aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp4142
1 files changed, 4142 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp
new file mode 100644
index 000000000000..459e3d980592
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp
@@ -0,0 +1,4142 @@
+//===- Local.cpp - Functions to perform local transformations -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions perform various local transformations to the
+// program.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumeBundleQueries.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/EHPersonalities.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsWebAssembly.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ProfDataUtils.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <optional>
+#include <utility>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+extern cl::opt<bool> UseNewDbgInfoFormat;
+
+#define DEBUG_TYPE "local"
+
+STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
+STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
+
+static cl::opt<bool> PHICSEDebugHash(
+ "phicse-debug-hash",
+#ifdef EXPENSIVE_CHECKS
+ cl::init(true),
+#else
+ cl::init(false),
+#endif
+ cl::Hidden,
+ cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
+ "function is well-behaved w.r.t. its isEqual predicate"));
+
+static cl::opt<unsigned> PHICSENumPHISmallSize(
+ "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
+ cl::desc(
+ "When the basic block contains not more than this number of PHI nodes, "
+ "perform a (faster!) exhaustive search instead of set-driven one."));
+
+// Max recursion depth for collectBitParts used when detecting bswap and
+// bitreverse idioms.
+static const unsigned BitPartRecursionMaxDepth = 48;
+
+//===----------------------------------------------------------------------===//
+// Local constant propagation.
+//
+
+/// ConstantFoldTerminator - If a terminator instruction is predicated on a
+/// constant value, convert it into an unconditional branch to the constant
+/// destination. This is a nontrivial operation because the successors of this
+/// basic block must have their PHI nodes updated.
+/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
+/// conditions and indirectbr addresses this might make dead if
+/// DeleteDeadConditions is true.
+bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
+ const TargetLibraryInfo *TLI,
+ DomTreeUpdater *DTU) {
+ Instruction *T = BB->getTerminator();
+ IRBuilder<> Builder(T);
+
+ // Branch - See if we are conditional jumping on constant
+ if (auto *BI = dyn_cast<BranchInst>(T)) {
+ if (BI->isUnconditional()) return false; // Can't optimize uncond branch
+
+ BasicBlock *Dest1 = BI->getSuccessor(0);
+ BasicBlock *Dest2 = BI->getSuccessor(1);
+
+ if (Dest2 == Dest1) { // Conditional branch to same location?
+ // This branch matches something like this:
+ // br bool %cond, label %Dest, label %Dest
+ // and changes it into: br label %Dest
+
+ // Let the basic block know that we are letting go of one copy of it.
+ assert(BI->getParent() && "Terminator not inserted in block!");
+ Dest1->removePredecessor(BI->getParent());
+
+ // Replace the conditional branch with an unconditional one.
+ BranchInst *NewBI = Builder.CreateBr(Dest1);
+
+ // Transfer the metadata to the new branch instruction.
+ NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
+ LLVMContext::MD_annotation});
+
+ Value *Cond = BI->getCondition();
+ BI->eraseFromParent();
+ if (DeleteDeadConditions)
+ RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
+ return true;
+ }
+
+ if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
+ // Are we branching on constant?
+ // YES. Change to unconditional branch...
+ BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
+ BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
+
+ // Let the basic block know that we are letting go of it. Based on this,
+ // it will adjust it's PHI nodes.
+ OldDest->removePredecessor(BB);
+
+ // Replace the conditional branch with an unconditional one.
+ BranchInst *NewBI = Builder.CreateBr(Destination);
+
+ // Transfer the metadata to the new branch instruction.
+ NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
+ LLVMContext::MD_annotation});
+
+ BI->eraseFromParent();
+ if (DTU)
+ DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
+ return true;
+ }
+
+ return false;
+ }
+
+ if (auto *SI = dyn_cast<SwitchInst>(T)) {
+ // If we are switching on a constant, we can convert the switch to an
+ // unconditional branch.
+ auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
+ BasicBlock *DefaultDest = SI->getDefaultDest();
+ BasicBlock *TheOnlyDest = DefaultDest;
+
+ // If the default is unreachable, ignore it when searching for TheOnlyDest.
+ if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
+ SI->getNumCases() > 0) {
+ TheOnlyDest = SI->case_begin()->getCaseSuccessor();
+ }
+
+ bool Changed = false;
+
+ // Figure out which case it goes to.
+ for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) {
+ // Found case matching a constant operand?
+ if (It->getCaseValue() == CI) {
+ TheOnlyDest = It->getCaseSuccessor();
+ break;
+ }
+
+ // Check to see if this branch is going to the same place as the default
+ // dest. If so, eliminate it as an explicit compare.
+ if (It->getCaseSuccessor() == DefaultDest) {
+ MDNode *MD = getValidBranchWeightMDNode(*SI);
+ unsigned NCases = SI->getNumCases();
+ // Fold the case metadata into the default if there will be any branches
+ // left, unless the metadata doesn't match the switch.
+ if (NCases > 1 && MD) {
+ // Collect branch weights into a vector.
+ SmallVector<uint32_t, 8> Weights;
+ extractBranchWeights(MD, Weights);
+
+ // Merge weight of this case to the default weight.
+ unsigned Idx = It->getCaseIndex();
+ // TODO: Add overflow check.
+ Weights[0] += Weights[Idx + 1];
+ // Remove weight for this case.
+ std::swap(Weights[Idx + 1], Weights.back());
+ Weights.pop_back();
+ setBranchWeights(*SI, Weights);
+ }
+ // Remove this entry.
+ BasicBlock *ParentBB = SI->getParent();
+ DefaultDest->removePredecessor(ParentBB);
+ It = SI->removeCase(It);
+ End = SI->case_end();
+
+ // Removing this case may have made the condition constant. In that
+ // case, update CI and restart iteration through the cases.
+ if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) {
+ CI = NewCI;
+ It = SI->case_begin();
+ }
+
+ Changed = true;
+ continue;
+ }
+
+ // Otherwise, check to see if the switch only branches to one destination.
+ // We do this by reseting "TheOnlyDest" to null when we find two non-equal
+ // destinations.
+ if (It->getCaseSuccessor() != TheOnlyDest)
+ TheOnlyDest = nullptr;
+
+ // Increment this iterator as we haven't removed the case.
+ ++It;
+ }
+
+ if (CI && !TheOnlyDest) {
+ // Branching on a constant, but not any of the cases, go to the default
+ // successor.
+ TheOnlyDest = SI->getDefaultDest();
+ }
+
+ // If we found a single destination that we can fold the switch into, do so
+ // now.
+ if (TheOnlyDest) {
+ // Insert the new branch.
+ Builder.CreateBr(TheOnlyDest);
+ BasicBlock *BB = SI->getParent();
+
+ SmallSet<BasicBlock *, 8> RemovedSuccessors;
+
+ // Remove entries from PHI nodes which we no longer branch to...
+ BasicBlock *SuccToKeep = TheOnlyDest;
+ for (BasicBlock *Succ : successors(SI)) {
+ if (DTU && Succ != TheOnlyDest)
+ RemovedSuccessors.insert(Succ);
+ // Found case matching a constant operand?
+ if (Succ == SuccToKeep) {
+ SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
+ } else {
+ Succ->removePredecessor(BB);
+ }
+ }
+
+ // Delete the old switch.
+ Value *Cond = SI->getCondition();
+ SI->eraseFromParent();
+ if (DeleteDeadConditions)
+ RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
+ if (DTU) {
+ std::vector<DominatorTree::UpdateType> Updates;
+ Updates.reserve(RemovedSuccessors.size());
+ for (auto *RemovedSuccessor : RemovedSuccessors)
+ Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
+ DTU->applyUpdates(Updates);
+ }
+ return true;
+ }
+
+ if (SI->getNumCases() == 1) {
+ // Otherwise, we can fold this switch into a conditional branch
+ // instruction if it has only one non-default destination.
+ auto FirstCase = *SI->case_begin();
+ Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
+ FirstCase.getCaseValue(), "cond");
+
+ // Insert the new branch.
+ BranchInst *NewBr = Builder.CreateCondBr(Cond,
+ FirstCase.getCaseSuccessor(),
+ SI->getDefaultDest());
+ SmallVector<uint32_t> Weights;
+ if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) {
+ uint32_t DefWeight = Weights[0];
+ uint32_t CaseWeight = Weights[1];
+ // The TrueWeight should be the weight for the single case of SI.
+ NewBr->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BB->getContext())
+ .createBranchWeights(CaseWeight, DefWeight));
+ }
+
+ // Update make.implicit metadata to the newly-created conditional branch.
+ MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
+ if (MakeImplicitMD)
+ NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
+
+ // Delete the old switch.
+ SI->eraseFromParent();
+ return true;
+ }
+ return Changed;
+ }
+
+ if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
+ // indirectbr blockaddress(@F, @BB) -> br label @BB
+ if (auto *BA =
+ dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
+ BasicBlock *TheOnlyDest = BA->getBasicBlock();
+ SmallSet<BasicBlock *, 8> RemovedSuccessors;
+
+ // Insert the new branch.
+ Builder.CreateBr(TheOnlyDest);
+
+ BasicBlock *SuccToKeep = TheOnlyDest;
+ for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
+ BasicBlock *DestBB = IBI->getDestination(i);
+ if (DTU && DestBB != TheOnlyDest)
+ RemovedSuccessors.insert(DestBB);
+ if (IBI->getDestination(i) == SuccToKeep) {
+ SuccToKeep = nullptr;
+ } else {
+ DestBB->removePredecessor(BB);
+ }
+ }
+ Value *Address = IBI->getAddress();
+ IBI->eraseFromParent();
+ if (DeleteDeadConditions)
+ // Delete pointer cast instructions.
+ RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
+
+ // Also zap the blockaddress constant if there are no users remaining,
+ // otherwise the destination is still marked as having its address taken.
+ if (BA->use_empty())
+ BA->destroyConstant();
+
+ // If we didn't find our destination in the IBI successor list, then we
+ // have undefined behavior. Replace the unconditional branch with an
+ // 'unreachable' instruction.
+ if (SuccToKeep) {
+ BB->getTerminator()->eraseFromParent();
+ new UnreachableInst(BB->getContext(), BB);
+ }
+
+ if (DTU) {
+ std::vector<DominatorTree::UpdateType> Updates;
+ Updates.reserve(RemovedSuccessors.size());
+ for (auto *RemovedSuccessor : RemovedSuccessors)
+ Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
+ DTU->applyUpdates(Updates);
+ }
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Local dead code elimination.
+//
+
+/// isInstructionTriviallyDead - Return true if the result produced by the
+/// instruction is not used, and the instruction has no side effects.
+///
+bool llvm::isInstructionTriviallyDead(Instruction *I,
+ const TargetLibraryInfo *TLI) {
+ if (!I->use_empty())
+ return false;
+ return wouldInstructionBeTriviallyDead(I, TLI);
+}
+
+bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
+ Instruction *I, const TargetLibraryInfo *TLI) {
+ // Instructions that are "markers" and have implied meaning on code around
+ // them (without explicit uses), are not dead on unused paths.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ if (II->getIntrinsicID() == Intrinsic::stacksave ||
+ II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
+ II->isLifetimeStartOrEnd())
+ return false;
+ return wouldInstructionBeTriviallyDead(I, TLI);
+}
+
+bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I,
+ const TargetLibraryInfo *TLI) {
+ if (I->isTerminator())
+ return false;
+
+ // We don't want the landingpad-like instructions removed by anything this
+ // general.
+ if (I->isEHPad())
+ return false;
+
+ // We don't want debug info removed by anything this general.
+ if (isa<DbgVariableIntrinsic>(I))
+ return false;
+
+ if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
+ if (DLI->getLabel())
+ return false;
+ return true;
+ }
+
+ if (auto *CB = dyn_cast<CallBase>(I))
+ if (isRemovableAlloc(CB, TLI))
+ return true;
+
+ if (!I->willReturn()) {
+ auto *II = dyn_cast<IntrinsicInst>(I);
+ if (!II)
+ return false;
+
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::experimental_guard: {
+ // Guards on true are operationally no-ops. In the future we can
+ // consider more sophisticated tradeoffs for guards considering potential
+ // for check widening, but for now we keep things simple.
+ auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0));
+ return Cond && Cond->isOne();
+ }
+ // TODO: These intrinsics are not safe to remove, because this may remove
+ // a well-defined trap.
+ case Intrinsic::wasm_trunc_signed:
+ case Intrinsic::wasm_trunc_unsigned:
+ case Intrinsic::ptrauth_auth:
+ case Intrinsic::ptrauth_resign:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ if (!I->mayHaveSideEffects())
+ return true;
+
+ // Special case intrinsics that "may have side effects" but can be deleted
+ // when dead.
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ // Safe to delete llvm.stacksave and launder.invariant.group if dead.
+ if (II->getIntrinsicID() == Intrinsic::stacksave ||
+ II->getIntrinsicID() == Intrinsic::launder_invariant_group)
+ return true;
+
+ if (II->isLifetimeStartOrEnd()) {
+ auto *Arg = II->getArgOperand(1);
+ // Lifetime intrinsics are dead when their right-hand is undef.
+ if (isa<UndefValue>(Arg))
+ return true;
+ // If the right-hand is an alloc, global, or argument and the only uses
+ // are lifetime intrinsics then the intrinsics are dead.
+ if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
+ return llvm::all_of(Arg->uses(), [](Use &Use) {
+ if (IntrinsicInst *IntrinsicUse =
+ dyn_cast<IntrinsicInst>(Use.getUser()))
+ return IntrinsicUse->isLifetimeStartOrEnd();
+ return false;
+ });
+ return false;
+ }
+
+ // Assumptions are dead if their condition is trivially true.
+ if (II->getIntrinsicID() == Intrinsic::assume &&
+ isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
+ return !Cond->isZero();
+
+ return false;
+ }
+
+ if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
+ std::optional<fp::ExceptionBehavior> ExBehavior =
+ FPI->getExceptionBehavior();
+ return *ExBehavior != fp::ebStrict;
+ }
+ }
+
+ if (auto *Call = dyn_cast<CallBase>(I)) {
+ if (Value *FreedOp = getFreedOperand(Call, TLI))
+ if (Constant *C = dyn_cast<Constant>(FreedOp))
+ return C->isNullValue() || isa<UndefValue>(C);
+ if (isMathLibCallNoop(Call, TLI))
+ return true;
+ }
+
+ // Non-volatile atomic loads from constants can be removed.
+ if (auto *LI = dyn_cast<LoadInst>(I))
+ if (auto *GV = dyn_cast<GlobalVariable>(
+ LI->getPointerOperand()->stripPointerCasts()))
+ if (!LI->isVolatile() && GV->isConstant())
+ return true;
+
+ return false;
+}
+
+/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
+/// trivially dead instruction, delete it. If that makes any of its operands
+/// trivially dead, delete them too, recursively. Return true if any
+/// instructions were deleted.
+bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
+ Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
+ std::function<void(Value *)> AboutToDeleteCallback) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || !isInstructionTriviallyDead(I, TLI))
+ return false;
+
+ SmallVector<WeakTrackingVH, 16> DeadInsts;
+ DeadInsts.push_back(I);
+ RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
+ AboutToDeleteCallback);
+
+ return true;
+}
+
+bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
+ MemorySSAUpdater *MSSAU,
+ std::function<void(Value *)> AboutToDeleteCallback) {
+ unsigned S = 0, E = DeadInsts.size(), Alive = 0;
+ for (; S != E; ++S) {
+ auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]);
+ if (!I || !isInstructionTriviallyDead(I)) {
+ DeadInsts[S] = nullptr;
+ ++Alive;
+ }
+ }
+ if (Alive == E)
+ return false;
+ RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
+ AboutToDeleteCallback);
+ return true;
+}
+
+void llvm::RecursivelyDeleteTriviallyDeadInstructions(
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
+ MemorySSAUpdater *MSSAU,
+ std::function<void(Value *)> AboutToDeleteCallback) {
+ // Process the dead instruction list until empty.
+ while (!DeadInsts.empty()) {
+ Value *V = DeadInsts.pop_back_val();
+ Instruction *I = cast_or_null<Instruction>(V);
+ if (!I)
+ continue;
+ assert(isInstructionTriviallyDead(I, TLI) &&
+ "Live instruction found in dead worklist!");
+ assert(I->use_empty() && "Instructions with uses are not dead.");
+
+ // Don't lose the debug info while deleting the instructions.
+ salvageDebugInfo(*I);
+
+ if (AboutToDeleteCallback)
+ AboutToDeleteCallback(I);
+
+ // Null out all of the instruction's operands to see if any operand becomes
+ // dead as we go.
+ for (Use &OpU : I->operands()) {
+ Value *OpV = OpU.get();
+ OpU.set(nullptr);
+
+ if (!OpV->use_empty())
+ continue;
+
+ // If the operand is an instruction that became dead as we nulled out the
+ // operand, and if it is 'trivially' dead, delete it in a future loop
+ // iteration.
