aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp1194
1 files changed, 1194 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp
new file mode 100644
index 000000000000..87822ee85c2b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/CloneFunction.cpp
@@ -0,0 +1,1194 @@
+//===- CloneFunction.cpp - Clone a function into another function ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CloneFunctionInto interface, which is used as the
+// low-level function cloner. This is used by the CloneFunction and function
+// inliner to do the dirty work of copying the body of a function around.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <map>
+#include <optional>
+using namespace llvm;
+
+#define DEBUG_TYPE "clone-function"
+
+/// See comments in Cloning.h.
+BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
+ const Twine &NameSuffix, Function *F,
+ ClonedCodeInfo *CodeInfo,
+ DebugInfoFinder *DIFinder) {
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
+ if (BB->hasName())
+ NewBB->setName(BB->getName() + NameSuffix);
+
+ bool hasCalls = false, hasDynamicAllocas = false, hasMemProfMetadata = false;
+ Module *TheModule = F ? F->getParent() : nullptr;
+
+ // Loop over all instructions, and copy them over.
+ for (const Instruction &I : *BB) {
+ if (DIFinder && TheModule)
+ DIFinder->processInstruction(*TheModule, I);
+
+ Instruction *NewInst = I.clone();
+ if (I.hasName())
+ NewInst->setName(I.getName() + NameSuffix);
+ NewInst->insertInto(NewBB, NewBB->end());
+ VMap[&I] = NewInst; // Add instruction map to value.
+
+ if (isa<CallInst>(I) && !I.isDebugOrPseudoInst()) {
+ hasCalls = true;
+ hasMemProfMetadata |= I.hasMetadata(LLVMContext::MD_memprof);
+ }
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
+ if (!AI->isStaticAlloca()) {
+ hasDynamicAllocas = true;
+ }
+ }
+ }
+
+ if (CodeInfo) {
+ CodeInfo->ContainsCalls |= hasCalls;
+ CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
+ CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
+ }
+ return NewBB;
+}
+
+// Clone OldFunc into NewFunc, transforming the old arguments into references to
+// VMap values.
+//
+void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
+ ValueToValueMapTy &VMap,
+ CloneFunctionChangeType Changes,
+ SmallVectorImpl<ReturnInst *> &Returns,
+ const char *NameSuffix, ClonedCodeInfo *CodeInfo,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ assert(NameSuffix && "NameSuffix cannot be null!");
+
+#ifndef NDEBUG
+ for (const Argument &I : OldFunc->args())
+ assert(VMap.count(&I) && "No mapping from source argument specified!");
+#endif
+
+ bool ModuleLevelChanges = Changes > CloneFunctionChangeType::LocalChangesOnly;
+
+ // Copy all attributes other than those stored in the AttributeList. We need
+ // to remap the parameter indices of the AttributeList.
+ AttributeList NewAttrs = NewFunc->getAttributes();
+ NewFunc->copyAttributesFrom(OldFunc);
+ NewFunc->setAttributes(NewAttrs);
+
+ const RemapFlags FuncGlobalRefFlags =
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
+
+ // Fix up the personality function that got copied over.
+ if (OldFunc->hasPersonalityFn())
+ NewFunc->setPersonalityFn(MapValue(OldFunc->getPersonalityFn(), VMap,
+ FuncGlobalRefFlags, TypeMapper,
+ Materializer));
+
+ if (OldFunc->hasPrefixData()) {
+ NewFunc->setPrefixData(MapValue(OldFunc->getPrefixData(), VMap,
+ FuncGlobalRefFlags, TypeMapper,
+ Materializer));
+ }
+
+ if (OldFunc->hasPrologueData()) {
+ NewFunc->setPrologueData(MapValue(OldFunc->getPrologueData(), VMap,
+ FuncGlobalRefFlags, TypeMapper,
+ Materializer));
+ }
+
+ SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
+ AttributeList OldAttrs = OldFunc->getAttributes();
+
+ // Clone any argument attributes that are present in the VMap.
+ for (const Argument &OldArg : OldFunc->args()) {
+ if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
+ NewArgAttrs[NewArg->getArgNo()] =
+ OldAttrs.getParamAttrs(OldArg.getArgNo());
+ }
+ }
+
+ NewFunc->setAttributes(
+ AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttrs(),
+ OldAttrs.getRetAttrs(), NewArgAttrs));
+
+ // Everything else beyond this point deals with function instructions,
+ // so if we are dealing with a function declaration, we're done.
+ if (OldFunc->isDeclaration())
+ return;
+
+ // When we remap instructions within the same module, we want to avoid
+ // duplicating inlined DISubprograms, so record all subprograms we find as we
+ // duplicate instructions and then freeze them in the MD map. We also record
+ // information about dbg.value and dbg.declare to avoid duplicating the
+ // types.
+ std::optional<DebugInfoFinder> DIFinder;
+
+ // Track the subprogram attachment that needs to be cloned to fine-tune the
+ // mapping within the same module.
+ DISubprogram *SPClonedWithinModule = nullptr;
+ if (Changes < CloneFunctionChangeType::DifferentModule) {
+ assert((NewFunc->getParent() == nullptr ||
+ NewFunc->getParent() == OldFunc->getParent()) &&
+ "Expected NewFunc to have the same parent, or no parent");
+
+ // Need to find subprograms, types, and compile units.
