diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp | 3388 | 
1 files changed, 3388 insertions, 0 deletions
| diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp new file mode 100644 index 000000000000..74ab37fadf36 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp @@ -0,0 +1,3388 @@ +//===- Local.cpp - Functions to perform local transformations -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This family of functions perform various local transformations to the +// program. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumeBundleQueries.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LazyValueInfo.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/PseudoProbe.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/ValueMapper.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <iterator> +#include <map> +#include <utility> + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "local" + +STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); +STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); + +static cl::opt<bool> PHICSEDebugHash( +    "phicse-debug-hash", +#ifdef EXPENSIVE_CHECKS +    cl::init(true), +#else +    cl::init(false), +#endif +    cl::Hidden, +    cl::desc("Perform extra assertion checking to verify that PHINodes's hash " +             "function is well-behaved w.r.t. its isEqual predicate")); + +static cl::opt<unsigned> PHICSENumPHISmallSize( +    "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, +    cl::desc( +        "When the basic block contains not more than this number of PHI nodes, " +        "perform a (faster!) exhaustive search instead of set-driven one.")); + +// Max recursion depth for collectBitParts used when detecting bswap and +// bitreverse idioms. +static const unsigned BitPartRecursionMaxDepth = 48; + +//===----------------------------------------------------------------------===// +//  Local constant propagation. +// + +/// ConstantFoldTerminator - If a terminator instruction is predicated on a +/// constant value, convert it into an unconditional branch to the constant +/// destination.  This is a nontrivial operation because the successors of this +/// basic block must have their PHI nodes updated. +/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch +/// conditions and indirectbr addresses this might make dead if +/// DeleteDeadConditions is true. +bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, +                                  const TargetLibraryInfo *TLI, +                                  DomTreeUpdater *DTU) { +  Instruction *T = BB->getTerminator(); +  IRBuilder<> Builder(T); + +  // Branch - See if we are conditional jumping on constant +  if (auto *BI = dyn_cast<BranchInst>(T)) { +    if (BI->isUnconditional()) return false;  // Can't optimize uncond branch + +    BasicBlock *Dest1 = BI->getSuccessor(0); +    BasicBlock *Dest2 = BI->getSuccessor(1); + +    if (Dest2 == Dest1) {       // Conditional branch to same location? +      // This branch matches something like this: +      //     br bool %cond, label %Dest, label %Dest +      // and changes it into:  br label %Dest + +      // Let the basic block know that we are letting go of one copy of it. +      assert(BI->getParent() && "Terminator not inserted in block!"); +      Dest1->removePredecessor(BI->getParent()); + +      // Replace the conditional branch with an unconditional one. +      BranchInst *NewBI = Builder.CreateBr(Dest1); + +      // Transfer the metadata to the new branch instruction. +      NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, +                                LLVMContext::MD_annotation}); + +      Value *Cond = BI->getCondition(); +      BI->eraseFromParent(); +      if (DeleteDeadConditions) +        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); +      return true; +    } + +    if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { +      // Are we branching on constant? +      // YES.  Change to unconditional branch... +      BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; +      BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; + +      // Let the basic block know that we are letting go of it.  Based on this, +      // it will adjust it's PHI nodes. +      OldDest->removePredecessor(BB); + +      // Replace the conditional branch with an unconditional one. +      BranchInst *NewBI = Builder.CreateBr(Destination); + +      // Transfer the metadata to the new branch instruction. +      NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, +                                LLVMContext::MD_annotation}); + +      BI->eraseFromParent(); +      if (DTU) +        DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); +      return true; +    } + +    return false; +  } + +  if (auto *SI = dyn_cast<SwitchInst>(T)) { +    // If we are switching on a constant, we can convert the switch to an +    // unconditional branch. +    auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); +    BasicBlock *DefaultDest = SI->getDefaultDest(); +    BasicBlock *TheOnlyDest = DefaultDest; + +    // If the default is unreachable, ignore it when searching for TheOnlyDest. +    if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && +        SI->getNumCases() > 0) { +      TheOnlyDest = SI->case_begin()->getCaseSuccessor(); +    } + +    bool Changed = false; + +    // Figure out which case it goes to. +    for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { +      // Found case matching a constant operand? +      if (i->getCaseValue() == CI) { +        TheOnlyDest = i->getCaseSuccessor(); +        break; +      } + +      // Check to see if this branch is going to the same place as the default +      // dest.  If so, eliminate it as an explicit compare. +      if (i->getCaseSuccessor() == DefaultDest) { +        MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); +        unsigned NCases = SI->getNumCases(); +        // Fold the case metadata into the default if there will be any branches +        // left, unless the metadata doesn't match the switch. +        if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { +          // Collect branch weights into a vector. +          SmallVector<uint32_t, 8> Weights; +          for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; +               ++MD_i) { +            auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); +            Weights.push_back(CI->getValue().getZExtValue()); +          } +          // Merge weight of this case to the default weight. +          unsigned idx = i->getCaseIndex(); +          Weights[0] += Weights[idx+1]; +          // Remove weight for this case. +          std::swap(Weights[idx+1], Weights.back()); +          Weights.pop_back(); +          SI->setMetadata(LLVMContext::MD_prof, +                          MDBuilder(BB->getContext()). +                          createBranchWeights(Weights)); +        } +        // Remove this entry. +        BasicBlock *ParentBB = SI->getParent(); +        DefaultDest->removePredecessor(ParentBB); +        i = SI->removeCase(i); +        e = SI->case_end(); +        Changed = true; +        continue; +      } + +      // Otherwise, check to see if the switch only branches to one destination. +      // We do this by reseting "TheOnlyDest" to null when we find two non-equal +      // destinations. +      if (i->getCaseSuccessor() != TheOnlyDest) +        TheOnlyDest = nullptr; + +      // Increment this iterator as we haven't removed the case. +      ++i; +    } + +    if (CI && !TheOnlyDest) { +      // Branching on a constant, but not any of the cases, go to the default +      // successor. +      TheOnlyDest = SI->getDefaultDest(); +    } + +    // If we found a single destination that we can fold the switch into, do so +    // now. +    if (TheOnlyDest) { +      // Insert the new branch. +      Builder.CreateBr(TheOnlyDest); +      BasicBlock *BB = SI->getParent(); + +      SmallSet<BasicBlock *, 8> RemovedSuccessors; + +      // Remove entries from PHI nodes which we no longer branch to... +      BasicBlock *SuccToKeep = TheOnlyDest; +      for (BasicBlock *Succ : successors(SI)) { +        if (DTU && Succ != TheOnlyDest) +          RemovedSuccessors.insert(Succ); +        // Found case matching a constant operand? +        if (Succ == SuccToKeep) { +          SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest +        } else { +          Succ->removePredecessor(BB); +        } +      } + +      // Delete the old switch. +      Value *Cond = SI->getCondition(); +      SI->eraseFromParent(); +      if (DeleteDeadConditions) +        RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); +      if (DTU) { +        std::vector<DominatorTree::UpdateType> Updates; +        Updates.reserve(RemovedSuccessors.size()); +        for (auto *RemovedSuccessor : RemovedSuccessors) +          Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); +        DTU->applyUpdates(Updates); +      } +      return true; +    } + +    if (SI->getNumCases() == 1) { +      // Otherwise, we can fold this switch into a conditional branch +      // instruction if it has only one non-default destination. +      auto FirstCase = *SI->case_begin(); +      Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), +          FirstCase.getCaseValue(), "cond"); + +      // Insert the new branch. +      BranchInst *NewBr = Builder.CreateCondBr(Cond, +                                               FirstCase.getCaseSuccessor(), +                                               SI->getDefaultDest()); +      MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); +      if (MD && MD->getNumOperands() == 3) { +        ConstantInt *SICase = +            mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); +        ConstantInt *SIDef = +            mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); +        assert(SICase && SIDef); +        // The TrueWeight should be the weight for the single case of SI. +        NewBr->setMetadata(LLVMContext::MD_prof, +                        MDBuilder(BB->getContext()). +                        createBranchWeights(SICase->getValue().getZExtValue(), +                                            SIDef->getValue().getZExtValue())); +      } + +      // Update make.implicit metadata to the newly-created conditional branch. +      MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); +      if (MakeImplicitMD) +        NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); + +      // Delete the old switch. +      SI->eraseFromParent(); +      return true; +    } +    return Changed; +  } + +  if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { +    // indirectbr blockaddress(@F, @BB) -> br label @BB +    if (auto *BA = +          dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { +      BasicBlock *TheOnlyDest = BA->getBasicBlock(); +      SmallSet<BasicBlock *, 8> RemovedSuccessors; + +      // Insert the new branch. +      Builder.CreateBr(TheOnlyDest); + +      BasicBlock *SuccToKeep = TheOnlyDest; +      for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { +        BasicBlock *DestBB = IBI->getDestination(i); +        if (DTU && DestBB != TheOnlyDest) +          RemovedSuccessors.insert(DestBB); +        if (IBI->getDestination(i) == SuccToKeep) { +          SuccToKeep = nullptr; +        } else { +          DestBB->removePredecessor(BB); +        } +      } +      Value *Address = IBI->getAddress(); +      IBI->eraseFromParent(); +      if (DeleteDeadConditions) +        // Delete pointer cast instructions. +        RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); + +      // Also zap the blockaddress constant if there are no users remaining, +      // otherwise the destination is still marked as having its address taken. +      if (BA->use_empty()) +        BA->destroyConstant(); + +      // If we didn't find our destination in the IBI successor list, then we +      // have undefined behavior.  Replace the unconditional branch with an +      // 'unreachable' instruction. +      if (SuccToKeep) { +        BB->getTerminator()->eraseFromParent(); +        new UnreachableInst(BB->getContext(), BB); +      } + +      if (DTU) { +        std::vector<DominatorTree::UpdateType> Updates; +        Updates.reserve(RemovedSuccessors.size()); +        for (auto *RemovedSuccessor : RemovedSuccessors) +          Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); +        DTU->applyUpdates(Updates); +      } +      return true; +    } +  } + +  return false; +} + +//===----------------------------------------------------------------------===// +//  Local dead code elimination. +// + +/// isInstructionTriviallyDead - Return true if the result produced by the +/// instruction is not used, and the instruction has no side effects. +/// +bool llvm::isInstructionTriviallyDead(Instruction *I, +                                      const TargetLibraryInfo *TLI) { +  if (!I->use_empty()) +    return false; +  return wouldInstructionBeTriviallyDead(I, TLI); +} + +bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, +                                           const TargetLibraryInfo *TLI) { +  if (I->isTerminator()) +    return false; + +  // We don't want the landingpad-like instructions removed by anything this +  // general. +  if (I->isEHPad()) +    return false; + +  // We don't want debug info removed by anything this general, unless +  // debug info is empty. +  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { +    if (DDI->getAddress()) +      return false; +    return true; +  } +  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { +    if (DVI->hasArgList() || DVI->getValue(0)) +      return false; +    return true; +  } +  if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { +    if (DLI->getLabel()) +      return false; +    return true; +  } + +  if (!I->willReturn()) +    return false; + +  if (!I->mayHaveSideEffects()) +    return true; + +  // Special case intrinsics that "may have side effects" but can be deleted +  // when dead. +  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { +    // Safe to delete llvm.stacksave and launder.invariant.group if dead. +    if (II->getIntrinsicID() == Intrinsic::stacksave || +        II->getIntrinsicID() == Intrinsic::launder_invariant_group) +      return true; + +    if (II->isLifetimeStartOrEnd()) { +      auto *Arg = II->getArgOperand(1); +      // Lifetime intrinsics are dead when their right-hand is undef. +      if (isa<UndefValue>(Arg)) +        return true; +      // If the right-hand is an alloc, global, or argument and the only uses +      // are lifetime intrinsics then the intrinsics are dead. +      if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) +        return llvm::all_of(Arg->uses(), [](Use &Use) { +          if (IntrinsicInst *IntrinsicUse = +                  dyn_cast<IntrinsicInst>(Use.getUser())) +            return IntrinsicUse->isLifetimeStartOrEnd(); +          return false; +        }); +      return false; +    } + +    // Assumptions are dead if their condition is trivially true.  Guards on +    // true are operationally no-ops.  