+ if (Instruction *OpI = dyn_cast<Instruction>(OpV))
+ if (isInstructionTriviallyDead(OpI, TLI))
+ DeadInsts.push_back(OpI);
+ }
+ if (MSSAU)
+ MSSAU->removeMemoryAccess(I);
+
+ I->eraseFromParent();
+ }
+}
+
+bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
+ SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
+ SmallVector<DPValue *, 1> DPUsers;
+ findDbgUsers(DbgUsers, I, &DPUsers);
+ for (auto *DII : DbgUsers)
+ DII->setKillLocation();
+ for (auto *DPV : DPUsers)
+ DPV->setKillLocation();
+ return !DbgUsers.empty() || !DPUsers.empty();
+}
+
+/// areAllUsesEqual - Check whether the uses of a value are all the same.
+/// This is similar to Instruction::hasOneUse() except this will also return
+/// true when there are no uses or multiple uses that all refer to the same
+/// value.
+static bool areAllUsesEqual(Instruction *I) {
+ Value::user_iterator UI = I->user_begin();
+ Value::user_iterator UE = I->user_end();
+ if (UI == UE)
+ return true;
+
+ User *TheUse = *UI;
+ for (++UI; UI != UE; ++UI) {
+ if (*UI != TheUse)
+ return false;
+ }
+ return true;
+}
+
+/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
+/// dead PHI node, due to being a def-use chain of single-use nodes that
+/// either forms a cycle or is terminated by a trivially dead instruction,
+/// delete it. If that makes any of its operands trivially dead, delete them
+/// too, recursively. Return true if a change was made.
+bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
+ const TargetLibraryInfo *TLI,
+ llvm::MemorySSAUpdater *MSSAU) {
+ SmallPtrSet<Instruction*, 4> Visited;
+ for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
+ I = cast<Instruction>(*I->user_begin())) {
+ if (I->use_empty())
+ return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
+
+ // If we find an instruction more than once, we're on a cycle that
+ // won't prove fruitful.
+ if (!Visited.insert(I).second) {
+ // Break the cycle and delete the instruction and its operands.
+ I->replaceAllUsesWith(PoisonValue::get(I->getType()));
+ (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool
+simplifyAndDCEInstruction(Instruction *I,
+ SmallSetVector<Instruction *, 16> &WorkList,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ if (isInstructionTriviallyDead(I, TLI)) {
+ salvageDebugInfo(*I);
+
+ // Null out all of the instruction's operands to see if any operand becomes
+ // dead as we go.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ Value *OpV = I->getOperand(i);
+ I->setOperand(i, nullptr);
+
+ if (!OpV->use_empty() || I == OpV)
+ continue;
+
+ // If the operand is an instruction that became dead as we nulled out the
+ // operand, and if it is 'trivially' dead, delete it in a future loop
+ // iteration.
+ if (Instruction *OpI = dyn_cast<Instruction>(OpV))
+ if (isInstructionTriviallyDead(OpI, TLI))
+ WorkList.insert(OpI);
+ }
+
+ I->eraseFromParent();
+
+ return true;
+ }
+
+ if (Value *SimpleV = simplifyInstruction(I, DL)) {
+ // Add the users to the worklist. CAREFUL: an instruction can use itself,
+ // in the case of a phi node.
+ for (User *U : I->users()) {
+ if (U != I) {
+ WorkList.insert(cast<Instruction>(U));
+ }
+ }
+
+ // Replace the instruction with its simplified value.
+ bool Changed = false;
+ if (!I->use_empty()) {
+ I->replaceAllUsesWith(SimpleV);
+ Changed = true;
+ }
+ if (isInstructionTriviallyDead(I, TLI)) {
+ I->eraseFromParent();
+ Changed = true;
+ }
+ return Changed;
+ }
+ return false;
+}
+
+/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
+/// simplify any instructions in it and recursively delete dead instructions.
+///
+/// This returns true if it changed the code, note that it can delete
+/// instructions in other blocks as well in this block.
+bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
+ const TargetLibraryInfo *TLI) {
+ bool MadeChange = false;
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+
+#ifndef NDEBUG
+ // In debug builds, ensure that the terminator of the block is never replaced
+ // or deleted by these simplifications. The idea of simplification is that it
+ // cannot introduce new instructions, and there is no way to replace the
+ // terminator of a block without introducing a new instruction.
+ AssertingVH<Instruction> TerminatorVH(&BB->back());
+#endif
+
+ SmallSetVector<Instruction *, 16> WorkList;
+ // Iterate over the original function, only adding insts to the worklist
+ // if they actually need to be revisited. This avoids having to pre-init
+ // the worklist with the entire function's worth of instructions.
+ for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
+ BI != E;) {
+ assert(!BI->isTerminator());
+ Instruction *I = &*BI;
+ ++BI;
+
+ // We're visiting this instruction now, so make sure it's not in the
+ // worklist from an earlier visit.
+ if (!WorkList.count(I))
+ MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
+ }
+
+ while (!WorkList.empty()) {
+ Instruction *I = WorkList.pop_back_val();
+ MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
+ }
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Control Flow Graph Restructuring.
+//
+
+void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
+ DomTreeUpdater *DTU) {
+
+ // If BB has single-entry PHI nodes, fold them.
+ while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
+ Value *NewVal = PN->getIncomingValue(0);
+ // Replace self referencing PHI with poison, it must be dead.
+ if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
+ PN->replaceAllUsesWith(NewVal);
+ PN->eraseFromParent();
+ }
+
+ BasicBlock *PredBB = DestBB->getSinglePredecessor();
+ assert(PredBB && "Block doesn't have a single predecessor!");
+
+ bool ReplaceEntryBB = PredBB->isEntryBlock();
+
+ // DTU updates: Collect all the edges that enter
+ // PredBB. These dominator edges will be redirected to DestBB.
+ SmallVector<DominatorTree::UpdateType, 32> Updates;
+
+ if (DTU) {
+ // To avoid processing the same predecessor more than once.
+ SmallPtrSet<BasicBlock *, 2> SeenPreds;
+ Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
+ for (BasicBlock *PredOfPredBB : predecessors(PredBB))
+ // This predecessor of PredBB may already have DestBB as a successor.
+ if (PredOfPredBB != PredBB)
+ if (SeenPreds.insert(PredOfPredBB).second)
+ Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
+ SeenPreds.clear();
+ for (BasicBlock *PredOfPredBB : predecessors(PredBB))
+ if (SeenPreds.insert(PredOfPredBB).second)
+ Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
+ Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
+ }
+
+ // Zap anything that took the address of DestBB. Not doing this will give the
+ // address an invalid value.
+ if (DestBB->hasAddressTaken()) {
+ BlockAddress *BA = BlockAddress::get(DestBB);
+ Constant *Replacement =
+ ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
+ BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
+ BA->getType()));
+ BA->destroyConstant();
+ }
+
+ // Anything that branched to PredBB now branches to DestBB.
+ PredBB->replaceAllUsesWith(DestBB);
+
+ // Splice all the instructions from PredBB to DestBB.
+ PredBB->getTerminator()->eraseFromParent();
+ DestBB->splice(DestBB->begin(), PredBB);
+ new UnreachableInst(PredBB->getContext(), PredBB);
+
+ // If the PredBB is the entry block of the function, move DestBB up to
+ // become the entry block after we erase PredBB.
+ if (ReplaceEntryBB)
+ DestBB->moveAfter(PredBB);
+
+ if (DTU) {
+ assert(PredBB->size() == 1 &&
+ isa<UnreachableInst>(PredBB->getTerminator()) &&
+ "The successor list of PredBB isn't empty before "
+ "applying corresponding DTU updates.");
+ DTU->applyUpdatesPermissive(Updates);
+ DTU->deleteBB(PredBB);
+ // Recalculation of DomTree is needed when updating a forward DomTree and
+ // the Entry BB is replaced.
+ if (ReplaceEntryBB && DTU->hasDomTree()) {
+ // The entry block was removed and there is no external interface for
+ // the dominator tree to be notified of this change. In this corner-case
+ // we recalculate the entire tree.
+ DTU->recalculate(*(DestBB->getParent()));
+ }
+ }
+
+ else {
+ PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
+ }
+}
+
+/// Return true if we can choose one of these values to use in place of the
+/// other. Note that we will always choose the non-undef value to keep.
+static bool CanMergeValues(Value *First, Value *Second) {
+ return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
+}
+
+/// Return true if we can fold BB, an almost-empty BB ending in an unconditional
+/// branch to Succ, into Succ.
+///
+/// Assumption: Succ is the single successor for BB.
+static bool
+CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ,
+ const SmallPtrSetImpl<BasicBlock *> &BBPreds) {
+ assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
+
+ LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
+ << Succ->getName() << "\n");
+ // Shortcut, if there is only a single predecessor it must be BB and merging
+ // is always safe
+ if (Succ->getSinglePredecessor())
+ return true;
+
+ // Look at all the phi nodes in Succ, to see if they present a conflict when
+ // merging these blocks
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+
+ // If the incoming value from BB is again a PHINode in
+ // BB which has the same incoming value for *PI as PN does, we can
+ // merge the phi nodes and then the blocks can still be merged
+ PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
+ if (BBPN && BBPN->getParent() == BB) {
+ for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
+ BasicBlock *IBB = PN->getIncomingBlock(PI);
+ if (BBPreds.count(IBB) &&
+ !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
+ PN->getIncomingValue(PI))) {
+ LLVM_DEBUG(dbgs()
+ << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with "
+ << BBPN->getName() << " with regard to common predecessor "
+ << IBB->getName() << "\n");
+ return false;
+ }
+ }
+ } else {
+ Value* Val = PN->getIncomingValueForBlock(BB);
+ for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
+ // See if the incoming value for the common predecessor is equal to the
+ // one for BB, in which case this phi node will not prevent the merging
+ // of the block.
+ BasicBlock *IBB = PN->getIncomingBlock(PI);
+ if (BBPreds.count(IBB) &&
+ !CanMergeValues(Val, PN->getIncomingValue(PI))) {
+ LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
+ << " in " << Succ->getName()
+ << " is conflicting with regard to common "
+ << "predecessor " << IBB->getName() << "\n");
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+using PredBlockVector = SmallVector<BasicBlock *, 16>;
+using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
+
+/// Determines the value to use as the phi node input for a block.
+///
+/// Select between \p OldVal any value that we know flows from \p BB
+/// to a particular phi on the basis of which one (if either) is not
+/// undef. Update IncomingValues based on the selected value.
+///
+/// \param OldVal The value we are considering selecting.
+/// \param BB The block that the value flows in from.
+/// \param IncomingValues A map from block-to-value for other phi inputs
+/// that we have examined.
+///
+/// \returns the selected value.
+static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
+ IncomingValueMap &IncomingValues) {
+ if (!isa<UndefValue>(OldVal)) {
+ assert((!IncomingValues.count(BB) ||
+ IncomingValues.find(BB)->second == OldVal) &&
+ "Expected OldVal to match incoming value from BB!");
+
+ IncomingValues.insert(std::make_pair(BB, OldVal));
+ return OldVal;
+ }
+
+ IncomingValueMap::const_iterator It = IncomingValues.find(BB);
+ if (It != IncomingValues.end()) return It->second;
+
+ return OldVal;
+}
+
+/// Create a map from block to value for the operands of a
+/// given phi.
+///
+/// Create a map from block to value for each non-undef value flowing
+/// into \p PN.
+///
+/// \param PN The phi we are collecting the map for.
+/// \param IncomingValues [out] The map from block to value for this phi.
+static void gatherIncomingValuesToPhi(PHINode *PN,
+ IncomingValueMap &IncomingValues) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *BB = PN->getIncomingBlock(i);
+ Value *V = PN->getIncomingValue(i);
+
+ if (!isa<UndefValue>(V))
+ IncomingValues.insert(std::make_pair(BB, V));
+ }
+}
+
+/// Replace the incoming undef values to a phi with the values
+/// from a block-to-value map.
+///
+/// \param PN The phi we are replacing the undefs in.
+/// \param IncomingValues A map from block to value.
+static void replaceUndefValuesInPhi(PHINode *PN,
+ const IncomingValueMap &IncomingValues) {
+ SmallVector<unsigned> TrueUndefOps;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *V = PN->getIncomingValue(i);
+
+ if (!isa<UndefValue>(V)) continue;
+
+ BasicBlock *BB = PN->getIncomingBlock(i);
+ IncomingValueMap::const_iterator It = IncomingValues.find(BB);
+
+ // Keep track of undef/poison incoming values. Those must match, so we fix
+ // them up below if needed.
+ // Note: this is conservatively correct, but we could try harder and group
+ // the undef values per incoming basic block.
+ if (It == IncomingValues.end()) {
+ TrueUndefOps.push_back(i);
+ continue;
+ }
+
+ // There is a defined value for this incoming block, so map this undef
+ // incoming value to the defined value.
+ PN->setIncomingValue(i, It->second);
+ }
+
+ // If there are both undef and poison values incoming, then convert those
+ // values to undef. It is invalid to have different values for the same
+ // incoming block.
+ unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
+ return isa<PoisonValue>(PN->getIncomingValue(i));
+ });
+ if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
+ for (unsigned i : TrueUndefOps)
+ PN->setIncomingValue(i, UndefValue::get(PN->getType()));
+ }
+}
+
+// Only when they shares a single common predecessor, return true.
+// Only handles cases when BB can't be merged while its predecessors can be
+// redirected.
+static bool
+CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ,
+ const SmallPtrSetImpl<BasicBlock *> &BBPreds,
+ const SmallPtrSetImpl<BasicBlock *> &SuccPreds,
+ BasicBlock *&CommonPred) {
+
+ // There must be phis in BB, otherwise BB will be merged into Succ directly
+ if (BB->phis().empty() || Succ->phis().empty())
+ return false;
+
+ // BB must have predecessors not shared that can be redirected to Succ
+ if (!BB->hasNPredecessorsOrMore(2))
+ return false;
+
+ // Get single common predecessors of both BB and Succ
+ for (BasicBlock *SuccPred : SuccPreds) {
+ if (BBPreds.count(SuccPred)) {
+ if (CommonPred)
+ return false;
+ CommonPred = SuccPred;
+ }
+ }
+
+ return true;
+}
+
+/// Replace a value flowing from a block to a phi with
+/// potentially multiple instances of that value flowing from the
+/// block's predecessors to the phi.
+///
+/// \param BB The block with the value flowing into the phi.
+/// \param BBPreds The predecessors of BB.
+/// \param PN The phi that we are updating.
+/// \param CommonPred The common predecessor of BB and PN's BasicBlock
+static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
+ const PredBlockVector &BBPreds,
+ PHINode *PN,
+ BasicBlock *CommonPred) {
+ Value *OldVal = PN->removeIncomingValue(BB, false);
+ assert(OldVal && "No entry in PHI for Pred BB!");
+
+ IncomingValueMap IncomingValues;
+
+ // We are merging two blocks - BB, and the block containing PN - and
+ // as a result we need to redirect edges from the predecessors of BB
+ // to go to the block containing PN, and update PN
+ // accordingly. Since we allow merging blocks in the case where the
+ // predecessor and successor blocks both share some predecessors,
+ // and where some of those common predecessors might have undef
+ // values flowing into PN, we want to rewrite those values to be
+ // consistent with the non-undef values.
+
+ gatherIncomingValuesToPhi(PN, IncomingValues);
+
+ // If this incoming value is one of the PHI nodes in BB, the new entries
+ // in the PHI node are the entries from the old PHI.
+ if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
+ PHINode *OldValPN = cast<PHINode>(OldVal);
+ for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
+ // Note that, since we are merging phi nodes and BB and Succ might
+ // have common predecessors, we could end up with a phi node with
+ // identical incoming branches. This will be cleaned up later (and
+ // will trigger asserts if we try to clean it up now, without also
+ // simplifying the corresponding conditional branch).
+ BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
+
+ if (PredBB == CommonPred)
+ continue;
+
+ Value *PredVal = OldValPN->getIncomingValue(i);
+ Value *Selected =
+ selectIncomingValueForBlock(PredVal, PredBB, IncomingValues);
+
+ // And add a new incoming value for this predecessor for the
+ // newly retargeted branch.
+ PN->addIncoming(Selected, PredBB);
+ }
+ if (CommonPred)
+ PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB);
+
+ } else {
+ for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
+ // Update existing incoming values in PN for this
+ // predecessor of BB.
+ BasicBlock *PredBB = BBPreds[i];
+
+ if (PredBB == CommonPred)
+ continue;
+
+ Value *Selected =
+ selectIncomingValueForBlock(OldVal, PredBB, IncomingValues);
+
+ // And add a new incoming value for this predecessor for the
+ // newly retargeted branch.
+ PN->addIncoming(Selected, PredBB);
+ }
+ if (CommonPred)
+ PN->addIncoming(OldVal, BB);
+ }
+
+ replaceUndefValuesInPhi(PN, IncomingValues);
+}
+
+bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
+ DomTreeUpdater *DTU) {
+ assert(BB != &BB->getParent()->getEntryBlock() &&
+ "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
+
+ // We can't simplify infinite loops.
+ BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
+ if (BB == Succ)
+ return false;
+
+ SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB));
+ SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ));
+
+ // The single common predecessor of BB and Succ when BB cannot be killed
+ BasicBlock *CommonPred = nullptr;
+
+ bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds);
+
+ // Even if we can not fold bB into Succ, we may be able to redirect the
+ // predecessors of BB to Succ.