+ DIFinder.emplace();
+
+ SPClonedWithinModule = OldFunc->getSubprogram();
+ if (SPClonedWithinModule)
+ DIFinder->processSubprogram(SPClonedWithinModule);
+ } else {
+ assert((NewFunc->getParent() == nullptr ||
+ NewFunc->getParent() != OldFunc->getParent()) &&
+ "Expected NewFunc to have different parents, or no parent");
+
+ if (Changes == CloneFunctionChangeType::DifferentModule) {
+ assert(NewFunc->getParent() &&
+ "Need parent of new function to maintain debug info invariants");
+
+ // Need to find all the compile units.
+ DIFinder.emplace();
+ }
+ }
+
+ // Loop over all of the basic blocks in the function, cloning them as
+ // appropriate. Note that we save BE this way in order to handle cloning of
+ // recursive functions into themselves.
+ for (const BasicBlock &BB : *OldFunc) {
+
+ // Create a new basic block and copy instructions into it!
+ BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
+ DIFinder ? &*DIFinder : nullptr);
+
+ // Add basic block mapping.
+ VMap[&BB] = CBB;
+
+ // It is only legal to clone a function if a block address within that
+ // function is never referenced outside of the function. Given that, we
+ // want to map block addresses from the old function to block addresses in
+ // the clone. (This is different from the generic ValueMapper
+ // implementation, which generates an invalid blockaddress when
+ // cloning a function.)
+ if (BB.hasAddressTaken()) {
+ Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
+ const_cast<BasicBlock *>(&BB));
+ VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
+ }
+
+ // Note return instructions for the caller.
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
+ Returns.push_back(RI);
+ }
+
+ if (Changes < CloneFunctionChangeType::DifferentModule &&
+ DIFinder->subprogram_count() > 0) {
+ // Turn on module-level changes, since we need to clone (some of) the
+ // debug info metadata.
+ //
+ // FIXME: Metadata effectively owned by a function should be made
+ // local, and only that local metadata should be cloned.
+ ModuleLevelChanges = true;
+
+ auto mapToSelfIfNew = [&VMap](MDNode *N) {
+ // Avoid clobbering an existing mapping.
+ (void)VMap.MD().try_emplace(N, N);
+ };
+
+ // Avoid cloning types, compile units, and (other) subprograms.
+ SmallPtrSet<const DISubprogram *, 16> MappedToSelfSPs;
+ for (DISubprogram *ISP : DIFinder->subprograms()) {
+ if (ISP != SPClonedWithinModule) {
+ mapToSelfIfNew(ISP);
+ MappedToSelfSPs.insert(ISP);
+ }
+ }
+
+ // If a subprogram isn't going to be cloned skip its lexical blocks as well.
+ for (DIScope *S : DIFinder->scopes()) {
+ auto *LScope = dyn_cast<DILocalScope>(S);
+ if (LScope && MappedToSelfSPs.count(LScope->getSubprogram()))
+ mapToSelfIfNew(S);
+ }
+
+ for (DICompileUnit *CU : DIFinder->compile_units())
+ mapToSelfIfNew(CU);
+
+ for (DIType *Type : DIFinder->types())
+ mapToSelfIfNew(Type);
+ } else {
+ assert(!SPClonedWithinModule &&
+ "Subprogram should be in DIFinder->subprogram_count()...");
+ }
+
+ const auto RemapFlag = ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges;
+ // Duplicate the metadata that is attached to the cloned function.
+ // Subprograms/CUs/types that were already mapped to themselves won't be
+ // duplicated.
+ SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
+ OldFunc->getAllMetadata(MDs);
+ for (auto MD : MDs) {
+ NewFunc->addMetadata(MD.first, *MapMetadata(MD.second, VMap, RemapFlag,
+ TypeMapper, Materializer));
+ }
+
+ // Loop over all of the instructions in the new function, fixing up operand
+ // references as we go. This uses VMap to do all the hard work.
+ for (Function::iterator
+ BB = cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
+ BE = NewFunc->end();
+ BB != BE; ++BB)
+ // Loop over all instructions, fixing each one as we find it...
+ for (Instruction &II : *BB)
+ RemapInstruction(&II, VMap, RemapFlag, TypeMapper, Materializer);
+
+ // Only update !llvm.dbg.cu for DifferentModule (not CloneModule). In the
+ // same module, the compile unit will already be listed (or not). When
+ // cloning a module, CloneModule() will handle creating the named metadata.
+ if (Changes != CloneFunctionChangeType::DifferentModule)
+ return;
+
+ // Update !llvm.dbg.cu with compile units added to the new module if this
+ // function is being cloned in isolation.
+ //
+ // FIXME: This is making global / module-level changes, which doesn't seem
+ // like the right encapsulation Consider dropping the requirement to update
+ // !llvm.dbg.cu (either obsoleting the node, or restricting it to
+ // non-discardable compile units) instead of discovering compile units by
+ // visiting the metadata attached to global values, which would allow this
+ // code to be deleted. Alternatively, perhaps give responsibility for this
+ // update to CloneFunctionInto's callers.
+ auto *NewModule = NewFunc->getParent();
+ auto *NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
+ // Avoid multiple insertions of the same DICompileUnit to NMD.
+ SmallPtrSet<const void *, 8> Visited;
+ for (auto *Operand : NMD->operands())
+ Visited.insert(Operand);
+ for (auto *Unit : DIFinder->compile_units()) {
+ MDNode *MappedUnit =
+ MapMetadata(Unit, VMap, RF_None, TypeMapper, Materializer);
+ if (Visited.insert(MappedUnit).second)
+ NMD->addOperand(MappedUnit);
+ }
+}
+
+/// Return a copy of the specified function and add it to that function's
+/// module. Also, any references specified in the VMap are changed to refer to
+/// their mapped value instead of the original one. If any of the arguments to
+/// the function are in the VMap, the arguments are deleted from the resultant
+/// function. The VMap is updated to include mappings from all of the
+/// instructions and basicblocks in the function from their old to new values.