In the future we can consider more +    // sophisticated tradeoffs for guards considering potential for check +    // widening, but for now we keep things simple. +    if ((II->getIntrinsicID() == Intrinsic::assume && +         isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) || +        II->getIntrinsicID() == Intrinsic::experimental_guard) { +      if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) +        return !Cond->isZero(); + +      return false; +    } + +    if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { +      Optional<fp::ExceptionBehavior> ExBehavior = FPI->getExceptionBehavior(); +      return ExBehavior.getValue() != fp::ebStrict; +    } +  } + +  if (isAllocLikeFn(I, TLI)) +    return true; + +  if (CallInst *CI = isFreeCall(I, TLI)) +    if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) +      return C->isNullValue() || isa<UndefValue>(C); + +  if (auto *Call = dyn_cast<CallBase>(I)) +    if (isMathLibCallNoop(Call, TLI)) +      return true; + +  // To express possible interaction with floating point environment constrained +  // intrinsics are described as if they access memory. So they look like having +  // side effect but actually do not have it unless they raise floating point +  // exception. If FP exceptions are ignored, the intrinsic may be deleted. +  if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(I)) { +    Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); +    if (!EB || *EB == fp::ExceptionBehavior::ebIgnore) +      return true; +  } + +  return false; +} + +/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a +/// trivially dead instruction, delete it.  If that makes any of its operands +/// trivially dead, delete them too, recursively.  Return true if any +/// instructions were deleted. +bool llvm::RecursivelyDeleteTriviallyDeadInstructions( +    Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, +    std::function<void(Value *)> AboutToDeleteCallback) { +  Instruction *I = dyn_cast<Instruction>(V); +  if (!I || !isInstructionTriviallyDead(I, TLI)) +    return false; + +  SmallVector<WeakTrackingVH, 16> DeadInsts; +  DeadInsts.push_back(I); +  RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, +                                             AboutToDeleteCallback); + +  return true; +} + +bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( +    SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, +    MemorySSAUpdater *MSSAU, +    std::function<void(Value *)> AboutToDeleteCallback) { +  unsigned S = 0, E = DeadInsts.size(), Alive = 0; +  for (; S != E; ++S) { +    auto *I = cast<Instruction>(DeadInsts[S]); +    if (!isInstructionTriviallyDead(I)) { +      DeadInsts[S] = nullptr; +      ++Alive; +    } +  } +  if (Alive == E) +    return false; +  RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, +                                             AboutToDeleteCallback); +  return true; +} + +void llvm::RecursivelyDeleteTriviallyDeadInstructions( +    SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, +    MemorySSAUpdater *MSSAU, +    std::function<void(Value *)> AboutToDeleteCallback) { +  // Process the dead instruction list until empty. +  while (!DeadInsts.empty()) { +    Value *V = DeadInsts.pop_back_val(); +    Instruction *I = cast_or_null<Instruction>(V); +    if (!I) +      continue; +    assert(isInstructionTriviallyDead(I, TLI) && +           "Live instruction found in dead worklist!"); +    assert(I->use_empty() && "Instructions with uses are not dead."); + +    // Don't lose the debug info while deleting the instructions. +    salvageDebugInfo(*I); + +    if (AboutToDeleteCallback) +      AboutToDeleteCallback(I); + +    // Null out all of the instruction's operands to see if any operand becomes +    // dead as we go. +    for (Use &OpU : I->operands()) { +      Value *OpV = OpU.get(); +      OpU.set(nullptr); + +      if (!OpV->use_empty()) +        continue; + +      // If the operand is an instruction that became dead as we nulled out the +      // operand, and if it is 'trivially' dead, delete it in a future loop +      // iteration. +      if (Instruction *OpI = dyn_cast<Instruction>(OpV)) +        if (isInstructionTriviallyDead(OpI, TLI)) +          DeadInsts.push_back(OpI); +    } +    if (MSSAU) +      MSSAU->removeMemoryAccess(I); + +    I->eraseFromParent(); +  } +} + +bool llvm::replaceDbgUsesWithUndef(Instruction *I) { +  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; +  findDbgUsers(DbgUsers, I); +  for (auto *DII : DbgUsers) { +    Value *Undef = UndefValue::get(I->getType()); +    DII->replaceVariableLocationOp(I, Undef); +  } +  return !DbgUsers.empty(); +} + +/// areAllUsesEqual - Check whether the uses of a value are all the same. +/// This is similar to Instruction::hasOneUse() except this will also return +/// true when there are no uses or multiple uses that all refer to the same +/// value. +static bool areAllUsesEqual(Instruction *I) { +  Value::user_iterator UI = I->user_begin(); +  Value::user_iterator UE = I->user_end(); +  if (UI == UE) +    return true; + +  User *TheUse = *UI; +  for (++UI; UI != UE; ++UI) { +    if (*UI != TheUse) +      return false; +  } +  return true; +} + +/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively +/// dead PHI node, due to being a def-use chain of single-use nodes that +/// either forms a cycle or is terminated by a trivially dead instruction, +/// delete it.  If that makes any of its operands trivially dead, delete them +/// too, recursively.  Return true if a change was made. +bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, +                                        const TargetLibraryInfo *TLI, +                                        llvm::MemorySSAUpdater *MSSAU) { +  SmallPtrSet<Instruction*, 4> Visited; +  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); +       I = cast<Instruction>(*I->user_begin())) { +    if (I->use_empty()) +      return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); + +    // If we find an instruction more than once, we're on a cycle that +    // won't prove fruitful. +    if (!Visited.insert(I).second) { +      // Break the cycle and delete the instruction and its operands. +      I->replaceAllUsesWith(UndefValue::get(I->getType())); +      (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); +      return true; +    } +  } +  return false; +} + +static bool +simplifyAndDCEInstruction(Instruction *I, +                          SmallSetVector<Instruction *, 16> &WorkList, +                          const DataLayout &DL, +                          const TargetLibraryInfo *TLI) { +  if (isInstructionTriviallyDead(I, TLI)) { +    salvageDebugInfo(*I); + +    // Null out all of the instruction's operands to see if any operand becomes +    // dead as we go. +    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { +      Value *OpV = I->getOperand(i); +      I->setOperand(i, nullptr); + +      if (!OpV->use_empty() || I == OpV) +        continue; + +      // If the operand is an instruction that became dead as we nulled out the +      // operand, and if it is 'trivially' dead, delete it in a future loop +      // iteration. +      if (Instruction *OpI = dyn_cast<Instruction>(OpV)) +        if (isInstructionTriviallyDead(OpI, TLI)) +          WorkList.insert(OpI); +    } + +    I->eraseFromParent(); + +    return true; +  } + +  if (Value *SimpleV = SimplifyInstruction(I, DL)) { +    // Add the users to the worklist. CAREFUL: an instruction can use itself, +    // in the case of a phi node. +    for (User *U : I->users()) { +      if (U != I) { +        WorkList.insert(cast<Instruction>(U)); +      } +    } + +    // Replace the instruction with its simplified value. +    bool Changed = false; +    if (!I->use_empty()) { +      I->replaceAllUsesWith(SimpleV); +      Changed = true; +    } +    if (isInstructionTriviallyDead(I, TLI)) { +      I->eraseFromParent(); +      Changed = true; +    } +    return Changed; +  } +  return false; +} + +/// SimplifyInstructionsInBlock - Scan the specified basic block and try to +/// simplify any instructions in it and recursively delete dead instructions. +/// +/// This returns true if it changed the code, note that it can delete +/// instructions in other blocks as well in this block. +bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, +                                       const TargetLibraryInfo *TLI) { +  bool MadeChange = false; +  const DataLayout &DL = BB->getModule()->getDataLayout(); + +#ifndef NDEBUG +  // In debug builds, ensure that the terminator of the block is never replaced +  // or deleted by these simplifications. The idea of simplification is that it +  // cannot introduce new instructions, and there is no way to replace the +  // terminator of a block without introducing a new instruction. +  AssertingVH<Instruction> TerminatorVH(&BB->back()); +#endif + +  SmallSetVector<Instruction *, 16> WorkList; +  // Iterate over the original function, only adding insts to the worklist +  // if they actually need to be revisited. This avoids having to pre-init +  // the worklist with the entire function's worth of instructions. +  for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); +       BI != E;) { +    assert(!BI->isTerminator()); +    Instruction *I = &*BI; +    ++BI; + +    // We're visiting this instruction now, so make sure it's not in the +    // worklist from an earlier visit. +    if (!WorkList.count(I)) +      MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); +  } + +  while (!WorkList.empty()) { +    Instruction *I = WorkList.pop_back_val(); +    MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); +  } +  return MadeChange; +} + +//===----------------------------------------------------------------------===// +//  Control Flow Graph Restructuring. +// + +void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, +                                       DomTreeUpdater *DTU) { + +  // If BB has single-entry PHI nodes, fold them. +  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { +    Value *NewVal = PN->getIncomingValue(0); +    // Replace self referencing PHI with undef, it must be dead. +    if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); +    PN->replaceAllUsesWith(NewVal); +    PN->eraseFromParent(); +  } + +  BasicBlock *PredBB = DestBB->getSinglePredecessor(); +  assert(PredBB && "Block doesn't have a single predecessor!"); + +  bool ReplaceEntryBB = PredBB->isEntryBlock(); + +  // DTU updates: Collect all the edges that enter +  // PredBB. These dominator edges will be redirected to DestBB. +  SmallVector<DominatorTree::UpdateType, 32> Updates; + +  if (DTU) { +    SmallPtrSet<BasicBlock *, 2> PredsOfPredBB(pred_begin(PredBB), +                                               pred_end(PredBB)); +    Updates.reserve(Updates.size() + 2 * PredsOfPredBB.size() + 1); +    for (BasicBlock *PredOfPredBB : PredsOfPredBB) +      // This predecessor of PredBB may already have DestBB as a successor. +      if (PredOfPredBB != PredBB) +        Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); +    for (BasicBlock *PredOfPredBB : PredsOfPredBB) +      Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); +    Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); +  } + +  // Zap anything that took the address of DestBB.  Not doing this will give the +  // address an invalid value. +  if (DestBB->hasAddressTaken()) { +    BlockAddress *BA = BlockAddress::get(DestBB); +    Constant *Replacement = +      ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); +    BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, +                                                     BA->getType())); +    BA->destroyConstant(); +  } + +  // Anything that branched to PredBB now branches to DestBB. +  PredBB->replaceAllUsesWith(DestBB); + +  // Splice all the instructions from PredBB to DestBB. +  PredBB->getTerminator()->eraseFromParent(); +  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); +  new UnreachableInst(PredBB->getContext(), PredBB); + +  // If the PredBB is the entry block of the function, move DestBB up to +  // become the entry block after we erase PredBB. +  if (ReplaceEntryBB) +    DestBB->moveAfter(PredBB); + +  if (DTU) { +    assert(PredBB->getInstList().size() == 1 && +           isa<UnreachableInst>(PredBB->getTerminator()) && +           "The successor list of PredBB isn't empty before " +           "applying corresponding DTU updates."); +    DTU->applyUpdatesPermissive(Updates); +    DTU->deleteBB(PredBB); +    // Recalculation of DomTree is needed when updating a forward DomTree and +    // the Entry BB is replaced. +    if (ReplaceEntryBB && DTU->hasDomTree()) { +      // The entry block was removed and there is no external interface for +      // the dominator tree to be notified of this change. In this corner-case +      // we recalculate the entire tree. +      DTU->recalculate(*(DestBB->getParent())); +    } +  } + +  else { +    PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. +  } +} + +/// Return true if we can choose one of these values to use in place of the +/// other. Note that we will always choose the non-undef value to keep. +static bool CanMergeValues(Value *First, Value *Second) { +  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); +} + +/// Return true if we can fold BB, an almost-empty BB ending in an unconditional +/// branch to Succ, into Succ. +/// +/// Assumption: Succ is the single successor for BB. +static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { +  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); + +  LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " +                    << Succ->getName() << "\n"); +  // Shortcut, if there is only a single predecessor it must be BB and merging +  // is always safe +  if (Succ->getSinglePredecessor()) return true; + +  // Make a list of the predecessors of BB +  SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); + +  // Look at all the phi nodes in Succ, to see if they present a conflict when +  // merging these blocks +  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { +    PHINode *PN = cast<PHINode>(I); + +    // If the incoming value from BB is again a PHINode in +    // BB which has the same incoming value for *PI as PN does, we can +    // merge the phi nodes and then the blocks can still be merged +    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); +    if (BBPN && BBPN->getParent() == BB) { +      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { +        BasicBlock *IBB = PN->getIncomingBlock(PI); +        if (BBPreds.count(IBB) && +            !