+ bool BBPhisMergeable =
+ BBKillable ||
+ CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred);
+
+ if (!BBKillable && !BBPhisMergeable)
+ return false;
+
+ // Check to see if merging these blocks/phis would cause conflicts for any of
+ // the phi nodes in BB or Succ. If not, we can safely merge.
+
+ // Check for cases where Succ has multiple predecessors and a PHI node in BB
+ // has uses which will not disappear when the PHI nodes are merged. It is
+ // possible to handle such cases, but difficult: it requires checking whether
+ // BB dominates Succ, which is non-trivial to calculate in the case where
+ // Succ has multiple predecessors. Also, it requires checking whether
+ // constructing the necessary self-referential PHI node doesn't introduce any
+ // conflicts; this isn't too difficult, but the previous code for doing this
+ // was incorrect.
+ //
+ // Note that if this check finds a live use, BB dominates Succ, so BB is
+ // something like a loop pre-header (or rarely, a part of an irreducible CFG);
+ // folding the branch isn't profitable in that case anyway.
+ if (!Succ->getSinglePredecessor()) {
+ BasicBlock::iterator BBI = BB->begin();
+ while (isa<PHINode>(*BBI)) {
+ for (Use &U : BBI->uses()) {
+ if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
+ if (PN->getIncomingBlock(U) != BB)
+ return false;
+ } else {
+ return false;
+ }
+ }
+ ++BBI;
+ }
+ }
+
+ if (BBPhisMergeable && CommonPred)
+ LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName()
+ << " and " << Succ->getName() << " : "
+ << CommonPred->getName() << "\n");
+
+ // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop
+ // metadata.
+ //
+ // FIXME: This is a stop-gap solution to preserve inner-loop metadata given
+ // current status (that loop metadata is implemented as metadata attached to
+ // the branch instruction in the loop latch block). To quote from review
+ // comments, "the current representation of loop metadata (using a loop latch
+ // terminator attachment) is known to be fundamentally broken. Loop latches
+ // are not uniquely associated with loops (both in that a latch can be part of
+ // multiple loops and a loop may have multiple latches). Loop headers are. The
+ // solution to this problem is also known: Add support for basic block
+ // metadata, and attach loop metadata to the loop header."
+ //
+ // Why bail out:
+ // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is
+ // the latch for inner-loop (see reason below), so bail out to prerserve
+ // inner-loop metadata rather than eliminating 'BB' and attaching its metadata
+ // to this inner-loop.
+ // - The reason we believe 'BB' and 'BB->Pred' have different inner-most
+ // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L,
+ // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of
+ // one self-looping basic block, which is contradictory with the assumption.
+ //
+ // To illustrate how inner-loop metadata is dropped:
+ //
+ // CFG Before
+ //
+ // BB is while.cond.exit, attached with loop metdata md2.
+ // BB->Pred is for.body, attached with loop metadata md1.
+ //
+ // entry
+ // |
+ // v
+ // ---> while.cond -------------> while.end
+ // | |
+ // | v
+ // | while.body
+ // | |
+ // | v
+ // | for.body <---- (md1)
+ // | | |______|
+ // | v
+ // | while.cond.exit (md2)
+ // | |
+ // |_______|
+ //
+ // CFG After
+ //
+ // while.cond1 is the merge of while.cond.exit and while.cond above.
+ // for.body is attached with md2, and md1 is dropped.
+ // If LoopSimplify runs later (as a part of loop pass), it could create
+ // dedicated exits for inner-loop (essentially adding `while.cond.exit`
+ // back), but won't it won't see 'md1' nor restore it for the inner-loop.
+ //
+ // entry
+ // |
+ // v
+ // ---> while.cond1 -------------> while.end
+ // | |
+ // | v
+ // | while.body
+ // | |
+ // | v
+ // | for.body <---- (md2)
+ // |_______| |______|
+ if (Instruction *TI = BB->getTerminator())
+ if (TI->hasMetadata(LLVMContext::MD_loop))
+ for (BasicBlock *Pred : predecessors(BB))
+ if (Instruction *PredTI = Pred->getTerminator())
+ if (PredTI->hasMetadata(LLVMContext::MD_loop))
+ return false;
+
+ if (BBKillable)
+ LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
+ else if (BBPhisMergeable)
+ LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB);
+
+ SmallVector<DominatorTree::UpdateType, 32> Updates;
+
+ if (DTU) {
+ // To avoid processing the same predecessor more than once.
+ SmallPtrSet<BasicBlock *, 8> SeenPreds;
+ // All predecessors of BB (except the common predecessor) will be moved to
+ // Succ.
+ Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
+
+ for (auto *PredOfBB : predecessors(BB)) {
+ // Do not modify those common predecessors of BB and Succ
+ if (!SuccPreds.contains(PredOfBB))
+ if (SeenPreds.insert(PredOfBB).second)
+ Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
+ }
+
+ SeenPreds.clear();
+
+ for (auto *PredOfBB : predecessors(BB))
+ // When BB cannot be killed, do not remove the edge between BB and
+ // CommonPred.
+ if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred)
+ Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
+
+ if (BBKillable)
+ Updates.push_back({DominatorTree::Delete, BB, Succ});
+ }
+
+ if (isa<PHINode>(Succ->begin())) {
+ // If there is more than one pred of succ, and there are PHI nodes in
+ // the successor, then we need to add incoming edges for the PHI nodes
+ //
+ const PredBlockVector BBPreds(predecessors(BB));
+
+ // Loop over all of the PHI nodes in the successor of BB.
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred);
+ }
+ }
+
+ if (Succ->getSinglePredecessor()) {
+ // BB is the only predecessor of Succ, so Succ will end up with exactly
+ // the same predecessors BB had.
+ // Copy over any phi, debug or lifetime instruction.
+ BB->getTerminator()->eraseFromParent();
+ Succ->splice(Succ->getFirstNonPHIIt(), BB);
+ } else {
+ while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
+ // We explicitly check for such uses for merging phis.
+ assert(PN->use_empty() && "There shouldn't be any uses here!");
+ PN->eraseFromParent();
+ }
+ }
+
+ // If the unconditional branch we replaced contains llvm.loop metadata, we
+ // add the metadata to the branch instructions in the predecessors.
+ if (Instruction *TI = BB->getTerminator())
+ if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop))
+ for (BasicBlock *Pred : predecessors(BB))
+ Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD);
+
+ if (BBKillable) {
+ // Everything that jumped to BB now goes to Succ.
+ BB->replaceAllUsesWith(Succ);
+
+ if (!Succ->hasName())
+ Succ->takeName(BB);
+
+ // Clear the successor list of BB to match updates applying to DTU later.
+ if (BB->getTerminator())
+ BB->back().eraseFromParent();
+
+ new UnreachableInst(BB->getContext(), BB);
+ assert(succ_empty(BB) && "The successor list of BB isn't empty before "
+ "applying corresponding DTU updates.");
+ } else if (BBPhisMergeable) {
+ // Everything except CommonPred that jumped to BB now goes to Succ.
+ BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool {
+ if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser()))
+ return UseInst->getParent() != CommonPred &&
+ BBPreds.contains(UseInst->getParent());
+ return false;
+ });
+ }
+
+ if (DTU)
+ DTU->applyUpdates(Updates);
+
+ if (BBKillable)
+ DeleteDeadBlock(BB, DTU);
+
+ return true;
+}
+
+static bool
+EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB,
+ SmallPtrSetImpl<PHINode *> &ToRemove) {
+ // This implementation doesn't currently consider undef operands
+ // specially. Theoretically, two phis which are identical except for
+ // one having an undef where the other doesn't could be collapsed.
+
+ bool Changed = false;
+
+ // Examine each PHI.
+ // Note that increment of I must *NOT* be in the iteration_expression, since
+ // we don't want to immediately advance when we restart from the beginning.
+ for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
+ ++I;
+ // Is there an identical PHI node in this basic block?
+ // Note that we only look in the upper square's triangle,
+ // we already checked that the lower triangle PHI's aren't identical.
+ for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
+ if (ToRemove.contains(DuplicatePN))
+ continue;
+ if (!DuplicatePN->isIdenticalToWhenDefined(PN))
+ continue;
+ // A duplicate. Replace this PHI with the base PHI.
+ ++NumPHICSEs;
+ DuplicatePN->replaceAllUsesWith(PN);
+ ToRemove.insert(DuplicatePN);
+ Changed = true;
+
+ // The RAUW can change PHIs that we already visited.
+ I = BB->begin();
+ break; // Start over from the beginning.
+ }
+ }
+ return Changed;
+}
+
+static bool
+EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB,
+ SmallPtrSetImpl<PHINode *> &ToRemove) {
+ // This implementation doesn't currently consider undef operands
+ // specially. Theoretically, two phis which are identical except for
+ // one having an undef where the other doesn't could be collapsed.
+
+ struct PHIDenseMapInfo {
+ static PHINode *getEmptyKey() {
+ return DenseMapInfo<PHINode *>::getEmptyKey();
+ }
+
+ static PHINode *getTombstoneKey() {
+ return DenseMapInfo<PHINode *>::getTombstoneKey();
+ }
+
+ static bool isSentinel(PHINode *PN) {
+ return PN == getEmptyKey() || PN == getTombstoneKey();
+ }
+
+ // WARNING: this logic must be kept in sync with
+ // Instruction::isIdenticalToWhenDefined()!
+ static unsigned getHashValueImpl(PHINode *PN) {
+ // Compute a hash value on the operands. Instcombine will likely have
+ // sorted them, which helps expose duplicates, but we have to check all
+ // the operands to be safe in case instcombine hasn't run.
+ return static_cast<unsigned>(hash_combine(
+ hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
+ hash_combine_range(PN->block_begin(), PN->block_end())));
+ }
+
+ static unsigned getHashValue(PHINode *PN) {
+#ifndef NDEBUG
+ // If -phicse-debug-hash was specified, return a constant -- this
+ // will force all hashing to collide, so we'll exhaustively search
+ // the table for a match, and the assertion in isEqual will fire if
+ // there's a bug causing equal keys to hash differently.
+ if (PHICSEDebugHash)
+ return 0;
+#endif
+ return getHashValueImpl(PN);
+ }
+
+ static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
+ if (isSentinel(LHS) || isSentinel(RHS))
+ return LHS == RHS;
+ return LHS->isIdenticalTo(RHS);
+ }
+
+ static bool isEqual(PHINode *LHS, PHINode *RHS) {
+ // These comparisons are nontrivial, so assert that equality implies
+ // hash equality (DenseMap demands this as an invariant).
+ bool Result = isEqualImpl(LHS, RHS);
+ assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
+ getHashValueImpl(LHS) == getHashValueImpl(RHS));
+ return Result;
+ }
+ };
+
+ // Set of unique PHINodes.
+ DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
+ PHISet.reserve(4 * PHICSENumPHISmallSize);
+
+ // Examine each PHI.
+ bool Changed = false;
+ for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
+ if (ToRemove.contains(PN))
+ continue;
+ auto Inserted = PHISet.insert(PN);
+ if (!Inserted.second) {
+ // A duplicate. Replace this PHI with its duplicate.
+ ++NumPHICSEs;
+ PN->replaceAllUsesWith(*Inserted.first);
+ ToRemove.insert(PN);
+ Changed = true;
+
+ // The RAUW can change PHIs that we already visited. Start over from the
+ // beginning.
+ PHISet.clear();
+ I = BB->begin();
+ }
+ }
+
+ return Changed;
+}
+
+bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB,
+ SmallPtrSetImpl<PHINode *> &ToRemove) {
+ if (
+#ifndef NDEBUG
+ !PHICSEDebugHash &&
+#endif
+ hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
+ return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove);
+ return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove);
+}
+
+bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
+ SmallPtrSet<PHINode *, 8> ToRemove;
+ bool Changed = EliminateDuplicatePHINodes(BB, ToRemove);
+ for (PHINode *PN : ToRemove)
+ PN->eraseFromParent();
+ return Changed;
+}
+
+Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign,
+ const DataLayout &DL) {
+ V = V->stripPointerCasts();
+
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ // TODO: Ideally, this function would not be called if PrefAlign is smaller
+ // than the current alignment, as the known bits calculation should have
+ // already taken it into account. However, this is not always the case,
+ // as computeKnownBits() has a depth limit, while stripPointerCasts()
+ // doesn't.
+ Align CurrentAlign = AI->getAlign();
+ if (PrefAlign <= CurrentAlign)
+ return CurrentAlign;
+
+ // If the preferred alignment is greater than the natural stack alignment
+ // then don't round up. This avoids dynamic stack realignment.
+ if (DL.exceedsNaturalStackAlignment(PrefAlign))
+ return CurrentAlign;
+ AI->setAlignment(PrefAlign);
+ return PrefAlign;
+ }
+
+ if (auto *GO = dyn_cast<GlobalObject>(V)) {
+ // TODO: as above, this shouldn't be necessary.
+ Align CurrentAlign = GO->getPointerAlignment(DL);
+ if (PrefAlign <= CurrentAlign)
+ return CurrentAlign;
+
+ // If there is a large requested alignment and we can, bump up the alignment
+ // of the global. If the memory we set aside for the global may not be the
+ // memory used by the final program then it is impossible for us to reliably
+ // enforce the preferred alignment.
+ if (!GO->canIncreaseAlignment())
+ return CurrentAlign;
+
+ if (GO->isThreadLocal()) {
+ unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT;
+ if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign))
+ PrefAlign = Align(MaxTLSAlign);
+ }
+
+ GO->setAlignment(PrefAlign);
+ return PrefAlign;
+ }
+
+ return Align(1);
+}
+
+Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
+ const DataLayout &DL,
+ const Instruction *CxtI,
+ AssumptionCache *AC,
+ const DominatorTree *DT) {
+ assert(V->getType()->isPointerTy() &&
+ "getOrEnforceKnownAlignment expects a pointer!");
+
+ KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
+ unsigned TrailZ = Known.countMinTrailingZeros();
+
+ // Avoid trouble with ridiculously large TrailZ values, such as
+ // those computed from a null pointer.
+ // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
+ TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
+
+ Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
+
+ if (PrefAlign && *PrefAlign > Alignment)
+ Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
+
+ // We don't need to make any adjustment.
+ return Alignment;
+}
+
+///===---------------------------------------------------------------------===//
+/// Dbg Intrinsic utilities
+///
+
+/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
+static bool PhiHasDebugValue(DILocalVariable *DIVar,
+ DIExpression *DIExpr,
+ PHINode *APN) {
+ // Since we can't guarantee that the original dbg.declare intrinsic
+ // is removed by LowerDbgDeclare(), we need to make sure that we are
+ // not inserting the same dbg.value intrinsic over and over.
+ SmallVector<DbgValueInst *, 1> DbgValues;
+ SmallVector<DPValue *, 1> DPValues;
+ findDbgValues(DbgValues, APN, &DPValues);
+ for (auto *DVI : DbgValues) {
+ assert(is_contained(DVI->getValues(), APN));
+ if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
+ return true;
+ }
+ for (auto *DPV : DPValues) {
+ assert(is_contained(DPV->location_ops(), APN));
+ if ((DPV->getVariable() == DIVar) && (DPV->getExpression() == DIExpr))
+ return true;
+ }
+ return false;
+}
+
+/// Check if the alloc size of \p ValTy is large enough to cover the variable
+/// (or fragment of the variable) described by \p DII.
+///
+/// This is primarily intended as a helper for the different
+/// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted
+/// describes an alloca'd variable, so we need to use the alloc size of the
+/// value when doing the comparison. E.g. an i1 value will be identified as
+/// covering an n-bit fragment, if the store size of i1 is at least n bits.
+static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
+ const DataLayout &DL = DII->getModule()->getDataLayout();
+ TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
+ if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits())
+ return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
+
+ // We can't always calculate the size of the DI variable (e.g. if it is a
+ // VLA). Try to use the size of the alloca that the dbg intrinsic describes
+ // intead.
+ if (DII->isAddressOfVariable()) {
+ // DII should have exactly 1 location when it is an address.
+ assert(DII->getNumVariableLocationOps() == 1 &&
+ "address of variable must have exactly 1 location operand.");
+ if (auto *AI =
+ dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
+ if (std::optional<TypeSize> FragmentSize =
+ AI->getAllocationSizeInBits(DL)) {
+ return TypeSize::isKnownGE(ValueSize, *FragmentSize);
+ }
+ }
+ }
+ // Could not determine size of variable. Conservatively return false.
+ return false;
+}
+// RemoveDIs: duplicate implementation of the above, using DPValues, the
+// replacement for dbg.values.
+static bool valueCoversEntireFragment(Type *ValTy, DPValue *DPV) {
+ const DataLayout &DL = DPV->getModule()->getDataLayout();
+ TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
+ if (std::optional<uint64_t> FragmentSize = DPV->getFragmentSizeInBits())
+ return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize));
+
+ // We can't always calculate the size of the DI variable (e.g. if it is a
+ // VLA). Try to use the size of the alloca that the dbg intrinsic describes
+ // intead.
+ if (DPV->isAddressOfVariable()) {
+ // DPV should have exactly 1 location when it is an address.
+ assert(DPV->getNumVariableLocationOps() == 1 &&
+ "address of variable must have exactly 1 location operand.");
+ if (auto *AI =
+ dyn_cast_or_null<AllocaInst>(DPV->getVariableLocationOp(0))) {
+ if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) {
+ return TypeSize::isKnownGE(ValueSize, *FragmentSize);
+ }
+ }
+ }
+ // Could not determine size of variable. Conservatively return false.
