diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp | 4142 |
1 files changed, 4142 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp new file mode 100644 index 000000000000..459e3d980592 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/Local.cpp @@ -0,0 +1,4142 @@ +//===- Local.cpp - Functions to perform local transformations -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This family of functions perform various local transformations to the +// program. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseMapInfo.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumeBundleQueries.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/EHPersonalities.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicsWebAssembly.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ProfDataUtils.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/ValueMapper.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <map> +#include <optional> +#include <utility> + +using namespace llvm; +using namespace llvm::PatternMatch; + +extern cl::opt<bool> UseNewDbgInfoFormat; + +#define DEBUG_TYPE "local" + +STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); +STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); + +static cl::opt<bool> PHICSEDebugHash( + "phicse-debug-hash", +#ifdef EXPENSIVE_CHECKS + cl::init(true), +#else + cl::init(false), +#endif + cl::Hidden, + cl::desc("Perform extra assertion checking to verify that PHINodes's hash " + "function is well-behaved w.r.t. its isEqual predicate")); + +static cl::opt<unsigned> PHICSENumPHISmallSize( + "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, + cl::desc( + "When the basic block contains not more than this number of PHI nodes, " + "perform a (faster!) exhaustive search instead of set-driven one.")); + +// Max recursion depth for collectBitParts used when detecting bswap and +// bitreverse idioms. +static const unsigned BitPartRecursionMaxDepth = 48; + +//===----------------------------------------------------------------------===// +// Local constant propagation. +// + +/// ConstantFoldTerminator - If a terminator instruction is predicated on a +/// constant value, convert it into an unconditional branch to the constant +/// destination. This is a nontrivial operation because the successors of this +/// basic block must have their PHI nodes updated. +/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch +/// conditions and indirectbr addresses this might make dead if +/// DeleteDeadConditions is true. +bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, + const TargetLibraryInfo *TLI, + DomTreeUpdater *DTU) { + Instruction *T = BB->getTerminator(); + IRBuilder<> Builder(T); + + // Branch - See if we are conditional jumping on constant + if (auto *BI = dyn_cast<BranchInst>(T)) { + if (BI->isUnconditional()) return false; // Can't optimize uncond branch + + BasicBlock *Dest1 = BI->getSuccessor(0); + BasicBlock *Dest2 = BI->getSuccessor(1); + + if (Dest2 == Dest1) { // Conditional branch to same location? + // This branch matches something like this: + // br bool %cond, label %Dest, label %Dest + // and changes it into: br label %Dest + + // Let the basic block know that we are letting go of one copy of it. + assert(BI->getParent() && "Terminator not inserted in block!"); + Dest1->removePredecessor(BI->getParent()); + + // Replace the conditional branch with an unconditional one. + BranchInst *NewBI = Builder.CreateBr(Dest1); + + // Transfer the metadata to the new branch instruction. + NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, + LLVMContext::MD_annotation}); + + Value *Cond = BI->getCondition(); + BI->eraseFromParent(); + if (DeleteDeadConditions) + RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); + return true; + } + + if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { + // Are we branching on constant? + // YES. Change to unconditional branch... + BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; + BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; + + // Let the basic block know that we are letting go of it. Based on this, + // it will adjust it's PHI nodes. + OldDest->removePredecessor(BB); + + // Replace the conditional branch with an unconditional one. + BranchInst *NewBI = Builder.CreateBr(Destination); + + // Transfer the metadata to the new branch instruction. + NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, + LLVMContext::MD_annotation}); + + BI->eraseFromParent(); + if (DTU) + DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); + return true; + } + + return false; + } + + if (auto *SI = dyn_cast<SwitchInst>(T)) { + // If we are switching on a constant, we can convert the switch to an + // unconditional branch. + auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); + BasicBlock *DefaultDest = SI->getDefaultDest(); + BasicBlock *TheOnlyDest = DefaultDest; + + // If the default is unreachable, ignore it when searching for TheOnlyDest. + if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && + SI->getNumCases() > 0) { + TheOnlyDest = SI->case_begin()->getCaseSuccessor(); + } + + bool Changed = false; + + // Figure out which case it goes to. + for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { + // Found case matching a constant operand? + if (It->getCaseValue() == CI) { + TheOnlyDest = It->getCaseSuccessor(); + break; + } + + // Check to see if this branch is going to the same place as the default + // dest. If so, eliminate it as an explicit compare. + if (It->getCaseSuccessor() == DefaultDest) { + MDNode *MD = getValidBranchWeightMDNode(*SI); + unsigned NCases = SI->getNumCases(); + // Fold the case metadata into the default if there will be any branches + // left, unless the metadata doesn't match the switch. + if (NCases > 1 && MD) { + // Collect branch weights into a vector. + SmallVector<uint32_t, 8> Weights; + extractBranchWeights(MD, Weights); + + // Merge weight of this case to the default weight. + unsigned Idx = It->getCaseIndex(); + // TODO: Add overflow check. + Weights[0] += Weights[Idx + 1]; + // Remove weight for this case. + std::swap(Weights[Idx + 1], Weights.back()); + Weights.pop_back(); + setBranchWeights(*SI, Weights); + } + // Remove this entry. + BasicBlock *ParentBB = SI->getParent(); + DefaultDest->removePredecessor(ParentBB); + It = SI->removeCase(It); + End = SI->case_end(); + + // Removing this case may have made the condition constant. In that + // case, update CI and restart iteration through the cases. + if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { + CI = NewCI; + It = SI->case_begin(); + } + + Changed = true; + continue; + } + + // Otherwise, check to see if the switch only branches to one destination. + // We do this by reseting "TheOnlyDest" to null when we find two non-equal + // destinations. + if (It->getCaseSuccessor() != TheOnlyDest) + TheOnlyDest = nullptr; + + // Increment this iterator as we haven't removed the case. + ++It; + } + + if (CI && !TheOnlyDest) { + // Branching on a constant, but not any of the cases, go to the default + // successor. + TheOnlyDest = SI->getDefaultDest(); + } + + // If we found a single destination that we can fold the switch into, do so + // now. + if (TheOnlyDest) { + // Insert the new branch. + Builder.CreateBr(TheOnlyDest); + BasicBlock *BB = SI->getParent(); + + SmallSet<BasicBlock *, 8> RemovedSuccessors; + + // Remove entries from PHI nodes which we no longer branch to... + BasicBlock *SuccToKeep = TheOnlyDest; + for (BasicBlock *Succ : successors(SI)) { + if (DTU && Succ != TheOnlyDest) + RemovedSuccessors.insert(Succ); + // Found case matching a constant operand? + if (Succ == SuccToKeep) { + SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest + } else { + Succ->removePredecessor(BB); + } + } + + // Delete the old switch. + Value *Cond = SI->getCondition(); + SI->eraseFromParent(); + if (DeleteDeadConditions) + RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); + if (DTU) { + std::vector<DominatorTree::UpdateType> Updates; + Updates.reserve(RemovedSuccessors.size()); + for (auto *RemovedSuccessor : RemovedSuccessors) + Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); + DTU->applyUpdates(Updates); + } + return true; + } + + if (SI->getNumCases() == 1) { + // Otherwise, we can fold this switch into a conditional branch + // instruction if it has only one non-default destination. + auto FirstCase = *SI->case_begin(); + Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), + FirstCase.getCaseValue(), "cond"); + + // Insert the new branch. + BranchInst *NewBr = Builder.CreateCondBr(Cond, + FirstCase.getCaseSuccessor(), + SI->getDefaultDest()); + SmallVector<uint32_t> Weights; + if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { + uint32_t DefWeight = Weights[0]; + uint32_t CaseWeight = Weights[1]; + // The TrueWeight should be the weight for the single case of SI. + NewBr->setMetadata(LLVMContext::MD_prof, + MDBuilder(BB->getContext()) + .createBranchWeights(CaseWeight, DefWeight)); + } + + // Update make.implicit metadata to the newly-created conditional branch. + MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); + if (MakeImplicitMD) + NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); + + // Delete the old switch. + SI->eraseFromParent(); + return true; + } + return Changed; + } + + if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { + // indirectbr blockaddress(@F, @BB) -> br label @BB + if (auto *BA = + dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { + BasicBlock *TheOnlyDest = BA->getBasicBlock(); + SmallSet<BasicBlock *, 8> RemovedSuccessors; + + // Insert the new branch. + Builder.CreateBr(TheOnlyDest); + + BasicBlock *SuccToKeep = TheOnlyDest; + for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { + BasicBlock *DestBB = IBI->getDestination(i); + if (DTU && DestBB != TheOnlyDest) + RemovedSuccessors.insert(DestBB); + if (IBI->getDestination(i) == SuccToKeep) { + SuccToKeep = nullptr; + } else { + DestBB->removePredecessor(BB); + } + } + Value *Address = IBI->getAddress(); + IBI->eraseFromParent(); + if (DeleteDeadConditions) + // Delete pointer cast instructions. + RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); + + // Also zap the blockaddress constant if there are no users remaining, + // otherwise the destination is still marked as having its address taken. + if (BA->use_empty()) + BA->destroyConstant(); + + // If we didn't find our destination in the IBI successor list, then we + // have undefined behavior. Replace the unconditional branch with an + // 'unreachable' instruction. + if (SuccToKeep) { + BB->getTerminator()->eraseFromParent(); + new UnreachableInst(BB->getContext(), BB); + } + + if (DTU) { + std::vector<DominatorTree::UpdateType> Updates; + Updates.reserve(RemovedSuccessors.size()); + for (auto *RemovedSuccessor : RemovedSuccessors) + Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); + DTU->applyUpdates(Updates); + } + return true; + } + } + + return false; +} + +//===----------------------------------------------------------------------===// +// Local dead code elimination. +// + +/// isInstructionTriviallyDead - Return true if the result produced by the +/// instruction is not used, and the instruction has no side effects. +/// +bool llvm::isInstructionTriviallyDead(Instruction *I, + const TargetLibraryInfo *TLI) { + if (!I->use_empty()) + return false; + return wouldInstructionBeTriviallyDead(I, TLI); +} + +bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( + Instruction *I, const TargetLibraryInfo *TLI) { + // Instructions that are "markers" and have implied meaning on code around + // them (without explicit uses), are not dead on unused paths. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) + if (II->getIntrinsicID() == Intrinsic::stacksave || + II->getIntrinsicID() == Intrinsic::launder_invariant_group || + II->isLifetimeStartOrEnd()) + return false; + return wouldInstructionBeTriviallyDead(I, TLI); +} + +bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, + const TargetLibraryInfo *TLI) { + if (I->isTerminator()) + return false; + + // We don't want the landingpad-like instructions removed by anything this + // general. + if (I->isEHPad()) + return false; + + // We don't want debug info removed by anything this general. + if (isa<DbgVariableIntrinsic>(I)) + return false; + + if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { + if (DLI->getLabel()) + return false; + return true; + } + + if (auto *CB = dyn_cast<CallBase>(I)) + if (isRemovableAlloc(CB, TLI)) + return true; + + if (!I->willReturn()) { + auto *II = dyn_cast<IntrinsicInst>(I); + if (!II) + return false; + + switch (II->getIntrinsicID()) { + case Intrinsic::experimental_guard: { + // Guards on true are operationally no-ops. In the future we can + // consider more sophisticated tradeoffs for guards considering potential + // for check widening, but for now we keep things simple. + auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); + return Cond && Cond->isOne(); + } + // TODO: These intrinsics are not safe to remove, because this may remove + // a well-defined trap. + case Intrinsic::wasm_trunc_signed: + case Intrinsic::wasm_trunc_unsigned: + case Intrinsic::ptrauth_auth: + case Intrinsic::ptrauth_resign: + return true; + default: + return false; + } + } + + if (!I->mayHaveSideEffects()) + return true; + + // Special case intrinsics that "may have side effects" but can be deleted + // when dead. + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + // Safe to delete llvm.stacksave and launder.invariant.group if dead. + if (II->getIntrinsicID() == Intrinsic::stacksave || + II->getIntrinsicID() == Intrinsic::launder_invariant_group) + return true; + + if (II->isLifetimeStartOrEnd()) { + auto *Arg = II->getArgOperand(1); + // Lifetime intrinsics are dead when their right-hand is undef. + if (isa<UndefValue>(Arg)) + return true; + // If the right-hand is an alloc, global, or argument and the only uses + // are lifetime intrinsics then the intrinsics are dead. + if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) + return llvm::all_of(Arg->uses(), [](Use &Use) { + if (IntrinsicInst *IntrinsicUse = + dyn_cast<IntrinsicInst>(Use.getUser())) + return IntrinsicUse->isLifetimeStartOrEnd(); + return false; + }); + return false; + } + + // Assumptions are dead if their condition is trivially true. + if (II->getIntrinsicID() == Intrinsic::assume && + isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { + if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) + return !Cond->isZero(); + + return false; + } + + if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { + std::optional<fp::ExceptionBehavior> ExBehavior = + FPI->getExceptionBehavior(); + return *ExBehavior != fp::ebStrict; + } + } + + if (auto *Call = dyn_cast<CallBase>(I)) { + if (Value *FreedOp = getFreedOperand(Call, TLI)) + if (Constant *C = dyn_cast<Constant>(FreedOp)) + return C->isNullValue() || isa<UndefValue>(C); + if (isMathLibCallNoop(Call, TLI)) + return true; + } + + // Non-volatile atomic loads from constants can be removed. + if (auto *LI = dyn_cast<LoadInst>(I)) + if (auto *GV = dyn_cast<GlobalVariable>( + LI->getPointerOperand()->stripPointerCasts())) + if (!LI->isVolatile() && GV->isConstant()) + return true; + + return false; +} + +/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a +/// trivially dead instruction, delete it. If that makes any of its operands +/// trivially dead, delete them too, recursively. Return true if any +/// instructions were deleted. +bool llvm::RecursivelyDeleteTriviallyDeadInstructions( + Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, + std::function<void(Value *)> AboutToDeleteCallback) { + Instruction *I = dyn_cast<Instruction>(V); + if (!I || !isInstructionTriviallyDead(I, TLI)) + return false; + + SmallVector<WeakTrackingVH, 16> DeadInsts; + DeadInsts.push_back(I); + RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, + AboutToDeleteCallback); + + return true; +} + +bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( + SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, + MemorySSAUpdater *MSSAU, + std::function<void(Value *)> AboutToDeleteCallback) { + unsigned S = 0, E = DeadInsts.size(), Alive = 0; + for (; S != E; ++S) { + auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); + if (!I || !isInstructionTriviallyDead(I)) { + DeadInsts[S] = nullptr; + ++Alive; + } + } + if (Alive == E) + return false; + RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, + AboutToDeleteCallback); + return true; +} + +void llvm::RecursivelyDeleteTriviallyDeadInstructions( + SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, + MemorySSAUpdater *MSSAU, + std::function<void(Value *)> AboutToDeleteCallback) { + // Process the dead instruction list until empty. + while (!DeadInsts.empty()) { + Value *V = DeadInsts.pop_back_val(); + Instruction *I = cast_or_null<Instruction>(V); + if (!I) + continue; + assert(isInstructionTriviallyDead(I, TLI) && + "Live instruction found in dead worklist!"); + assert(I->use_empty() && "Instructions with uses are not dead."); + + // Don't lose the debug info while deleting the instructions. + salvageDebugInfo(*I); + + if (AboutToDeleteCallback) + AboutToDeleteCallback(I); + + // Null out all of the instruction's operands to see if any operand becomes + // dead as we go. + for (Use &OpU : I->operands()) { + Value *OpV = OpU.get(); + OpU.set(nullptr); + + if (!OpV->use_empty()) + continue; + + // If the operand is an instruction that became dead as we nulled out the + // operand, and if it is 'trivially' dead, delete it in a future loop + // iteration. + if (Instruction *OpI = dyn_cast<Instruction>(OpV)) + if (isInstructionTriviallyDead(OpI, TLI)) + DeadInsts.push_back(OpI); + } + if (MSSAU) + MSSAU->removeMemoryAccess(I); + + I->eraseFromParent(); + } +} + +bool llvm::replaceDbgUsesWithUndef(Instruction *I) { + SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; + SmallVector<DPValue *, 1> DPUsers; + findDbgUsers(DbgUsers, I, &DPUsers); + for (auto *DII : DbgUsers) + DII->setKillLocation(); + for (auto *DPV : DPUsers) + DPV->setKillLocation(); + return !DbgUsers.empty() || !DPUsers.empty(); +} + +/// areAllUsesEqual - Check whether the uses of a value are all the same. +/// This is similar to Instruction::hasOneUse() except this will also return +/// true when there are no uses or multiple uses that all refer to the same +/// value. +static bool areAllUsesEqual(Instruction *I) { + Value::user_iterator UI = I->user_begin(); + Value::user_iterator UE = I->user_end(); + if (UI == UE) + return true; + + User *TheUse = *UI; + for (++UI; UI != UE; ++UI) { + if (*UI != TheUse) + return false; + } + return true; +} + +/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively +/// dead PHI node, due to being a def-use chain of single-use nodes that +/// either forms a cycle or is terminated by a trivially dead instruction, +/// delete it. If that makes any of its operands trivially dead, delete them +/// too, recursively. Return true if a change was made. +bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, + const TargetLibraryInfo *TLI, + llvm::MemorySSAUpdater *MSSAU) { + SmallPtrSet<Instruction*, 4> Visited; + for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); + I = cast<Instruction>(*I->user_begin())) { + if (I->use_empty()) + return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); + + // If we find an instruction more than once, we're on a cycle that + // won't prove fruitful. + if (!Visited.insert(I).second) { + // Break the cycle and delete the instruction and its operands. + I->replaceAllUsesWith(PoisonValue::get(I->getType())); + (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); + return true; + } + } + return false; +} + +static bool +simplifyAndDCEInstruction(Instruction *I, + SmallSetVector<Instruction *, 16> &WorkList, + const DataLayout &DL, + const TargetLibraryInfo *TLI) { + if (isInstructionTriviallyDead(I, TLI)) { + salvageDebugInfo(*I); + + // Null out all of the instruction's operands to see if any operand becomes + // dead as we go. + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + Value *OpV = I->getOperand(i); + I->setOperand(i, nullptr); + + if (!OpV->use_empty() || I == OpV) + continue; + + // If the operand is an instruction that became dead as we nulled out the + // operand, and if it is 'trivially' dead, delete it in a future loop + // iteration. + if (Instruction *OpI = dyn_cast<Instruction>(OpV)) + if (isInstructionTriviallyDead(OpI, TLI)) + WorkList.insert(OpI); + } + + I->eraseFromParent(); + + return true; + } + + if (Value *SimpleV = simplifyInstruction(I, DL)) { + // Add the users to the worklist. CAREFUL: an instruction can use itself, + // in the case of a phi node. + for (User *U : I->users()) { + if (U != I) { + WorkList.insert(cast<Instruction>(U)); + } + } + + // Replace the instruction with its simplified value. + bool Changed = false; + if (!I->use_empty()) { + I->replaceAllUsesWith(SimpleV); + Changed = true; + } + if (isInstructionTriviallyDead(I, TLI)) { + I->eraseFromParent(); + Changed = true; + } + return Changed; + } + return false; +} + +/// SimplifyInstructionsInBlock - Scan the specified basic block and try to +/// simplify any instructions in it and recursively delete dead instructions. +/// +/// This returns true if it changed the code, note that it can delete +/// instructions in other blocks as well in this block. +bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, + const TargetLibraryInfo *TLI) { + bool MadeChange = false; + const DataLayout &DL = BB->getModule()->getDataLayout(); + +#ifndef NDEBUG + // In debug builds, ensure that the terminator of the block is never replaced + // or deleted by these simplifications. The idea of simplification is that it + // cannot introduce new instructions, and there is no way to replace the + // terminator of a block without introducing a new instruction. + AssertingVH<Instruction> TerminatorVH(&BB->back()); +#endif + + SmallSetVector<Instruction *, 16> WorkList; + // Iterate over the original function, only adding insts to the worklist + // if they actually need to be revisited. This avoids having to pre-init + // the worklist with the entire function's worth of instructions. + for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); + BI != E;) { + assert(!BI->isTerminator()); + Instruction *I = &*BI; + ++BI; + + // We're visiting this instruction now, so make sure it's not in the + // worklist from an earlier visit. + if (!WorkList.count(I)) + MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); + } + + while (!WorkList.empty()) { + Instruction *I = WorkList.pop_back_val(); + MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); + } + return MadeChange; +} + +//===----------------------------------------------------------------------===// +// Control Flow Graph Restructuring. +// + +void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, + DomTreeUpdater *DTU) { + + // If BB has single-entry PHI nodes, fold them. + while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { + Value *NewVal = PN->getIncomingValue(0); + // Replace self referencing PHI with poison, it must be dead. + if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); + PN->replaceAllUsesWith(NewVal); + PN->eraseFromParent(); + } + + BasicBlock *PredBB = DestBB->getSinglePredecessor(); + assert(PredBB && "Block doesn't have a single predecessor!"); + + bool ReplaceEntryBB = PredBB->isEntryBlock(); + + // DTU updates: Collect all the edges that enter + // PredBB. These dominator edges will be redirected to DestBB. + SmallVector<DominatorTree::UpdateType, 32> Updates; + + if (DTU) { + // To avoid processing the same predecessor more than once. + SmallPtrSet<BasicBlock *, 2> SeenPreds; + Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); + for (BasicBlock *PredOfPredBB : predecessors(PredBB)) + // This predecessor of PredBB may already have DestBB as a successor. + if (PredOfPredBB != PredBB) + if (SeenPreds.insert(PredOfPredBB).second) + Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); + SeenPreds.clear(); + for (BasicBlock *PredOfPredBB : predecessors(PredBB)) + if (SeenPreds.insert(PredOfPredBB).second) + Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); + Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); + } + + // Zap anything that took the address of DestBB. Not doing this will give the + // address an invalid value. + if (DestBB->hasAddressTaken()) { + BlockAddress *BA = BlockAddress::get(DestBB); + Constant *Replacement = + ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); + BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, + BA->getType())); + BA->destroyConstant(); + } + + // Anything that branched to PredBB now branches to DestBB. + PredBB->replaceAllUsesWith(DestBB); + + // Splice all the instructions from PredBB to DestBB. + PredBB->getTerminator()->eraseFromParent(); + DestBB->splice(DestBB->begin(), PredBB); + new UnreachableInst(PredBB->getContext(), PredBB); + + // If the PredBB is the entry block of the function, move DestBB up to + // become the entry block after we erase PredBB. + if (ReplaceEntryBB) + DestBB->moveAfter(PredBB); + + if (DTU) { + assert(PredBB->size() == 1 && + isa<UnreachableInst>(PredBB->getTerminator()) && + "The successor list of PredBB isn't empty before " + "applying corresponding DTU updates."); + DTU->applyUpdatesPermissive(Updates); + DTU->deleteBB(PredBB); + // Recalculation of DomTree is needed when updating a forward DomTree and + // the Entry BB is replaced. + if (ReplaceEntryBB && DTU->hasDomTree()) { + // The entry block was removed and there is no external interface for + // the dominator tree to be notified of this change. In this corner-case + // we recalculate the entire tree. + DTU->recalculate(*(DestBB->getParent())); + } + } + + else { + PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. + } +} + +/// Return true if we can choose one of these values to use in place of the +/// other. Note that we will always choose the non-undef value to keep. +static bool CanMergeValues(Value *First, Value *Second) { + return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); +} + +/// Return true if we can fold BB, an almost-empty BB ending in an unconditional +/// branch to Succ, into Succ. +/// +/// Assumption: Succ is the single successor for BB. +static bool +CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, + const SmallPtrSetImpl<BasicBlock *> &BBPreds) { + assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); + + LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " + << Succ->getName() << "\n"); + // Shortcut, if there is only a single predecessor it must be BB and merging + // is always safe + if (Succ->getSinglePredecessor()) + return true; + + // Look at all the phi nodes in Succ, to see if they present a conflict when + // merging these blocks + for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + + // If the incoming value from BB is again a PHINode in + // BB which has the same incoming value for *PI as PN does, we can + // merge the phi nodes and then the blocks can still be merged + PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); + if (BBPN && BBPN->getParent() == BB) { + for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { + BasicBlock *IBB = PN->getIncomingBlock(PI); + if (BBPreds.count(IBB) && + !