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), +                            PN->getIncomingValue(PI))) { +          LLVM_DEBUG(dbgs() +                     << "Can't fold, phi node " << PN->getName() << " in " +                     << Succ->getName() << " is conflicting with " +                     << BBPN->getName() << " with regard to common predecessor " +                     << IBB->getName() << "\n"); +          return false; +        } +      } +    } else { +      Value* Val = PN->getIncomingValueForBlock(BB); +      for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { +        // See if the incoming value for the common predecessor is equal to the +        // one for BB, in which case this phi node will not prevent the merging +        // of the block. +        BasicBlock *IBB = PN->getIncomingBlock(PI); +        if (BBPreds.count(IBB) && +            !CanMergeValues(Val, PN->getIncomingValue(PI))) { +          LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() +                            << " in " << Succ->getName() +                            << " is conflicting with regard to common " +                            << "predecessor " << IBB->getName() << "\n"); +          return false; +        } +      } +    } +  } + +  return true; +} + +using PredBlockVector = SmallVector<BasicBlock *, 16>; +using IncomingValueMap = DenseMap<BasicBlock *, Value *>; + +/// Determines the value to use as the phi node input for a block. +/// +/// Select between \p OldVal any value that we know flows from \p BB +/// to a particular phi on the basis of which one (if either) is not +/// undef. Update IncomingValues based on the selected value. +/// +/// \param OldVal The value we are considering selecting. +/// \param BB The block that the value flows in from. +/// \param IncomingValues A map from block-to-value for other phi inputs +/// that we have examined. +/// +/// \returns the selected value. +static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, +                                          IncomingValueMap &IncomingValues) { +  if (!isa<UndefValue>(OldVal)) { +    assert((!IncomingValues.count(BB) || +            IncomingValues.find(BB)->second == OldVal) && +           "Expected OldVal to match incoming value from BB!"); + +    IncomingValues.insert(std::make_pair(BB, OldVal)); +    return OldVal; +  } + +  IncomingValueMap::const_iterator It = IncomingValues.find(BB); +  if (It != IncomingValues.end()) return It->second; + +  return OldVal; +} + +/// Create a map from block to value for the operands of a +/// given phi. +/// +/// Create a map from block to value for each non-undef value flowing +/// into \p PN. +/// +/// \param PN The phi we are collecting the map for. +/// \param IncomingValues [out] The map from block to value for this phi. +static void gatherIncomingValuesToPhi(PHINode *PN, +                                      IncomingValueMap &IncomingValues) { +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +    BasicBlock *BB = PN->getIncomingBlock(i); +    Value *V = PN->getIncomingValue(i); + +    if (!isa<UndefValue>(V)) +      IncomingValues.insert(std::make_pair(BB, V)); +  } +} + +/// Replace the incoming undef values to a phi with the values +/// from a block-to-value map. +/// +/// \param PN The phi we are replacing the undefs in. +/// \param IncomingValues A map from block to value. +static void replaceUndefValuesInPhi(PHINode *PN, +                                    const IncomingValueMap &IncomingValues) { +  SmallVector<unsigned> TrueUndefOps; +  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +    Value *V = PN->getIncomingValue(i); + +    if (!isa<UndefValue>(V)) continue; + +    BasicBlock *BB = PN->getIncomingBlock(i); +    IncomingValueMap::const_iterator It = IncomingValues.find(BB); + +    // Keep track of undef/poison incoming values. Those must match, so we fix +    // them up below if needed. +    // Note: this is conservatively correct, but we could try harder and group +    // the undef values per incoming basic block. +    if (It == IncomingValues.end()) { +      TrueUndefOps.push_back(i); +      continue; +    } + +    // There is a defined value for this incoming block, so map this undef +    // incoming value to the defined value. +    PN->setIncomingValue(i, It->second); +  } + +  // If there are both undef and poison values incoming, then convert those +  // values to undef. It is invalid to have different values for the same +  // incoming block. +  unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { +    return isa<PoisonValue>(PN->getIncomingValue(i)); +  }); +  if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { +    for (unsigned i : TrueUndefOps) +      PN->setIncomingValue(i, UndefValue::get(PN->getType())); +  } +} + +/// Replace a value flowing from a block to a phi with +/// potentially multiple instances of that value flowing from the +/// block's predecessors to the phi. +/// +/// \param BB The block with the value flowing into the phi. +/// \param BBPreds The predecessors of BB. +/// \param PN The phi that we are updating. +static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, +                                                const PredBlockVector &BBPreds, +                                                PHINode *PN) { +  Value *OldVal = PN->removeIncomingValue(BB, false); +  assert(OldVal && "No entry in PHI for Pred BB!"); + +  IncomingValueMap IncomingValues; + +  // We are merging two blocks - BB, and the block containing PN - and +  // as a result we need to redirect edges from the predecessors of BB +  // to go to the block containing PN, and update PN +  // accordingly. Since we allow merging blocks in the case where the +  // predecessor and successor blocks both share some predecessors, +  // and where some of those common predecessors might have undef +  // values flowing into PN, we want to rewrite those values to be +  // consistent with the non-undef values. + +  gatherIncomingValuesToPhi(PN, IncomingValues); + +  // If this incoming value is one of the PHI nodes in BB, the new entries +  // in the PHI node are the entries from the old PHI. +  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { +    PHINode *OldValPN = cast<PHINode>(OldVal); +    for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { +      // Note that, since we are merging phi nodes and BB and Succ might +      // have common predecessors, we could end up with a phi node with +      // identical incoming branches. This will be cleaned up later (and +      // will trigger asserts if we try to clean it up now, without also +      // simplifying the corresponding conditional branch). +      BasicBlock *PredBB = OldValPN->getIncomingBlock(i); +      Value *PredVal = OldValPN->getIncomingValue(i); +      Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, +                                                    IncomingValues); + +      // And add a new incoming value for this predecessor for the +      // newly retargeted branch. +      PN->addIncoming(Selected, PredBB); +    } +  } else { +    for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { +      // Update existing incoming values in PN for this +      // predecessor of BB. +      BasicBlock *PredBB = BBPreds[i]; +      Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, +                                                    IncomingValues); + +      // And add a new incoming value for this predecessor for the +      // newly retargeted branch. +      PN->addIncoming(Selected, PredBB); +    } +  } + +  replaceUndefValuesInPhi(PN, IncomingValues); +} + +bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, +                                                   DomTreeUpdater *DTU) { +  assert(BB != &BB->getParent()->getEntryBlock() && +         "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); + +  // We can't eliminate infinite loops. +  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); +  if (BB == Succ) return false; + +  // Check to see if merging these blocks would cause conflicts for any of the +  // phi nodes in BB or Succ. If not, we can safely merge. +  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; + +  // Check for cases where Succ has multiple predecessors and a PHI node in BB +  // has uses which will not disappear when the PHI nodes are merged.  It is +  // possible to handle such cases, but difficult: it requires checking whether +  // BB dominates Succ, which is non-trivial to calculate in the case where +  // Succ has multiple predecessors.  Also, it requires checking whether +  // constructing the necessary self-referential PHI node doesn't introduce any +  // conflicts; this isn't too difficult, but the previous code for doing this +  // was incorrect. +  // +  // Note that if this check finds a live use, BB dominates Succ, so BB is +  // something like a loop pre-header (or rarely, a part of an irreducible CFG); +  // folding the branch isn't profitable in that case anyway. +  if (!Succ->getSinglePredecessor()) { +    BasicBlock::iterator BBI = BB->begin(); +    while (isa<PHINode>(*BBI)) { +      for (Use &U : BBI->uses()) { +        if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { +          if (PN->getIncomingBlock(U) != BB) +            return false; +        } else { +          return false; +        } +      } +      ++BBI; +    } +  } + +  // We cannot fold the block if it's a branch to an already present callbr +  // successor because that creates duplicate successors. +  for (BasicBlock *PredBB : predecessors(BB)) { +    if (auto *CBI = dyn_cast<CallBrInst>(PredBB->getTerminator())) { +      if (Succ == CBI->getDefaultDest()) +        return false; +      for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) +        if (Succ == CBI->getIndirectDest(i)) +          return false; +    } +  } + +  LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); + +  SmallVector<DominatorTree::UpdateType, 32> Updates; +  if (DTU) { +    // All predecessors of BB will be moved to Succ. +    SmallPtrSet<BasicBlock *, 8> PredsOfBB(pred_begin(BB), pred_end(BB)); +    SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ)); +    Updates.reserve(Updates.size() + 2 * PredsOfBB.size() + 1); +    for (auto *PredOfBB : PredsOfBB) +      // This predecessor of BB may already have Succ as a successor. +      if (!PredsOfSucc.contains(PredOfBB)) +        Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); +    for (auto *PredOfBB : PredsOfBB) +      Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); +    Updates.push_back({DominatorTree::Delete, BB, Succ}); +  } + +  if (isa<PHINode>(Succ->begin())) { +    // If there is more than one pred of succ, and there are PHI nodes in +    // the successor, then we need to add incoming edges for the PHI nodes +    // +    const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); + +    // Loop over all of the PHI nodes in the successor of BB. +    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { +      PHINode *PN = cast<PHINode>(I); + +      redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); +    } +  } + +  if (Succ->getSinglePredecessor()) { +    // BB is the only predecessor of Succ, so Succ will end up with exactly +    // the same predecessors BB had. + +    // Copy over any phi, debug or lifetime instruction. +    BB->getTerminator()->eraseFromParent(); +    Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), +                               BB->getInstList()); +  } else { +    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { +      // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. +      assert(PN->use_empty() && "There shouldn't be any uses here!"); +      PN->eraseFromParent(); +    } +  } + +  // If the unconditional branch we replaced contains llvm.loop metadata, we +  // add the metadata to the branch instructions in the predecessors. +  unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); +  Instruction *TI = BB->getTerminator(); +  if (TI) +    if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) +      for (BasicBlock *Pred : predecessors(BB)) +        Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); + +  // Everything that jumped to BB now goes to Succ. +  BB->replaceAllUsesWith(Succ); +  if (!Succ->hasName()) Succ->takeName(BB); + +  // Clear the successor list of BB to match updates applying to DTU later. +  if (BB->getTerminator()) +    BB->getInstList().pop_back(); +  new UnreachableInst(BB->getContext(), BB); +  assert(succ_empty(BB) && "The successor list of BB isn't empty before " +                           "applying corresponding DTU updates."); + +  if (DTU) +    DTU->applyUpdates(Updates); + +  DeleteDeadBlock(BB, DTU); + +  return true; +} + +static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) { +  // This implementation doesn't currently consider undef operands +  // specially. Theoretically, two phis which are identical except for +  // one having an undef where the other doesn't could be collapsed. + +  bool Changed = false; + +  // Examine each PHI. +  // Note that increment of I must *NOT* be in the iteration_expression, since +  // we don't want to immediately advance when we restart from the beginning. +  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { +    ++I; +    // Is there an identical PHI node in this basic block? +    // Note that we only look in the upper square's triangle, +    // we already checked that the lower triangle PHI's aren't identical. +    for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { +      if (!DuplicatePN->isIdenticalToWhenDefined(PN)) +        continue; +      // A duplicate. Replace this PHI with the base PHI. +      ++NumPHICSEs; +      DuplicatePN->replaceAllUsesWith(PN); +      DuplicatePN->eraseFromParent(); +      Changed = true; + +      // The RAUW can change PHIs that we already visited. +      I = BB->begin(); +      break; // Start over from the beginning. +    } +  } +  return Changed; +} + +static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) { +  // This implementation doesn't currently consider undef operands +  // specially. Theoretically, two phis which are identical except for +  // one having an undef where the other doesn't could be collapsed. + +  struct PHIDenseMapInfo { +    static PHINode *getEmptyKey() { +      return DenseMapInfo<PHINode *>::getEmptyKey(); +    } + +    static PHINode *getTombstoneKey() { +      return DenseMapInfo<PHINode *>::getTombstoneKey(); +    } + +    static bool isSentinel(PHINode *PN) { +      return PN == getEmptyKey() || PN == getTombstoneKey(); +    } + +    // WARNING: this logic must be kept in sync with +    //          Instruction::isIdenticalToWhenDefined()! +    static unsigned getHashValueImpl(PHINode *PN) { +      // Compute a hash value on the operands. Instcombine will likely have +      // sorted them, which helps expose duplicates, but we have to check all +      // the operands to be safe in case instcombine hasn't run. +      return static_cast<unsigned>(hash_combine( +          hash_combine_range(PN->value_op_begin(), PN->value_op_end()), +          hash_combine_range(PN->block_begin(), PN->block_end()))); +    } + +    static unsigned getHashValue(PHINode *PN) { +#ifndef NDEBUG +      // If -phicse-debug-hash was specified, return a constant -- this +      // will force all hashing to collide, so we'll exhaustively search +      // the table for a match, and the assertion in isEqual will fire if +      // there's a bug causing equal keys to hash differently. +      if (PHICSEDebugHash) +        return 0; +#endif +      return getHashValueImpl(PN); +    } + +    static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { +      if (isSentinel(LHS) || isSentinel(RHS)) +        return LHS == RHS; +      return LHS->isIdenticalTo(RHS); +    } + +    static bool isEqual(PHINode *LHS, PHINode *RHS) { +      // These comparisons are nontrivial, so assert that equality implies +      // hash equality (DenseMap demands this as an invariant). +      bool Result = isEqualImpl(LHS, RHS); +      assert(!Result || (isSentinel(LHS) && LHS == RHS) || +             getHashValueImpl(LHS) == getHashValueImpl(RHS)); +      return Result; +    } +  }; + +  // Set of unique PHINodes. +  DenseSet<PHINode *, PHIDenseMapInfo> PHISet; +  PHISet.reserve(4 * PHICSENumPHISmallSize); + +  // Examine each PHI. +  bool Changed = false; +  for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { +    auto Inserted = PHISet.insert(PN); +    if (!Inserted.second) { +      // A duplicate. Replace this PHI with its duplicate. +      ++NumPHICSEs; +      PN->replaceAllUsesWith(*Inserted.first); +      PN->eraseFromParent(); +      Changed = true; + +      // The RAUW can change PHIs that we already visited. Start over from the +      // beginning. +      PHISet.clear(); +      I = BB->begin(); +    } +  } + +  return Changed; +} + +bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { +  if ( +#ifndef NDEBUG +      !PHICSEDebugHash && +#endif +      hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) +    return EliminateDuplicatePHINodesNaiveImpl(BB); +  return EliminateDuplicatePHINodesSetBasedImpl(BB); +} + +/// If the specified pointer points to an object that we control, try to modify +/// the object's alignment to PrefAlign. Returns a minimum known alignment of +/// the value after the operation, which may be lower than PrefAlign. +/// +/// Increating value alignment isn't often possible though. If alignment is +/// important, a more reliable approach is to simply align all global variables +/// and allocation instructions to their preferred alignment from the beginning. +static Align tryEnforceAlignment(Value *V, Align PrefAlign, +                                 const DataLayout &DL) { +  V = V->stripPointerCasts(); + +  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { +    // TODO: Ideally, this function would not be called if PrefAlign is smaller +    // than the current alignment, as the known bits calculation should have +    // already taken it into account. However, this is not always the case, +    // as computeKnownBits() has a depth limit, while stripPointerCasts() +    // doesn't. +    Align CurrentAlign = AI->getAlign(); +    if (PrefAlign <= CurrentAlign) +      return CurrentAlign; + +    // If the preferred alignment is greater than the natural stack alignment +    // then don't round up. This avoids dynamic stack realignment. +    if (DL.exceedsNaturalStackAlignment(PrefAlign)) +      return CurrentAlign; +    AI->setAlignment(PrefAlign); +    return PrefAlign; +  } + +  if (auto *GO = dyn_cast<GlobalObject>(V)) { +    // TODO: as above, this shouldn't be necessary. +    Align CurrentAlign = GO->getPointerAlignment(DL); +    if (PrefAlign <= CurrentAlign) +      return CurrentAlign; + +    // If there is a large requested alignment and we can, bump up the alignment +    // of the global.  