+ return false;
+}
+
+static void insertDbgValueOrDPValue(DIBuilder &Builder, Value *DV,
+ DILocalVariable *DIVar,
+ DIExpression *DIExpr,
+ const DebugLoc &NewLoc,
+ BasicBlock::iterator Instr) {
+ if (!UseNewDbgInfoFormat) {
+ auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
+ (Instruction *)nullptr);
+ DbgVal->insertBefore(Instr);
+ } else {
+ // RemoveDIs: if we're using the new debug-info format, allocate a
+ // DPValue directly instead of a dbg.value intrinsic.
+ ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
+ DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get());
+ Instr->getParent()->insertDPValueBefore(DV, Instr);
+ }
+}
+
+static void insertDbgValueOrDPValueAfter(DIBuilder &Builder, Value *DV,
+ DILocalVariable *DIVar,
+ DIExpression *DIExpr,
+ const DebugLoc &NewLoc,
+ BasicBlock::iterator Instr) {
+ if (!UseNewDbgInfoFormat) {
+ auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc,
+ (Instruction *)nullptr);
+ DbgVal->insertAfter(&*Instr);
+ } else {
+ // RemoveDIs: if we're using the new debug-info format, allocate a
+ // DPValue directly instead of a dbg.value intrinsic.
+ ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
+ DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get());
+ Instr->getParent()->insertDPValueAfter(DV, &*Instr);
+ }
+}
+
+/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
+/// that has an associated llvm.dbg.declare intrinsic.
+void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
+ StoreInst *SI, DIBuilder &Builder) {
+ assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII));
+ auto *DIVar = DII->getVariable();
+ assert(DIVar && "Missing variable");
+ auto *DIExpr = DII->getExpression();
+ Value *DV = SI->getValueOperand();
+
+ DebugLoc NewLoc = getDebugValueLoc(DII);
+
+ // If the alloca describes the variable itself, i.e. the expression in the
+ // dbg.declare doesn't start with a dereference, we can perform the
+ // conversion if the value covers the entire fragment of DII.
+ // If the alloca describes the *address* of DIVar, i.e. DIExpr is
+ // *just* a DW_OP_deref, we use DV as is for the dbg.value.
+ // We conservatively ignore other dereferences, because the following two are
+ // not equivalent:
+ // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
+ // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
+ // The former is adding 2 to the address of the variable, whereas the latter
+ // is adding 2 to the value of the variable. As such, we insist on just a
+ // deref expression.
+ bool CanConvert =
+ DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
+ valueCoversEntireFragment(DV->getType(), DII));
+ if (CanConvert) {
+ insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc,
+ SI->getIterator());
+ return;
+ }
+
+ // FIXME: If storing to a part of the variable described by the dbg.declare,
+ // then we want to insert a dbg.value for the corresponding fragment.
+ LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII
+ << '\n');
+ // For now, when there is a store to parts of the variable (but we do not
+ // know which part) we insert an dbg.value intrinsic to indicate that we
+ // know nothing about the variable's content.
+ DV = UndefValue::get(DV->getType());
+ insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc,
+ SI->getIterator());
+}
+
+/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
+/// that has an associated llvm.dbg.declare intrinsic.
+void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
+ LoadInst *LI, DIBuilder &Builder) {
+ auto *DIVar = DII->getVariable();
+ auto *DIExpr = DII->getExpression();
+ assert(DIVar && "Missing variable");
+
+ if (!valueCoversEntireFragment(LI->getType(), DII)) {
+ // FIXME: If only referring to a part of the variable described by the
+ // dbg.declare, then we want to insert a dbg.value for the corresponding
+ // fragment.
+ LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
+ << *DII << '\n');
+ return;
+ }
+
+ DebugLoc NewLoc = getDebugValueLoc(DII);
+
+ // We are now tracking the loaded value instead of the address. In the
+ // future if multi-location support is added to the IR, it might be
+ // preferable to keep tracking both the loaded value and the original
+ // address in case the alloca can not be elided.
+ insertDbgValueOrDPValueAfter(Builder, LI, DIVar, DIExpr, NewLoc,
+ LI->getIterator());
+}
+
+void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, StoreInst *SI,
+ DIBuilder &Builder) {
+ assert(DPV->isAddressOfVariable() || DPV->isDbgAssign());
+ auto *DIVar = DPV->getVariable();
+ assert(DIVar && "Missing variable");
+ auto *DIExpr = DPV->getExpression();
+ Value *DV = SI->getValueOperand();
+
+ DebugLoc NewLoc = getDebugValueLoc(DPV);
+
+ // If the alloca describes the variable itself, i.e. the expression in the
+ // dbg.declare doesn't start with a dereference, we can perform the
+ // conversion if the value covers the entire fragment of DII.
+ // If the alloca describes the *address* of DIVar, i.e. DIExpr is
+ // *just* a DW_OP_deref, we use DV as is for the dbg.value.
+ // We conservatively ignore other dereferences, because the following two are
+ // not equivalent:
+ // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2))
+ // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2))
+ // The former is adding 2 to the address of the variable, whereas the latter
+ // is adding 2 to the value of the variable. As such, we insist on just a
+ // deref expression.
+ bool CanConvert =
+ DIExpr->isDeref() || (!DIExpr->startsWithDeref() &&
+ valueCoversEntireFragment(DV->getType(), DPV));
+ if (CanConvert) {
+ insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc,
+ SI->getIterator());
+ return;
+ }
+
+ // FIXME: If storing to a part of the variable described by the dbg.declare,
+ // then we want to insert a dbg.value for the corresponding fragment.
+ LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DPV
+ << '\n');
+ assert(UseNewDbgInfoFormat);
+
+ // For now, when there is a store to parts of the variable (but we do not
+ // know which part) we insert an dbg.value intrinsic to indicate that we
+ // know nothing about the variable's content.
+ DV = UndefValue::get(DV->getType());
+ ValueAsMetadata *DVAM = ValueAsMetadata::get(DV);
+ DPValue *NewDPV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get());
+ SI->getParent()->insertDPValueBefore(NewDPV, SI->getIterator());
+}
+
+/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
+/// llvm.dbg.declare intrinsic.
+void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
+ PHINode *APN, DIBuilder &Builder) {
+ auto *DIVar = DII->getVariable();
+ auto *DIExpr = DII->getExpression();
+ assert(DIVar && "Missing variable");
+
+ if (PhiHasDebugValue(DIVar, DIExpr, APN))
+ return;
+
+ if (!valueCoversEntireFragment(APN->getType(), DII)) {
+ // FIXME: If only referring to a part of the variable described by the
+ // dbg.declare, then we want to insert a dbg.value for the corresponding
+ // fragment.
+ LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
+ << *DII << '\n');
+ return;
+ }
+
+ BasicBlock *BB = APN->getParent();
+ auto InsertionPt = BB->getFirstInsertionPt();
+
+ DebugLoc NewLoc = getDebugValueLoc(DII);
+
+ // The block may be a catchswitch block, which does not have a valid
+ // insertion point.
+ // FIXME: Insert dbg.value markers in the successors when appropriate.
+ if (InsertionPt != BB->end()) {
+ insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt);
+ }
+}
+
+void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, LoadInst *LI,
+ DIBuilder &Builder) {
+ auto *DIVar = DPV->getVariable();
+ auto *DIExpr = DPV->getExpression();
+ assert(DIVar && "Missing variable");
+
+ if (!valueCoversEntireFragment(LI->getType(), DPV)) {
+ // FIXME: If only referring to a part of the variable described by the
+ // dbg.declare, then we want to insert a DPValue for the corresponding
+ // fragment.
+ LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV
+ << '\n');
+ return;
+ }
+
+ DebugLoc NewLoc = getDebugValueLoc(DPV);
+
+ // We are now tracking the loaded value instead of the address. In the
+ // future if multi-location support is added to the IR, it might be
+ // preferable to keep tracking both the loaded value and the original
+ // address in case the alloca can not be elided.
+ assert(UseNewDbgInfoFormat);
+
+ // Create a DPValue directly and insert.
+ ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI);
+ DPValue *DV = new DPValue(LIVAM, DIVar, DIExpr, NewLoc.get());
+ LI->getParent()->insertDPValueAfter(DV, LI);
+}
+
+/// Determine whether this alloca is either a VLA or an array.
+static bool isArray(AllocaInst *AI) {
+ return AI->isArrayAllocation() ||
+ (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
+}
+
+/// Determine whether this alloca is a structure.
+static bool isStructure(AllocaInst *AI) {
+ return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
+}
+void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, PHINode *APN,
+ DIBuilder &Builder) {
+ auto *DIVar = DPV->getVariable();
+ auto *DIExpr = DPV->getExpression();
+ assert(DIVar && "Missing variable");
+
+ if (PhiHasDebugValue(DIVar, DIExpr, APN))
+ return;
+
+ if (!valueCoversEntireFragment(APN->getType(), DPV)) {
+ // FIXME: If only referring to a part of the variable described by the
+ // dbg.declare, then we want to insert a DPValue for the corresponding
+ // fragment.
+ LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV
+ << '\n');
+ return;
+ }
+
+ BasicBlock *BB = APN->getParent();
+ auto InsertionPt = BB->getFirstInsertionPt();
+
+ DebugLoc NewLoc = getDebugValueLoc(DPV);
+
+ // The block may be a catchswitch block, which does not have a valid
+ // insertion point.
+ // FIXME: Insert DPValue markers in the successors when appropriate.
+ if (InsertionPt != BB->end()) {
+ insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt);
+ }
+}
+
+/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
+/// of llvm.dbg.value intrinsics.
+bool llvm::LowerDbgDeclare(Function &F) {
+ bool Changed = false;
+ DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
+ SmallVector<DbgDeclareInst *, 4> Dbgs;
+ SmallVector<DPValue *> DPVs;
+ for (auto &FI : F) {
+ for (Instruction &BI : FI) {
+ if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI))
+ Dbgs.push_back(DDI);
+ for (DPValue &DPV : BI.getDbgValueRange()) {
+ if (DPV.getType() == DPValue::LocationType::Declare)
+ DPVs.push_back(&DPV);
+ }
+ }
+ }
+
+ if (Dbgs.empty() && DPVs.empty())
+ return Changed;
+
+ auto LowerOne = [&](auto *DDI) {
+ AllocaInst *AI =
+ dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0));
+ // If this is an alloca for a scalar variable, insert a dbg.value
+ // at each load and store to the alloca and erase the dbg.declare.
+ // The dbg.values allow tracking a variable even if it is not
+ // stored on the stack, while the dbg.declare can only describe
+ // the stack slot (and at a lexical-scope granularity). Later
+ // passes will attempt to elide the stack slot.
+ if (!AI || isArray(AI) || isStructure(AI))
+ return;
+
+ // A volatile load/store means that the alloca can't be elided anyway.
+ if (llvm::any_of(AI->users(), [](User *U) -> bool {
+ if (LoadInst *LI = dyn_cast<LoadInst>(U))
+ return LI->isVolatile();
+ if (StoreInst *SI = dyn_cast<StoreInst>(U))
+ return SI->isVolatile();
+ return false;
+ }))
+ return;
+
+ SmallVector<const Value *, 8> WorkList;
+ WorkList.push_back(AI);
+ while (!WorkList.empty()) {
+ const Value *V = WorkList.pop_back_val();
+ for (const auto &AIUse : V->uses()) {
+ User *U = AIUse.getUser();
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ if (AIUse.getOperandNo() == 1)
+ ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
+ } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
+ // This is a call by-value or some other instruction that takes a
+ // pointer to the variable. Insert a *value* intrinsic that describes
+ // the variable by dereferencing the alloca.
+ if (!CI->isLifetimeStartOrEnd()) {
+ DebugLoc NewLoc = getDebugValueLoc(DDI);
+ auto *DerefExpr =
+ DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
+ insertDbgValueOrDPValue(DIB, AI, DDI->getVariable(), DerefExpr,
+ NewLoc, CI->getIterator());
+ }
+ } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
+ if (BI->getType()->isPointerTy())
+ WorkList.push_back(BI);
+ }
+ }
+ }
+ DDI->eraseFromParent();
+ Changed = true;
+ };
+
+ for_each(Dbgs, LowerOne);
+ for_each(DPVs, LowerOne);
+
+ if (Changed)
+ for (BasicBlock &BB : F)
+ RemoveRedundantDbgInstrs(&BB);
+
+ return Changed;
+}
+
+// RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the
+// debug-info out of the block's DPValues rather than dbg.value intrinsics.
+static void insertDPValuesForPHIs(BasicBlock *BB,
+ SmallVectorImpl<PHINode *> &InsertedPHIs) {
+ assert(BB && "No BasicBlock to clone DPValue(s) from.");
+ if (InsertedPHIs.size() == 0)
+ return;
+
+ // Map existing PHI nodes to their DPValues.
+ DenseMap<Value *, DPValue *> DbgValueMap;
+ for (auto &I : *BB) {
+ for (auto &DPV : I.getDbgValueRange()) {
+ for (Value *V : DPV.location_ops())
+ if (auto *Loc = dyn_cast_or_null<PHINode>(V))
+ DbgValueMap.insert({Loc, &DPV});
+ }
+ }
+ if (DbgValueMap.size() == 0)
+ return;
+
+ // Map a pair of the destination BB and old DPValue to the new DPValue,
+ // so that if a DPValue is being rewritten to use more than one of the
+ // inserted PHIs in the same destination BB, we can update the same DPValue
+ // with all the new PHIs instead of creating one copy for each.
+ MapVector<std::pair<BasicBlock *, DPValue *>, DPValue *> NewDbgValueMap;
+ // Then iterate through the new PHIs and look to see if they use one of the
+ // previously mapped PHIs. If so, create a new DPValue that will propagate
+ // the info through the new PHI. If we use more than one new PHI in a single
+ // destination BB with the same old dbg.value, merge the updates so that we
+ // get a single new DPValue with all the new PHIs.
+ for (auto PHI : InsertedPHIs) {
+ BasicBlock *Parent = PHI->getParent();
+ // Avoid inserting a debug-info record into an EH block.
+ if (Parent->getFirstNonPHI()->isEHPad())
+ continue;
+ for (auto VI : PHI->operand_values()) {
+ auto V = DbgValueMap.find(VI);
+ if (V != DbgValueMap.end()) {
+ DPValue *DbgII = cast<DPValue>(V->second);
+ auto NewDI = NewDbgValueMap.find({Parent, DbgII});
+ if (NewDI == NewDbgValueMap.end()) {
+ DPValue *NewDbgII = DbgII->clone();
+ NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
+ }
+ DPValue *NewDbgII = NewDI->second;
+ // If PHI contains VI as an operand more than once, we may
+ // replaced it in NewDbgII; confirm that it is present.
+ if (is_contained(NewDbgII->location_ops(), VI))
+ NewDbgII->replaceVariableLocationOp(VI, PHI);
+ }
+ }
+ }
+ // Insert the new DPValues into their destination blocks.
+ for (auto DI : NewDbgValueMap) {
+ BasicBlock *Parent = DI.first.first;
+ DPValue *NewDbgII = DI.second;
+ auto InsertionPt = Parent->getFirstInsertionPt();
+ assert(InsertionPt != Parent->end() && "Ill-formed basic block");
+
+ InsertionPt->DbgMarker->insertDPValue(NewDbgII, true);
+ }
+}
+
+/// Propagate dbg.value intrinsics through the newly inserted PHIs.
+void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
+ SmallVectorImpl<PHINode *> &InsertedPHIs) {
+ assert(BB && "No BasicBlock to clone dbg.value(s) from.");
+ if (InsertedPHIs.size() == 0)
+ return;
+
+ insertDPValuesForPHIs(BB, InsertedPHIs);
+
+ // Map existing PHI nodes to their dbg.values.
+ ValueToValueMapTy DbgValueMap;
+ for (auto &I : *BB) {
+ if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
+ for (Value *V : DbgII->location_ops())
+ if (auto *Loc = dyn_cast_or_null<PHINode>(V))
+ DbgValueMap.insert({Loc, DbgII});
+ }
+ }
+ if (DbgValueMap.size() == 0)
+ return;
+
+ // Map a pair of the destination BB and old dbg.value to the new dbg.value,
+ // so that if a dbg.value is being rewritten to use more than one of the
+ // inserted PHIs in the same destination BB, we can update the same dbg.value
+ // with all the new PHIs instead of creating one copy for each.
+ MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
+ DbgVariableIntrinsic *>
+ NewDbgValueMap;
+ // Then iterate through the new PHIs and look to see if they use one of the
+ // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
+ // propagate the info through the new PHI. If we use more than one new PHI in
+ // a single destination BB with the same old dbg.value, merge the updates so
+ // that we get a single new dbg.value with all the new PHIs.
+ for (auto *PHI : InsertedPHIs) {
+ BasicBlock *Parent = PHI->getParent();
+ // Avoid inserting an intrinsic into an EH block.