+///
+Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
+ ClonedCodeInfo *CodeInfo) {
+ std::vector<Type *> ArgTypes;
+
+ // The user might be deleting arguments to the function by specifying them in
+ // the VMap. If so, we need to not add the arguments to the arg ty vector
+ //
+ for (const Argument &I : F->args())
+ if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
+ ArgTypes.push_back(I.getType());
+
+ // Create a new function type...
+ FunctionType *FTy =
+ FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes,
+ F->getFunctionType()->isVarArg());
+
+ // Create the new function...
+ Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
+ F->getName(), F->getParent());
+
+ // Loop over the arguments, copying the names of the mapped arguments over...
+ Function::arg_iterator DestI = NewF->arg_begin();
+ for (const Argument &I : F->args())
+ if (VMap.count(&I) == 0) { // Is this argument preserved?
+ DestI->setName(I.getName()); // Copy the name over...
+ VMap[&I] = &*DestI++; // Add mapping to VMap
+ }
+
+ SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
+ CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly,
+ Returns, "", CodeInfo);
+
+ return NewF;
+}
+
+namespace {
+/// This is a private class used to implement CloneAndPruneFunctionInto.
+struct PruningFunctionCloner {
+ Function *NewFunc;
+ const Function *OldFunc;
+ ValueToValueMapTy &VMap;
+ bool ModuleLevelChanges;
+ const char *NameSuffix;
+ ClonedCodeInfo *CodeInfo;
+ bool HostFuncIsStrictFP;
+
+ Instruction *cloneInstruction(BasicBlock::const_iterator II);
+
+public:
+ PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
+ ValueToValueMapTy &valueMap, bool moduleLevelChanges,
+ const char *nameSuffix, ClonedCodeInfo *codeInfo)
+ : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
+ ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
+ CodeInfo(codeInfo) {
+ HostFuncIsStrictFP =
+ newFunc->getAttributes().hasFnAttr(Attribute::StrictFP);
+ }
+
+ /// The specified block is found to be reachable, clone it and
+ /// anything that it can reach.
+ void CloneBlock(const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
+ std::vector<const BasicBlock *> &ToClone);
+};
+} // namespace
+
+static bool hasRoundingModeOperand(Intrinsic::ID CIID) {
+ switch (CIID) {
+#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
+ case Intrinsic::INTRINSIC: \
+ return ROUND_MODE == 1;
+#define FUNCTION INSTRUCTION
+#include "llvm/IR/ConstrainedOps.def"
+ default:
+ llvm_unreachable("Unexpected constrained intrinsic id");
+ }
+}
+
+Instruction *
+PruningFunctionCloner::cloneInstruction(BasicBlock::const_iterator II) {
+ const Instruction &OldInst = *II;
+ Instruction *NewInst = nullptr;
+ if (HostFuncIsStrictFP) {
+ Intrinsic::ID CIID = getConstrainedIntrinsicID(OldInst);
+ if (CIID != Intrinsic::not_intrinsic) {
+ // Instead of cloning the instruction, a call to constrained intrinsic
+ // should be created.
+ // Assume the first arguments of constrained intrinsics are the same as
+ // the operands of original instruction.
+
+ // Determine overloaded types of the intrinsic.
+ SmallVector<Type *, 2> TParams;
+ SmallVector<Intrinsic::IITDescriptor, 8> Descriptor;
+ getIntrinsicInfoTableEntries(CIID, Descriptor);
+ for (unsigned I = 0, E = Descriptor.size(); I != E; ++I) {
+ Intrinsic::IITDescriptor Operand = Descriptor[I];
+ switch (Operand.Kind) {
+ case Intrinsic::IITDescriptor::Argument:
+ if (Operand.getArgumentKind() !=
+ Intrinsic::IITDescriptor::AK_MatchType) {
+ if (I == 0)
+ TParams.push_back(OldInst.getType());
+ else
+ TParams.push_back(OldInst.getOperand(I - 1)->getType());
+ }
+ break;
+ case Intrinsic::IITDescriptor::SameVecWidthArgument:
+ ++I;
+ break;
+ default:
+ break;
+ }
+ }
+
+ // Create intrinsic call.
+ LLVMContext &Ctx = NewFunc->getContext();
+ Function *IFn =
+ Intrinsic::getDeclaration(NewFunc->getParent(), CIID, TParams);
+ SmallVector<Value *, 4> Args;
+ unsigned NumOperands = OldInst.getNumOperands();
+ if (isa<CallInst>(OldInst))
+ --NumOperands;
+ for (unsigned I = 0; I < NumOperands; ++I) {
+ Value *Op = OldInst.getOperand(I);
+ Args.push_back(Op);
+ }
+ if (const auto *CmpI = dyn_cast<FCmpInst>(&OldInst)) {
+ FCmpInst::Predicate Pred = CmpI->getPredicate();
+ StringRef PredName = FCmpInst::getPredicateName(Pred);
+ Args.push_back(MetadataAsValue::get(Ctx, MDString::get(Ctx, PredName)));
+ }
+
+ // The last arguments of a constrained intrinsic are metadata that
+ // represent rounding mode (absents in some intrinsics) and exception
+ // behavior. The inlined function uses default settings.
