule) { + assert((NewFunc->getParent() == nullptr || + NewFunc->getParent() == OldFunc->getParent()) && + "Expected NewFunc to have the same parent, or no parent"); + + // Need to find subprograms, types, and compile units. + DIFinder.emplace(); + + SPClonedWithinModule = OldFunc->getSubprogram(); + if (SPClonedWithinModule) + DIFinder->processSubprogram(SPClonedWithinModule); + } else { + assert((NewFunc->getParent() == nullptr || + NewFunc->getParent() != OldFunc->getParent()) && + "Expected NewFunc to have different parents, or no parent"); + + if (Changes == CloneFunctionChangeType::DifferentModule) { + assert(NewFunc->getParent() && + "Need parent of new function to maintain debug info invariants"); + + // Need to find all the compile units. + DIFinder.emplace(); + } + } + + // Loop over all of the basic blocks in the function, cloning them as + // appropriate. Note that we save BE this way in order to handle cloning of + // recursive functions into themselves. + for (const BasicBlock &BB : *OldFunc) { + + // Create a new basic block and copy instructions into it! + BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, + DIFinder ? &*DIFinder : nullptr); + + // Add basic block mapping. + VMap[&BB] = CBB; + + // It is only legal to clone a function if a block address within that + // function is never referenced outside of the function. Given that, we + // want to map block addresses from the old function to block addresses in + // the clone. (This is different from the generic ValueMapper + // implementation, which generates an invalid blockaddress when + // cloning a function.) + if (BB.hasAddressTaken()) { + Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), + const_cast<BasicBlock *>(&BB)); + VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); + } + + // Note return instructions for the caller. + if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) + Returns.push_back(RI); + } + + if (Changes < CloneFunctionChangeType::DifferentModule && + DIFinder->subprogram_count() > 0) { + // Turn on module-level changes, since we need to clone (some of) the + // debug info metadata. + // + // FIXME: Metadata effectively owned by a function should be made + // local, and only that local metadata should be cloned. + ModuleLevelChanges = true; + + auto mapToSelfIfNew = [&VMap](MDNode *N) { + // Avoid clobbering an existing mapping. + (void)VMap.MD().try_emplace(N, N); + }; + + // Avoid cloning types, compile units, and (other) subprograms. + SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs; + for (DISubprogram *ISP : DIFinder->subprograms()) { + if (ISP != SPClonedWithinModule) { + mapToSelfIfNew(ISP); + MappedToSelfSPs.insert(ISP); + } + } + + // If a subprogram isn't going to be cloned skip its lexical blocks as well. + for (DIScope *S : DIFinder->scopes()) { + auto *LScope = dyn_cast<DILocalScope>(S); + if (LScope && MappedToSelfSPs.count(LScope->getSubprogram())) + mapToSelfIfNew(S); + } + + for (DICompileUnit *CU : DIFinder->compile_units()) + mapToSelfIfNew(CU); + + for (DIType *Type : DIFinder->types()) + mapToSelfIfNew(Type); + } else { + assert(!SPClonedWithinModule && + "Subprogram should be in DIFinder->subprogram_count()..."); + } + + const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges; + // Duplicate the metadata that is attached to the cloned function. + // Subprograms/CUs/types that were already mapped to themselves won't be + // duplicated. + SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; + OldFunc->getAllMetadata(MDs); + for (auto MD : MDs) { + NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag, + TypeMapper, Materializer)); + } + + // Loop over all of the instructions in the new function, fixing up operand + // references as we go. This uses VMap to do all the hard work. + for (Function::iterator + BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), + BE = NewFunc->end(); + BB != BE; ++BB) + // Loop over all instructions, fixing each one as we find it... + for (Instruction &II : *BB) + RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer); + + // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the + // same module, the compile unit will already be listed (or not). When + // cloning a module, CloneModule() will handle creating the named metadata. + if (Changes != CloneFunctionChangeType::DifferentModule) + return; + + // Update !llvm.dbg.cu with compile units added to the new module if this + // function is being cloned in isolation. + // + // FIXME: This is making global / module-level changes, which doesn't seem + // like the right encapsulation Consider dropping the requirement to update + // !llvm.dbg.cu (either obsoleting the node, or restricting it to + // non-discardable compile units) instead of discovering compile units by + // visiting the metadata attached to global values, which would allow this + // code to be deleted. Alternatively, perhaps give responsibility for this + // update to CloneFunctionInto's callers. + auto *NewModule = NewFunc->getParent(); + auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu"); + // Avoid multiple insertions of the same DICompileUnit to NMD. + SmallPtrSet<const void *, 8> Visited; + for (auto *Operand : NMD->operands()) + Visited.insert(Operand); + for (auto *Unit : DIFinder->compile_units()) { + MDNode *MappedUnit = + MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer); + if (Visited.insert(MappedUnit).second) + NMD->addOperand(MappedUnit); + } +} + +/// Return a copy of the specified function and add it to that function's +/// module. Also, any references specified in the VMap are changed to refer to +/// their mapped value instead of the original one. If any of the arguments to +/// the function are in the VMap, the arguments are deleted from the resultant +/// function. The VMap is updated to include mappings from all of the +/// instructions and basicblocks in the function from their old to new values. +/// +Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, + ClonedCodeInfo *CodeInfo) { + std::vector<Type *> ArgTypes; + + // The user might be deleting arguments to the function by specifying them in + // the VMap. If so, we need to not add the arguments to the arg ty vector + // + for (const Argument &I : F->args()) + if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? + ArgTypes.push_back(I.getType()); + + // Create a new function type... + FunctionType *FTy = + FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes, + F->getFunctionType()->isVarArg()); + + // Create the new function... + Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), + F->getName(), F->getParent()); + + // Loop over the arguments, copying the names of the mapped arguments over... + Function::arg_iterator DestI = NewF->arg_begin(); + for (const Argument &I : F->args()) + if (VMap.count(&I) == 0) { // Is this argument preserved? + DestI->setName(I.getName()); // Copy the name over... + VMap[&I] = &*DestI++; // Add mapping to VMap + } + + SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned. + CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, + Returns, "", CodeInfo); + + return NewF; +} + +namespace { +/// This is a private class used to implement CloneAndPruneFunctionInto. +struct PruningFunctionCloner { + Function *NewFunc; + const Function *OldFunc; + ValueToValueMapTy &VMap; + bool ModuleLevelChanges; + const char *NameSuffix; + ClonedCodeInfo *CodeInfo; + bool HostFuncIsStrictFP; + + Instruction *cloneInstruction(BasicBlock::const_iterator II); + +public: + PruningFunctionCloner(Function *newFunc, const Function *oldFunc, + ValueToValueMapTy &valueMap, bool moduleLevelChanges, + const char *nameSuffix, ClonedCodeInfo *codeInfo) + : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), + ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), + CodeInfo(codeInfo) { + HostFuncIsStrictFP = + newFunc->getAttributes().hasFnAttr(Attribute::StrictFP); + } + + /// The specified block is found to be reachable, clone it and + /// anything that it can reach. + void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst, + std::vector<const BasicBlock *> &ToClone); +}; +} // namespace + +static bool hasRoundingModeOperand(Intrinsic::ID CIID) { + switch (CIID) { +#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ + case Intrinsic::INTRINSIC: \ + return ROUND_MODE == 1; +#define FUNCTION INSTRUCTION +#include "llvm/IR/ConstrainedOps.def" + default: + llvm_unreachable("Unexpected constrained intrinsic id"); + } +} + +Instruction * +PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) { + const Instruction &OldInst = *II; + Instruction *NewInst = nullptr; + if (HostFuncIsStrictFP) { + Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst); + if (CIID != Intrinsic::not_intrinsic) { + // Instead of cloning the instruction, a call to constrained intrinsic + // should be created. + // Assume the first arguments of constrained intrinsics are the same as + // the operands of original instruction. + + // Determine overloaded types of the intrinsic. + SmallVector<Type *, 2> TParams; + SmallVector<Intrinsic::IITDescriptor, 8> Descriptor; + getIntrinsicInfoTableEntries(CIID, Descriptor); + for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) { + Intrinsic::IITDescriptor Operand = Descriptor[I]; + switch (Operand.Kind) { + case Intrinsic::IITDescriptor::Argument: + if (Operand.getArgumentKind() != + Intrinsic::IITDescriptor::AK_MatchType) { + if (I == 0) + TParams.push_back(OldInst.getType()); + else + TParams.push_back(OldInst.getOperand(I - 1)->getType()); + } + break; + case Intrinsic::IITDescriptor::SameVecWidthArgument: + ++I; + break; + default: + break; + } + } + + // Create intrinsic call. + LLVMContext &Ctx = NewFunc->getContext(); + Function *IFn = + Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams); + SmallVector<Value *, 4> Args; + unsigned NumOperands = OldInst.getNumOperands(); + if (isa<CallInst>(OldInst)) + --NumOperands; + for (unsigned I = 0; I < NumOperands; ++I) { + Value *Op = OldInst.getOperand(I); + Args.push_back(Op); + } + if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) { + FCmpInst::Predicate Pred = CmpI->getPredicate(); + StringRef PredName = FCmpInst::getPredicateName(Pred); + Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName))); + } + + // The last arguments of a constrained intrinsic are metadata that + // represent rounding mode (absents in some intrinsics) and exception + // behavior. The inlined function uses default settings. + if (hasRoundingModeOperand(CIID)) + Args.push_back( + MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest"))); + Args.push_back( + MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore"))); + + NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict"); + } + } + if (!NewInst) + NewInst = II->clone(); + return NewInst; +} + +/// The specified block is found to be reachable, clone it and +/// anything that it can reach. +void PruningFunctionCloner::CloneBlock( + const BasicBlock *BB, BasicBlock::const_iterator StartingInst, + std::vector<const BasicBlock *> &ToClone) { + WeakTrackingVH &BBEntry = VMap[BB]; + + // Have we already cloned this block? + if (BBEntry) + return; + + // Nope, clone it now. + BasicBlock *NewBB; + BBEntry = NewBB = BasicBlock::Create(BB->getContext()); + if (BB->hasName()) + NewBB->setName(BB->getName() + NameSuffix); + + // It is only legal to clone a function if a block address within that + // function is never referenced outside of the function. Given that, we + // want to map block addresses from the old function to block addresses in + // the clone. (This is different from the generic ValueMapper + // implementation, which generates an invalid blockaddress when + // cloning a function.) + // + // Note that we don't need to fix the mapping for unreachable blocks; + // the default mapping there is safe. + if (BB->hasAddressTaken()) { + Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc), + const_cast<BasicBlock *>(BB)); + VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); + } + + bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; + bool hasMemProfMetadata = false; + + // Loop over all instructions, and copy them over, DCE'ing as we go. This + // loop doesn't include the terminator. + for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE; + ++II) { + + Instruction *NewInst = cloneInstruction(II); + + if (HostFuncIsStrictFP) { + // All function calls in the inlined function must get 'strictfp' + // attribute to prevent undesirable optimizations. + if (auto *Call = dyn_cast<CallInst>(NewInst)) + Call->addFnAttr(Attribute::StrictFP); + } + + // Eagerly remap operands to the newly cloned instruction, except for PHI + // nodes for which we defer processing until we update the CFG. Also defer + // debug intrinsic processing because they may contain use-before-defs. + if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) { + RemapInstruction(NewInst, VMap, + ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); + + // If we can simplify this instruction to some other value, simply add + // a mapping to that value rather than inserting a new instruction into + // the basic block. + if (Value *V = + simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { + // On the off-chance that this simplifies to an instruction in the old + // function, map it back into the new function. + if (NewFunc != OldFunc) + if (Value *MappedV = VMap.lookup(V)) + V = MappedV; + + if (!NewInst->mayHaveSideEffects()) { + VMap[&*II] = V; + NewInst->deleteValue(); + continue; + } + } + } + + if (II->hasName()) + NewInst->setName(II->getName() + NameSuffix); + VMap[&*II] = NewInst; // Add instruction map to value. + NewInst->insertInto(NewBB, NewBB->end()); + if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) { + hasCalls = true; + hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof); + } + + if (CodeInfo) { + CodeInfo->OrigVMap[&*II] = NewInst; + if (auto *CB = dyn_cast<CallBase>(&*II)) + if (CB->hasOperandBundles()) + CodeInfo->OperandBundleCallSites.push_back(NewInst); + } + + if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { + if (isa<ConstantInt>(AI->getArraySize())) + hasStaticAllocas = true; + else + hasDynamicAllocas = true; + } + } + + // Finally, clone over the terminator. + const Instruction *OldTI = BB->getTerminator(); + bool TerminatorDone = false; + if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { + if (BI->isConditional()) { + // If the condition was a known constant in the callee... + ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); + // Or is a known constant in the caller... + if (!Cond) { + Value *V = VMap.lookup(BI->getCondition()); + Cond = dyn_cast_or_null<ConstantInt>(V); + } + + // Constant fold to uncond branch! + if (Cond) { + BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); + VMap[OldTI] = BranchInst::Create(Dest, NewBB); + ToClone.push_back(Dest); + TerminatorDone = true; + } + } + } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { + // If switching on a value known constant in the caller. + ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); + if (!Cond) { // Or known constant after constant prop in the callee... + Value *V = VMap.lookup(SI->getCondition()); + Cond = dyn_cast_or_null<ConstantInt>(V); + } + if (Cond) { // Constant fold to uncond branch! + SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); + BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor()); + VMap[OldTI] = BranchInst::Create(Dest, NewBB); + ToClone.push_back(Dest); + TerminatorDone = true; + } + } + + if (!TerminatorDone) { + Instruction *NewInst = OldTI->clone(); + if (OldTI->hasName()) + NewInst->setName(OldTI->getName() + NameSuffix); + NewInst->insertInto(NewBB, NewBB->end()); + VMap[OldTI] = NewInst; // Add instruction map to value. + + if (CodeInfo) { + CodeInfo->OrigVMap[OldTI] = NewInst; + if (auto *CB = dyn_cast<CallBase>(OldTI)) + if (CB->hasOperandBundles()) + CodeInfo->OperandBundleCallSites.push_back(NewInst); + } + + // Recursively clone any reachable successor blocks. + append_range(ToClone, successors(BB->getTerminator())); + } + + if (CodeInfo) { + CodeInfo->ContainsCalls |= hasCalls; + CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata; + CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; + CodeInfo->ContainsDynamicAllocas |= + hasStaticAllocas && BB != &BB->getParent()->front(); + } +} + +/// This works like CloneAndPruneFunctionInto, except that it does not clone the +/// entire function. Instead it starts at an instruction provided by the caller +/// and copies (and prunes) only the code reachable from that instruction. +void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, + const Instruction *StartingInst, + ValueToValueMapTy &VMap, + bool ModuleLevelChanges, + SmallVectorImpl<ReturnInst *> &Returns, + const char *NameSuffix, + ClonedCodeInfo *CodeInfo) { + assert(NameSuffix && "NameSuffix cannot be null!"); + + ValueMapTypeRemapper *TypeMapper = nullptr; + ValueMaterializer *Materializer = nullptr; + +#ifndef NDEBUG + // If the cloning starts at the beginning of the function, verify that + // the function arguments are mapped. + if (!StartingInst) + for (const Argument &II : OldFunc->args()) + assert(VMap.count(&II) && "No mapping from source argument specified!"); +#endif + + PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, + NameSuffix, CodeInfo); + const BasicBlock *StartingBB; + if (StartingInst) + StartingBB = StartingInst->getParent(); + else { + StartingBB = &OldFunc->getEntryBlock(); + StartingInst = &StartingBB->front(); + } + + // Collect debug intrinsics for remapping later. + SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics; + for (const auto &BB : *OldFunc) { + for (const auto &I : BB) { + if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I)) + DbgIntrinsics.push_back(DVI); + } + } + + // Clone the entry block, and anything recursively reachable from it. + std::vector<const BasicBlock *> CloneWorklist; + PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); + while (!CloneWorklist.empty()) { + const BasicBlock *BB = CloneWorklist.back(); + CloneWorklist.pop_back(); + PFC.CloneBlock(BB, BB->begin(), CloneWorklist); + } + + // Loop over all of the basic blocks in the old function. If the block was + // reachable, we have cloned it and the old block is now in the value map: + // insert it into the new function in the right order. If not, ignore it. + // + // Defer PHI resolution until rest of function is resolved. + SmallVector<const PHINode *, 16> PHIToResolve; + for (const BasicBlock &BI : *OldFunc) { + Value *V = VMap.lookup(&BI); + BasicBlock *NewBB = cast_or_null<BasicBlock>(V); + if (!NewBB) + continue; // Dead block. + + // Add the new block to the new function. + NewFunc->insert(NewFunc->end(), NewBB); + + // Handle PHI nodes specially, as we have to remove references to dead + // blocks. + for (const PHINode &PN : BI.phis()) { + // PHI nodes may have been remapped to non-PHI nodes by the caller or + // during the cloning process. + if (isa<PHINode>(VMap[&PN])) + PHIToResolve.push_back(&PN); + else + break; + } + + // Finally, remap the terminator instructions, as those can't be remapped + // until all BBs are mapped. + RemapInstruction(NewBB->getTerminator(), VMap, + ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, + TypeMapper, Materializer); + } + + // Defer PHI resolution until rest of function is resolved, PHI resolution + // requires the CFG to be up-to-date. + for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) { + const PHINode *OPN = PHIToResolve[phino]; + unsigned NumPreds = OPN->getNumIncomingValues(); + const BasicBlock *OldBB = OPN->getParent(); + BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); + + // Map operands for blocks that are live and remove operands for blocks + // that are dead. + for (; phino != PHIToResolve.size() && + PHIToResolve[phino]->getParent() == OldBB; + ++phino) { + OPN = PHIToResolve[phino]; + PHINode *PN = cast<PHINode>(VMap[OPN]); + for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { + Value *V = VMap.lookup(PN->getIncomingBlock(pred)); + if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { + Value *InVal = + MapValue(PN->getIncomingValue(pred), VMap, + ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); + assert(InVal && "Unknown input value?"); + PN->setIncomingValue(pred, InVal); + PN->setIncomingBlock(pred, MappedBlock); + } else { + PN->removeIncomingValue(pred, false); + --pred; // Revisit the next entry. + --e; + } + } + } + + // The loop above has removed PHI entries for those blocks that are dead + // and has updated others. However, if a block is live (i.e. copied over) + // but its terminator has been changed to not go to this block, then our + // phi nodes will have invalid entries. Update the PHI nodes in this + // case. + PHINode *PN = cast<PHINode>(NewBB->begin()); + NumPreds = pred_size(NewBB); + if (NumPreds != PN->getNumIncomingValues()) { + assert(NumPreds < PN->getNumIncomingValues()); + // Count how many times each predecessor comes to this block. + std::map<BasicBlock *, unsigned> PredCount; + for (BasicBlock *Pred : predecessors(NewBB)) + --PredCount[Pred]; + + // Figure out how many entries to remove from each PHI. + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + ++PredCount[PN->getIncomingBlock(i)]; + + // At this point, the excess predecessor entries are positive in the + // map. Loop over all of the PHIs and remove excess predecessor + // entries. + BasicBlock::iterator I = NewBB->begin(); + for (; (PN = dyn_cast<PHINode>(I)); ++I) { + for (const auto &PCI : PredCount) { + BasicBlock *Pred = PCI.first; + for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) + PN->removeIncomingValue(Pred, false); + } + } + } + + // If the loops above have made these phi nodes have 0 or 1 operand, + // replace them with poison or the input value. We must do this for + // correctness, because 0-operand phis are not valid. + PN = cast<PHINode>(NewBB->begin()); + if (PN->getNumIncomingValues() == 0) { + BasicBlock::iterator I = NewBB->begin(); + BasicBlock::const_iterator OldI = OldBB->begin(); + while ((PN = dyn_cast<PHINode>(I++))) { + Value *NV = PoisonValue::get(PN->getType()); + PN->replaceAllUsesWith(NV); + assert(VMap[&*OldI] == PN && "VMap mismatch"); + VMap[&*OldI] = NV; + PN->eraseFromParent(); + ++OldI; + } + } + } + + // Make a second pass over the PHINodes now that all of them have been + // remapped into the new function, simplifying the PHINode and performing any + // recursive simplifications exposed. This will transparently update the + // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce + // two PHINodes, the iteration over the old PHIs remains valid, and the + // mapping will just map us to the new node (which may not even be a PHI + // node). + const DataLayout &DL = NewFunc->getParent()->getDataLayout(); + SmallSetVector<const Value *, 8> Worklist; + for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) + if (isa<PHINode>(VMap[PHIToResolve[Idx]])) + Worklist.insert(PHIToResolve[Idx]); + + // Note that we must test the size on each iteration, the worklist can grow. + for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { + const Value *OrigV = Worklist[Idx]; + auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); + if (!I) + continue; + + // Skip over non-intrinsic callsites, we don't want to remove any nodes from + // the CGSCC. + CallBase *CB = dyn_cast<CallBase>(I); + if (CB && CB->getCalledFunction() && + !CB->getCalledFunction()->isIntrinsic()) + continue; + + // See if this instruction simplifies. + Value *SimpleV = simplifyInstruction(I, DL); + if (!SimpleV) + continue; + + // Stash away all the uses of the old instruction so we can check them for + // recursive simplifications after a RAUW. This is cheaper than checking all + // uses of To on the recursive step in most cases. + for (const User *U : OrigV->users()) + Worklist.insert(cast<Instruction>(U)); + + // Replace the instruction with its simplified value. + I->replaceAllUsesWith(SimpleV); + + // If the original instruction had no side effects, remove it. + if (isInstructionTriviallyDead(I)) + I->eraseFromParent(); + else + VMap[OrigV] = I; + } + + // Remap debug intrinsic operands now that all values have been mapped. + // Doing this now (late) preserves use-before-defs in debug intrinsics. If + // we didn't do this, ValueAsMetadata(use-before-def) operands would be + // replaced by empty metadata. This would signal later cleanup passes to + // remove the debug intrinsics, potentially causing incorrect locations. + for (const auto *DVI : DbgIntrinsics) { + if (DbgVariableIntrinsic *NewDVI = + cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI))) + RemapInstruction(NewDVI, VMap, + ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, + TypeMapper, Materializer); + } + + // Simplify conditional branches and switches with a constant operand. We try + // to prune these out when cloning, but if the simplification required + // looking through PHI nodes, those are only available after forming the full + // basic block. That may leave some here, and we still want to prune the dead + // code as early as possible. + Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); + for (BasicBlock &BB : make_range(Begin, NewFunc->end())) + ConstantFoldTerminator(&BB); + + // Some blocks may have become unreachable as a result. Find and delete them. + { + SmallPtrSet<BasicBlock *, 16> ReachableBlocks; + SmallVector<BasicBlock *, 16> Worklist; + Worklist.push_back(&*Begin); + while (!Worklist.empty()) { + BasicBlock *BB = Worklist.pop_back_val(); + if (ReachableBlocks.insert(BB).second) + append_range(Worklist, successors(BB)); + } + + SmallVector<BasicBlock *, 16> UnreachableBlocks; + for (BasicBlock &BB : make_range(Begin, NewFunc->end())) + if (!ReachableBlocks.contains(&BB)) + UnreachableBlocks.push_back(&BB); + DeleteDeadBlocks(UnreachableBlocks); + } + + // Now that the inlined function body has been fully constructed, go through + // and zap unconditional fall-through branches. This happens all the time when + // specializing code: code specialization turns conditional branches into + // uncond branches, and this code folds them. + Function::iterator I = Begin; + while (I != NewFunc->end()) { + BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); + if (!BI || BI->isConditional()) { + ++I; + continue; + } + + BasicBlock *Dest = BI->getSuccessor(0); + if (!Dest->getSinglePredecessor()) { + ++I; + continue; + } + + // We shouldn't be able to get single-entry PHI nodes here, as instsimplify + // above should have zapped all of them.. + assert(!isa<PHINode>(Dest->begin())); + + // We know all single-entry PHI nodes in the inlined function have been + // removed, so we just need to splice the blocks. + BI->eraseFromParent(); + + // Make all PHI nodes that referred to Dest now refer to I as their source. + Dest->replaceAllUsesWith(&*I); + + // Move all the instructions in the succ to the pred. + I->splice(I->end(), Dest); + + // Remove the dest block. + Dest->eraseFromParent(); + + // Do not increment I, iteratively merge all things this block branches to. + } + + // Make a final pass over the basic blocks from the old function to gather + // any return instructions which survived folding. We have to do this here + // because we can iteratively remove and merge returns above. + for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), + E = NewFunc->end(); + I != E; ++I) + if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) + Returns.push_back(RI); +} + +/// This works exactly like CloneFunctionInto, +/// except that it does some simple constant prop and DCE on the fly. The +/// effect of this is to copy significantly less code in cases where (for +/// example) a function call with constant