If the memory we set aside for the global may not be the +    // memory used by the final program then it is impossible for us to reliably +    // enforce the preferred alignment. +    if (!GO->canIncreaseAlignment()) +      return CurrentAlign; + +    GO->setAlignment(PrefAlign); +    return PrefAlign; +  } + +  return Align(1); +} + +Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, +                                       const DataLayout &DL, +                                       const Instruction *CxtI, +                                       AssumptionCache *AC, +                                       const DominatorTree *DT) { +  assert(V->getType()->isPointerTy() && +         "getOrEnforceKnownAlignment expects a pointer!"); + +  KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); +  unsigned TrailZ = Known.countMinTrailingZeros(); + +  // Avoid trouble with ridiculously large TrailZ values, such as +  // those computed from a null pointer. +  // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). +  TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); + +  Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); + +  if (PrefAlign && *PrefAlign > Alignment) +    Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); + +  // We don't need to make any adjustment. +  return Alignment; +} + +///===---------------------------------------------------------------------===// +///  Dbg Intrinsic utilities +/// + +/// See if there is a dbg.value intrinsic for DIVar for the PHI node. +static bool PhiHasDebugValue(DILocalVariable *DIVar, +                             DIExpression *DIExpr, +                             PHINode *APN) { +  // Since we can't guarantee that the original dbg.declare instrinsic +  // is removed by LowerDbgDeclare(), we need to make sure that we are +  // not inserting the same dbg.value intrinsic over and over. +  SmallVector<DbgValueInst *, 1> DbgValues; +  findDbgValues(DbgValues, APN); +  for (auto *DVI : DbgValues) { +    assert(is_contained(DVI->getValues(), APN)); +    if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) +      return true; +  } +  return false; +} + +/// Check if the alloc size of \p ValTy is large enough to cover the variable +/// (or fragment of the variable) described by \p DII. +/// +/// This is primarily intended as a helper for the different +/// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is +/// converted describes an alloca'd variable, so we need to use the +/// alloc size of the value when doing the comparison. E.g. an i1 value will be +/// identified as covering an n-bit fragment, if the store size of i1 is at +/// least n bits. +static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { +  const DataLayout &DL = DII->getModule()->getDataLayout(); +  TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); +  if (Optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) { +    assert(!ValueSize.isScalable() && +           "Fragments don't work on scalable types."); +    return ValueSize.getFixedSize() >= *FragmentSize; +  } +  // We can't always calculate the size of the DI variable (e.g. if it is a +  // VLA). Try to use the size of the alloca that the dbg intrinsic describes +  // intead. +  if (DII->isAddressOfVariable()) { +    // DII should have exactly 1 location when it is an address. +    assert(DII->getNumVariableLocationOps() == 1 && +           "address of variable must have exactly 1 location operand."); +    if (auto *AI = +            dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { +      if (Optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { +        return TypeSize::isKnownGE(ValueSize, *FragmentSize); +      } +    } +  } +  // Could not determine size of variable. Conservatively return false. +  return false; +} + +/// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted +/// to a dbg.value. Because no machine insts can come from debug intrinsics, +/// only the scope and inlinedAt is significant. Zero line numbers are used in +/// case this DebugLoc leaks into any adjacent instructions. +static DebugLoc getDebugValueLoc(DbgVariableIntrinsic *DII, Instruction *Src) { +  // Original dbg.declare must have a location. +  const DebugLoc &DeclareLoc = DII->getDebugLoc(); +  MDNode *Scope = DeclareLoc.getScope(); +  DILocation *InlinedAt = DeclareLoc.getInlinedAt(); +  // Produce an unknown location with the correct scope / inlinedAt fields. +  return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt); +} + +/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value +/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. +void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, +                                           StoreInst *SI, DIBuilder &Builder) { +  assert(DII->isAddressOfVariable()); +  auto *DIVar = DII->getVariable(); +  assert(DIVar && "Missing variable"); +  auto *DIExpr = DII->getExpression(); +  Value *DV = SI->getValueOperand(); + +  DebugLoc NewLoc = getDebugValueLoc(DII, SI); + +  if (!valueCoversEntireFragment(DV->getType(), DII)) { +    // FIXME: If storing to a part of the variable described by the dbg.declare, +    // then we want to insert a dbg.value for the corresponding fragment. +    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " +                      << *DII << '\n'); +    // For now, when there is a store to parts of the variable (but we do not +    // know which part) we insert an dbg.value instrinsic to indicate that we +    // know nothing about the variable's content. +    DV = UndefValue::get(DV->getType()); +    Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); +    return; +  } + +  Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI); +} + +/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value +/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. +void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, +                                           LoadInst *LI, DIBuilder &Builder) { +  auto *DIVar = DII->getVariable(); +  auto *DIExpr = DII->getExpression(); +  assert(DIVar && "Missing variable"); + +  if (!valueCoversEntireFragment(LI->getType(), DII)) { +    // FIXME: If only referring to a part of the variable described by the +    // dbg.declare, then we want to insert a dbg.value for the corresponding +    // fragment. +    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " +                      << *DII << '\n'); +    return; +  } + +  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); + +  // We are now tracking the loaded value instead of the address. In the +  // future if multi-location support is added to the IR, it might be +  // preferable to keep tracking both the loaded value and the original +  // address in case the alloca can not be elided. +  Instruction *DbgValue = Builder.insertDbgValueIntrinsic( +      LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr); +  DbgValue->insertAfter(LI); +} + +/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated +/// llvm.dbg.declare or llvm.dbg.addr intrinsic. +void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, +                                           PHINode *APN, DIBuilder &Builder) { +  auto *DIVar = DII->getVariable(); +  auto *DIExpr = DII->getExpression(); +  assert(DIVar && "Missing variable"); + +  if (PhiHasDebugValue(DIVar, DIExpr, APN)) +    return; + +  if (!valueCoversEntireFragment(APN->getType(), DII)) { +    // FIXME: If only referring to a part of the variable described by the +    // dbg.declare, then we want to insert a dbg.value for the corresponding +    // fragment. +    LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " +                      << *DII << '\n'); +    return; +  } + +  BasicBlock *BB = APN->getParent(); +  auto InsertionPt = BB->getFirstInsertionPt(); + +  DebugLoc NewLoc = getDebugValueLoc(DII, nullptr); + +  // The block may be a catchswitch block, which does not have a valid +  // insertion point. +  // FIXME: Insert dbg.value markers in the successors when appropriate. +  if (InsertionPt != BB->end()) +    Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt); +} + +/// Determine whether this alloca is either a VLA or an array. +static bool isArray(AllocaInst *AI) { +  return AI->isArrayAllocation() || +         (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); +} + +/// Determine whether this alloca is a structure. +static bool isStructure(AllocaInst *AI) { +  return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); +} + +/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set +/// of llvm.dbg.value intrinsics. +bool llvm::LowerDbgDeclare(Function &F) { +  bool Changed = false; +  DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); +  SmallVector<DbgDeclareInst *, 4> Dbgs; +  for (auto &FI : F) +    for (Instruction &BI : FI) +      if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) +        Dbgs.push_back(DDI); + +  if (Dbgs.empty()) +    return Changed; + +  for (auto &I : Dbgs) { +    DbgDeclareInst *DDI = I; +    AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); +    // If this is an alloca for a scalar variable, insert a dbg.value +    // at each load and store to the alloca and erase the dbg.declare. +    // The dbg.values allow tracking a variable even if it is not +    // stored on the stack, while the dbg.declare can only describe +    // the stack slot (and at a lexical-scope granularity). Later +    // passes will attempt to elide the stack slot. +    if (!AI || isArray(AI) || isStructure(AI)) +      continue; + +    // A volatile load/store means that the alloca can't be elided anyway. +    if (llvm::any_of(AI->users(), [](User *U) -> bool { +          if (LoadInst *LI = dyn_cast<LoadInst>(U)) +            return LI->isVolatile(); +          if (StoreInst *SI = dyn_cast<StoreInst>(U)) +            return SI->isVolatile(); +          return false; +        })) +      continue; + +    SmallVector<const Value *, 8> WorkList; +    WorkList.push_back(AI); +    while (!WorkList.empty()) { +      const Value *V = WorkList.pop_back_val(); +      for (auto &AIUse : V->uses()) { +        User *U = AIUse.getUser(); +        if (StoreInst *SI = dyn_cast<StoreInst>(U)) { +          if (AIUse.getOperandNo() == 1) +            ConvertDebugDeclareToDebugValue(DDI, SI, DIB); +        } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { +          ConvertDebugDeclareToDebugValue(DDI, LI, DIB); +        } else if (CallInst *CI = dyn_cast<CallInst>(U)) { +          // This is a call by-value or some other instruction that takes a +          // pointer to the variable. Insert a *value* intrinsic that describes +          // the variable by dereferencing the alloca. +          if (!CI->isLifetimeStartOrEnd()) { +            DebugLoc NewLoc = getDebugValueLoc(DDI, nullptr); +            auto *DerefExpr = +                DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); +            DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, +                                        NewLoc, CI); +          } +        } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { +          if (BI->getType()->isPointerTy()) +            WorkList.push_back(BI); +        } +      } +    } +    DDI->eraseFromParent(); +    Changed = true; +  } + +  if (Changed) +  for (BasicBlock &BB : F) +    RemoveRedundantDbgInstrs(&BB); + +  return Changed; +} + +/// Propagate dbg.value intrinsics through the newly inserted PHIs. +void llvm::insertDebugValuesForPHIs(BasicBlock *BB, +                                    SmallVectorImpl<PHINode *> &InsertedPHIs) { +  assert(BB && "No BasicBlock to clone dbg.value(s) from."); +  if (InsertedPHIs.size() == 0) +    return; + +  // Map existing PHI nodes to their dbg.values. +  ValueToValueMapTy DbgValueMap; +  for (auto &I : *BB) { +    if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { +      for (Value *V : DbgII->location_ops()) +        if (auto *Loc = dyn_cast_or_null<PHINode>(V)) +          DbgValueMap.insert({Loc, DbgII}); +    } +  } +  if (DbgValueMap.size() == 0) +    return; + +  // Map a pair of the destination BB and old dbg.value to the new dbg.value, +  // so that if a dbg.value is being rewritten to use more than one of the +  // inserted PHIs in the same destination BB, we can update the same dbg.value +  // with all the new PHIs instead of creating one copy for each. +  MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, +            DbgVariableIntrinsic *> +      NewDbgValueMap; +  // Then iterate through the new PHIs and look to see if they use one of the +  // previously mapped PHIs. If so, create a new dbg.value intrinsic that will +  // propagate the info through the new PHI. If we use more than one new PHI in +  // a single destination BB with the same old dbg.value, merge the updates so +  // that we get a single new dbg.value with all the new PHIs. +  for (auto PHI : InsertedPHIs) { +    BasicBlock *Parent = PHI->getParent(); +    // Avoid inserting an intrinsic into an EH block. +    if (Parent->getFirstNonPHI()->isEHPad()) +      continue; +    for (auto VI : PHI->operand_values()) { +      auto V = DbgValueMap.find(VI); +      if (V != DbgValueMap.end()) { +        auto *DbgII = cast<DbgVariableIntrinsic>(V->second); +        auto NewDI = NewDbgValueMap.find({Parent, DbgII}); +        if (NewDI == NewDbgValueMap.end()) { +          auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); +          NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; +        } +        DbgVariableIntrinsic *NewDbgII = NewDI->second; +        // If PHI contains VI as an operand more than once, we may +        // replaced it in NewDbgII; confirm that it is present. +        if (is_contained(NewDbgII->location_ops(), VI)) +          NewDbgII->replaceVariableLocationOp(VI, PHI); +      } +    } +  } +  // Insert thew new dbg.values into their destination blocks. +  for (auto DI : NewDbgValueMap) { +    BasicBlock *Parent = DI.first.first; +    auto *NewDbgII = DI.second; +    auto InsertionPt = Parent->getFirstInsertionPt(); +    assert(InsertionPt != Parent->end() && "Ill-formed basic block"); +    NewDbgII->insertBefore(&*InsertionPt); +  } +} + +bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, +                             DIBuilder &Builder, uint8_t DIExprFlags, +                             int Offset) { +  auto DbgAddrs = FindDbgAddrUses(Address); +  for (DbgVariableIntrinsic *DII : DbgAddrs) { +    const DebugLoc &Loc = DII->getDebugLoc(); +    auto *DIVar = DII->getVariable(); +    auto *DIExpr = DII->getExpression(); +    assert(DIVar && "Missing variable"); +    DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); +    // Insert llvm.dbg.declare immediately before DII, and remove old +    // llvm.dbg.declare. +    Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII); +    DII->eraseFromParent(); +  } +  return !DbgAddrs.empty(); +} + +static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, +                                        