+ if (hasRoundingModeOperand(CIID))
+ Args.push_back(
+ MetadataAsValue::get(Ctx, MDString::get(Ctx, "round.tonearest")));
+ Args.push_back(
+ MetadataAsValue::get(Ctx, MDString::get(Ctx, "fpexcept.ignore")));
+
+ NewInst = CallInst::Create(IFn, Args, OldInst.getName() + ".strict");
+ }
+ }
+ if (!NewInst)
+ NewInst = II->clone();
+ return NewInst;
+}
+
+/// The specified block is found to be reachable, clone it and
+/// anything that it can reach.
+void PruningFunctionCloner::CloneBlock(
+ const BasicBlock *BB, BasicBlock::const_iterator StartingInst,
+ std::vector<const BasicBlock *> &ToClone) {
+ WeakTrackingVH &BBEntry = VMap[BB];
+
+ // Have we already cloned this block?
+ if (BBEntry)
+ return;
+
+ // Nope, clone it now.
+ BasicBlock *NewBB;
+ BBEntry = NewBB = BasicBlock::Create(BB->getContext());
+ if (BB->hasName())
+ NewBB->setName(BB->getName() + NameSuffix);
+
+ // It is only legal to clone a function if a block address within that
+ // function is never referenced outside of the function. Given that, we
+ // want to map block addresses from the old function to block addresses in
+ // the clone. (This is different from the generic ValueMapper
+ // implementation, which generates an invalid blockaddress when
+ // cloning a function.)
+ //
+ // Note that we don't need to fix the mapping for unreachable blocks;
+ // the default mapping there is safe.
+ if (BB->hasAddressTaken()) {
+ Constant *OldBBAddr = BlockAddress::get(const_cast<Function *>(OldFunc),
+ const_cast<BasicBlock *>(BB));
+ VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
+ }
+
+ bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
+ bool hasMemProfMetadata = false;
+
+ // Loop over all instructions, and copy them over, DCE'ing as we go. This
+ // loop doesn't include the terminator.
+ for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); II != IE;
+ ++II) {
+
+ Instruction *NewInst = cloneInstruction(II);
+
+ if (HostFuncIsStrictFP) {
+ // All function calls in the inlined function must get 'strictfp'
+ // attribute to prevent undesirable optimizations.
+ if (auto *Call = dyn_cast<CallInst>(NewInst))
+ Call->addFnAttr(Attribute::StrictFP);
+ }
+
+ // Eagerly remap operands to the newly cloned instruction, except for PHI
+ // nodes for which we defer processing until we update the CFG. Also defer
+ // debug intrinsic processing because they may contain use-before-defs.
+ if (!isa<PHINode>(NewInst) && !isa<DbgVariableIntrinsic>(NewInst)) {
+ RemapInstruction(NewInst, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+
+ // If we can simplify this instruction to some other value, simply add
+ // a mapping to that value rather than inserting a new instruction into
+ // the basic block.
+ if (Value *V =
+ simplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
+ // On the off-chance that this simplifies to an instruction in the old
+ // function, map it back into the new function.
+ if (NewFunc != OldFunc)
+ if (Value *MappedV = VMap.lookup(V))
+ V = MappedV;
+
+ if (!NewInst->mayHaveSideEffects()) {
+ VMap[&*II] = V;
+ NewInst->deleteValue();
+ continue;
+ }
+ }
+ }
+
+ if (II->hasName())
+ NewInst->setName(II->getName() + NameSuffix);
+ VMap[&*II] = NewInst; // Add instruction map to value.
+ NewInst->insertInto(NewBB, NewBB->end());
+ if (isa<CallInst>(II) && !II->isDebugOrPseudoInst()) {
+ hasCalls = true;
+ hasMemProfMetadata |= II->hasMetadata(LLVMContext::MD_memprof);
+ }
+
+ if (CodeInfo) {
+ CodeInfo->OrigVMap[&*II] = NewInst;
+ if (auto *CB = dyn_cast<CallBase>(&*II))
+ if (CB->hasOperandBundles())
+ CodeInfo->OperandBundleCallSites.push_back(NewInst);
+ }
+
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
+ if (isa<ConstantInt>(AI->getArraySize()))
+ hasStaticAllocas = true;
+ else
+ hasDynamicAllocas = true;
+ }
+ }
+
+ // Finally, clone over the terminator.
+ const Instruction *OldTI = BB->getTerminator();
+ bool TerminatorDone = false;
+ if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
+ if (BI->isConditional()) {
+ // If the condition was a known constant in the callee...
+ ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
+ // Or is a known constant in the caller...
+ if (!Cond) {
+ Value *V = VMap.lookup(BI->getCondition());
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
+
+ // Constant fold to uncond branch!
+ if (Cond) {
+ BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
+ VMap[OldTI] = BranchInst::Create(Dest, NewBB);
+ ToClone.push_back(Dest);
+ TerminatorDone = true;
+ }
+ }
+ } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
+ // If switching on a value known constant in the caller.
+ ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
+ if (!Cond) { // Or known constant after constant prop in the callee...
+ Value *V = VMap.lookup(SI->getCondition());
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
+ if (Cond) { // Constant fold to uncond branch!
+ SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
+ BasicBlock *Dest = const_cast<BasicBlock *>(Case.getCaseSuccessor());
+ VMap[OldTI] = BranchInst::Create(Dest, NewBB);
+ ToClone.push_back(Dest);
+ TerminatorDone = true;
+ }
+ }
+
+ if (!TerminatorDone) {
+ Instruction *NewInst = OldTI->clone();
+ if (OldTI->hasName())
+ NewInst->setName(OldTI->getName() + NameSuffix);
+ NewInst->insertInto(NewBB, NewBB->end());
+ VMap[OldTI] = NewInst; // Add instruction map to value.