arguments is inlined, and those +/// constant arguments cause a significant amount of code in the callee to be +/// dead. Since this doesn't produce an exact copy of the input, it can't be +/// used for things like CloneFunction or CloneModule. +void llvm::CloneAndPruneFunctionInto( + Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, + bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns, + const char *NameSuffix, ClonedCodeInfo *CodeInfo) { + CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, + ModuleLevelChanges, Returns, NameSuffix, CodeInfo); +} + +/// Remaps instructions in \p Blocks using the mapping in \p VMap. +void llvm::remapInstructionsInBlocks( + const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { + // Rewrite the code to refer to itself. + for (auto *BB : Blocks) + for (auto &Inst : *BB) + RemapInstruction(&Inst, VMap, + RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); +} + +/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p +/// Blocks. +/// +/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block +/// \p LoopDomBB. Insert the new blocks before block specified in \p Before. +Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, + Loop *OrigLoop, ValueToValueMapTy &VMap, + const Twine &NameSuffix, LoopInfo *LI, + DominatorTree *DT, + SmallVectorImpl<BasicBlock *> &Blocks) { + Function *F = OrigLoop->getHeader()->getParent(); + Loop *ParentLoop = OrigLoop->getParentLoop(); + DenseMap<Loop *, Loop *> LMap; + + Loop *NewLoop = LI->AllocateLoop(); + LMap[OrigLoop] = NewLoop; + if (ParentLoop) + ParentLoop->addChildLoop(NewLoop); + else + LI->addTopLevelLoop(NewLoop); + + BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); + assert(OrigPH && "No preheader"); + BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); + // To rename the loop PHIs. + VMap[OrigPH] = NewPH; + Blocks.push_back(NewPH); + + // Update LoopInfo. + if (ParentLoop) + ParentLoop->addBasicBlockToLoop(NewPH, *LI); + + // Update DominatorTree. + DT->addNewBlock(NewPH, LoopDomBB); + + for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) { + Loop *&NewLoop = LMap[CurLoop]; + if (!NewLoop) { + NewLoop = LI->AllocateLoop(); + + // Establish the parent/child relationship. + Loop *OrigParent = CurLoop->getParentLoop(); + assert(OrigParent && "Could not find the original parent loop"); + Loop *NewParentLoop = LMap[OrigParent]; + assert(NewParentLoop && "Could not find the new parent loop"); + + NewParentLoop->addChildLoop(NewLoop); + } + } + + for (BasicBlock *BB : OrigLoop->getBlocks()) { + Loop *CurLoop = LI->getLoopFor(BB); + Loop *&NewLoop = LMap[CurLoop]; + assert(NewLoop && "Expecting new loop to be allocated"); + + BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); + VMap[BB] = NewBB; + + // Update LoopInfo. + NewLoop->addBasicBlockToLoop(NewBB, *LI); + + // Add DominatorTree node. After seeing all blocks, update to correct + // IDom. + DT->addNewBlock(NewBB, NewPH); + + Blocks.push_back(NewBB); + } + + for (BasicBlock *BB : OrigLoop->getBlocks()) { + // Update loop headers. + Loop *CurLoop = LI->getLoopFor(BB); + if (BB == CurLoop->getHeader()) + LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB])); + + // Update DominatorTree. + BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); + DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), + cast<BasicBlock>(VMap[IDomBB])); + } + + // Move them physically from the end of the block list. + F->splice(Before->getIterator(), F, NewPH->getIterator()); + F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(), + F->end()); + + return NewLoop; +} + +/// Duplicate non-Phi instructions from the beginning of block up to +/// StopAt instruction into a split block between BB and its predecessor. +BasicBlock *llvm::DuplicateInstructionsInSplitBetween( + BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, + ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { + + assert(count(successors(PredBB), BB) == 1 && + "There must be a single edge between PredBB and BB!"); + // We are going to have to map operands from the original BB block to the new + // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to + // account for entry from PredBB. + BasicBlock::iterator BI = BB->begin(); + for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) + ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); + + BasicBlock *NewBB = SplitEdge(PredBB, BB); + NewBB->setName(PredBB->getName() + ".split"); + Instruction *NewTerm = NewBB->getTerminator(); + + // FIXME: SplitEdge does not yet take a DTU, so we include the split edge + // in the update set here. + DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, + {DominatorTree::Insert, PredBB, NewBB}, + {DominatorTree::Insert, NewBB, BB}}); + + // Clone the non-phi instructions of BB into NewBB, keeping track of the + // mapping and using it to remap operands in the cloned instructions. + // Stop once we see the terminator too. This covers the case where BB's + // terminator gets replaced and StopAt == BB's terminator. + for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { + Instruction *New = BI->clone(); + New->setName(BI->getName()); + New->insertBefore(NewTerm); + ValueMapping[&*BI] = New; + + // Remap operands to patch up intra-block references. + for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) + if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { + auto I = ValueMapping.find(Inst); + if (I != ValueMapping.end()) + New->setOperand(i, I->second); + } + } + + return NewBB; +} + +void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, + DenseMap<MDNode *, MDNode *> &ClonedScopes, + StringRef Ext, LLVMContext &Context) { + MDBuilder MDB(Context); + + for (auto *ScopeList : NoAliasDeclScopes) { + for (const auto &MDOperand : ScopeList->operands()) { + if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) { + AliasScopeNode SNANode(MD); + + std::string Name; + auto ScopeName = SNANode.getName(); + if (!ScopeName.empty()) + Name = (Twine(ScopeName) + ":" + Ext).str(); + else + Name = std::string(Ext); + + MDNode *NewScope = MDB.createAnonymousAliasScope( + const_cast<MDNode *>(SNANode.getDomain()), Name); + ClonedScopes.insert(std::make_pair(MD, NewScope)); + } + } + } +} + +void llvm::adaptNoAliasScopes(Instruction *I, + const DenseMap<MDNode *, MDNode *> &ClonedScopes, + LLVMContext &Context) { + auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * { + bool NeedsReplacement = false; + SmallVector<Metadata *, 8> NewScopeList; + for (const auto &MDOp : ScopeList->operands()) { + if (MDNode *MD = dyn_cast<MDNode>(MDOp)) { + if (auto *NewMD = ClonedScopes.lookup(MD)) { + NewScopeList.push_back(NewMD); + NeedsReplacement = true; + continue; + } + NewScopeList.push_back(MD); + } + } + if (NeedsReplacement) + return MDNode::get(Context, NewScopeList); + return nullptr; + }; + + if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I)) + if (auto *NewScopeList = CloneScopeList(Decl->getScopeList())) + Decl->setScopeList(NewScopeList); + + auto replaceWhenNeeded = [&](unsigned MD_ID) { + if (const MDNode *CSNoAlias = I->getMetadata(MD_ID)) + if (auto *NewScopeList = CloneScopeList(CSNoAlias)) + I->setMetadata(MD_ID, NewScopeList); + }; + replaceWhenNeeded(LLVMContext::MD_noalias); + replaceWhenNeeded(LLVMContext::MD_alias_scope); +} + +void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, + ArrayRef<BasicBlock *> NewBlocks, + LLVMContext &Context, StringRef Ext) { + if (NoAliasDeclScopes.empty()) + return; + + DenseMap<MDNode *, MDNode *> ClonedScopes; + LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " + << NoAliasDeclScopes.size() << " node(s)\n"); + + cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); + // Identify instructions using metadata that needs adaptation + for (BasicBlock *NewBlock : NewBlocks) + for (Instruction &I : *NewBlock) + adaptNoAliasScopes(&I, ClonedScopes, Context); +} + +void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes, + Instruction *IStart, Instruction *IEnd, + LLVMContext &Context, StringRef Ext) { + if (NoAliasDeclScopes.empty()) + return; + + DenseMap<MDNode *, MDNode *> ClonedScopes; + LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning " + << NoAliasDeclScopes.size() << " node(s)\n"); + + cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context); + // Identify instructions using metadata that needs adaptation + assert(IStart->getParent() == IEnd->getParent() && "different basic block ?"); + auto ItStart = IStart->getIterator(); + auto ItEnd = IEnd->getIterator(); + ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range + for (auto &I : llvm::make_range(ItStart, ItEnd)) + adaptNoAliasScopes(&I, ClonedScopes, Context); +} + +void llvm::identifyNoAliasScopesToClone( + ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { + for (BasicBlock *BB : BBs) + for (Instruction &I : *BB) + if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) + NoAliasDeclScopes.push_back(Decl->getScopeList()); +} + +void llvm::identifyNoAliasScopesToClone( + BasicBlock::iterator Start, BasicBlock::iterator End, + SmallVectorImpl<MDNode *> &NoAliasDeclScopes) { + for (Instruction &I : make_range(Start, End)) + if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) + NoAliasDeclScopes.push_back(Decl->getScopeList()); +} |