DIBuilder &Builder, int Offset) { +  const DebugLoc &Loc = DVI->getDebugLoc(); +  auto *DIVar = DVI->getVariable(); +  auto *DIExpr = DVI->getExpression(); +  assert(DIVar && "Missing variable"); + +  // This is an alloca-based llvm.dbg.value. The first thing it should do with +  // the alloca pointer is dereference it. Otherwise we don't know how to handle +  // it and give up. +  if (!DIExpr || DIExpr->getNumElements() < 1 || +      DIExpr->getElement(0) != dwarf::DW_OP_deref) +    return; + +  // Insert the offset before the first deref. +  // We could just change the offset argument of dbg.value, but it's unsigned... +  if (Offset) +    DIExpr = DIExpression::prepend(DIExpr, 0, Offset); + +  Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); +  DVI->eraseFromParent(); +} + +void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, +                                    DIBuilder &Builder, int Offset) { +  if (auto *L = LocalAsMetadata::getIfExists(AI)) +    if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) +      for (Use &U : llvm::make_early_inc_range(MDV->uses())) +        if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) +          replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); +} + +/// Where possible to salvage debug information for \p I do so +/// and return True. If not possible mark undef and return False. +void llvm::salvageDebugInfo(Instruction &I) { +  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; +  findDbgUsers(DbgUsers, &I); +  salvageDebugInfoForDbgValues(I, DbgUsers); +} + +void llvm::salvageDebugInfoForDbgValues( +    Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { +  // These are arbitrary chosen limits on the maximum number of values and the +  // maximum size of a debug expression we can salvage up to, used for +  // performance reasons. +  const unsigned MaxDebugArgs = 16; +  const unsigned MaxExpressionSize = 128; +  bool Salvaged = false; + +  for (auto *DII : DbgUsers) { +    // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they +    // are implicitly pointing out the value as a DWARF memory location +    // description. +    bool StackValue = isa<DbgValueInst>(DII); +    auto DIILocation = DII->location_ops(); +    assert( +        is_contained(DIILocation, &I) && +        "DbgVariableIntrinsic must use salvaged instruction as its location"); +    SmallVector<Value *, 4> AdditionalValues; +    // `I` may appear more than once in DII's location ops, and each use of `I` +    // must be updated in the DIExpression and potentially have additional +    // values added; thus we call salvageDebugInfoImpl for each `I` instance in +    // DIILocation. +    Value *Op0 = nullptr; +    DIExpression *SalvagedExpr = DII->getExpression(); +    auto LocItr = find(DIILocation, &I); +    while (SalvagedExpr && LocItr != DIILocation.end()) { +      SmallVector<uint64_t, 16> Ops; +      unsigned LocNo = std::distance(DIILocation.begin(), LocItr); +      uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); +      Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); +      if (!Op0) +        break; +      SalvagedExpr = +          DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); +      LocItr = std::find(++LocItr, DIILocation.end(), &I); +    } +    // salvageDebugInfoImpl should fail on examining the first element of +    // DbgUsers, or none of them. +    if (!Op0) +      break; + +    DII->replaceVariableLocationOp(&I, Op0); +    bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; +    if (AdditionalValues.empty() && IsValidSalvageExpr) { +      DII->setExpression(SalvagedExpr); +    } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && +               DII->getNumVariableLocationOps() + AdditionalValues.size() <= +                   MaxDebugArgs) { +      DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); +    } else { +      // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is +      // currently only valid for stack value expressions. +      // Also do not salvage if the resulting DIArgList would contain an +      // unreasonably large number of values. +      Value *Undef = UndefValue::get(I.getOperand(0)->getType()); +      DII->replaceVariableLocationOp(I.getOperand(0), Undef); +    } +    LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); +    Salvaged = true; +  } + +  if (Salvaged) +    return; + +  for (auto *DII : DbgUsers) { +    Value *Undef = UndefValue::get(I.getType()); +    DII->replaceVariableLocationOp(&I, Undef); +  } +} + +Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, +                           uint64_t CurrentLocOps, +                           SmallVectorImpl<uint64_t> &Opcodes, +                           SmallVectorImpl<Value *> &AdditionalValues) { +  unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); +  // Rewrite a GEP into a DIExpression. +  MapVector<Value *, APInt> VariableOffsets; +  APInt ConstantOffset(BitWidth, 0); +  if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) +    return nullptr; +  if (!VariableOffsets.empty() && !CurrentLocOps) { +    Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); +    CurrentLocOps = 1; +  } +  for (auto Offset : VariableOffsets) { +    AdditionalValues.push_back(Offset.first); +    assert(Offset.second.isStrictlyPositive() && +           "Expected strictly positive multiplier for offset."); +    Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, +                    Offset.second.getZExtValue(), dwarf::DW_OP_mul, +                    dwarf::DW_OP_plus}); +  } +  DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); +  return GEP->getOperand(0); +} + +uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { +  switch (Opcode) { +  case Instruction::Add: +    return dwarf::DW_OP_plus; +  case Instruction::Sub: +    return dwarf::DW_OP_minus; +  case Instruction::Mul: +    return dwarf::DW_OP_mul; +  case Instruction::SDiv: +    return dwarf::DW_OP_div; +  case Instruction::SRem: +    return dwarf::DW_OP_mod; +  case Instruction::Or: +    return dwarf::DW_OP_or; +  case Instruction::And: +    return dwarf::DW_OP_and; +  case Instruction::Xor: +    return dwarf::DW_OP_xor; +  case Instruction::Shl: +    return dwarf::DW_OP_shl; +  case Instruction::LShr: +    return dwarf::DW_OP_shr; +  case Instruction::AShr: +    return dwarf::DW_OP_shra; +  default: +    // TODO: Salvage from each kind of binop we know about. +    return 0; +  } +} + +Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, +                             SmallVectorImpl<uint64_t> &Opcodes, +                             SmallVectorImpl<Value *> &AdditionalValues) { +  // Handle binary operations with constant integer operands as a special case. +  auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); +  // Values wider than 64 bits cannot be represented within a DIExpression. +  if (ConstInt && ConstInt->getBitWidth() > 64) +    return nullptr; + +  Instruction::BinaryOps BinOpcode = BI->getOpcode(); +  // Push any Constant Int operand onto the expression stack. +  if (ConstInt) { +    uint64_t Val = ConstInt->getSExtValue(); +    // Add or Sub Instructions with a constant operand can potentially be +    // simplified. +    if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { +      uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); +      DIExpression::appendOffset(Opcodes, Offset); +      return BI->getOperand(0); +    } +    Opcodes.append({dwarf::DW_OP_constu, Val}); +  } else { +    if (!CurrentLocOps) { +      Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); +      CurrentLocOps = 1; +    } +    Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); +    AdditionalValues.push_back(BI->getOperand(1)); +  } + +  // Add salvaged binary operator to expression stack, if it has a valid +  // representation in a DIExpression. +  uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); +  if (!DwarfBinOp) +    return nullptr; +  Opcodes.push_back(DwarfBinOp); +  return BI->getOperand(0); +} + +Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, +                                  SmallVectorImpl<uint64_t> &Ops, +                                  SmallVectorImpl<Value *> &AdditionalValues) { +  auto &M = *I.getModule(); +  auto &DL = M.getDataLayout(); + +  if (auto *CI = dyn_cast<CastInst>(&I)) { +    Value *FromValue = CI->getOperand(0); +    // No-op casts are irrelevant for debug info. +    if (CI->isNoopCast(DL)) { +      return FromValue; +    } + +    Type *Type = CI->getType(); +    if (Type->isPointerTy()) +      Type = DL.getIntPtrType(Type); +    // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. +    if (Type->isVectorTy() || +        !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || +          isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) +      return nullptr; + +    llvm::Type *FromType = FromValue->getType(); +    if (FromType->isPointerTy()) +      FromType = DL.getIntPtrType(FromType); + +    unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); +    unsigned ToTypeBitSize = Type->getScalarSizeInBits(); + +    auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, +                                          isa<SExtInst>(&I)); +    Ops.append(ExtOps.begin(), ExtOps.end()); +    return FromValue; +  } + +  if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) +    return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); +  if (auto *BI = dyn_cast<BinaryOperator>(&I)) +    return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); + +  // *Not* to do: we should not attempt to salvage load instructions, +  // because the validity and lifetime of a dbg.value containing +  // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. +  return nullptr; +} + +/// A replacement for a dbg.value expression. +using DbgValReplacement = Optional<DIExpression *>; + +/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, +/// possibly moving/undefing users to prevent use-before-def. Returns true if +/// changes are made. +static bool rewriteDebugUsers( +    Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, +    function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { +  // Find debug users of From. +  SmallVector<DbgVariableIntrinsic *, 1> Users; +  findDbgUsers(Users, &From); +  if (Users.empty()) +    return false; + +  // Prevent use-before-def of To. +  bool Changed = false; +  SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; +  if (isa<Instruction>(&To)) { +    bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; + +    for (auto *DII : Users) { +      // It's common to see a debug user between From and DomPoint. Move it +      // after DomPoint to preserve the variable update without any reordering. +      if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { +        LLVM_DEBUG(dbgs() << "MOVE:  " << *DII << '\n'); +        DII->moveAfter(&DomPoint); +        Changed = true; + +      // Users which otherwise aren't dominated by the replacement value must +      // be salvaged or deleted. +      } else if (!DT.dominates(&DomPoint, DII)) { +        UndefOrSalvage.insert(DII); +      } +    } +  } + +  // Update debug users without use-before-def risk. +  for (auto *DII : Users) { +    if (UndefOrSalvage.count(DII)) +      continue; + +    DbgValReplacement DVR = RewriteExpr(*DII); +    if (!DVR) +      continue; + +    DII->replaceVariableLocationOp(&From, &To); +    DII->setExpression(*DVR); +    LLVM_DEBUG(dbgs() << "REWRITE:  " << *DII << '\n'); +    Changed = true; +  } + +  if (!UndefOrSalvage.empty()) { +    // Try to salvage the remaining debug users. +    salvageDebugInfo(From); +    Changed = true; +  } + +  return Changed; +} + +/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would +/// losslessly preserve the bits and semantics of the value. This predicate is +/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. +/// +/// Note that Type::canLosslesslyBitCastTo is not suitable here because it +/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, +/// and also does not allow lossless pointer <-> integer conversions. +static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, +                                         Type *ToTy) { +  // Trivially compatible types. +  if (FromTy == ToTy) +    return true; + +  // Handle compatible pointer <-> integer conversions. +  if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { +    bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); +    bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && +                              !DL.isNonIntegralPointerType(ToTy); +    return SameSize && LosslessConversion; +  } + +  // TODO: This is not exhaustive. +  return false; +} + +bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, +                                 Instruction &DomPoint, DominatorTree &DT) { +  // Exit early if From has no debug users. +  if (!From.isUsedByMetadata()) +    return false; + +  assert(&From != &To && "Can't replace something with itself"); + +  Type *FromTy = From.getType(); +  Type *ToTy = To.getType(); + +  auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { +    return DII.getExpression(); +  }; + +  // Handle no-op conversions. +  Module &M = *From.getModule(); +  const DataLayout &DL = M.getDataLayout(); +  if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) +    return rewriteDebugUsers(From, To, DomPoint, DT, Identity); + +  // Handle integer-to-integer widening and narrowing. +  // FIXME: Use DW_OP_convert when it's available everywhere. +  if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { +    uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); +    uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); +    assert(FromBits != ToBits && "Unexpected no-op conversion"); + +    // When the width of the result grows, assume that a debugger will only +    // access the low `FromBits` bits when inspecting the source variable. +    if (FromBits < ToBits) +      return rewriteDebugUsers(From, To, DomPoint, DT, Identity); + +    // The width of the result has shrunk. Use sign/zero extension to describe +    // the source variable's high bits. +    auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { +      DILocalVariable *Var = DII.getVariable(); + +      // Without knowing signedness, sign/zero extension isn't possible. +      auto Signedness = Var->getSignedness(); +      if (!Signedness) +        return None; + +      bool Signed = *Signedness == DIBasicType::Signedness::Signed; +      return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, +                                     Signed); +    }; +    return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); +  } + +  // TODO: Floating-point conversions, vectors. +  return false; +} + +std::pair<unsigned, unsigned> +llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { +  unsigned NumDeadInst = 0; +  unsigned NumDeadDbgInst = 0; +  // Delete the instructions backwards, as it has a reduced likelihood of +  // having to update as many def-use and use-def chains. +  Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. +  while (EndInst != &BB->front()) { +    // Delete the next to last instruction. +    Instruction *Inst = &*--EndInst->getIterator(); +    if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) +      Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); +    if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { +      EndInst = Inst; +      continue; +    } +    if (isa<DbgInfoIntrinsic>(Inst)) +      ++NumDeadDbgInst; +    else +      ++NumDeadInst; +    Inst->eraseFromParent(); +  } +  return {NumDeadInst, NumDeadDbgInst}; +} + +unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, +                                   DomTreeUpdater *DTU, +                                   MemorySSAUpdater *MSSAU) { +  BasicBlock *BB = I->getParent(); + +  if (MSSAU) +    MSSAU->changeToUnreachable(I); + +  