+
+ if (CodeInfo) {
+ CodeInfo->OrigVMap[OldTI] = NewInst;
+ if (auto *CB = dyn_cast<CallBase>(OldTI))
+ if (CB->hasOperandBundles())
+ CodeInfo->OperandBundleCallSites.push_back(NewInst);
+ }
+
+ // Recursively clone any reachable successor blocks.
+ append_range(ToClone, successors(BB->getTerminator()));
+ }
+
+ if (CodeInfo) {
+ CodeInfo->ContainsCalls |= hasCalls;
+ CodeInfo->ContainsMemProfMetadata |= hasMemProfMetadata;
+ CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
+ CodeInfo->ContainsDynamicAllocas |=
+ hasStaticAllocas && BB != &BB->getParent()->front();
+ }
+}
+
+/// This works like CloneAndPruneFunctionInto, except that it does not clone the
+/// entire function. Instead it starts at an instruction provided by the caller
+/// and copies (and prunes) only the code reachable from that instruction.
+void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
+ const Instruction *StartingInst,
+ ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ SmallVectorImpl<ReturnInst *> &Returns,
+ const char *NameSuffix,
+ ClonedCodeInfo *CodeInfo) {
+ assert(NameSuffix && "NameSuffix cannot be null!");
+
+ ValueMapTypeRemapper *TypeMapper = nullptr;
+ ValueMaterializer *Materializer = nullptr;
+
+#ifndef NDEBUG
+ // If the cloning starts at the beginning of the function, verify that
+ // the function arguments are mapped.
+ if (!StartingInst)
+ for (const Argument &II : OldFunc->args())
+ assert(VMap.count(&II) && "No mapping from source argument specified!");
+#endif
+
+ PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
+ NameSuffix, CodeInfo);
+ const BasicBlock *StartingBB;
+ if (StartingInst)
+ StartingBB = StartingInst->getParent();
+ else {
+ StartingBB = &OldFunc->getEntryBlock();
+ StartingInst = &StartingBB->front();
+ }
+
+ // Collect debug intrinsics for remapping later.
+ SmallVector<const DbgVariableIntrinsic *, 8> DbgIntrinsics;
+ for (const auto &BB : *OldFunc) {
+ for (const auto &I : BB) {
+ if (const auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
+ DbgIntrinsics.push_back(DVI);
+ }
+ }
+
+ // Clone the entry block, and anything recursively reachable from it.
+ std::vector<const BasicBlock *> CloneWorklist;
+ PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
+ while (!CloneWorklist.empty()) {
+ const BasicBlock *BB = CloneWorklist.back();
+ CloneWorklist.pop_back();
+ PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
+ }
+
+ // Loop over all of the basic blocks in the old function. If the block was
+ // reachable, we have cloned it and the old block is now in the value map:
+ // insert it into the new function in the right order. If not, ignore it.
+ //
+ // Defer PHI resolution until rest of function is resolved.
+ SmallVector<const PHINode *, 16> PHIToResolve;
+ for (const BasicBlock &BI : *OldFunc) {
+ Value *V = VMap.lookup(&BI);
+ BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
+ if (!NewBB)
+ continue; // Dead block.
+
+ // Add the new block to the new function.
+ NewFunc->insert(NewFunc->end(), NewBB);
+
+ // Handle PHI nodes specially, as we have to remove references to dead
+ // blocks.
+ for (const PHINode &PN : BI.phis()) {
+ // PHI nodes may have been remapped to non-PHI nodes by the caller or
+ // during the cloning process.
+ if (isa<PHINode>(VMap[&PN]))
+ PHIToResolve.push_back(&PN);
+ else
+ break;
+ }
+
+ // Finally, remap the terminator instructions, as those can't be remapped
+ // until all BBs are mapped.
+ RemapInstruction(NewBB->getTerminator(), VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer);
+ }
+
+ // Defer PHI resolution until rest of function is resolved, PHI resolution
+ // requires the CFG to be up-to-date.
+ for (unsigned phino = 0, e = PHIToResolve.size(); phino != e;) {
+ const PHINode *OPN = PHIToResolve[phino];
+ unsigned NumPreds = OPN->getNumIncomingValues();
+ const BasicBlock *OldBB = OPN->getParent();
+ BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
+
+ // Map operands for blocks that are live and remove operands for blocks
+ // that are dead.
+ for (; phino != PHIToResolve.size() &&
+ PHIToResolve[phino]->getParent() == OldBB;
+ ++phino) {
+ OPN = PHIToResolve[phino];
+ PHINode *PN = cast<PHINode>(VMap[OPN]);
+ for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
+ Value *V = VMap.lookup(PN->getIncomingBlock(pred));
+ if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
+ Value *InVal =
+ MapValue(PN->getIncomingValue(pred), VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+ assert(InVal && "Unknown input value?");
+ PN->setIncomingValue(pred, InVal);
+ PN->setIncomingBlock(pred, MappedBlock);
+ } else {
+ PN->removeIncomingValue(pred, false);
+ --pred; // Revisit the next entry.
+ --e;
+ }
+ }
+ }
+
+ // The loop above has removed PHI entries for those blocks that are dead
+ // and has updated others. However, if a block is live (i.e. copied over)
+ // but its terminator has been changed to not go to this block, then our
+ // phi nodes will have invalid entries. Update the PHI nodes in this
+ // case.
+ PHINode *PN = cast<PHINode>(NewBB->begin());
+ NumPreds = pred_size(NewBB);
+ if (NumPreds != PN->getNumIncomingValues()) {
+ assert(NumPreds < PN->getNumIncomingValues());
+ // Count how many times each predecessor comes to this block.