+ if (Parent->getFirstNonPHI()->isEHPad())
+ continue;
+ for (auto *VI : PHI->operand_values()) {
+ auto V = DbgValueMap.find(VI);
+ if (V != DbgValueMap.end()) {
+ auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
+ auto NewDI = NewDbgValueMap.find({Parent, DbgII});
+ if (NewDI == NewDbgValueMap.end()) {
+ auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
+ NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
+ }
+ DbgVariableIntrinsic *NewDbgII = NewDI->second;
+ // If PHI contains VI as an operand more than once, we may
+ // replaced it in NewDbgII; confirm that it is present.
+ if (is_contained(NewDbgII->location_ops(), VI))
+ NewDbgII->replaceVariableLocationOp(VI, PHI);
+ }
+ }
+ }
+ // Insert thew new dbg.values into their destination blocks.
+ for (auto DI : NewDbgValueMap) {
+ BasicBlock *Parent = DI.first.first;
+ auto *NewDbgII = DI.second;
+ auto InsertionPt = Parent->getFirstInsertionPt();
+ assert(InsertionPt != Parent->end() && "Ill-formed basic block");
+ NewDbgII->insertBefore(&*InsertionPt);
+ }
+}
+
+bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
+ DIBuilder &Builder, uint8_t DIExprFlags,
+ int Offset) {
+ TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address);
+ TinyPtrVector<DPValue *> DPVDeclares = findDPVDeclares(Address);
+
+ auto ReplaceOne = [&](auto *DII) {
+ assert(DII->getVariable() && "Missing variable");
+ auto *DIExpr = DII->getExpression();
+ DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
+ DII->setExpression(DIExpr);
+ DII->replaceVariableLocationOp(Address, NewAddress);
+ };
+
+ for_each(DbgDeclares, ReplaceOne);
+ for_each(DPVDeclares, ReplaceOne);
+
+ return !DbgDeclares.empty() || !DPVDeclares.empty();
+}
+
+static void updateOneDbgValueForAlloca(const DebugLoc &Loc,
+ DILocalVariable *DIVar,
+ DIExpression *DIExpr, Value *NewAddress,
+ DbgValueInst *DVI, DPValue *DPV,
+ DIBuilder &Builder, int Offset) {
+ assert(DIVar && "Missing variable");
+
+ // This is an alloca-based dbg.value/DPValue. The first thing it should do
+ // with the alloca pointer is dereference it. Otherwise we don't know how to
+ // handle it and give up.
+ if (!DIExpr || DIExpr->getNumElements() < 1 ||
+ DIExpr->getElement(0) != dwarf::DW_OP_deref)
+ return;
+
+ // Insert the offset before the first deref.
+ if (Offset)
+ DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
+
+ if (DVI) {
+ DVI->setExpression(DIExpr);
+ DVI->replaceVariableLocationOp(0u, NewAddress);
+ } else {
+ assert(DPV);
+ DPV->setExpression(DIExpr);
+ DPV->replaceVariableLocationOp(0u, NewAddress);
+ }
+}
+
+void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
+ DIBuilder &Builder, int Offset) {
+ SmallVector<DbgValueInst *, 1> DbgUsers;
+ SmallVector<DPValue *, 1> DPUsers;
+ findDbgValues(DbgUsers, AI, &DPUsers);
+
+ // Attempt to replace dbg.values that use this alloca.
+ for (auto *DVI : DbgUsers)
+ updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(),
+ DVI->getExpression(), NewAllocaAddress, DVI,
+ nullptr, Builder, Offset);
+
+ // Replace any DPValues that use this alloca.
+ for (DPValue *DPV : DPUsers)
+ updateOneDbgValueForAlloca(DPV->getDebugLoc(), DPV->getVariable(),
+ DPV->getExpression(), NewAllocaAddress, nullptr,
+ DPV, Builder, Offset);
+}
+
+/// Where possible to salvage debug information for \p I do so.
+/// If not possible mark undef.
+void llvm::salvageDebugInfo(Instruction &I) {
+ SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
+ SmallVector<DPValue *, 1> DPUsers;
+ findDbgUsers(DbgUsers, &I, &DPUsers);
+ salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers);
+}
+
+template <typename T> static void salvageDbgAssignAddress(T *Assign) {
+ Instruction *I = dyn_cast<Instruction>(Assign->getAddress());
+ // Only instructions can be salvaged at the moment.
+ if (!I)
+ return;
+
+ assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() &&
+ "address-expression shouldn't have fragment info");
+
+ // The address component of a dbg.assign cannot be variadic.
+ uint64_t CurrentLocOps = 0;
+ SmallVector<Value *, 4> AdditionalValues;
+ SmallVector<uint64_t, 16> Ops;
+ Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues);
+
+ // Check if the salvage failed.
+ if (!NewV)
+ return;
+
+ DIExpression *SalvagedExpr = DIExpression::appendOpsToArg(
+ Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false);
+ assert(!SalvagedExpr->getFragmentInfo().has_value() &&
+ "address-expression shouldn't have fragment info");
+
+ // Salvage succeeds if no additional values are required.
+ if (AdditionalValues.empty()) {
+ Assign->setAddress(NewV);
+ Assign->setAddressExpression(SalvagedExpr);
+ } else {
+ Assign->setKillAddress();
+ }
+}
+
+void llvm::salvageDebugInfoForDbgValues(
+ Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers,
+ ArrayRef<DPValue *> DPUsers) {
+ // These are arbitrary chosen limits on the maximum number of values and the
+ // maximum size of a debug expression we can salvage up to, used for
+ // performance reasons.
+ const unsigned MaxDebugArgs = 16;
+ const unsigned MaxExpressionSize = 128;
+ bool Salvaged = false;
+
+ for (auto *DII : DbgUsers) {
+ if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) {
+ if (DAI->getAddress() == &I) {
+ salvageDbgAssignAddress(DAI);
+ Salvaged = true;
+ }
+ if (DAI->getValue() != &I)
+ continue;
+ }
+
+ // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly
+ // pointing out the value as a DWARF memory location description.
+ bool StackValue = isa<DbgValueInst>(DII);
+ auto DIILocation = DII->location_ops();
+ assert(
+ is_contained(DIILocation, &I) &&
+ "DbgVariableIntrinsic must use salvaged instruction as its location");
+ SmallVector<Value *, 4> AdditionalValues;
+ // `I` may appear more than once in DII's location ops, and each use of `I`
+ // must be updated in the DIExpression and potentially have additional
+ // values added; thus we call salvageDebugInfoImpl for each `I` instance in
+ // DIILocation.
+ Value *Op0 = nullptr;
+ DIExpression *SalvagedExpr = DII->getExpression();
+ auto LocItr = find(DIILocation, &I);
+ while (SalvagedExpr && LocItr != DIILocation.end()) {
+ SmallVector<uint64_t, 16> Ops;
+ unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
+ uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
+ Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
+ if (!Op0)
+ break;
+ SalvagedExpr =
+ DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
+ LocItr = std::find(++LocItr, DIILocation.end(), &I);
+ }
+ // salvageDebugInfoImpl should fail on examining the first element of
+ // DbgUsers, or none of them.
+ if (!Op0)
+ break;
+
+ DII->replaceVariableLocationOp(&I, Op0);
+ bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
+ if (AdditionalValues.empty() && IsValidSalvageExpr) {
+ DII->setExpression(SalvagedExpr);
+ } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr &&
+ DII->getNumVariableLocationOps() + AdditionalValues.size() <=
+ MaxDebugArgs) {
+ DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
+ } else {
+ // Do not salvage using DIArgList for dbg.declare, as it is not currently
+ // supported in those instructions. Also do not salvage if the resulting
+ // DIArgList would contain an unreasonably large number of values.
+ DII->setKillLocation();
+ }
+ LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
+ Salvaged = true;
+ }
+ // Duplicate of above block for DPValues.
+ for (auto *DPV : DPUsers) {
+ if (DPV->isDbgAssign()) {
+ if (DPV->getAddress() == &I) {
+ salvageDbgAssignAddress(DPV);
+ Salvaged = true;
+ }
+ if (DPV->getValue() != &I)
+ continue;
+ }
+
+ // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
+ // are implicitly pointing out the value as a DWARF memory location
+ // description.
+ bool StackValue = DPV->getType() != DPValue::LocationType::Declare;
+ auto DPVLocation = DPV->location_ops();
+ assert(
+ is_contained(DPVLocation, &I) &&
+ "DbgVariableIntrinsic must use salvaged instruction as its location");
+ SmallVector<Value *, 4> AdditionalValues;
+ // 'I' may appear more than once in DPV's location ops, and each use of 'I'
+ // must be updated in the DIExpression and potentially have additional
+ // values added; thus we call salvageDebugInfoImpl for each 'I' instance in
+ // DPVLocation.
+ Value *Op0 = nullptr;
+ DIExpression *SalvagedExpr = DPV->getExpression();
+ auto LocItr = find(DPVLocation, &I);
+ while (SalvagedExpr && LocItr != DPVLocation.end()) {
+ SmallVector<uint64_t, 16> Ops;
+ unsigned LocNo = std::distance(DPVLocation.begin(), LocItr);
+ uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
+ Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
+ if (!Op0)
+ break;
+ SalvagedExpr =
+ DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
+ LocItr = std::find(++LocItr, DPVLocation.end(), &I);
+ }
+ // salvageDebugInfoImpl should fail on examining the first element of
+ // DbgUsers, or none of them.
+ if (!Op0)
+ break;
+
+ DPV->replaceVariableLocationOp(&I, Op0);
+ bool IsValidSalvageExpr =
+ SalvagedExpr->getNumElements() <= MaxExpressionSize;
+ if (AdditionalValues.empty() && IsValidSalvageExpr) {
+ DPV->setExpression(SalvagedExpr);
+ } else if (DPV->getType() != DPValue::LocationType::Declare &&
+ IsValidSalvageExpr &&
+ DPV->getNumVariableLocationOps() + AdditionalValues.size() <=
+ MaxDebugArgs) {
+ DPV->addVariableLocationOps(AdditionalValues, SalvagedExpr);
+ } else {
+ // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
+ // currently only valid for stack value expressions.
+ // Also do not salvage if the resulting DIArgList would contain an
+ // unreasonably large number of values.
+ DPV->setKillLocation();
+ }
+ LLVM_DEBUG(dbgs() << "SALVAGE: " << DPV << '\n');
+ Salvaged = true;
+ }
+
+ if (Salvaged)
+ return;
+
+ for (auto *DII : DbgUsers)
+ DII->setKillLocation();
+
+ for (auto *DPV : DPUsers)
+ DPV->setKillLocation();
+}
+
+Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
+ uint64_t CurrentLocOps,
+ SmallVectorImpl<uint64_t> &Opcodes,
+ SmallVectorImpl<Value *> &AdditionalValues) {
+ unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
+ // Rewrite a GEP into a DIExpression.
+ MapVector<Value *, APInt> VariableOffsets;
+ APInt ConstantOffset(BitWidth, 0);
+ if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
+ return nullptr;
+ if (!VariableOffsets.empty() && !CurrentLocOps) {
+ Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
+ CurrentLocOps = 1;
+ }
+ for (const auto &Offset : VariableOffsets) {
+ AdditionalValues.push_back(Offset.first);
+ assert(Offset.second.isStrictlyPositive() &&
+ "Expected strictly positive multiplier for offset.");
+ Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
+ Offset.second.getZExtValue(), dwarf::DW_OP_mul,
+ dwarf::DW_OP_plus});
+ }
+ DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
+ return GEP->getOperand(0);
+}
+
+uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
+ switch (Opcode) {
+ case Instruction::Add:
+ return dwarf::DW_OP_plus;
+ case Instruction::Sub:
+ return dwarf::DW_OP_minus;
+ case Instruction::Mul:
+ return dwarf::DW_OP_mul;
+ case Instruction::SDiv:
+ return dwarf::DW_OP_div;
+ case Instruction::SRem:
+ return dwarf::DW_OP_mod;
+ case Instruction::Or:
+ return dwarf::DW_OP_or;
+ case Instruction::And:
+ return dwarf::DW_OP_and;
+ case Instruction::Xor:
+ return dwarf::DW_OP_xor;
+ case Instruction::Shl:
+ return dwarf::DW_OP_shl;
+ case Instruction::LShr:
+ return dwarf::DW_OP_shr;
+ case Instruction::AShr:
+ return dwarf::DW_OP_shra;
+ default:
+ // TODO: Salvage from each kind of binop we know about.
+ return 0;
+ }
+}
+
+static void handleSSAValueOperands(uint64_t CurrentLocOps,
+ SmallVectorImpl<uint64_t> &Opcodes,
+ SmallVectorImpl<Value *> &AdditionalValues,
+ Instruction *I) {
+ if (!CurrentLocOps) {
+ Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
+ CurrentLocOps = 1;
+ }
+ Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
+ AdditionalValues.push_back(I->getOperand(1));
+}
+
+Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
+ SmallVectorImpl<uint64_t> &Opcodes,
+ SmallVectorImpl<Value *> &AdditionalValues) {
+ // Handle binary operations with constant integer operands as a special case.
+ auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
+ // Values wider than 64 bits cannot be represented within a DIExpression.
+ if (ConstInt && ConstInt->getBitWidth() > 64)
+ return nullptr;
+
+ Instruction::BinaryOps BinOpcode = BI->getOpcode();
+ // Push any Constant Int operand onto the expression stack.
+ if (ConstInt) {
+ uint64_t Val = ConstInt->getSExtValue();
+ // Add or Sub Instructions with a constant operand can potentially be
+ // simplified.
+ if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
+ uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
+ DIExpression::appendOffset(Opcodes, Offset);
+ return BI->getOperand(0);
+ }
+ Opcodes.append({dwarf::DW_OP_constu, Val});
+ } else {
+ handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI);
+ }
+
+ // Add salvaged binary operator to expression stack, if it has a valid
+ // representation in a DIExpression.
+ uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
+ if (!DwarfBinOp)
+ return nullptr;
+ Opcodes.push_back(DwarfBinOp);
+ return BI->getOperand(0);
+}
+
+uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) {
+ // The signedness of the operation is implicit in the typed stack, signed and
+ // unsigned instructions map to the same DWARF opcode.
+ switch (Pred) {
+ case CmpInst::ICMP_EQ:
+ return dwarf::DW_OP_eq;
+ case CmpInst::ICMP_NE:
+ return dwarf::DW_OP_ne;
+ case CmpInst::ICMP_UGT:
+ case CmpInst::ICMP_SGT:
+ return dwarf::DW_OP_gt;
+ case CmpInst::ICMP_UGE:
+ case CmpInst::ICMP_SGE:
+ return dwarf::DW_OP_ge;
+ case CmpInst::ICMP_ULT:
+ case CmpInst::ICMP_SLT:
+ return dwarf::DW_OP_lt;
+ case CmpInst::ICMP_ULE:
+ case CmpInst::ICMP_SLE:
+ return dwarf::DW_OP_le;
+ default:
+ return 0;
+ }
+}
+
+Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps,
+ SmallVectorImpl<uint64_t> &Opcodes,
+ SmallVectorImpl<Value *> &AdditionalValues) {
+ // Handle icmp operations with constant integer operands as a special case.
+ auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1));
+ // Values wider than 64 bits cannot be represented within a DIExpression.
+ if (ConstInt && ConstInt->getBitWidth() > 64)
+ return nullptr;
+ // Push any Constant Int operand onto the expression stack.
+ if (ConstInt) {
+ if (Icmp->isSigned())
+ Opcodes.push_back(dwarf::DW_OP_consts);
+ else
+ Opcodes.push_back(dwarf::DW_OP_constu);
+ uint64_t Val = ConstInt->getSExtValue();
+ Opcodes.push_back(Val);
+ } else {
+ handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp);
+ }
+
+ // Add salvaged binary operator to expression stack, if it has a valid
+ // representation in a DIExpression.
+ uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate());
+ if (!DwarfIcmpOp)
+ return nullptr;
+ Opcodes.push_back(DwarfIcmpOp);
+ return Icmp->getOperand(0);
+}
+
+Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
+ SmallVectorImpl<uint64_t> &Ops,
+ SmallVectorImpl<Value *> &AdditionalValues) {
+ auto &M = *I.getModule();
+ auto &DL = M.getDataLayout();
+
+ if (auto *CI = dyn_cast<CastInst>(&I)) {
+ Value *FromValue = CI->getOperand(0);
+ // No-op casts are irrelevant for debug info.
+ if (CI->isNoopCast(DL)) {
+ return FromValue;
+ }
+
+ Type *Type = CI->getType();
+ if (Type->isPointerTy())
+ Type = DL.getIntPtrType(Type);
+ // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
+ if (Type->isVectorTy() ||
+ !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
+ isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
+ return nullptr;
+
+ llvm::Type *FromType = FromValue->getType();
+ if (FromType->isPointerTy())
+ FromType = DL.getIntPtrType(FromType);
+
+ unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
+ unsigned ToTypeBitSize = Type->getScalarSizeInBits();
+
+ auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
+ isa<SExtInst>(&I));
+ Ops.append(ExtOps.begin(), ExtOps.end());
+ return FromValue;
+ }
+
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
+ return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
+ if (auto *BI = dyn_cast<BinaryOperator>(&I))
+ return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
+ if (auto *IC = dyn_cast<ICmpInst>(&I))
+ return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues);
+
+ // *Not* to do: we should not attempt to salvage load instructions,
+ // because the validity and lifetime of a dbg.value containing
+ // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
+ return nullptr;
+}
+
+/// A replacement for a dbg.value expression.