SmallSet<BasicBlock *, 8> UniqueSuccessors; + +  // Loop over all of the successors, removing BB's entry from any PHI +  // nodes. +  for (BasicBlock *Successor : successors(BB)) { +    Successor->removePredecessor(BB, PreserveLCSSA); +    if (DTU) +      UniqueSuccessors.insert(Successor); +  } +  auto *UI = new UnreachableInst(I->getContext(), I); +  UI->setDebugLoc(I->getDebugLoc()); + +  // All instructions after this are dead. +  unsigned NumInstrsRemoved = 0; +  BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); +  while (BBI != BBE) { +    if (!BBI->use_empty()) +      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); +    BB->getInstList().erase(BBI++); +    ++NumInstrsRemoved; +  } +  if (DTU) { +    SmallVector<DominatorTree::UpdateType, 8> Updates; +    Updates.reserve(UniqueSuccessors.size()); +    for (BasicBlock *UniqueSuccessor : UniqueSuccessors) +      Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); +    DTU->applyUpdates(Updates); +  } +  return NumInstrsRemoved; +} + +CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { +  SmallVector<Value *, 8> Args(II->args()); +  SmallVector<OperandBundleDef, 1> OpBundles; +  II->getOperandBundlesAsDefs(OpBundles); +  CallInst *NewCall = CallInst::Create(II->getFunctionType(), +                                       II->getCalledOperand(), Args, OpBundles); +  NewCall->setCallingConv(II->getCallingConv()); +  NewCall->setAttributes(II->getAttributes()); +  NewCall->setDebugLoc(II->getDebugLoc()); +  NewCall->copyMetadata(*II); + +  // If the invoke had profile metadata, try converting them for CallInst. +  uint64_t TotalWeight; +  if (NewCall->extractProfTotalWeight(TotalWeight)) { +    // Set the total weight if it fits into i32, otherwise reset. +    MDBuilder MDB(NewCall->getContext()); +    auto NewWeights = uint32_t(TotalWeight) != TotalWeight +                          ? nullptr +                          : MDB.createBranchWeights({uint32_t(TotalWeight)}); +    NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); +  } + +  return NewCall; +} + +/// changeToCall - Convert the specified invoke into a normal call. +void llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { +  CallInst *NewCall = createCallMatchingInvoke(II); +  NewCall->takeName(II); +  NewCall->insertBefore(II); +  II->replaceAllUsesWith(NewCall); + +  // Follow the call by a branch to the normal destination. +  BasicBlock *NormalDestBB = II->getNormalDest(); +  BranchInst::Create(NormalDestBB, II); + +  // Update PHI nodes in the unwind destination +  BasicBlock *BB = II->getParent(); +  BasicBlock *UnwindDestBB = II->getUnwindDest(); +  UnwindDestBB->removePredecessor(BB); +  II->eraseFromParent(); +  if (DTU) +    DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); +} + +void llvm::createUnreachableSwitchDefault(SwitchInst *Switch, +                                          DomTreeUpdater *DTU) { +  LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); +  auto *BB = Switch->getParent(); +  auto *OrigDefaultBlock = Switch->getDefaultDest(); +  OrigDefaultBlock->removePredecessor(BB); +  BasicBlock *NewDefaultBlock = BasicBlock::Create( +      BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), +      OrigDefaultBlock); +  new UnreachableInst(Switch->getContext(), NewDefaultBlock); +  Switch->setDefaultDest(&*NewDefaultBlock); +  if (DTU) { +    SmallVector<DominatorTree::UpdateType, 2> Updates; +    Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); +    if (!is_contained(successors(BB), OrigDefaultBlock)) +      Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); +    DTU->applyUpdates(Updates); +  } +} + +BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, +                                                   BasicBlock *UnwindEdge, +                                                   DomTreeUpdater *DTU) { +  BasicBlock *BB = CI->getParent(); + +  // Convert this function call into an invoke instruction.  First, split the +  // basic block. +  BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, +                                 CI->getName() + ".noexc"); + +  // Delete the unconditional branch inserted by SplitBlock +  BB->getInstList().pop_back(); + +  // Create the new invoke instruction. +  SmallVector<Value *, 8> InvokeArgs(CI->args()); +  SmallVector<OperandBundleDef, 1> OpBundles; + +  CI->getOperandBundlesAsDefs(OpBundles); + +  // Note: we're round tripping operand bundles through memory here, and that +  // can potentially be avoided with a cleverer API design that we do not have +  // as of this time. + +  InvokeInst *II = +      InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, +                         UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); +  II->setDebugLoc(CI->getDebugLoc()); +  II->setCallingConv(CI->getCallingConv()); +  II->setAttributes(CI->getAttributes()); + +  if (DTU) +    DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); + +  // Make sure that anything using the call now uses the invoke!  This also +  // updates the CallGraph if present, because it uses a WeakTrackingVH. +  CI->replaceAllUsesWith(II); + +  // Delete the original call +  Split->getInstList().pop_front(); +  return Split; +} + +static bool markAliveBlocks(Function &F, +                            SmallPtrSetImpl<BasicBlock *> &Reachable, +                            DomTreeUpdater *DTU = nullptr) { +  SmallVector<BasicBlock*, 128> Worklist; +  BasicBlock *BB = &F.front(); +  Worklist.push_back(BB); +  Reachable.insert(BB); +  bool Changed = false; +  do { +    BB = Worklist.pop_back_val(); + +    // Do a quick scan of the basic block, turning any obviously unreachable +    // instructions into LLVM unreachable insts.  The instruction combining pass +    // canonicalizes unreachable insts into stores to null or undef. +    for (Instruction &I : *BB) { +      if (auto *CI = dyn_cast<CallInst>(&I)) { +        Value *Callee = CI->getCalledOperand(); +        // Handle intrinsic calls. +        if (Function *F = dyn_cast<Function>(Callee)) { +          auto IntrinsicID = F->getIntrinsicID(); +          // Assumptions that are known to be false are equivalent to +          // unreachable. Also, if the condition is undefined, then we make the +          // choice most beneficial to the optimizer, and choose that to also be +          // unreachable. +          if (IntrinsicID == Intrinsic::assume) { +            if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { +              // Don't insert a call to llvm.trap right before the unreachable. +              changeToUnreachable(CI, false, DTU); +              Changed = true; +              break; +            } +          } else if (IntrinsicID == Intrinsic::experimental_guard) { +            // A call to the guard intrinsic bails out of the current +            // compilation unit if the predicate passed to it is false. If the +            // predicate is a constant false, then we know the guard will bail +            // out of the current compile unconditionally, so all code following +            // it is dead. +            // +            // Note: unlike in llvm.assume, it is not "obviously profitable" for +            // guards to treat `undef` as `false` since a guard on `undef` can +            // still be useful for widening. +            if (match(CI->getArgOperand(0), m_Zero())) +              if (!isa<UnreachableInst>(CI->getNextNode())) { +                changeToUnreachable(CI->getNextNode(), false, DTU); +                Changed = true; +                break; +              } +          } +        } else if ((isa<ConstantPointerNull>(Callee) && +                    !NullPointerIsDefined(CI->getFunction())) || +                   isa<UndefValue>(Callee)) { +          changeToUnreachable(CI, false, DTU); +          Changed = true; +          break; +        } +        if (CI->doesNotReturn() && !CI->isMustTailCall()) { +          // If we found a call to a no-return function, insert an unreachable +          // instruction after it.  Make sure there isn't *already* one there +          // though. +          if (!isa<UnreachableInst>(CI->getNextNode())) { +            // Don't insert a call to llvm.trap right before the unreachable. +            changeToUnreachable(CI->getNextNode(), false, DTU); +            Changed = true; +          } +          break; +        } +      } else if (auto *SI = dyn_cast<StoreInst>(&I)) { +        // Store to undef and store to null are undefined and used to signal +        // that they should be changed to unreachable by passes that can't +        // modify the CFG. + +        // Don't touch volatile stores. +        if (SI->isVolatile()) continue; + +        Value *Ptr = SI->getOperand(1); + +        if (isa<UndefValue>(Ptr) || +            (isa<ConstantPointerNull>(Ptr) && +             !NullPointerIsDefined(SI->getFunction(), +                                   SI->getPointerAddressSpace()))) { +          changeToUnreachable(SI, false, DTU); +          Changed = true; +          break; +        } +      } +    } + +    Instruction *Terminator = BB->getTerminator(); +    if (auto *II = dyn_cast<InvokeInst>(Terminator)) { +      // Turn invokes that call 'nounwind' functions into ordinary calls. +      Value *Callee = II->getCalledOperand(); +      if ((isa<ConstantPointerNull>(Callee) && +           !NullPointerIsDefined(BB->getParent())) || +          isa<UndefValue>(Callee)) { +        changeToUnreachable(II, false, DTU); +        Changed = true; +      } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { +        if (II->use_empty() && II->onlyReadsMemory()) { +          // jump to the normal destination branch. +          BasicBlock *NormalDestBB = II->getNormalDest(); +          BasicBlock *UnwindDestBB = II->getUnwindDest(); +          BranchInst::Create(NormalDestBB, II); +          UnwindDestBB->removePredecessor(II->getParent()); +          II->eraseFromParent(); +          if (DTU) +            DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); +        } else +          changeToCall(II, DTU); +        Changed = true; +      } +    } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { +      // Remove catchpads which cannot be reached. +      struct CatchPadDenseMapInfo { +        static CatchPadInst *getEmptyKey() { +          return DenseMapInfo<CatchPadInst *>::getEmptyKey(); +        } + +        static CatchPadInst *getTombstoneKey() { +          return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); +        } + +        static unsigned getHashValue(CatchPadInst *CatchPad) { +          return static_cast<unsigned>(hash_combine_range( +              CatchPad->value_op_begin(), CatchPad->value_op_end())); +        } + +        static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { +          if (LHS == getEmptyKey() || LHS == getTombstoneKey() || +              RHS == getEmptyKey() || RHS == getTombstoneKey()) +            return LHS == RHS; +          return LHS->isIdenticalTo(RHS); +        } +      }; + +      SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; +      // Set of unique CatchPads. +      SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, +                    CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> +          HandlerSet; +      detail::DenseSetEmpty Empty; +      for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), +                                             E = CatchSwitch->handler_end(); +           I != E; ++I) { +        BasicBlock *HandlerBB = *I; +        if (DTU) +          ++NumPerSuccessorCases[HandlerBB]; +        auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); +        if (!HandlerSet.insert({CatchPad, Empty}).second) { +          if (DTU) +            --NumPerSuccessorCases[HandlerBB]; +          CatchSwitch->removeHandler(I); +          --I; +          --E; +          Changed = true; +        } +      } +      if (DTU) { +        std::vector<DominatorTree::UpdateType> Updates; +        for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) +          if (I.second == 0) +            Updates.push_back({DominatorTree::Delete, BB, I.first}); +        DTU->applyUpdates(Updates); +      } +    } + +    Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); +    for (BasicBlock *Successor : successors(BB)) +      if (Reachable.insert(Successor).second) +        Worklist.push_back(Successor); +  } while (!Worklist.empty()); +  return Changed; +} + +void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { +  Instruction *TI = BB->getTerminator(); + +  if (auto *II = dyn_cast<InvokeInst>(TI)) { +    changeToCall(II, DTU); +    return; +  } + +  Instruction *NewTI; +  BasicBlock *UnwindDest; + +  if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { +    NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); +    UnwindDest = CRI->getUnwindDest(); +  } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { +    auto *NewCatchSwitch = CatchSwitchInst::Create( +        CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), +        CatchSwitch->getName(), CatchSwitch); +    for (BasicBlock *PadBB : CatchSwitch->handlers()) +      NewCatchSwitch->addHandler(PadBB); + +    NewTI = NewCatchSwitch; +    UnwindDest = CatchSwitch->getUnwindDest(); +  } else { +    llvm_unreachable("Could not find unwind successor"); +  } + +  NewTI->takeName(TI); +  NewTI->setDebugLoc(TI->getDebugLoc()); +  UnwindDest->removePredecessor(BB); +  TI->replaceAllUsesWith(NewTI); +  TI->eraseFromParent(); +  if (DTU) +    DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); +} + +/// removeUnreachableBlocks - Remove blocks that are not reachable, even +/// if they are in a dead cycle.  