+ std::map<BasicBlock *, unsigned> PredCount;
+ for (BasicBlock *Pred : predecessors(NewBB))
+ --PredCount[Pred];
+
+ // Figure out how many entries to remove from each PHI.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ ++PredCount[PN->getIncomingBlock(i)];
+
+ // At this point, the excess predecessor entries are positive in the
+ // map. Loop over all of the PHIs and remove excess predecessor
+ // entries.
+ BasicBlock::iterator I = NewBB->begin();
+ for (; (PN = dyn_cast<PHINode>(I)); ++I) {
+ for (const auto &PCI : PredCount) {
+ BasicBlock *Pred = PCI.first;
+ for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
+ PN->removeIncomingValue(Pred, false);
+ }
+ }
+ }
+
+ // If the loops above have made these phi nodes have 0 or 1 operand,
+ // replace them with poison or the input value. We must do this for
+ // correctness, because 0-operand phis are not valid.
+ PN = cast<PHINode>(NewBB->begin());
+ if (PN->getNumIncomingValues() == 0) {
+ BasicBlock::iterator I = NewBB->begin();
+ BasicBlock::const_iterator OldI = OldBB->begin();
+ while ((PN = dyn_cast<PHINode>(I++))) {
+ Value *NV = PoisonValue::get(PN->getType());
+ PN->replaceAllUsesWith(NV);
+ assert(VMap[&*OldI] == PN && "VMap mismatch");
+ VMap[&*OldI] = NV;
+ PN->eraseFromParent();
+ ++OldI;
+ }
+ }
+ }
+
+ // Make a second pass over the PHINodes now that all of them have been
+ // remapped into the new function, simplifying the PHINode and performing any
+ // recursive simplifications exposed. This will transparently update the
+ // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
+ // two PHINodes, the iteration over the old PHIs remains valid, and the
+ // mapping will just map us to the new node (which may not even be a PHI
+ // node).
+ const DataLayout &DL = NewFunc->getParent()->getDataLayout();
+ SmallSetVector<const Value *, 8> Worklist;
+ for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
+ if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
+ Worklist.insert(PHIToResolve[Idx]);
+
+ // Note that we must test the size on each iteration, the worklist can grow.
+ for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
+ const Value *OrigV = Worklist[Idx];
+ auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
+ if (!I)
+ continue;
+
+ // Skip over non-intrinsic callsites, we don't want to remove any nodes from
+ // the CGSCC.
+ CallBase *CB = dyn_cast<CallBase>(I);
+ if (CB && CB->getCalledFunction() &&
+ !CB->getCalledFunction()->isIntrinsic())
+ continue;
+
+ // See if this instruction simplifies.
+ Value *SimpleV = simplifyInstruction(I, DL);
+ if (!SimpleV)
+ continue;
+
+ // Stash away all the uses of the old instruction so we can check them for
+ // recursive simplifications after a RAUW. This is cheaper than checking all
+ // uses of To on the recursive step in most cases.
+ for (const User *U : OrigV->users())
+ Worklist.insert(cast<Instruction>(U));
+
+ // Replace the instruction with its simplified value.
+ I->replaceAllUsesWith(SimpleV);
+
+ // If the original instruction had no side effects, remove it.
+ if (isInstructionTriviallyDead(I))
+ I->eraseFromParent();
+ else
+ VMap[OrigV] = I;
+ }
+
+ // Remap debug intrinsic operands now that all values have been mapped.
+ // Doing this now (late) preserves use-before-defs in debug intrinsics. If
+ // we didn't do this, ValueAsMetadata(use-before-def) operands would be
+ // replaced by empty metadata. This would signal later cleanup passes to
+ // remove the debug intrinsics, potentially causing incorrect locations.
+ for (const auto *DVI : DbgIntrinsics) {
+ if (DbgVariableIntrinsic *NewDVI =
+ cast_or_null<DbgVariableIntrinsic>(VMap.lookup(DVI)))
+ RemapInstruction(NewDVI, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer);
+ }
+
+ // Simplify conditional branches and switches with a constant operand. We try
+ // to prune these out when cloning, but if the simplification required
+ // looking through PHI nodes, those are only available after forming the full
+ // basic block. That may leave some here, and we still want to prune the dead
+ // code as early as possible.
+ Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
+ for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
+ ConstantFoldTerminator(&BB);
+
+ // Some blocks may have become unreachable as a result. Find and delete them.
+ {
+ SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
+ SmallVector<BasicBlock *, 16> Worklist;
+ Worklist.push_back(&*Begin);
+ while (!Worklist.empty()) {
+ BasicBlock *BB = Worklist.pop_back_val();
+ if (ReachableBlocks.insert(BB).second)
+ append_range(Worklist, successors(BB));
+ }
+
+ SmallVector<BasicBlock *, 16> UnreachableBlocks;
+ for (BasicBlock &BB : make_range(Begin, NewFunc->end()))
+ if (!ReachableBlocks.contains(&BB))
+ UnreachableBlocks.push_back(&BB);
+ DeleteDeadBlocks(UnreachableBlocks);
+ }
+
+ // Now that the inlined function body has been fully constructed, go through
+ // and zap unconditional fall-through branches. This happens all the time when
+ // specializing code: code specialization turns conditional branches into
+ // uncond branches, and this code folds them.
+ Function::iterator I = Begin;
+ while (I != NewFunc->end()) {
+ BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
+ if (!BI || BI->isConditional()) {
+ ++I;
+ continue;
+ }
+
+ BasicBlock *Dest = BI->getSuccessor(0);
+ if (!Dest->getSinglePredecessor()) {
+ ++I;
+ continue;
+ }
+
+ // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
+ // above should have zapped all of them..