+using DbgValReplacement = std::optional<DIExpression *>;
+
+/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
+/// possibly moving/undefing users to prevent use-before-def. Returns true if
+/// changes are made.
+static bool rewriteDebugUsers(
+ Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
+ function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr,
+ function_ref<DbgValReplacement(DPValue &DPV)> RewriteDPVExpr) {
+ // Find debug users of From.
+ SmallVector<DbgVariableIntrinsic *, 1> Users;
+ SmallVector<DPValue *, 1> DPUsers;
+ findDbgUsers(Users, &From, &DPUsers);
+ if (Users.empty() && DPUsers.empty())
+ return false;
+
+ // Prevent use-before-def of To.
+ bool Changed = false;
+
+ SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
+ SmallPtrSet<DPValue *, 1> UndefOrSalvageDPV;
+ if (isa<Instruction>(&To)) {
+ bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
+
+ for (auto *DII : Users) {
+ // It's common to see a debug user between From and DomPoint. Move it
+ // after DomPoint to preserve the variable update without any reordering.
+ if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
+ LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
+ DII->moveAfter(&DomPoint);
+ Changed = true;
+
+ // Users which otherwise aren't dominated by the replacement value must
+ // be salvaged or deleted.
+ } else if (!DT.dominates(&DomPoint, DII)) {
+ UndefOrSalvage.insert(DII);
+ }
+ }
+
+ // DPValue implementation of the above.
+ for (auto *DPV : DPUsers) {
+ Instruction *MarkedInstr = DPV->getMarker()->MarkedInstr;
+ Instruction *NextNonDebug = MarkedInstr;
+ // The next instruction might still be a dbg.declare, skip over it.
+ if (isa<DbgVariableIntrinsic>(NextNonDebug))
+ NextNonDebug = NextNonDebug->getNextNonDebugInstruction();
+
+ if (DomPointAfterFrom && NextNonDebug == &DomPoint) {
+ LLVM_DEBUG(dbgs() << "MOVE: " << *DPV << '\n');
+ DPV->removeFromParent();
+ // Ensure there's a marker.
+ DomPoint.getParent()->insertDPValueAfter(DPV, &DomPoint);
+ Changed = true;
+ } else if (!DT.dominates(&DomPoint, MarkedInstr)) {
+ UndefOrSalvageDPV.insert(DPV);
+ }
+ }
+ }
+
+ // Update debug users without use-before-def risk.
+ for (auto *DII : Users) {
+ if (UndefOrSalvage.count(DII))
+ continue;
+
+ DbgValReplacement DVR = RewriteExpr(*DII);
+ if (!DVR)
+ continue;
+
+ DII->replaceVariableLocationOp(&From, &To);
+ DII->setExpression(*DVR);
+ LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
+ Changed = true;
+ }
+ for (auto *DPV : DPUsers) {
+ if (UndefOrSalvageDPV.count(DPV))
+ continue;
+
+ DbgValReplacement DVR = RewriteDPVExpr(*DPV);
+ if (!DVR)
+ continue;
+
+ DPV->replaceVariableLocationOp(&From, &To);
+ DPV->setExpression(*DVR);
+ LLVM_DEBUG(dbgs() << "REWRITE: " << DPV << '\n');
+ Changed = true;
+ }
+
+ if (!UndefOrSalvage.empty() || !UndefOrSalvageDPV.empty()) {
+ // Try to salvage the remaining debug users.
+ salvageDebugInfo(From);
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
+/// losslessly preserve the bits and semantics of the value. This predicate is
+/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
+///
+/// Note that Type::canLosslesslyBitCastTo is not suitable here because it
+/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
+/// and also does not allow lossless pointer <-> integer conversions.
+static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
+ Type *ToTy) {
+ // Trivially compatible types.
+ if (FromTy == ToTy)
+ return true;
+
+ // Handle compatible pointer <-> integer conversions.
+ if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
+ bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
+ bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
+ !DL.isNonIntegralPointerType(ToTy);
+ return SameSize && LosslessConversion;
+ }
+
+ // TODO: This is not exhaustive.
+ return false;
+}
+
+bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
+ Instruction &DomPoint, DominatorTree &DT) {
+ // Exit early if From has no debug users.
+ if (!From.isUsedByMetadata())
+ return false;
+
+ assert(&From != &To && "Can't replace something with itself");
+
+ Type *FromTy = From.getType();
+ Type *ToTy = To.getType();
+
+ auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
+ return DII.getExpression();
+ };
+ auto IdentityDPV = [&](DPValue &DPV) -> DbgValReplacement {
+ return DPV.getExpression();
+ };
+
+ // Handle no-op conversions.
+ Module &M = *From.getModule();
+ const DataLayout &DL = M.getDataLayout();
+ if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
+ return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV);
+
+ // Handle integer-to-integer widening and narrowing.
+ // FIXME: Use DW_OP_convert when it's available everywhere.
+ if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
+ uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
+ uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
+ assert(FromBits != ToBits && "Unexpected no-op conversion");
+
+ // When the width of the result grows, assume that a debugger will only
+ // access the low `FromBits` bits when inspecting the source variable.
+ if (FromBits < ToBits)
+ return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV);
+
+ // The width of the result has shrunk. Use sign/zero extension to describe
+ // the source variable's high bits.
+ auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
+ DILocalVariable *Var = DII.getVariable();
+
+ // Without knowing signedness, sign/zero extension isn't possible.
+ auto Signedness = Var->getSignedness();
+ if (!Signedness)
+ return std::nullopt;
+
+ bool Signed = *Signedness == DIBasicType::Signedness::Signed;
+ return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
+ Signed);
+ };
+ // RemoveDIs: duplicate implementation working on DPValues rather than on
+ // dbg.value intrinsics.
+ auto SignOrZeroExtDPV = [&](DPValue &DPV) -> DbgValReplacement {
+ DILocalVariable *Var = DPV.getVariable();
+
+ // Without knowing signedness, sign/zero extension isn't possible.
+ auto Signedness = Var->getSignedness();
+ if (!Signedness)
+ return std::nullopt;
+
+ bool Signed = *Signedness == DIBasicType::Signedness::Signed;
+ return DIExpression::appendExt(DPV.getExpression(), ToBits, FromBits,
+ Signed);
+ };
+ return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt,
+ SignOrZeroExtDPV);
+ }
+
+ // TODO: Floating-point conversions, vectors.
+ return false;
+}
+
+std::pair<unsigned, unsigned>
+llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
+ unsigned NumDeadInst = 0;
+ unsigned NumDeadDbgInst = 0;
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
+ // RemoveDIs: erasing debug-info must be done manually.
+ EndInst->dropDbgValues();
+ while (EndInst != &BB->front()) {
+ // Delete the next to last instruction.
+ Instruction *Inst = &*--EndInst->getIterator();
+ if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
+ Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
+ if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
+ // EHPads can't have DPValues attached to them, but it might be possible
+ // for things with token type.
+ Inst->dropDbgValues();
+ EndInst = Inst;
+ continue;
+ }
+ if (isa<DbgInfoIntrinsic>(Inst))
+ ++NumDeadDbgInst;
+ else
+ ++NumDeadInst;
+ // RemoveDIs: erasing debug-info must be done manually.
+ Inst->dropDbgValues();
+ Inst->eraseFromParent();
+ }
+ return {NumDeadInst, NumDeadDbgInst};
+}
+
+unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
+ DomTreeUpdater *DTU,
+ MemorySSAUpdater *MSSAU) {
+ BasicBlock *BB = I->getParent();
+
+ if (MSSAU)
+ MSSAU->changeToUnreachable(I);
+
+ SmallSet<BasicBlock *, 8> UniqueSuccessors;
+
+ // Loop over all of the successors, removing BB's entry from any PHI
+ // nodes.
+ for (BasicBlock *Successor : successors(BB)) {
+ Successor->removePredecessor(BB, PreserveLCSSA);
+ if (DTU)
+ UniqueSuccessors.insert(Successor);
+ }
+ auto *UI = new UnreachableInst(I->getContext(), I);
+ UI->setDebugLoc(I->getDebugLoc());
+
+ // All instructions after this are dead.
+ unsigned NumInstrsRemoved = 0;
+ BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
+ while (BBI != BBE) {
+ if (!BBI->use_empty())
+ BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
+ BBI++->eraseFromParent();
+ ++NumInstrsRemoved;
+ }
+ if (DTU) {
+ SmallVector<DominatorTree::UpdateType, 8> Updates;
+ Updates.reserve(UniqueSuccessors.size());
+ for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
+ Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
+ DTU->applyUpdates(Updates);
+ }
+ BB->flushTerminatorDbgValues();
+ return NumInstrsRemoved;
+}
+
+CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
+ SmallVector<Value *, 8> Args(II->args());
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ II->getOperandBundlesAsDefs(OpBundles);
+ CallInst *NewCall = CallInst::Create(II->getFunctionType(),
+ II->getCalledOperand(), Args, OpBundles);
+ NewCall->setCallingConv(II->getCallingConv());
+ NewCall->setAttributes(II->getAttributes());
+ NewCall->setDebugLoc(II->getDebugLoc());
+ NewCall->copyMetadata(*II);
+
+ // If the invoke had profile metadata, try converting them for CallInst.
+ uint64_t TotalWeight;
+ if (NewCall->extractProfTotalWeight(TotalWeight)) {
+ // Set the total weight if it fits into i32, otherwise reset.
+ MDBuilder MDB(NewCall->getContext());
+ auto NewWeights = uint32_t(TotalWeight) != TotalWeight
+ ? nullptr
+ : MDB.createBranchWeights({uint32_t(TotalWeight)});
+ NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
+ }
+
+ return NewCall;
+}
+
+// changeToCall - Convert the specified invoke into a normal call.
+CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
+ CallInst *NewCall = createCallMatchingInvoke(II);
+ NewCall->takeName(II);
+ NewCall->insertBefore(II);
+ II->replaceAllUsesWith(NewCall);
+
+ // Follow the call by a branch to the normal destination.
+ BasicBlock *NormalDestBB = II->getNormalDest();
+ BranchInst::Create(NormalDestBB, II);
+
+ // Update PHI nodes in the unwind destination
+ BasicBlock *BB = II->getParent();
+ BasicBlock *UnwindDestBB = II->getUnwindDest();
+ UnwindDestBB->removePredecessor(BB);
+ II->eraseFromParent();
+ if (DTU)
+ DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
+ return NewCall;
+}
+
+BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
+ BasicBlock *UnwindEdge,
+ DomTreeUpdater *DTU) {
+ BasicBlock *BB = CI->getParent();
+
+ // Convert this function call into an invoke instruction. First, split the
+ // basic block.
+ BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
+ CI->getName() + ".noexc");
+
+ // Delete the unconditional branch inserted by SplitBlock
+ BB->back().eraseFromParent();
+
+ // Create the new invoke instruction.
+ SmallVector<Value *, 8> InvokeArgs(CI->args());
+ SmallVector<OperandBundleDef, 1> OpBundles;
+
+ CI->getOperandBundlesAsDefs(OpBundles);
+
+ // Note: we're round tripping operand bundles through memory here, and that
+ // can potentially be avoided with a cleverer API design that we do not have
+ // as of this time.
+
+ InvokeInst *II =
+ InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
+ UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
+ II->setDebugLoc(CI->getDebugLoc());
+ II->setCallingConv(CI->getCallingConv());
+ II->setAttributes(CI->getAttributes());
+ II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
+
+ if (DTU)
+ DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
+
+ // Make sure that anything using the call now uses the invoke! This also
+ // updates the CallGraph if present, because it uses a WeakTrackingVH.
+ CI->replaceAllUsesWith(II);
+
+ // Delete the original call
+ Split->front().eraseFromParent();
+ return Split;
+}
+
+static bool markAliveBlocks(Function &F,
+ SmallPtrSetImpl<BasicBlock *> &Reachable,
+ DomTreeUpdater *DTU = nullptr) {
+ SmallVector<BasicBlock*, 128> Worklist;
+ BasicBlock *BB = &F.front();
+ Worklist.push_back(BB);
+ Reachable.insert(BB);
+ bool Changed = false;
+ do {
+ BB = Worklist.pop_back_val();
+
+ // Do a quick scan of the basic block, turning any obviously unreachable
+ // instructions into LLVM unreachable insts. The instruction combining pass
+ // canonicalizes unreachable insts into stores to null or undef.
+ for (Instruction &I : *BB) {
+ if (auto *CI = dyn_cast<CallInst>(&I)) {
+ Value *Callee = CI->getCalledOperand();
+ // Handle intrinsic calls.
+ if (Function *F = dyn_cast<Function>(Callee)) {
+ auto IntrinsicID = F->getIntrinsicID();
+ // Assumptions that are known to be false are equivalent to
+ // unreachable. Also, if the condition is undefined, then we make the
+ // choice most beneficial to the optimizer, and choose that to also be
+ // unreachable.
+ if (IntrinsicID == Intrinsic::assume) {
+ if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
+ // Don't insert a call to llvm.trap right before the unreachable.
+ changeToUnreachable(CI, false, DTU);
+ Changed = true;
+ break;
+ }
+ } else if (IntrinsicID == Intrinsic::experimental_guard) {
+ // A call to the guard intrinsic bails out of the current
+ // compilation unit if the predicate passed to it is false. If the
+ // predicate is a constant false, then we know the guard will bail
+ // out of the current compile unconditionally, so all code following
+ // it is dead.
+ //
+ // Note: unlike in llvm.assume, it is not "obviously profitable" for
+ // guards to treat `undef` as `false` since a guard on `undef` can
+ // still be useful for widening.
+ if (match(CI->getArgOperand(0), m_Zero()))
+ if (!isa<UnreachableInst>(CI->getNextNode())) {
+ changeToUnreachable(CI->getNextNode(), false, DTU);
+ Changed = true;
+ break;
+ }
+ }
+ } else if ((isa<ConstantPointerNull>(Callee) &&
+ !NullPointerIsDefined(CI->getFunction(),
+ cast<PointerType>(Callee->getType())
+ ->getAddressSpace())) ||
+ isa<UndefValue>(Callee)) {
+ changeToUnreachable(CI, false, DTU);
+ Changed = true;
+ break;
+ }
+ if (CI->doesNotReturn() && !CI->isMustTailCall()) {
+ // If we found a call to a no-return function, insert an unreachable
+ // instruction after it. Make sure there isn't *already* one there
+ // though.
+ if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) {
+ // Don't insert a call to llvm.trap right before the unreachable.
+ changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU);
+ Changed = true;
+ }
+ break;
+ }
+ } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ // Store to undef and store to null are undefined and used to signal
+ // that they should be changed to unreachable by passes that can't
+ // modify the CFG.
+
+ // Don't touch volatile stores.
+ if (SI->isVolatile()) continue;
+
+ Value *Ptr = SI->getOperand(1);
+
+ if (isa<UndefValue>(Ptr) ||
+ (isa<ConstantPointerNull>(Ptr) &&
+ !NullPointerIsDefined(SI->getFunction(),
+ SI->getPointerAddressSpace()))) {
+ changeToUnreachable(SI, false, DTU);
+ Changed = true;
+ break;
+ }
+ }
+ }
+
+ Instruction *Terminator = BB->getTerminator();
+ if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
+ // Turn invokes that call 'nounwind' functions into ordinary calls.
+ Value *Callee = II->getCalledOperand();
+ if ((isa<ConstantPointerNull>(Callee) &&
+ !NullPointerIsDefined(BB->getParent())) ||
+ isa<UndefValue>(Callee)) {
+ changeToUnreachable(II, false, DTU);
+ Changed = true;
+ } else {
+ if (II->doesNotReturn() &&
+ !isa<UnreachableInst>(II->getNormalDest()->front())) {
+ // If we found an invoke of a no-return function,
+ // create a new empty basic block with an `unreachable` terminator,
+ // and set it as the normal destination for the invoke,
+ // unless that is already the case.
+ // Note that the original normal destination could have other uses.
+ BasicBlock *OrigNormalDest = II->getNormalDest();
+ OrigNormalDest->removePredecessor(II->getParent());
+ LLVMContext &Ctx = II->getContext();
+ BasicBlock *UnreachableNormalDest = BasicBlock::Create(
+ Ctx, OrigNormalDest->getName() + ".unreachable",
+ II->getFunction(), OrigNormalDest);
+ new UnreachableInst(Ctx, UnreachableNormalDest);
+ II->setNormalDest(UnreachableNormalDest);
+ if (DTU)
+ DTU->applyUpdates(
+ {{DominatorTree::Delete, BB, OrigNormalDest},
+ {DominatorTree::Insert, BB, UnreachableNormalDest}});
+ Changed = true;
+ }
+ if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
+ if (II->use_empty() && !II->mayHaveSideEffects()) {
+ // jump to the normal destination branch.
+ BasicBlock *NormalDestBB = II->getNormalDest();
+ BasicBlock *UnwindDestBB = II->getUnwindDest();
+ BranchInst::Create(NormalDestBB, II);
+ UnwindDestBB->removePredecessor(II->getParent());
+ II->eraseFromParent();
+ if (DTU)
+ DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
+ } else
+ changeToCall(II, DTU);
+ Changed = true;
+ }
+ }
+ } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
+ // Remove catchpads which cannot be reached.