Return true if a change was made, false +/// otherwise. +bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, +                                   MemorySSAUpdater *MSSAU) { +  SmallPtrSet<BasicBlock *, 16> Reachable; +  bool Changed = markAliveBlocks(F, Reachable, DTU); + +  // If there are unreachable blocks in the CFG... +  if (Reachable.size() == F.size()) +    return Changed; + +  assert(Reachable.size() < F.size()); + +  // Are there any blocks left to actually delete? +  SmallSetVector<BasicBlock *, 8> BlocksToRemove; +  for (BasicBlock &BB : F) { +    // Skip reachable basic blocks +    if (Reachable.count(&BB)) +      continue; +    // Skip already-deleted blocks +    if (DTU && DTU->isBBPendingDeletion(&BB)) +      continue; +    BlocksToRemove.insert(&BB); +  } + +  if (BlocksToRemove.empty()) +    return Changed; + +  Changed = true; +  NumRemoved += BlocksToRemove.size(); + +  if (MSSAU) +    MSSAU->removeBlocks(BlocksToRemove); + +  DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); + +  return Changed; +} + +void llvm::combineMetadata(Instruction *K, const Instruction *J, +                           ArrayRef<unsigned> KnownIDs, bool DoesKMove) { +  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; +  K->dropUnknownNonDebugMetadata(KnownIDs); +  K->getAllMetadataOtherThanDebugLoc(Metadata); +  for (const auto &MD : Metadata) { +    unsigned Kind = MD.first; +    MDNode *JMD = J->getMetadata(Kind); +    MDNode *KMD = MD.second; + +    switch (Kind) { +      default: +        K->setMetadata(Kind, nullptr); // Remove unknown metadata +        break; +      case LLVMContext::MD_dbg: +        llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); +      case LLVMContext::MD_tbaa: +        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); +        break; +      case LLVMContext::MD_alias_scope: +        K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); +        break; +      case LLVMContext::MD_noalias: +      case LLVMContext::MD_mem_parallel_loop_access: +        K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); +        break; +      case LLVMContext::MD_access_group: +        K->setMetadata(LLVMContext::MD_access_group, +                       intersectAccessGroups(K, J)); +        break; +      case LLVMContext::MD_range: + +        // If K does move, use most generic range. Otherwise keep the range of +        // K. +        if (DoesKMove) +          // FIXME: If K does move, we should drop the range info and nonnull. +          //        Currently this function is used with DoesKMove in passes +          //        doing hoisting/sinking and the current behavior of using the +          //        most generic range is correct in those cases. +          K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); +        break; +      case LLVMContext::MD_fpmath: +        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); +        break; +      case LLVMContext::MD_invariant_load: +        // Only set the !invariant.load if it is present in both instructions. +        K->setMetadata(Kind, JMD); +        break; +      case LLVMContext::MD_nonnull: +        // If K does move, keep nonull if it is present in both instructions. +        if (DoesKMove) +          K->setMetadata(Kind, JMD); +        break; +      case LLVMContext::MD_invariant_group: +        // Preserve !invariant.group in K. +        break; +      case LLVMContext::MD_align: +        K->setMetadata(Kind, +          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); +        break; +      case LLVMContext::MD_dereferenceable: +      case LLVMContext::MD_dereferenceable_or_null: +        K->setMetadata(Kind, +          MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); +        break; +      case LLVMContext::MD_preserve_access_index: +        // Preserve !preserve.access.index in K. +        break; +    } +  } +  // Set !invariant.group from J if J has it. If both instructions have it +  // then we will just pick it from J - even when they are different. +  // Also make sure that K is load or store - f.e. combining bitcast with load +  // could produce bitcast with invariant.group metadata, which is invalid. +  // FIXME: we should try to preserve both invariant.group md if they are +  // different, but right now instruction can only have one invariant.group. +  if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) +    if (isa<LoadInst>(K) || isa<StoreInst>(K)) +      K->setMetadata(LLVMContext::MD_invariant_group, JMD); +} + +void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, +                                 bool KDominatesJ) { +  unsigned KnownIDs[] = { +      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope, +      LLVMContext::MD_noalias,         LLVMContext::MD_range, +      LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull, +      LLVMContext::MD_invariant_group, LLVMContext::MD_align, +      LLVMContext::MD_dereferenceable, +      LLVMContext::MD_dereferenceable_or_null, +      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index}; +  combineMetadata(K, J, KnownIDs, KDominatesJ); +} + +void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { +  SmallVector<std::pair<unsigned, MDNode *>, 8> MD; +  Source.getAllMetadata(MD); +  MDBuilder MDB(Dest.getContext()); +  Type *NewType = Dest.getType(); +  const DataLayout &DL = Source.getModule()->getDataLayout(); +  for (const auto &MDPair : MD) { +    unsigned ID = MDPair.first; +    MDNode *N = MDPair.second; +    // Note, essentially every kind of metadata should be preserved here! This +    // routine is supposed to clone a load instruction changing *only its type*. +    // The only metadata it makes sense to drop is metadata which is invalidated +    // when the pointer type changes. This should essentially never be the case +    // in LLVM, but we explicitly switch over only known metadata to be +    // conservatively correct. If you are adding metadata to LLVM which pertains +    // to loads, you almost certainly want to add it here. +    switch (ID) { +    case LLVMContext::MD_dbg: +    case LLVMContext::MD_tbaa: +    case LLVMContext::MD_prof: +    case LLVMContext::MD_fpmath: +    case LLVMContext::MD_tbaa_struct: +    case LLVMContext::MD_invariant_load: +    case LLVMContext::MD_alias_scope: +    case LLVMContext::MD_noalias: +    case LLVMContext::MD_nontemporal: +    case LLVMContext::MD_mem_parallel_loop_access: +    case LLVMContext::MD_access_group: +      // All of these directly apply. +      Dest.setMetadata(ID, N); +      break; + +    case LLVMContext::MD_nonnull: +      copyNonnullMetadata(Source, N, Dest); +      break; + +    case LLVMContext::MD_align: +    case LLVMContext::MD_dereferenceable: +    case LLVMContext::MD_dereferenceable_or_null: +      // These only directly apply if the new type is also a pointer. +      if (NewType->isPointerTy()) +        Dest.setMetadata(ID, N); +      break; + +    case LLVMContext::MD_range: +      copyRangeMetadata(DL, Source, N, Dest); +      break; +    } +  } +} + +void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { +  auto *ReplInst = dyn_cast<Instruction>(Repl); +  if (!ReplInst) +    return; + +  // Patch the replacement so that it is not more restrictive than the value +  // being replaced. +  // Note that if 'I' is a load being replaced by some operation, +  // for example, by an arithmetic operation, then andIRFlags() +  // would just erase all math flags from the original arithmetic +  // operation, which is clearly not wanted and not needed. +  if (!isa<LoadInst>(I)) +    ReplInst->andIRFlags(I); + +  // FIXME: If both the original and replacement value are part of the +  // same control-flow region (meaning that the execution of one +  // guarantees the execution of the other), then we can combine the +  // noalias scopes here and do better than the general conservative +  // answer used in combineMetadata(). + +  // In general, GVN unifies expressions over different control-flow +  // regions, and so we need a conservative combination of the noalias +  // scopes. +  static const unsigned KnownIDs[] = { +      LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope, +      LLVMContext::MD_noalias,         LLVMContext::MD_range, +      LLVMContext::MD_fpmath,          LLVMContext::MD_invariant_load, +      LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, +      LLVMContext::MD_access_group,    LLVMContext::MD_preserve_access_index}; +  combineMetadata(ReplInst, I, KnownIDs, false); +} + +template <typename RootType, typename DominatesFn> +static unsigned replaceDominatedUsesWith(Value *From, Value *To, +                                         const RootType &Root, +                                         const DominatesFn &Dominates) { +  assert(From->getType() == To->getType()); + +  unsigned Count = 0; +  for (Use &U : llvm::make_early_inc_range(From->uses())) { +    if (!Dominates(Root, U)) +      continue; +    U.set(To); +    LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() +                      << "' as " << *To << " in " << *U << "\n"); +    ++Count; +  } +  return Count; +} + +unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { +   assert(From->getType() == To->getType()); +   auto *BB = From->getParent(); +   unsigned Count = 0; + +   for (Use &U : llvm::make_early_inc_range(From->uses())) { +    auto *I = cast<Instruction>(U.getUser()); +    if (I->getParent() == BB) +      continue; +    U.set(To); +    ++Count; +  } +  return Count; +} + +unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, +                                        DominatorTree &DT, +                                        const BasicBlockEdge &Root) { +  auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { +    return DT.dominates(Root, U); +  }; +  return ::replaceDominatedUsesWith(From, To, Root, Dominates); +} + +unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, +                                        DominatorTree &DT, +                                        const BasicBlock *BB) { +  auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { +    return DT.dominates(BB, U); +  }; +  return ::replaceDominatedUsesWith(From, To, BB, Dominates); +} + +bool llvm::callsGCLeafFunction(const CallBase *Call, +                               const TargetLibraryInfo &TLI) { +  // Check if the function is specifically marked as a gc leaf function. +  if (Call->hasFnAttr("gc-leaf-function")) +    return true; +  if (const Function *F = Call->getCalledFunction()) { +    if (F->hasFnAttribute("gc-leaf-function")) +      return true; + +    if (auto IID = F->getIntrinsicID()) { +      // Most LLVM intrinsics do not take safepoints. +      return IID != Intrinsic::experimental_gc_statepoint && +             IID != Intrinsic::experimental_deoptimize && +             IID != Intrinsic::memcpy_element_unordered_atomic && +             IID != Intrinsic::memmove_element_unordered_atomic; +    } +  } + +  // Lib calls can be materialized by some passes, and won't be +  // marked as 'gc-leaf-function.' All available Libcalls are +  // GC-leaf. +  LibFunc LF; +  if (TLI.getLibFunc(*Call, LF)) { +    return TLI.has(LF); +  } + +  return false; +} + +void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, +                               LoadInst &NewLI) { +  auto *NewTy = NewLI.getType(); + +  // This only directly applies if the new type is also a pointer. +  if (NewTy->isPointerTy()) { +    NewLI.setMetadata(LLVMContext::MD_nonnull, N); +    return; +  } + +  // The only other translation we can do is to integral loads with !range +  // metadata. +  if (!NewTy->isIntegerTy()) +    return; + +  MDBuilder MDB(NewLI.getContext()); +  const Value *Ptr = OldLI.getPointerOperand(); +  auto *ITy = cast<IntegerType>(NewTy); +  auto *NullInt = ConstantExpr::getPtrToInt( +      ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); +  auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); +  NewLI.setMetadata(LLVMContext::MD_range, +                    MDB.createRange(NonNullInt, NullInt)); +} + +void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, +                             MDNode *N, LoadInst &NewLI) { +  auto *NewTy = NewLI.getType(); + +  // Give up unless it is converted to a pointer where there is a single very +  // valuable mapping we can do reliably. +  // FIXME: It would be nice to propagate this in more ways, but the type +  // conversions make it hard. +  if (!NewTy->isPointerTy()) +    return; + +  unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); +  if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { +    MDNode *NN = MDNode::get(OldLI.getContext(), None); +    NewLI.setMetadata(LLVMContext::MD_nonnull, NN); +  } +} + +void llvm::dropDebugUsers(Instruction &I) { +  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; +  findDbgUsers(DbgUsers, &I); +  for (auto *DII : DbgUsers) +    DII->eraseFromParent(); +} + +void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, +                                    BasicBlock *BB) { +  // Since we are moving the instructions out of its basic block, we do not +  // retain their original debug locations (DILocations) and debug intrinsic +  // instructions. +  // +  // Doing so would degrade the debugging experience and adversely affect the +  // accuracy of profiling information. +  // +  // Currently, when hoisting the instructions, we take the following actions: +  // - Remove their debug intrinsic instructions. +  // - Set their debug locations to the values from the insertion point. +  // +  // As per PR39141 (comment #8), the more fundamental reason why the dbg.values +  // need to be deleted, is because there will not be any instructions with a +  // DILocation in either branch left after performing the transformation. We +  // can only insert a dbg.value after the two branches are joined again. +  // +  // See PR38762, PR39243 for more details. +  // +  // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to +  // encode predicated DIExpressions that yield different results on different +  // code paths. + +  for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { +    Instruction *I = &*II; +    I->dropUndefImplyingAttrsAndUnknownMetadata(); +    if (I->isUsedByMetadata()) +      dropDebugUsers(*I); +    if (I->isDebugOrPseudoInst()) { +      // Remove DbgInfo and pseudo probe Intrinsics. +      II = I->eraseFromParent(); +      continue; +    } +    I->setDebugLoc(InsertPt->getDebugLoc()); +    ++II; +  } +  DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), +                                 BB->begin(), +                                 BB->getTerminator()->getIterator()); +} + +namespace { + +/// A potential constituent of a bitreverse or bswap expression. See +/// collectBitParts for a fuller explanation. +struct BitPart { +  BitPart(Value *P, unsigned BW) : Provider(P) { +    Provenance.resize(BW); +  } + +  /// The Value that this is a bitreverse/bswap of. +  Value *Provider; + +  /// The "provenance" of each bit. Provenance[A] = B means that bit A +  /// in Provider becomes bit B in the result of this expression. +  SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. + +  enum { Unset = -1 }; +}; + +} // end anonymous namespace + +/// Analyze the specified subexpression and see if it is capable of providing +/// pieces of a bswap or bitreverse. The subexpression provides a potential +/// piece of a bswap or bitreverse if it can be proved that each non-zero bit in +/// the output of the expression came from a corresponding bit in some other +/// value. This function is recursive, and the end result is a mapping of +/// bitnumber to bitnumber. It is the caller's responsibility to validate that +/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. +/// +/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know +/// that the expression deposits the low byte of %X into the high byte of the +/// result and that all other bits are zero. This expression is accepted and a +/// BitPart is returned with Provider set to %X and Provenance[24-31] set to +/// [0-7]. +/// +/// For vector types, all analysis is performed at the per-element level. No +/// cross-element analysis is supported (shuffle/insertion/reduction), and all +/// constant masks must be splatted across all elements. +/// +/// To avoid revisiting values, the BitPart results are memoized into the +/// provided map. To avoid unnecessary copying of BitParts, BitParts are +/// constructed in-place in the \c BPS map. Because of this \c BPS needs to +/// store BitParts objects, not pointers. As we need the concept of a nullptr +/// BitParts (Value has been analyzed and the analysis failed), we an Optional +/// type instead to provide the same functionality. +/// +/// Because we pass around references into \c BPS, we must use a container that +/// does not invalidate internal references (std::map instead of DenseMap). +static const Optional<BitPart> & +collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, +                std::map<Value *, Optional<BitPart>> &BPS, int Depth, +                bool &FoundRoot) { +  auto I = BPS.find(V); +  if (I != BPS.end()) +    return I->second; + +  auto &Result = BPS[V] = None; +  auto BitWidth = V->getType()->getScalarSizeInBits(); + +  // Can't do integer/elements > 128 bits. +  if (BitWidth > 128) +    return Result; + +  // Prevent stack overflow by limiting the recursion depth +  if (Depth == BitPartRecursionMaxDepth) { +    LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); +    return Result; +  } + +  if (auto *I = dyn_cast<Instruction>(V)) { +    Value *X, *Y; +    const APInt *C; + +    // If this is an or instruction, it may be an inner node of the bswap. +    if (match(V, m_Or(m_Value(X), m_Value(Y)))) { +      // Check we have both sources and they are from the same provider. +      const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                      Depth + 1, FoundRoot); +      if (!A || !A->Provider) +        return Result; + +      const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, +                                      Depth + 1, FoundRoot); +      if (!B || A->Provider != B->Provider) +        return Result; + +      // Try and merge the two together. +      Result = BitPart(A->Provider, BitWidth); +      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { +        if (A->Provenance[BitIdx] != BitPart::Unset && +            B->Provenance[BitIdx] != BitPart::Unset && +            A->Provenance[BitIdx] != B->Provenance[BitIdx]) +          return Result = None; + +        if (A->Provenance[BitIdx] == BitPart::Unset) +          Result->Provenance[BitIdx] = B->Provenance[BitIdx]; +        else +          Result->Provenance[BitIdx] = A->Provenance[BitIdx]; +      } + +      return Result; +    } + +    // If this is a logical shift by a constant, recurse then shift the result. +    if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { +      const APInt &BitShift = *C; + +      // Ensure the shift amount is defined. +      if (BitShift.uge(BitWidth)) +        return Result; + +      // For bswap-only, limit shift amounts to whole bytes, for an early exit. +      if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) +        return Result; + +      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!Res) +        return Result; +      Result = Res; + +      // Perform the "shift" on BitProvenance. +      auto &P = Result->Provenance; +      if (I->getOpcode() == Instruction::Shl) { +        P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); +        P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); +      } else { +        P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); +        P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); +      } + +      return Result; +    } + +    // If this is a logical 'and' with a mask that clears bits, recurse then +    // unset the appropriate bits. +    if (match(V, m_And(m_Value(X), m_APInt(C)))) { +      const APInt &AndMask = *C; + +      // Check that the mask allows a multiple of 8 bits for a bswap, for an +      // early exit. +      unsigned NumMaskedBits = AndMask.countPopulation(); +      if (!MatchBitReversals && (NumMaskedBits % 8) != 0) +        return Result; + +      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!Res) +        return Result; +      Result = Res; + +      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) +        // If the AndMask is zero for this bit, clear the bit. +        if (AndMask[BitIdx] == 0) +          Result->Provenance[BitIdx] = BitPart::Unset; +      return Result; +    } + +    // If this is a zext instruction zero extend the result. +    if (match(V, m_ZExt(m_Value(X)))) { +      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!Res) +        return Result; + +      Result = BitPart(Res->Provider, BitWidth); +      auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); +      for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) +        Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; +      for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) +        Result->Provenance[BitIdx] = BitPart::Unset; +      return Result; +    } + +    // If this is a truncate instruction, extract the lower bits. +    if (match(V, m_Trunc(m_Value(X)))) { +      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!Res) +        return Result; + +      Result = BitPart(Res->Provider, BitWidth); +      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) +        Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; +      return Result; +    } + +    // BITREVERSE - most likely due to us previous matching a partial +    // bitreverse. +    if (match(V, m_BitReverse(m_Value(X)))) { +      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!Res) +        return Result; + +      Result = BitPart(Res->Provider, BitWidth); +      for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) +        Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; +      return Result; +    } + +    // BSWAP - most likely due to us previous matching a partial bswap. +    if (match(V, m_BSwap(m_Value(X)))) { +      const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!Res) +        return Result; + +      unsigned ByteWidth = BitWidth / 8; +      Result = BitPart(Res->Provider, BitWidth); +      for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { +        unsigned ByteBitOfs = ByteIdx * 8; +        for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) +          Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = +              Res->Provenance[ByteBitOfs + BitIdx]; +      } +      return Result; +    } + +    // Funnel 'double' shifts take 3 operands, 2 inputs and the shift +    // amount (modulo). +    // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) +    // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) +    if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || +        match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { +      // We can treat fshr as a fshl by flipping the modulo amount. +      unsigned ModAmt = C->urem(BitWidth); +      if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) +        ModAmt = BitWidth - ModAmt; + +      // For bswap-only, limit shift amounts to whole bytes, for an early exit. +      if (!MatchBitReversals && (ModAmt % 8) != 0) +        return Result; + +      // Check we have both sources and they are from the same provider. +      const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!LHS || !LHS->Provider) +        return Result; + +      const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, +                                        Depth + 1, FoundRoot); +      if (!RHS || LHS->Provider != RHS->Provider) +        return Result; + +      unsigned StartBitRHS = BitWidth - ModAmt; +      Result = BitPart(LHS->Provider, BitWidth); +      for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) +        Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; +      for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) +        Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; +      return Result; +    } +  } + +  // If we've already found a root input value then we're never going to merge +  // these back together. +  if (FoundRoot) +    return Result; + +  // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must +  // be the root input value to the bswap/bitreverse. +  FoundRoot = true; +  Result = BitPart(V, BitWidth); +  for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) +    Result->Provenance[BitIdx] = BitIdx; +  return Result; +} + +static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, +                                          unsigned BitWidth) { +  if (From % 8 != To % 8) +    return false; +  // Convert from bit indices to byte indices and check for a byte reversal. +  From >>= 3; +  To >>= 3; +  BitWidth >>= 3; +  return From == BitWidth - To - 1; +} + +static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, +                                               unsigned BitWidth) { +  return From == BitWidth - To - 1; +} + +bool llvm::recognizeBSwapOrBitReverseIdiom( +    Instruction *I, bool MatchBSwaps, bool MatchBitReversals, +    SmallVectorImpl<Instruction *> &InsertedInsts) { +  if (!match(I, m_Or(m_Value(), m_Value())) && +      !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && +      !match(I, m_FShr(m_Value(), m_Value(), m_Value()))) +    return false; +  if (!MatchBSwaps && !MatchBitReversals) +    return false; +  Type *ITy = I->getType(); +  if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) +    return false;  // Can't do integer/elements > 128 bits. + +  Type *DemandedTy = ITy; +  if (I->hasOneUse()) +    if (auto *Trunc = dyn_cast<TruncInst>(I->user_back())) +      DemandedTy = Trunc->getType(); + +  // Try to find all the pieces corresponding to the bswap. +  bool FoundRoot = false; +  std::map<Value *, Optional<BitPart>> BPS; +  const auto &Res = +      collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); +  if (!Res) +    return false; +  ArrayRef<int8_t> BitProvenance = Res->Provenance; +  assert(all_of(BitProvenance, +                [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && +         "Illegal bit provenance index"); + +  // If the upper bits are zero, then attempt to perform as a truncated op. +  if (BitProvenance.back() == BitPart::Unset) { +    while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) +      BitProvenance = BitProvenance.drop_back(); +    if (BitProvenance.empty()) +      return false; // TODO - handle null value? +    DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); +    if (auto *IVecTy = dyn_cast<VectorType>(ITy)) +      DemandedTy = VectorType::get(DemandedTy, IVecTy); +  } + +  // Check BitProvenance hasn't found a source larger than the result type. +  unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); +  if (DemandedBW > ITy->getScalarSizeInBits()) +    return false; + +  // Now, is the bit permutation correct for a bswap or a bitreverse? We can +  // only byteswap values with an even number of bytes. +  APInt DemandedMask = APInt::getAllOnes(DemandedBW); +  bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; +  bool OKForBitReverse = MatchBitReversals; +  for (unsigned BitIdx = 0; +       (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { +    if (BitProvenance[BitIdx] == BitPart::Unset) { +      DemandedMask.clearBit(BitIdx); +      continue; +    } +    OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, +                                                DemandedBW); +    OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], +                                                          BitIdx, DemandedBW); +  } + +  Intrinsic::ID Intrin; +  if (OKForBSwap) +    Intrin = Intrinsic::bswap; +  else if (OKForBitReverse) +    Intrin = Intrinsic::bitreverse; +  else +    return false; + +  Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); +  Value *Provider = Res->Provider; + +  // We may need to truncate the provider. +  if (DemandedTy != Provider->getType()) { +    auto *Trunc = +        CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); +    InsertedInsts.push_back(Trunc); +    Provider = Trunc; +  } + +  Instruction *Result = CallInst::Create(F, Provider, "rev", I); +  InsertedInsts.push_back(Result); + +  if (!DemandedMask.isAllOnes()) { +    auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); +    Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); +    InsertedInsts.push_back(Result); +  } + +  // We may need to zeroextend back to the result type. +  if (ITy != Result->getType()) { +    auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); +    InsertedInsts.push_back(ExtInst); +  } + +  return true; +} + +// CodeGen has special handling for some string functions that may replace +// them with target-specific intrinsics.  Since that'd skip our interceptors +// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, +// we mark affected calls as NoBuiltin, which will disable optimization +// in CodeGen. +void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( +    CallInst *CI, const TargetLibraryInfo *TLI) { +  Function *F = CI->getCalledFunction(); +  LibFunc Func; +  if (F && !F->hasLocalLinkage() && F->hasName() && +      TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && +      !F->doesNotAccessMemory()) +    CI->addFnAttr(Attribute::NoBuiltin); +} + +bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { +  // We can't have a PHI with a metadata type. +  if (I->getOperand(OpIdx)->getType()->isMetadataTy()) +    return false; + +  // Early exit. +  if (!isa<Constant>(I->getOperand(OpIdx))) +    return true; + +  switch (I->getOpcode()) { +  default: +    return true; +  case Instruction::Call: +  case Instruction::Invoke: { +    const auto &CB = cast<CallBase>(*I); + +    // Can't handle inline asm. Skip it. +    if (CB.isInlineAsm()) +      return false; + +    // Constant bundle operands may need to retain their constant-ness for +    // correctness. +    if (CB.isBundleOperand(OpIdx)) +      return false; + +    if (OpIdx < CB.arg_size()) { +      // Some variadic intrinsics require constants in the variadic arguments, +      // which currently aren't markable as immarg. +      if (isa<IntrinsicInst>(CB) && +          OpIdx >= CB.getFunctionType()->getNumParams()) { +        // This is known to be OK for stackmap. +        return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; +      } + +      // gcroot is a special case, since it requires a constant argument which +      // isn't also required to be a simple ConstantInt. +      if (CB.getIntrinsicID() == Intrinsic::gcroot) +        return false; + +      // Some intrinsic operands are required to be immediates. +      return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); +    } + +    // It is never allowed to replace the call argument to an intrinsic, but it +    // may be possible for a call. +    return !isa<IntrinsicInst>(CB); +  } +  case Instruction::ShuffleVector: +    // Shufflevector masks are constant. +    return OpIdx != 2; +  case Instruction::Switch: +  case Instruction::ExtractValue: +    // All operands apart from the first are constant. +    return OpIdx == 0; +  case Instruction::InsertValue: +    // All operands apart from the first and the second are constant. +    return OpIdx < 2; +  case Instruction::Alloca: +    // Static allocas (constant size in the entry block) are handled by +    // prologue/epilogue insertion so they're free anyway. We definitely don't +    // want to make them non-constant. +    return !cast<AllocaInst>(I)->isStaticAlloca(); +  case Instruction::GetElementPtr: +    if (OpIdx == 0) +      return true; +    gep_type_iterator It = gep_type_begin(I); +    for (auto E = std::next(It, OpIdx); It != E; ++It) +      if (It.isStruct()) +        return false; +    return true; +  } +} + +Value *llvm::invertCondition(Value *Condition) { +  // First: Check if it's a constant +  if (Constant *C = dyn_cast<Constant>(Condition)) +    return ConstantExpr::getNot(C); + +  // Second: If the condition is already inverted, return the original value +  Value *NotCondition; +  if (match(Condition, m_Not(m_Value(NotCondition)))) +    return NotCondition; + +  BasicBlock *Parent = nullptr; +  Instruction *Inst = dyn_cast<Instruction>(Condition); +  if (Inst) +    Parent = Inst->getParent(); +  else if (Argument *Arg = dyn_cast<Argument>(Condition)) +    Parent = &Arg->getParent()->getEntryBlock(); +  assert(Parent && "Unsupported condition to invert"); + +  // Third: Check all the users for an invert +  for (User *U : Condition->users()) +    if (Instruction *I = dyn_cast<Instruction>(U)) +      if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) +        return I; + +  // Last option: Create a new instruction +  auto *Inverted = +      BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); +  if (Inst && !isa<PHINode>(Inst)) +    Inverted->insertAfter(Inst); +  else +    Inverted->insertBefore(&*Parent->getFirstInsertionPt()); +  return Inverted; +} + +bool llvm::inferAttributesFromOthers(Function &F) { +  // Note: We explicitly check for attributes rather than using cover functions +  // because some of the cover functions include the logic being implemented. + +  bool Changed = false; +  // readnone + not convergent implies nosync +  if (!F.hasFnAttribute(Attribute::NoSync) && +      F.doesNotAccessMemory() && !F.isConvergent()) { +    F.setNoSync(); +    Changed = true; +  } + +  // readonly implies nofree +  if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { +    F.setDoesNotFreeMemory(); +    Changed = true; +  } + +  // willreturn implies mustprogress +  if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { +    F.setMustProgress(); +    Changed = true; +  } + +  // TODO: There are a bunch of cases of restrictive memory effects we +  // can infer by inspecting arguments of argmemonly-ish functions. + +  return Changed; +} | 