+ assert(!isa<PHINode>(Dest->begin()));
+
+ // We know all single-entry PHI nodes in the inlined function have been
+ // removed, so we just need to splice the blocks.
+ BI->eraseFromParent();
+
+ // Make all PHI nodes that referred to Dest now refer to I as their source.
+ Dest->replaceAllUsesWith(&*I);
+
+ // Move all the instructions in the succ to the pred.
+ I->splice(I->end(), Dest);
+
+ // Remove the dest block.
+ Dest->eraseFromParent();
+
+ // Do not increment I, iteratively merge all things this block branches to.
+ }
+
+ // Make a final pass over the basic blocks from the old function to gather
+ // any return instructions which survived folding. We have to do this here
+ // because we can iteratively remove and merge returns above.
+ for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
+ E = NewFunc->end();
+ I != E; ++I)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
+ Returns.push_back(RI);
+}
+
+/// This works exactly like CloneFunctionInto,
+/// except that it does some simple constant prop and DCE on the fly. The
+/// effect of this is to copy significantly less code in cases where (for
+/// example) a function call with constant arguments is inlined, and those
+/// constant arguments cause a significant amount of code in the callee to be
+/// dead. Since this doesn't produce an exact copy of the input, it can't be
+/// used for things like CloneFunction or CloneModule.
+void llvm::CloneAndPruneFunctionInto(
+ Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges, SmallVectorImpl<ReturnInst *> &Returns,
+ const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
+ CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
+ ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
+}
+
+/// Remaps instructions in \p Blocks using the mapping in \p VMap.
+void llvm::remapInstructionsInBlocks(
+ const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
+ // Rewrite the code to refer to itself.
+ for (auto *BB : Blocks)
+ for (auto &Inst : *BB)
+ RemapInstruction(&Inst, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+}
+
+/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
+/// Blocks.
+///
+/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
+/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
+Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
+ Loop *OrigLoop, ValueToValueMapTy &VMap,
+ const Twine &NameSuffix, LoopInfo *LI,
+ DominatorTree *DT,
+ SmallVectorImpl<BasicBlock *> &Blocks) {
+ Function *F = OrigLoop->getHeader()->getParent();
+ Loop *ParentLoop = OrigLoop->getParentLoop();
+ DenseMap<Loop *, Loop *> LMap;
+
+ Loop *NewLoop = LI->AllocateLoop();
+ LMap[OrigLoop] = NewLoop;
+ if (ParentLoop)
+ ParentLoop->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+
+ BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
+ assert(OrigPH && "No preheader");
+ BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
+ // To rename the loop PHIs.
+ VMap[OrigPH] = NewPH;
+ Blocks.push_back(NewPH);
+
+ // Update LoopInfo.
+ if (ParentLoop)
+ ParentLoop->addBasicBlockToLoop(NewPH, *LI);
+
+ // Update DominatorTree.
+ DT->addNewBlock(NewPH, LoopDomBB);
+
+ for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
+ Loop *&NewLoop = LMap[CurLoop];
+ if (!NewLoop) {
+ NewLoop = LI->AllocateLoop();
+
+ // Establish the parent/child relationship.
+ Loop *OrigParent = CurLoop->getParentLoop();
+ assert(OrigParent && "Could not find the original parent loop");
+ Loop *NewParentLoop = LMap[OrigParent];
+ assert(NewParentLoop && "Could not find the new parent loop");
+
+ NewParentLoop->addChildLoop(NewLoop);
+ }
+ }
+
+ for (BasicBlock *BB : OrigLoop->getBlocks()) {
+ Loop *CurLoop = LI->getLoopFor(BB);
+ Loop *&NewLoop = LMap[CurLoop];
+ assert(NewLoop && "Expecting new loop to be allocated");
+
+ BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
+ VMap[BB] = NewBB;
+
+ // Update LoopInfo.
+ NewLoop->addBasicBlockToLoop(NewBB, *LI);
+
+ // Add DominatorTree node. After seeing all blocks, update to correct
+ // IDom.
+ DT->addNewBlock(NewBB, NewPH);
+
+ Blocks.push_back(NewBB);
+ }
+
+ for (BasicBlock *BB : OrigLoop->getBlocks()) {
+ // Update loop headers.
+ Loop *CurLoop = LI->getLoopFor(BB);
+ if (BB == CurLoop->getHeader())
+ LMap[CurLoop]->moveToHeader(cast<BasicBlock>(VMap[BB]));
+
+ // Update DominatorTree.
+ BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
+ DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
+ cast<BasicBlock>(VMap[IDomBB]));
+ }
+
+ // Move them physically from the end of the block list.
+ F->splice(Before->getIterator(), F, NewPH->getIterator());
+ F->splice(Before->getIterator(), F, NewLoop->getHeader()->getIterator(),
+ F->end());
+
+ return NewLoop;
+}
+
+/// Duplicate non-Phi instructions from the beginning of block up to
+/// StopAt instruction into a split block between BB and its predecessor.
+BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
+ BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
+ ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
+
+ assert(count(successors(PredBB), BB) == 1 &&
+ "There must be a single edge between PredBB and BB!");
+ // We are going to have to map operands from the original BB block to the new
+ // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
+ // account for entry from PredBB.
+ BasicBlock::iterator BI = BB->begin();
+ for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+ ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
+
+ BasicBlock *NewBB = SplitEdge(PredBB, BB);
+ NewBB->setName(PredBB->getName() + ".split");
+ Instruction *NewTerm = NewBB->getTerminator();
+
+ // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
+ // in the update set here.
+ DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
+ {DominatorTree::Insert, PredBB, NewBB},
+ {DominatorTree::Insert, NewBB, BB}});
+
+ // Clone the non-phi instructions of BB into NewBB, keeping track of the
+ // mapping and using it to remap operands in the cloned instructions.
+ // Stop once we see the terminator too. This covers the case where BB's
+ // terminator gets replaced and StopAt == BB's terminator.
+ for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
+ Instruction *New = BI->clone();
+ New->setName(BI->getName());
+ New->insertBefore(NewTerm);
+ ValueMapping[&*BI] = New;
+
+ // Remap operands to patch up intra-block references.
+ for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
+ if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
+ auto I = ValueMapping.find(Inst);
+ if (I != ValueMapping.end())
+ New->setOperand(i, I->second);
+ }
+ }
+
+ return NewBB;
+}
+
+void llvm::cloneNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
+ DenseMap<MDNode *, MDNode *> &ClonedScopes,
+ StringRef Ext, LLVMContext &Context) {
+ MDBuilder MDB(Context);
+
+ for (auto *ScopeList : NoAliasDeclScopes) {
+ for (const auto &MDOperand : ScopeList->operands()) {
+ if (MDNode *MD = dyn_cast<MDNode>(MDOperand)) {
+ AliasScopeNode SNANode(MD);
+
+ std::string Name;
+ auto ScopeName = SNANode.getName();
+ if (!ScopeName.empty())
+ Name = (Twine(ScopeName) + ":" + Ext).str();
+ else
+ Name = std::string(Ext);
+
+ MDNode *NewScope = MDB.createAnonymousAliasScope(
+ const_cast<MDNode *>(SNANode.getDomain()), Name);
+ ClonedScopes.insert(std::make_pair(MD, NewScope));
+ }
+ }
+ }
+}
+
+void llvm::adaptNoAliasScopes(Instruction *I,
+ const DenseMap<MDNode *, MDNode *> &ClonedScopes,
+ LLVMContext &Context) {
+ auto CloneScopeList = [&](const MDNode *ScopeList) -> MDNode * {
+ bool NeedsReplacement = false;
+ SmallVector<Metadata *, 8> NewScopeList;
+ for (const auto &MDOp : ScopeList->operands()) {
+ if (MDNode *MD = dyn_cast<MDNode>(MDOp)) {
+ if (auto *NewMD = ClonedScopes.lookup(MD)) {
+ NewScopeList.push_back(NewMD);
+ NeedsReplacement = true;
+ continue;
+ }
+ NewScopeList.push_back(MD);
+ }
+ }
+ if (NeedsReplacement)
+ return MDNode::get(Context, NewScopeList);
+ return nullptr;
+ };
+
+ if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(I))
+ if (auto *NewScopeList = CloneScopeList(Decl->getScopeList()))
+ Decl->setScopeList(NewScopeList);
+
+ auto replaceWhenNeeded = [&](unsigned MD_ID) {
+ if (const MDNode *CSNoAlias = I->getMetadata(MD_ID))
+ if (auto *NewScopeList = CloneScopeList(CSNoAlias))
+ I->setMetadata(MD_ID, NewScopeList);
+ };
+ replaceWhenNeeded(LLVMContext::MD_noalias);
+ replaceWhenNeeded(LLVMContext::MD_alias_scope);
+}
+
+void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
+ ArrayRef<BasicBlock *> NewBlocks,
+ LLVMContext &Context, StringRef Ext) {
+ if (NoAliasDeclScopes.empty())
+ return;
+
+ DenseMap<MDNode *, MDNode *> ClonedScopes;
+ LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
+ << NoAliasDeclScopes.size() << " node(s)\n");
+
+ cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
+ // Identify instructions using metadata that needs adaptation
+ for (BasicBlock *NewBlock : NewBlocks)
+ for (Instruction &I : *NewBlock)
+ adaptNoAliasScopes(&I, ClonedScopes, Context);
+}
+
+void llvm::cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
+ Instruction *IStart, Instruction *IEnd,
+ LLVMContext &Context, StringRef Ext) {
+ if (NoAliasDeclScopes.empty())
+ return;
+
+ DenseMap<MDNode *, MDNode *> ClonedScopes;
+ LLVM_DEBUG(dbgs() << "cloneAndAdaptNoAliasScopes: cloning "
+ << NoAliasDeclScopes.size() << " node(s)\n");
+
+ cloneNoAliasScopes(NoAliasDeclScopes, ClonedScopes, Ext, Context);
+ // Identify instructions using metadata that needs adaptation
+ assert(IStart->getParent() == IEnd->getParent() && "different basic block ?");
+ auto ItStart = IStart->getIterator();
+ auto ItEnd = IEnd->getIterator();
+ ++ItEnd; // IEnd is included, increment ItEnd to get the end of the range
+ for (auto &I : llvm::make_range(ItStart, ItEnd))
+ adaptNoAliasScopes(&I, ClonedScopes, Context);
+}
+
+void llvm::identifyNoAliasScopesToClone(
+ ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
+ for (BasicBlock *BB : BBs)
+ for (Instruction &I : *BB)
+ if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
+ NoAliasDeclScopes.push_back(Decl->getScopeList());
+}
+
+void llvm::identifyNoAliasScopesToClone(
+ BasicBlock::iterator Start, BasicBlock::iterator End,
+ SmallVectorImpl<MDNode *> &NoAliasDeclScopes) {
+ for (Instruction &I : make_range(Start, End))
+ if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
+ NoAliasDeclScopes.push_back(Decl->getScopeList());
+}