+ struct CatchPadDenseMapInfo {
+ static CatchPadInst *getEmptyKey() {
+ return DenseMapInfo<CatchPadInst *>::getEmptyKey();
+ }
+
+ static CatchPadInst *getTombstoneKey() {
+ return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
+ }
+
+ static unsigned getHashValue(CatchPadInst *CatchPad) {
+ return static_cast<unsigned>(hash_combine_range(
+ CatchPad->value_op_begin(), CatchPad->value_op_end()));
+ }
+
+ static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
+ if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
+ RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return LHS == RHS;
+ return LHS->isIdenticalTo(RHS);
+ }
+ };
+
+ SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
+ // Set of unique CatchPads.
+ SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
+ CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
+ HandlerSet;
+ detail::DenseSetEmpty Empty;
+ for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
+ E = CatchSwitch->handler_end();
+ I != E; ++I) {
+ BasicBlock *HandlerBB = *I;
+ if (DTU)
+ ++NumPerSuccessorCases[HandlerBB];
+ auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
+ if (!HandlerSet.insert({CatchPad, Empty}).second) {
+ if (DTU)
+ --NumPerSuccessorCases[HandlerBB];
+ CatchSwitch->removeHandler(I);
+ --I;
+ --E;
+ Changed = true;
+ }
+ }
+ if (DTU) {
+ std::vector<DominatorTree::UpdateType> Updates;
+ for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
+ if (I.second == 0)
+ Updates.push_back({DominatorTree::Delete, BB, I.first});
+ DTU->applyUpdates(Updates);
+ }
+ }
+
+ Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
+ for (BasicBlock *Successor : successors(BB))
+ if (Reachable.insert(Successor).second)
+ Worklist.push_back(Successor);
+ } while (!Worklist.empty());
+ return Changed;
+}
+
+Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
+ Instruction *TI = BB->getTerminator();
+
+ if (auto *II = dyn_cast<InvokeInst>(TI))
+ return changeToCall(II, DTU);
+
+ Instruction *NewTI;
+ BasicBlock *UnwindDest;
+
+ if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
+ NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
+ UnwindDest = CRI->getUnwindDest();
+ } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
+ auto *NewCatchSwitch = CatchSwitchInst::Create(
+ CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
+ CatchSwitch->getName(), CatchSwitch);
+ for (BasicBlock *PadBB : CatchSwitch->handlers())
+ NewCatchSwitch->addHandler(PadBB);
+
+ NewTI = NewCatchSwitch;
+ UnwindDest = CatchSwitch->getUnwindDest();
+ } else {
+ llvm_unreachable("Could not find unwind successor");
+ }
+
+ NewTI->takeName(TI);
+ NewTI->setDebugLoc(TI->getDebugLoc());
+ UnwindDest->removePredecessor(BB);
+ TI->replaceAllUsesWith(NewTI);
+ TI->eraseFromParent();
+ if (DTU)
+ DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
+ return NewTI;
+}
+
+/// removeUnreachableBlocks - Remove blocks that are not reachable, even
+/// if they are in a dead cycle. Return true if a change was made, false
+/// otherwise.
+bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
+ MemorySSAUpdater *MSSAU) {
+ SmallPtrSet<BasicBlock *, 16> Reachable;
+ bool Changed = markAliveBlocks(F, Reachable, DTU);
+
+ // If there are unreachable blocks in the CFG...
+ if (Reachable.size() == F.size())
+ return Changed;
+
+ assert(Reachable.size() < F.size());
+
+ // Are there any blocks left to actually delete?
+ SmallSetVector<BasicBlock *, 8> BlocksToRemove;
+ for (BasicBlock &BB : F) {
+ // Skip reachable basic blocks
+ if (Reachable.count(&BB))
+ continue;
+ // Skip already-deleted blocks
+ if (DTU && DTU->isBBPendingDeletion(&BB))
+ continue;
+ BlocksToRemove.insert(&BB);
+ }
+
+ if (BlocksToRemove.empty())
+ return Changed;
+
+ Changed = true;
+ NumRemoved += BlocksToRemove.size();
+
+ if (MSSAU)
+ MSSAU->removeBlocks(BlocksToRemove);
+
+ DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
+
+ return Changed;
+}
+
+void llvm::combineMetadata(Instruction *K, const Instruction *J,
+ ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+ K->dropUnknownNonDebugMetadata(KnownIDs);
+ K->getAllMetadataOtherThanDebugLoc(Metadata);
+ for (const auto &MD : Metadata) {
+ unsigned Kind = MD.first;
+ MDNode *JMD = J->getMetadata(Kind);
+ MDNode *KMD = MD.second;
+
+ switch (Kind) {
+ default:
+ K->setMetadata(Kind, nullptr); // Remove unknown metadata
+ break;
+ case LLVMContext::MD_dbg:
+ llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
+ case LLVMContext::MD_DIAssignID:
+ K->mergeDIAssignID(J);
+ break;
+ case LLVMContext::MD_tbaa:
+ K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
+ break;
+ case LLVMContext::MD_alias_scope:
+ K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
+ break;
+ case LLVMContext::MD_noalias:
+ case LLVMContext::MD_mem_parallel_loop_access:
+ K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
+ break;
+ case LLVMContext::MD_access_group:
+ K->setMetadata(LLVMContext::MD_access_group,
+ intersectAccessGroups(K, J));
+ break;
+ case LLVMContext::MD_range:
+ if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
+ K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
+ break;
+ case LLVMContext::MD_fpmath:
+ K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
+ break;
+ case LLVMContext::MD_invariant_load:
+ // If K moves, only set the !invariant.load if it is present in both
+ // instructions.
+ if (DoesKMove)
+ K->setMetadata(Kind, JMD);
+ break;
+ case LLVMContext::MD_nonnull:
+ if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
+ K->setMetadata(Kind, JMD);
+ break;
+ case LLVMContext::MD_invariant_group:
+ // Preserve !invariant.group in K.
+ break;
+ case LLVMContext::MD_align:
+ if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))
+ K->setMetadata(
+ Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
+ break;
+ case LLVMContext::MD_dereferenceable:
+ case LLVMContext::MD_dereferenceable_or_null:
+ if (DoesKMove)
+ K->setMetadata(Kind,
+ MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
+ break;
+ case LLVMContext::MD_preserve_access_index:
+ // Preserve !preserve.access.index in K.
+ break;
+ case LLVMContext::MD_noundef:
+ // If K does move, keep noundef if it is present in both instructions.
+ if (DoesKMove)
+ K->setMetadata(Kind, JMD);
+ break;
+ case LLVMContext::MD_nontemporal:
+ // Preserve !nontemporal if it is present on both instructions.
+ K->setMetadata(Kind, JMD);
+ break;
+ case LLVMContext::MD_prof:
+ if (DoesKMove)
+ K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J));
+ break;
+ }
+ }
+ // Set !invariant.group from J if J has it. If both instructions have it
+ // then we will just pick it from J - even when they are different.
+ // Also make sure that K is load or store - f.e. combining bitcast with load
+ // could produce bitcast with invariant.group metadata, which is invalid.
+ // FIXME: we should try to preserve both invariant.group md if they are
+ // different, but right now instruction can only have one invariant.group.
+ if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
+ if (isa<LoadInst>(K) || isa<StoreInst>(K))
+ K->setMetadata(LLVMContext::MD_invariant_group, JMD);
+}
+
+void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
+ bool KDominatesJ) {
+ unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
+ LLVMContext::MD_alias_scope,
+ LLVMContext::MD_noalias,
+ LLVMContext::MD_range,
+ LLVMContext::MD_fpmath,
+ LLVMContext::MD_invariant_load,
+ LLVMContext::MD_nonnull,
+ LLVMContext::MD_invariant_group,
+ LLVMContext::MD_align,
+ LLVMContext::MD_dereferenceable,
+ LLVMContext::MD_dereferenceable_or_null,
+ LLVMContext::MD_access_group,
+ LLVMContext::MD_preserve_access_index,
+ LLVMContext::MD_prof,
+ LLVMContext::MD_nontemporal,
+ LLVMContext::MD_noundef};
+ combineMetadata(K, J, KnownIDs, KDominatesJ);
+}
+
+void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
+ SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
+ Source.getAllMetadata(MD);
+ MDBuilder MDB(Dest.getContext());
+ Type *NewType = Dest.getType();
+ const DataLayout &DL = Source.getModule()->getDataLayout();
+ for (const auto &MDPair : MD) {
+ unsigned ID = MDPair.first;
+ MDNode *N = MDPair.second;
+ // Note, essentially every kind of metadata should be preserved here! This
+ // routine is supposed to clone a load instruction changing *only its type*.
+ // The only metadata it makes sense to drop is metadata which is invalidated
+ // when the pointer type changes. This should essentially never be the case
+ // in LLVM, but we explicitly switch over only known metadata to be
+ // conservatively correct. If you are adding metadata to LLVM which pertains
+ // to loads, you almost certainly want to add it here.
+ switch (ID) {
+ case LLVMContext::MD_dbg:
+ case LLVMContext::MD_tbaa:
+ case LLVMContext::MD_prof:
+ case LLVMContext::MD_fpmath:
+ case LLVMContext::MD_tbaa_struct:
+ case LLVMContext::MD_invariant_load:
+ case LLVMContext::MD_alias_scope:
+ case LLVMContext::MD_noalias:
+ case LLVMContext::MD_nontemporal:
+ case LLVMContext::MD_mem_parallel_loop_access:
+ case LLVMContext::MD_access_group:
+ case LLVMContext::MD_noundef:
+ // All of these directly apply.
+ Dest.setMetadata(ID, N);
+ break;
+
+ case LLVMContext::MD_nonnull:
+ copyNonnullMetadata(Source, N, Dest);
+ break;
+
+ case LLVMContext::MD_align:
+ case LLVMContext::MD_dereferenceable:
+ case LLVMContext::MD_dereferenceable_or_null:
+ // These only directly apply if the new type is also a pointer.
+ if (NewType->isPointerTy())
+ Dest.setMetadata(ID, N);
+ break;
+
+ case LLVMContext::MD_range:
+ copyRangeMetadata(DL, Source, N, Dest);
+ break;
+ }
+ }
+}
+
+void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
+ auto *ReplInst = dyn_cast<Instruction>(Repl);
+ if (!ReplInst)
+ return;
+
+ // Patch the replacement so that it is not more restrictive than the value
+ // being replaced.
+ // Note that if 'I' is a load being replaced by some operation,
+ // for example, by an arithmetic operation, then andIRFlags()
+ // would just erase all math flags from the original arithmetic
+ // operation, which is clearly not wanted and not needed.
+ if (!isa<LoadInst>(I))
+ ReplInst->andIRFlags(I);
+
+ // FIXME: If both the original and replacement value are part of the
+ // same control-flow region (meaning that the execution of one
+ // guarantees the execution of the other), then we can combine the
+ // noalias scopes here and do better than the general conservative
+ // answer used in combineMetadata().
+
+ // In general, GVN unifies expressions over different control-flow
+ // regions, and so we need a conservative combination of the noalias
+ // scopes.
+ combineMetadataForCSE(ReplInst, I, false);
+}
+
+template <typename RootType, typename DominatesFn>
+static unsigned replaceDominatedUsesWith(Value *From, Value *To,
+ const RootType &Root,
+ const DominatesFn &Dominates) {
+ assert(From->getType() == To->getType());
+
+ unsigned Count = 0;
+ for (Use &U : llvm::make_early_inc_range(From->uses())) {
+ if (!Dominates(Root, U))
+ continue;
+ LLVM_DEBUG(dbgs() << "Replace dominated use of '";
+ From->printAsOperand(dbgs());
+ dbgs() << "' with " << *To << " in " << *U.getUser() << "\n");
+ U.set(To);
+ ++Count;
+ }
+ return Count;
+}
+
+unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
+ assert(From->getType() == To->getType());
+ auto *BB = From->getParent();
+ unsigned Count = 0;
+
+ for (Use &U : llvm::make_early_inc_range(From->uses())) {
+ auto *I = cast<Instruction>(U.getUser());
+ if (I->getParent() == BB)
+ continue;
+ U.set(To);
+ ++Count;
+ }
+ return Count;
+}
+
+unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
+ DominatorTree &DT,
+ const BasicBlockEdge &Root) {
+ auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
+ return DT.dominates(Root, U);
+ };
+ return ::replaceDominatedUsesWith(From, To, Root, Dominates);
+}
+
+unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
+ DominatorTree &DT,
+ const BasicBlock *BB) {
+ auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
+ return DT.dominates(BB, U);
+ };
+ return ::replaceDominatedUsesWith(From, To, BB, Dominates);
+}
+
+bool llvm::callsGCLeafFunction(const CallBase *Call,
+ const TargetLibraryInfo &TLI) {
+ // Check if the function is specifically marked as a gc leaf function.
+ if (Call->hasFnAttr("gc-leaf-function"))
+ return true;
+ if (const Function *F = Call->getCalledFunction()) {
+ if (F->hasFnAttribute("gc-leaf-function"))
+ return true;
+
+ if (auto IID = F->getIntrinsicID()) {
+ // Most LLVM intrinsics do not take safepoints.
+ return IID != Intrinsic::experimental_gc_statepoint &&
+ IID != Intrinsic::experimental_deoptimize &&
+ IID != Intrinsic::memcpy_element_unordered_atomic &&
+ IID != Intrinsic::memmove_element_unordered_atomic;
+ }
+ }
+
+ // Lib calls can be materialized by some passes, and won't be
+ // marked as 'gc-leaf-function.' All available Libcalls are
+ // GC-leaf.
+ LibFunc LF;
+ if (TLI.getLibFunc(*Call, LF)) {
+ return TLI.has(LF);
+ }
+
+ return false;
+}
+
+void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
+ LoadInst &NewLI) {
+ auto *NewTy = NewLI.getType();
+
+ // This only directly applies if the new type is also a pointer.
+ if (NewTy->isPointerTy()) {
+ NewLI.setMetadata(LLVMContext::MD_nonnull, N);
+ return;
+ }
+
+ // The only other translation we can do is to integral loads with !range
+ // metadata.
+ if (!NewTy->isIntegerTy())
+ return;
+
+ MDBuilder MDB(NewLI.getContext());
+ const Value *Ptr = OldLI.getPointerOperand();
+ auto *ITy = cast<IntegerType>(NewTy);
+ auto *NullInt = ConstantExpr::getPtrToInt(
+ ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
+ auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
+ NewLI.setMetadata(LLVMContext::MD_range,
+ MDB.createRange(NonNullInt, NullInt));
+}
+
+void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
+ MDNode *N, LoadInst &NewLI) {
+ auto *NewTy = NewLI.getType();
+ // Simply copy the metadata if the type did not change.
+ if (NewTy == OldLI.getType()) {
+ NewLI.setMetadata(LLVMContext::MD_range, N);
+ return;
+ }
+
+ // Give up unless it is converted to a pointer where there is a single very
+ // valuable mapping we can do reliably.
+ // FIXME: It would be nice to propagate this in more ways, but the type
+ // conversions make it hard.
+ if (!NewTy->isPointerTy())
+ return;
+
+ unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
+ if (BitWidth == OldLI.getType()->getScalarSizeInBits() &&
+ !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
+ MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt);
+ NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
+ }
+}
+
+void llvm::dropDebugUsers(Instruction &I) {
+ SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
+ SmallVector<DPValue *, 1> DPUsers;
+ findDbgUsers(DbgUsers, &I, &DPUsers);
+ for (auto *DII : DbgUsers)
+ DII->eraseFromParent();
+ for (auto *DPV : DPUsers)
+ DPV->eraseFromParent();
+}
+
+void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
+ BasicBlock *BB) {
+ // Since we are moving the instructions out of its basic block, we do not
+ // retain their original debug locations (DILocations) and debug intrinsic
+ // instructions.
+ //
+ // Doing so would degrade the debugging experience and adversely affect the
+ // accuracy of profiling information.
+ //
+ // Currently, when hoisting the instructions, we take the following actions:
+ // - Remove their debug intrinsic instructions.
+ // - Set their debug locations to the values from the insertion point.
+ //
+ // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
+ // need to be deleted, is because there will not be any instructions with a
+ // DILocation in either branch left after performing the transformation. We
+ // can only insert a dbg.value after the two branches are joined again.
+ //
+ // See PR38762, PR39243 for more details.
+ //
+ // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
+ // encode predicated DIExpressions that yield different results on different
+ // code paths.
+
+ for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
+ Instruction *I = &*II;
+ I->dropUBImplyingAttrsAndMetadata();
+ if (I->isUsedByMetadata())
+ dropDebugUsers(*I);
+ // RemoveDIs: drop debug-info too as the following code does.
+ I->dropDbgValues();
+ if (I->isDebugOrPseudoInst()) {
+ // Remove DbgInfo and pseudo probe Intrinsics.
+ II = I->eraseFromParent();
+ continue;
+ }
+ I->setDebugLoc(InsertPt->getDebugLoc());
+ ++II;
+ }
+ DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(),
+ BB->getTerminator()->getIterator());
+}
+
+DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C,
+ Type &Ty) {
+ // Create integer constant expression.
+ auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * {
+ const APInt &API = cast<ConstantInt>(&CV)->getValue();
+ std::optional<int64_t> InitIntOpt = API.trySExtValue();
+ return InitIntOpt ? DIB.createConstantValueExpression(
+ static_cast<uint64_t>(*InitIntOpt))
+ : nullptr;
+ };
+
+ if (isa<ConstantInt>(C))
+ return createIntegerExpression(C);
+
+ auto *FP = dyn_cast<ConstantFP>(&C);
+ if (FP && (Ty.isFloatTy() || Ty.isDoubleTy())) {
+ const APFloat &APF = FP->getValueAPF();
+ return DIB.createConstantValueExpression(
+ APF.bitcastToAPInt().getZExtValue());
+ }
+
+ if (!Ty.isPointerTy())
+ return nullptr;
+
+ if (isa<ConstantPointerNull>(C))
+ return DIB.createConstantValueExpression(0);
+
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C))
+ if (CE->getOpcode() == Instruction::IntToPtr) {
+ const Value *V = CE->getOperand(0);
+ if (auto CI = dyn_cast_or_null<ConstantInt>(V))
+ return createIntegerExpression(*CI);
+ }
+ return nullptr;
+}
+
+namespace {
+
+/// A potential constituent of a bitreverse or bswap expression. See
+/// collectBitParts for a fuller explanation.
+struct BitPart {
+ BitPart(Value *P, unsigned BW) : Provider(P) {
+ Provenance.resize(BW);
+ }
+
+ /// The Value that this is a bitreverse/bswap of.
+ Value *Provider;
+
+ /// The "provenance" of each bit. Provenance[A] = B means that bit A
+ /// in Provider becomes bit B in the result of this expression.
+ SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
+
+ enum { Unset = -1 };
+};
+
+} // end anonymous namespace
+
+/// Analyze the specified subexpression and see if it is capable of providing
+/// pieces of a bswap or bitreverse. The subexpression provides a potential
+/// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
+/// the output of the expression came from a corresponding bit in some other
+/// value. This function is recursive, and the end result is a mapping of
+/// bitnumber to bitnumber. It is the caller's responsibility to validate that
+/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
+///
+/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
+/// that the expression deposits the low byte of %X into the high byte of the
+/// result and that all other bits are zero. This expression is accepted and a
+/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
+/// [0-7].
+///
+/// For vector types, all analysis is performed at the per-element level. No
+/// cross-element analysis is supported (shuffle/insertion/reduction), and all
+/// constant masks must be splatted across all elements.
+///
+/// To avoid revisiting values, the BitPart results are memoized into the
+/// provided map. To avoid unnecessary copying of BitParts, BitParts are
+/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
+/// store BitParts objects, not pointers. As we need the concept of a nullptr
+/// BitParts (Value has been analyzed and the analysis failed), we an Optional
+/// type instead to provide the same functionality.
+///
+/// Because we pass around references into \c BPS, we must use a container that
+/// does not invalidate internal references (std::map instead of DenseMap).
+static const std::optional<BitPart> &
+collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
+ std::map<Value *, std::optional<BitPart>> &BPS, int Depth,
+ bool &FoundRoot) {
+ auto I = BPS.find(V);
+ if (I != BPS.end())
+ return I->second;
+
+ auto &Result = BPS[V] = std::nullopt;
+ auto BitWidth = V->getType()->getScalarSizeInBits();
+
+ // Can't do integer/elements > 128 bits.
+ if (BitWidth > 128)
+ return Result;
+
+ // Prevent stack overflow by limiting the recursion depth
+ if (Depth == BitPartRecursionMaxDepth) {
+ LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
+ return Result;
+ }
+
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ Value *X, *Y;
+ const APInt *C;
+
+ // If this is an or instruction, it may be an inner node of the bswap.
+ if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
+ // Check we have both sources and they are from the same provider.
+ const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!A || !A->Provider)
+ return Result;
+
+ const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!B || A->Provider != B->Provider)
+ return Result;
+
+ // Try and merge the two together.
+ Result = BitPart(A->Provider, BitWidth);
+ for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
+ if (A->Provenance[BitIdx] != BitPart::Unset &&
+ B->Provenance[BitIdx] != BitPart::Unset &&
+ A->Provenance[BitIdx] != B->Provenance[BitIdx])
+ return Result = std::nullopt;
+
+ if (A->Provenance[BitIdx] == BitPart::Unset)
+ Result->Provenance[BitIdx] = B->Provenance[BitIdx];
+ else
+ Result->Provenance[BitIdx] = A->Provenance[BitIdx];
+ }
+
+ return Result;
+ }
+
+ // If this is a logical shift by a constant, recurse then shift the result.
+ if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
+ const APInt &BitShift = *C;
+
+ // Ensure the shift amount is defined.
+ if (BitShift.uge(BitWidth))
+ return Result;
+
+ // For bswap-only, limit shift amounts to whole bytes, for an early exit.
+ if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
+ return Result;
+
+ const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!Res)
+ return Result;
+ Result = Res;
+
+ // Perform the "shift" on BitProvenance.
+ auto &P = Result->Provenance;
+ if (I->getOpcode() == Instruction::Shl) {
+ P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
+ P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
+ } else {
+ P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
+ P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
+ }
+
+ return Result;
+ }
+
+ // If this is a logical 'and' with a mask that clears bits, recurse then
+ // unset the appropriate bits.
+ if (match(V, m_And(m_Value(X), m_APInt(C)))) {
+ const APInt &AndMask = *C;
+
+ // Check that the mask allows a multiple of 8 bits for a bswap, for an
+ // early exit.
+ unsigned NumMaskedBits = AndMask.popcount();
+ if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
+ return Result;
+
+ const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!Res)
+ return Result;
+ Result = Res;
+
+ for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
+ // If the AndMask is zero for this bit, clear the bit.
+ if (AndMask[BitIdx] == 0)
+ Result->Provenance[BitIdx] = BitPart::Unset;
+ return Result;
+ }
+
+ // If this is a zext instruction zero extend the result.
+ if (match(V, m_ZExt(m_Value(X)))) {
+ const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!Res)
+ return Result;
+
+ Result = BitPart(Res->Provider, BitWidth);
+ auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
+ for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
+ Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
+ for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
+ Result->Provenance[BitIdx] = BitPart::Unset;
+ return Result;
+ }
+
+ // If this is a truncate instruction, extract the lower bits.
+ if (match(V, m_Trunc(m_Value(X)))) {
+ const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!Res)
+ return Result;
+
+ Result = BitPart(Res->Provider, BitWidth);
+ for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
+ Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
+ return Result;
+ }
+
+ // BITREVERSE - most likely due to us previous matching a partial
+ // bitreverse.
+ if (match(V, m_BitReverse(m_Value(X)))) {
+ const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!Res)
+ return Result;
+
+ Result = BitPart(Res->Provider, BitWidth);
+ for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
+ Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
+ return Result;
+ }
+
+ // BSWAP - most likely due to us previous matching a partial bswap.
+ if (match(V, m_BSwap(m_Value(X)))) {
+ const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!Res)
+ return Result;
+
+ unsigned ByteWidth = BitWidth / 8;
+ Result = BitPart(Res->Provider, BitWidth);
+ for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
+ unsigned ByteBitOfs = ByteIdx * 8;
+ for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
+ Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
+ Res->Provenance[ByteBitOfs + BitIdx];
+ }
+ return Result;
+ }
+
+ // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
+ // amount (modulo).
+ // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
+ // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
+ if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
+ match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
+ // We can treat fshr as a fshl by flipping the modulo amount.
+ unsigned ModAmt = C->urem(BitWidth);
+ if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
+ ModAmt = BitWidth - ModAmt;
+
+ // For bswap-only, limit shift amounts to whole bytes, for an early exit.
+ if (!MatchBitReversals && (ModAmt % 8) != 0)
+ return Result;
+
+ // Check we have both sources and they are from the same provider.
+ const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!LHS || !LHS->Provider)
+ return Result;
+
+ const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
+ Depth + 1, FoundRoot);
+ if (!RHS || LHS->Provider != RHS->Provider)
+ return Result;
+
+ unsigned StartBitRHS = BitWidth - ModAmt;
+ Result = BitPart(LHS->Provider, BitWidth);
+ for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
+ Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
+ for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
+ Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
+ return Result;
+ }
+ }
+
+ // If we've already found a root input value then we're never going to merge
+ // these back together.
+ if (FoundRoot)
+ return Result;
+
+ // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
+ // be the root input value to the bswap/bitreverse.
+ FoundRoot = true;
+ Result = BitPart(V, BitWidth);
+ for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
+ Result->Provenance[BitIdx] = BitIdx;
+ return Result;
+}
+
+static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
+ unsigned BitWidth) {
+ if (From % 8 != To % 8)
+ return false;
+ // Convert from bit indices to byte indices and check for a byte reversal.
+ From >>= 3;
+ To >>= 3;
+ BitWidth >>= 3;
+ return From == BitWidth - To - 1;
+}
+
+static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
+ unsigned BitWidth) {
+ return From == BitWidth - To - 1;
+}
+
+bool llvm::recognizeBSwapOrBitReverseIdiom(
+ Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
+ SmallVectorImpl<Instruction *> &InsertedInsts) {
+ if (!match(I, m_Or(m_Value(), m_Value())) &&
+ !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
+ !match(I, m_FShr(m_Value(), m_Value(), m_Value())) &&
+ !match(I, m_BSwap(m_Value())))
+ return false;
+ if (!MatchBSwaps && !MatchBitReversals)
+ return false;
+ Type *ITy = I->getType();
+ if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
+ return false; // Can't do integer/elements > 128 bits.
+
+ // Try to find all the pieces corresponding to the bswap.
+ bool FoundRoot = false;
+ std::map<Value *, std::optional<BitPart>> BPS;
+ const auto &Res =
+ collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
+ if (!Res)
+ return false;
+ ArrayRef<int8_t> BitProvenance = Res->Provenance;
+ assert(all_of(BitProvenance,
+ [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
+ "Illegal bit provenance index");
+
+ // If the upper bits are zero, then attempt to perform as a truncated op.
+ Type *DemandedTy = ITy;
+ if (BitProvenance.back() == BitPart::Unset) {
+ while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
+ BitProvenance = BitProvenance.drop_back();
+ if (BitProvenance.empty())
+ return false; // TODO - handle null value?
+ DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
+ if (auto *IVecTy = dyn_cast<VectorType>(ITy))
+ DemandedTy = VectorType::get(DemandedTy, IVecTy);
+ }
+
+ // Check BitProvenance hasn't found a source larger than the result type.
+ unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
+ if (DemandedBW > ITy->getScalarSizeInBits())
+ return false;
+
+ // Now, is the bit permutation correct for a bswap or a bitreverse? We can
+ // only byteswap values with an even number of bytes.
+ APInt DemandedMask = APInt::getAllOnes(DemandedBW);
+ bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
+ bool OKForBitReverse = MatchBitReversals;
+ for (unsigned BitIdx = 0;
+ (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
+ if (BitProvenance[BitIdx] == BitPart::Unset) {
+ DemandedMask.clearBit(BitIdx);
+ continue;
+ }
+ OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
+ DemandedBW);
+ OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
+ BitIdx, DemandedBW);
+ }
+
+ Intrinsic::ID Intrin;
+ if (OKForBSwap)
+ Intrin = Intrinsic::bswap;
+ else if (OKForBitReverse)
+ Intrin = Intrinsic::bitreverse;
+ else
+ return false;
+
+ Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
+ Value *Provider = Res->Provider;
+
+ // We may need to truncate the provider.
+ if (DemandedTy != Provider->getType()) {
+ auto *Trunc =
+ CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
+ InsertedInsts.push_back(Trunc);
+ Provider = Trunc;
+ }
+
+ Instruction *Result = CallInst::Create(F, Provider, "rev", I);
+ InsertedInsts.push_back(Result);
+
+ if (!DemandedMask.isAllOnes()) {
+ auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
+ Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
+ InsertedInsts.push_back(Result);
+ }
+
+ // We may need to zeroextend back to the result type.
+ if (ITy != Result->getType()) {
+ auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
+ InsertedInsts.push_back(ExtInst);
+ }
+
+ return true;
+}
+
+// CodeGen has special handling for some string functions that may replace
+// them with target-specific intrinsics. Since that'd skip our interceptors
+// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
+// we mark affected calls as NoBuiltin, which will disable optimization
+// in CodeGen.
+void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
+ CallInst *CI, const TargetLibraryInfo *TLI) {
+ Function *F = CI->getCalledFunction();
+ LibFunc Func;
+ if (F && !F->hasLocalLinkage() && F->hasName() &&
+ TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
+ !F->doesNotAccessMemory())
+ CI->addFnAttr(Attribute::NoBuiltin);
+}
+
+bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
+ // We can't have a PHI with a metadata type.
+ if (I->getOperand(OpIdx)->getType()->isMetadataTy())
+ return false;
+
+ // Early exit.
+ if (!isa<Constant>(I->getOperand(OpIdx)))
+ return true;
+
+ switch (I->getOpcode()) {
+ default:
+ return true;
+ case Instruction::Call:
+ case Instruction::Invoke: {
+ const auto &CB = cast<CallBase>(*I);
+
+ // Can't handle inline asm. Skip it.
+ if (CB.isInlineAsm())
+ return false;
+
+ // Constant bundle operands may need to retain their constant-ness for
+ // correctness.
+ if (CB.isBundleOperand(OpIdx))
+ return false;
+
+ if (OpIdx < CB.arg_size()) {
+ // Some variadic intrinsics require constants in the variadic arguments,
+ // which currently aren't markable as immarg.
+ if (isa<IntrinsicInst>(CB) &&
+ OpIdx >= CB.getFunctionType()->getNumParams()) {
+ // This is known to be OK for stackmap.
+ return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
+ }
+
+ // gcroot is a special case, since it requires a constant argument which
+ // isn't also required to be a simple ConstantInt.
+ if (CB.getIntrinsicID() == Intrinsic::gcroot)
+ return false;
+
+ // Some intrinsic operands are required to be immediates.
+ return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
+ }
+
+ // It is never allowed to replace the call argument to an intrinsic, but it
+ // may be possible for a call.
+ return !isa<IntrinsicInst>(CB);
+ }
+ case Instruction::ShuffleVector:
+ // Shufflevector masks are constant.
+ return OpIdx != 2;
+ case Instruction::Switch:
+ case Instruction::ExtractValue:
+ // All operands apart from the first are constant.
+ return OpIdx == 0;
+ case Instruction::InsertValue:
+ // All operands apart from the first and the second are constant.
+ return OpIdx < 2;
+ case Instruction::Alloca:
+ // Static allocas (constant size in the entry block) are handled by
+ // prologue/epilogue insertion so they're free anyway. We definitely don't
+ // want to make them non-constant.
+ return !cast<AllocaInst>(I)->isStaticAlloca();
+ case Instruction::GetElementPtr:
+ if (OpIdx == 0)
+ return true;
+ gep_type_iterator It = gep_type_begin(I);
+ for (auto E = std::next(It, OpIdx); It != E; ++It)
+ if (It.isStruct())
+ return false;
+ return true;
+ }
+}
+
+Value *llvm::invertCondition(Value *Condition) {
+ // First: Check if it's a constant
+ if (Constant *C = dyn_cast<Constant>(Condition))
+ return ConstantExpr::getNot(C);
+
+ // Second: If the condition is already inverted, return the original value
+ Value *NotCondition;
+ if (match(Condition, m_Not(m_Value(NotCondition))))
+ return NotCondition;
+
+ BasicBlock *Parent = nullptr;
+ Instruction *Inst = dyn_cast<Instruction>(Condition);
+ if (Inst)
+ Parent = Inst->getParent();
+ else if (Argument *Arg = dyn_cast<Argument>(Condition))
+ Parent = &Arg->getParent()->getEntryBlock();
+ assert(Parent && "Unsupported condition to invert");
+
+ // Third: Check all the users for an invert
+ for (User *U : Condition->users())
+ if (Instruction *I = dyn_cast<Instruction>(U))
+ if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
+ return I;
+
+ // Last option: Create a new instruction
+ auto *Inverted =
+ BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
+ if (Inst && !isa<PHINode>(Inst))
+ Inverted->insertAfter(Inst);
+ else
+ Inverted->insertBefore(&*Parent->getFirstInsertionPt());
+ return Inverted;
+}
+
+bool llvm::inferAttributesFromOthers(Function &F) {
+ // Note: We explicitly check for attributes rather than using cover functions
+ // because some of the cover functions include the logic being implemented.
+
+ bool Changed = false;
+ // readnone + not convergent implies nosync
+ if (!F.hasFnAttribute(Attribute::NoSync) &&
+ F.doesNotAccessMemory() && !F.isConvergent()) {
+ F.setNoSync();
+ Changed = true;
+ }
+
+ // readonly implies nofree
+ if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
+ F.setDoesNotFreeMemory();
+ Changed = true;
+ }
+
+ // willreturn implies mustprogress
+ if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
+ F.setMustProgress();
+ Changed = true;
+ }
+
+ // TODO: There are a bunch of cases of restrictive memory effects we
+ // can infer by inspecting arguments of argmemonly-ish functions.
+
+ return Changed;
+}