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), + PN->getIncomingValue(PI))) { + LLVM_DEBUG(dbgs() + << "Can't fold, phi node " << PN->getName() << " in " + << Succ->getName() << " is conflicting with " + << BBPN->getName() << " with regard to common predecessor " + << IBB->getName() << "\n"); + return false; + } + } + } else { + Value* Val = PN->getIncomingValueForBlock(BB); + for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { + // See if the incoming value for the common predecessor is equal to the + // one for BB, in which case this phi node will not prevent the merging + // of the block. + BasicBlock *IBB = PN->getIncomingBlock(PI); + if (BBPreds.count(IBB) && + !CanMergeValues(Val, PN->getIncomingValue(PI))) { + LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() + << " in " << Succ->getName() + << " is conflicting with regard to common " + << "predecessor " << IBB->getName() << "\n"); + return false; + } + } + } + } + + return true; +} + +using PredBlockVector = SmallVector<BasicBlock *, 16>; +using IncomingValueMap = DenseMap<BasicBlock *, Value *>; + +/// Determines the value to use as the phi node input for a block. +/// +/// Select between \p OldVal any value that we know flows from \p BB +/// to a particular phi on the basis of which one (if either) is not +/// undef. Update IncomingValues based on the selected value. +/// +/// \param OldVal The value we are considering selecting. +/// \param BB The block that the value flows in from. +/// \param IncomingValues A map from block-to-value for other phi inputs +/// that we have examined. +/// +/// \returns the selected value. +static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, + IncomingValueMap &IncomingValues) { + if (!isa<UndefValue>(OldVal)) { + assert((!IncomingValues.count(BB) || + IncomingValues.find(BB)->second == OldVal) && + "Expected OldVal to match incoming value from BB!"); + + IncomingValues.insert(std::make_pair(BB, OldVal)); + return OldVal; + } + + IncomingValueMap::const_iterator It = IncomingValues.find(BB); + if (It != IncomingValues.end()) return It->second; + + return OldVal; +} + +/// Create a map from block to value for the operands of a +/// given phi. +/// +/// Create a map from block to value for each non-undef value flowing +/// into \p PN. +/// +/// \param PN The phi we are collecting the map for. +/// \param IncomingValues [out] The map from block to value for this phi. +static void gatherIncomingValuesToPhi(PHINode *PN, + IncomingValueMap &IncomingValues) { + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *BB = PN->getIncomingBlock(i); + Value *V = PN->getIncomingValue(i); + + if (!isa<UndefValue>(V)) + IncomingValues.insert(std::make_pair(BB, V)); + } +} + +/// Replace the incoming undef values to a phi with the values +/// from a block-to-value map. +/// +/// \param PN The phi we are replacing the undefs in. +/// \param IncomingValues A map from block to value. +static void replaceUndefValuesInPhi(PHINode *PN, + const IncomingValueMap &IncomingValues) { + SmallVector<unsigned> TrueUndefOps; + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *V = PN->getIncomingValue(i); + + if (!isa<UndefValue>(V)) continue; + + BasicBlock *BB = PN->getIncomingBlock(i); + IncomingValueMap::const_iterator It = IncomingValues.find(BB); + + // Keep track of undef/poison incoming values. Those must match, so we fix + // them up below if needed. + // Note: this is conservatively correct, but we could try harder and group + // the undef values per incoming basic block. + if (It == IncomingValues.end()) { + TrueUndefOps.push_back(i); + continue; + } + + // There is a defined value for this incoming block, so map this undef + // incoming value to the defined value. + PN->setIncomingValue(i, It->second); + } + + // If there are both undef and poison values incoming, then convert those + // values to undef. It is invalid to have different values for the same + // incoming block. + unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { + return isa<PoisonValue>(PN->getIncomingValue(i)); + }); + if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { + for (unsigned i : TrueUndefOps) + PN->setIncomingValue(i, UndefValue::get(PN->getType())); + } +} + +// Only when they shares a single common predecessor, return true. +// Only handles cases when BB can't be merged while its predecessors can be +// redirected. +static bool +CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, + const SmallPtrSetImpl<BasicBlock *> &BBPreds, + const SmallPtrSetImpl<BasicBlock *> &SuccPreds, + BasicBlock *&CommonPred) { + + // There must be phis in BB, otherwise BB will be merged into Succ directly + if (BB->phis().empty() || Succ->phis().empty()) + return false; + + // BB must have predecessors not shared that can be redirected to Succ + if (!BB->hasNPredecessorsOrMore(2)) + return false; + + // Get single common predecessors of both BB and Succ + for (BasicBlock *SuccPred : SuccPreds) { + if (BBPreds.count(SuccPred)) { + if (CommonPred) + return false; + CommonPred = SuccPred; + } + } + + return true; +} + +/// Replace a value flowing from a block to a phi with +/// potentially multiple instances of that value flowing from the +/// block's predecessors to the phi. +/// +/// \param BB The block with the value flowing into the phi. +/// \param BBPreds The predecessors of BB. +/// \param PN The phi that we are updating. +/// \param CommonPred The common predecessor of BB and PN's BasicBlock +static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, + const PredBlockVector &BBPreds, + PHINode *PN, + BasicBlock *CommonPred) { + Value *OldVal = PN->removeIncomingValue(BB, false); + assert(OldVal && "No entry in PHI for Pred BB!"); + + IncomingValueMap IncomingValues; + + // We are merging two blocks - BB, and the block containing PN - and + // as a result we need to redirect edges from the predecessors of BB + // to go to the block containing PN, and update PN + // accordingly. Since we allow merging blocks in the case where the + // predecessor and successor blocks both share some predecessors, + // and where some of those common predecessors might have undef + // values flowing into PN, we want to rewrite those values to be + // consistent with the non-undef values. + + gatherIncomingValuesToPhi(PN, IncomingValues); + + // If this incoming value is one of the PHI nodes in BB, the new entries + // in the PHI node are the entries from the old PHI. + if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { + PHINode *OldValPN = cast<PHINode>(OldVal); + for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { + // Note that, since we are merging phi nodes and BB and Succ might + // have common predecessors, we could end up with a phi node with + // identical incoming branches. This will be cleaned up later (and + // will trigger asserts if we try to clean it up now, without also + // simplifying the corresponding conditional branch). + BasicBlock *PredBB = OldValPN->getIncomingBlock(i); + + if (PredBB == CommonPred) + continue; + + Value *PredVal = OldValPN->getIncomingValue(i); + Value *Selected = + selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); + + // And add a new incoming value for this predecessor for the + // newly retargeted branch. + PN->addIncoming(Selected, PredBB); + } + if (CommonPred) + PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); + + } else { + for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { + // Update existing incoming values in PN for this + // predecessor of BB. + BasicBlock *PredBB = BBPreds[i]; + + if (PredBB == CommonPred) + continue; + + Value *Selected = + selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); + + // And add a new incoming value for this predecessor for the + // newly retargeted branch. + PN->addIncoming(Selected, PredBB); + } + if (CommonPred) + PN->addIncoming(OldVal, BB); + } + + replaceUndefValuesInPhi(PN, IncomingValues); +} + +bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, + DomTreeUpdater *DTU) { + assert(BB != &BB->getParent()->getEntryBlock() && + "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); + + // We can't simplify infinite loops. + BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); + if (BB == Succ) + return false; + + SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); + SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); + + // The single common predecessor of BB and Succ when BB cannot be killed + BasicBlock *CommonPred = nullptr; + + bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); + + // Even if we can not fold bB into Succ, we may be able to redirect the + // predecessors of BB to Succ. + bool BBPhisMergeable = + BBKillable || + CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred); + + if (!BBKillable && !BBPhisMergeable) + return false; + + // Check to see if merging these blocks/phis would cause conflicts for any of + // the phi nodes in BB or Succ. If not, we can safely merge. + + // Check for cases where Succ has multiple predecessors and a PHI node in BB + // has uses which will not disappear when the PHI nodes are merged. It is + // possible to handle such cases, but difficult: it requires checking whether + // BB dominates Succ, which is non-trivial to calculate in the case where + // Succ has multiple predecessors. Also, it requires checking whether + // constructing the necessary self-referential PHI node doesn't introduce any + // conflicts; this isn't too difficult, but the previous code for doing this + // was incorrect. + // + // Note that if this check finds a live use, BB dominates Succ, so BB is + // something like a loop pre-header (or rarely, a part of an irreducible CFG); + // folding the branch isn't profitable in that case anyway. + if (!Succ->getSinglePredecessor()) { + BasicBlock::iterator BBI = BB->begin(); + while (isa<PHINode>(*BBI)) { + for (Use &U : BBI->uses()) { + if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { + if (PN->getIncomingBlock(U) != BB) + return false; + } else { + return false; + } + } + ++BBI; + } + } + + if (BBPhisMergeable && CommonPred) + LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() + << " and " << Succ->getName() << " : " + << CommonPred->getName() << "\n"); + + // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop + // metadata. + // + // FIXME: This is a stop-gap solution to preserve inner-loop metadata given + // current status (that loop metadata is implemented as metadata attached to + // the branch instruction in the loop latch block). To quote from review + // comments, "the current representation of loop metadata (using a loop latch + // terminator attachment) is known to be fundamentally broken. Loop latches + // are not uniquely associated with loops (both in that a latch can be part of + // multiple loops and a loop may have multiple latches). Loop headers are. The + // solution to this problem is also known: Add support for basic block + // metadata, and attach loop metadata to the loop header." + // + // Why bail out: + // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is + // the latch for inner-loop (see reason below), so bail out to prerserve + // inner-loop metadata rather than eliminating 'BB' and attaching its metadata + // to this inner-loop. + // - The reason we believe 'BB' and 'BB->Pred' have different inner-most + // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, + // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of + // one self-looping basic block, which is contradictory with the assumption. + // + // To illustrate how inner-loop metadata is dropped: + // + // CFG Before + // + // BB is while.cond.exit, attached with loop metdata md2. + // BB->Pred is for.body, attached with loop metadata md1. + // + // entry + // | + // v + // ---> while.cond -------------> while.end + // | | + // | v + // | while.body + // | | + // | v + // | for.body <---- (md1) + // | | |______| + // | v + // | while.cond.exit (md2) + // | | + // |_______| + // + // CFG After + // + // while.cond1 is the merge of while.cond.exit and while.cond above. + // for.body is attached with md2, and md1 is dropped. + // If LoopSimplify runs later (as a part of loop pass), it could create + // dedicated exits for inner-loop (essentially adding `while.cond.exit` + // back), but won't it won't see 'md1' nor restore it for the inner-loop. + // + // entry + // | + // v + // ---> while.cond1 -------------> while.end + // | | + // | v + // | while.body + // | | + // | v + // | for.body <---- (md2) + // |_______| |______| + if (Instruction *TI = BB->getTerminator()) + if (TI->hasMetadata(LLVMContext::MD_loop)) + for (BasicBlock *Pred : predecessors(BB)) + if (Instruction *PredTI = Pred->getTerminator()) + if (PredTI->hasMetadata(LLVMContext::MD_loop)) + return false; + + if (BBKillable) + LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); + else if (BBPhisMergeable) + LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); + + SmallVector<DominatorTree::UpdateType, 32> Updates; + + if (DTU) { + // To avoid processing the same predecessor more than once. + SmallPtrSet<BasicBlock *, 8> SeenPreds; + // All predecessors of BB (except the common predecessor) will be moved to + // Succ. + Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); + + for (auto *PredOfBB : predecessors(BB)) { + // Do not modify those common predecessors of BB and Succ + if (!SuccPreds.contains(PredOfBB)) + if (SeenPreds.insert(PredOfBB).second) + Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); + } + + SeenPreds.clear(); + + for (auto *PredOfBB : predecessors(BB)) + // When BB cannot be killed, do not remove the edge between BB and + // CommonPred. + if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) + Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); + + if (BBKillable) + Updates.push_back({DominatorTree::Delete, BB, Succ}); + } + + if (isa<PHINode>(Succ->begin())) { + // If there is more than one pred of succ, and there are PHI nodes in + // the successor, then we need to add incoming edges for the PHI nodes + // + const PredBlockVector BBPreds(predecessors(BB)); + + // Loop over all of the PHI nodes in the successor of BB. + for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); + } + } + + if (Succ->getSinglePredecessor()) { + // BB is the only predecessor of Succ, so Succ will end up with exactly + // the same predecessors BB had. + // Copy over any phi, debug or lifetime instruction. + BB->getTerminator()->eraseFromParent(); + Succ->splice(Succ->getFirstNonPHIIt(), BB); + } else { + while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { + // We explicitly check for such uses for merging phis. + assert(PN->use_empty() && "There shouldn't be any uses here!"); + PN->eraseFromParent(); + } + } + + // If the unconditional branch we replaced contains llvm.loop metadata, we + // add the metadata to the branch instructions in the predecessors. + if (Instruction *TI = BB->getTerminator()) + if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) + for (BasicBlock *Pred : predecessors(BB)) + Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); + + if (BBKillable) { + // Everything that jumped to BB now goes to Succ. + BB->replaceAllUsesWith(Succ); + + if (!Succ->hasName()) + Succ->takeName(BB); + + // Clear the successor list of BB to match updates applying to DTU later. + if (BB->getTerminator()) + BB->back().eraseFromParent(); + + new UnreachableInst(BB->getContext(), BB); + assert(succ_empty(BB) && "The successor list of BB isn't empty before " + "applying corresponding DTU updates."); + } else if (BBPhisMergeable) { + // Everything except CommonPred that jumped to BB now goes to Succ. + BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { + if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) + return UseInst->getParent() != CommonPred && + BBPreds.contains(UseInst->getParent()); + return false; + }); + } + + if (DTU) + DTU->applyUpdates(Updates); + + if (BBKillable) + DeleteDeadBlock(BB, DTU); + + return true; +} + +static bool +EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, + SmallPtrSetImpl<PHINode *> &ToRemove) { + // This implementation doesn't currently consider undef operands + // specially. Theoretically, two phis which are identical except for + // one having an undef where the other doesn't could be collapsed. + + bool Changed = false; + + // Examine each PHI. + // Note that increment of I must *NOT* be in the iteration_expression, since + // we don't want to immediately advance when we restart from the beginning. + for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { + ++I; + // Is there an identical PHI node in this basic block? + // Note that we only look in the upper square's triangle, + // we already checked that the lower triangle PHI's aren't identical. + for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { + if (ToRemove.contains(DuplicatePN)) + continue; + if (!DuplicatePN->isIdenticalToWhenDefined(PN)) + continue; + // A duplicate. Replace this PHI with the base PHI. + ++NumPHICSEs; + DuplicatePN->replaceAllUsesWith(PN); + ToRemove.insert(DuplicatePN); + Changed = true; + + // The RAUW can change PHIs that we already visited. + I = BB->begin(); + break; // Start over from the beginning. + } + } + return Changed; +} + +static bool +EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, + SmallPtrSetImpl<PHINode *> &ToRemove) { + // This implementation doesn't currently consider undef operands + // specially. Theoretically, two phis which are identical except for + // one having an undef where the other doesn't could be collapsed. + + struct PHIDenseMapInfo { + static PHINode *getEmptyKey() { + return DenseMapInfo<PHINode *>::getEmptyKey(); + } + + static PHINode *getTombstoneKey() { + return DenseMapInfo<PHINode *>::getTombstoneKey(); + } + + static bool isSentinel(PHINode *PN) { + return PN == getEmptyKey() || PN == getTombstoneKey(); + } + + // WARNING: this logic must be kept in sync with + // Instruction::isIdenticalToWhenDefined()! + static unsigned getHashValueImpl(PHINode *PN) { + // Compute a hash value on the operands. Instcombine will likely have + // sorted them, which helps expose duplicates, but we have to check all + // the operands to be safe in case instcombine hasn't run. + return static_cast<unsigned>(hash_combine( + hash_combine_range(PN->value_op_begin(), PN->value_op_end()), + hash_combine_range(PN->block_begin(), PN->block_end()))); + } + + static unsigned getHashValue(PHINode *PN) { +#ifndef NDEBUG + // If -phicse-debug-hash was specified, return a constant -- this + // will force all hashing to collide, so we'll exhaustively search + // the table for a match, and the assertion in isEqual will fire if + // there's a bug causing equal keys to hash differently. + if (PHICSEDebugHash) + return 0; +#endif + return getHashValueImpl(PN); + } + + static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { + if (isSentinel(LHS) || isSentinel(RHS)) + return LHS == RHS; + return LHS->isIdenticalTo(RHS); + } + + static bool isEqual(PHINode *LHS, PHINode *RHS) { + // These comparisons are nontrivial, so assert that equality implies + // hash equality (DenseMap demands this as an invariant). + bool Result = isEqualImpl(LHS, RHS); + assert(!Result || (isSentinel(LHS) && LHS == RHS) || + getHashValueImpl(LHS) == getHashValueImpl(RHS)); + return Result; + } + }; + + // Set of unique PHINodes. + DenseSet<PHINode *, PHIDenseMapInfo> PHISet; + PHISet.reserve(4 * PHICSENumPHISmallSize); + + // Examine each PHI. + bool Changed = false; + for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { + if (ToRemove.contains(PN)) + continue; + auto Inserted = PHISet.insert(PN); + if (!Inserted.second) { + // A duplicate. Replace this PHI with its duplicate. + ++NumPHICSEs; + PN->replaceAllUsesWith(*Inserted.first); + ToRemove.insert(PN); + Changed = true; + + // The RAUW can change PHIs that we already visited. Start over from the + // beginning. + PHISet.clear(); + I = BB->begin(); + } + } + + return Changed; +} + +bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, + SmallPtrSetImpl<PHINode *> &ToRemove) { + if ( +#ifndef NDEBUG + !PHICSEDebugHash && +#endif + hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) + return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); + return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); +} + +bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { + SmallPtrSet<PHINode *, 8> ToRemove; + bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); + for (PHINode *PN : ToRemove) + PN->eraseFromParent(); + return Changed; +} + +Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, + const DataLayout &DL) { + V = V->stripPointerCasts(); + + if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { + // TODO: Ideally, this function would not be called if PrefAlign is smaller + // than the current alignment, as the known bits calculation should have + // already taken it into account. However, this is not always the case, + // as computeKnownBits() has a depth limit, while stripPointerCasts() + // doesn't. + Align CurrentAlign = AI->getAlign(); + if (PrefAlign <= CurrentAlign) + return CurrentAlign; + + // If the preferred alignment is greater than the natural stack alignment + // then don't round up. This avoids dynamic stack realignment. + if (DL.exceedsNaturalStackAlignment(PrefAlign)) + return CurrentAlign; + AI->setAlignment(PrefAlign); + return PrefAlign; + } + + if (auto *GO = dyn_cast<GlobalObject>(V)) { + // TODO: as above, this shouldn't be necessary. + Align CurrentAlign = GO->getPointerAlignment(DL); + if (PrefAlign <= CurrentAlign) + return CurrentAlign; + + // If there is a large requested alignment and we can, bump up the alignment + // of the global. If the memory we set aside for the global may not be the + // memory used by the final program then it is impossible for us to reliably + // enforce the preferred alignment. + if (!GO->canIncreaseAlignment()) + return CurrentAlign; + + if (GO->isThreadLocal()) { + unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; + if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) + PrefAlign = Align(MaxTLSAlign); + } + + GO->setAlignment(PrefAlign); + return PrefAlign; + } + + return Align(1); +} + +Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, + const DataLayout &DL, + const Instruction *CxtI, + AssumptionCache *AC, + const DominatorTree *DT) { + assert(V->getType()->isPointerTy() && + "getOrEnforceKnownAlignment expects a pointer!"); + + KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); + unsigned TrailZ = Known.countMinTrailingZeros(); + + // Avoid trouble with ridiculously large TrailZ values, such as + // those computed from a null pointer. + // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). + TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); + + Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); + + if (PrefAlign && *PrefAlign > Alignment) + Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); + + // We don't need to make any adjustment. + return Alignment; +} + +///===---------------------------------------------------------------------===// +/// Dbg Intrinsic utilities +/// + +/// See if there is a dbg.value intrinsic for DIVar for the PHI node. +static bool PhiHasDebugValue(DILocalVariable *DIVar, + DIExpression *DIExpr, + PHINode *APN) { + // Since we can't guarantee that the original dbg.declare intrinsic + // is removed by LowerDbgDeclare(), we need to make sure that we are + // not inserting the same dbg.value intrinsic over and over. + SmallVector<DbgValueInst *, 1> DbgValues; + SmallVector<DPValue *, 1> DPValues; + findDbgValues(DbgValues, APN, &DPValues); + for (auto *DVI : DbgValues) { + assert(is_contained(DVI->getValues(), APN)); + if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) + return true; + } + for (auto *DPV : DPValues) { + assert(is_contained(DPV->location_ops(), APN)); + if ((DPV->getVariable() == DIVar) && (DPV->getExpression() == DIExpr)) + return true; + } + return false; +} + +/// Check if the alloc size of \p ValTy is large enough to cover the variable +/// (or fragment of the variable) described by \p DII. +/// +/// This is primarily intended as a helper for the different +/// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted +/// describes an alloca'd variable, so we need to use the alloc size of the +/// value when doing the comparison. E.g. an i1 value will be identified as +/// covering an n-bit fragment, if the store size of i1 is at least n bits. +static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { + const DataLayout &DL = DII->getModule()->getDataLayout(); + TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); + if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) + return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); + + // We can't always calculate the size of the DI variable (e.g. if it is a + // VLA). Try to use the size of the alloca that the dbg intrinsic describes + // intead. + if (DII->isAddressOfVariable()) { + // DII should have exactly 1 location when it is an address. + assert(DII->getNumVariableLocationOps() == 1 && + "address of variable must have exactly 1 location operand."); + if (auto *AI = + dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { + if (std::optional<TypeSize> FragmentSize = + AI->getAllocationSizeInBits(DL)) { + return TypeSize::isKnownGE(ValueSize, *FragmentSize); + } + } + } + // Could not determine size of variable. Conservatively return false. + return false; +} +// RemoveDIs: duplicate implementation of the above, using DPValues, the +// replacement for dbg.values. +static bool valueCoversEntireFragment(Type *ValTy, DPValue *DPV) { + const DataLayout &DL = DPV->getModule()->getDataLayout(); + TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); + if (std::optional<uint64_t> FragmentSize = DPV->getFragmentSizeInBits()) + return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); + + // We can't always calculate the size of the DI variable (e.g. if it is a + // VLA). Try to use the size of the alloca that the dbg intrinsic describes + // intead. + if (DPV->isAddressOfVariable()) { + // DPV should have exactly 1 location when it is an address. + assert(DPV->getNumVariableLocationOps() == 1 && + "address of variable must have exactly 1 location operand."); + if (auto *AI = + dyn_cast_or_null<AllocaInst>(DPV->getVariableLocationOp(0))) { + if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { + return TypeSize::isKnownGE(ValueSize, *FragmentSize); + } + } + } + // Could not determine size of variable. Conservatively return false. + return false; +} + +static void insertDbgValueOrDPValue(DIBuilder &Builder, Value *DV, + DILocalVariable *DIVar, + DIExpression *DIExpr, + const DebugLoc &NewLoc, + BasicBlock::iterator Instr) { + if (!UseNewDbgInfoFormat) { + auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, + (Instruction *)nullptr); + DbgVal->insertBefore(Instr); + } else { + // RemoveDIs: if we're using the new debug-info format, allocate a + // DPValue directly instead of a dbg.value intrinsic. + ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); + DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get()); + Instr->getParent()->insertDPValueBefore(DV, Instr); + } +} + +static void insertDbgValueOrDPValueAfter(DIBuilder &Builder, Value *DV, + DILocalVariable *DIVar, + DIExpression *DIExpr, + const DebugLoc &NewLoc, + BasicBlock::iterator Instr) { + if (!UseNewDbgInfoFormat) { + auto *DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, + (Instruction *)nullptr); + DbgVal->insertAfter(&*Instr); + } else { + // RemoveDIs: if we're using the new debug-info format, allocate a + // DPValue directly instead of a dbg.value intrinsic. + ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); + DPValue *DV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get()); + Instr->getParent()->insertDPValueAfter(DV, &*Instr); + } +} + +/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value +/// that has an associated llvm.dbg.declare intrinsic. +void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, + StoreInst *SI, DIBuilder &Builder) { + assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); + auto *DIVar = DII->getVariable(); + assert(DIVar && "Missing variable"); + auto *DIExpr = DII->getExpression(); + Value *DV = SI->getValueOperand(); + + DebugLoc NewLoc = getDebugValueLoc(DII); + + // If the alloca describes the variable itself, i.e. the expression in the + // dbg.declare doesn't start with a dereference, we can perform the + // conversion if the value covers the entire fragment of DII. + // If the alloca describes the *address* of DIVar, i.e. DIExpr is + // *just* a DW_OP_deref, we use DV as is for the dbg.value. + // We conservatively ignore other dereferences, because the following two are + // not equivalent: + // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) + // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) + // The former is adding 2 to the address of the variable, whereas the latter + // is adding 2 to the value of the variable. As such, we insist on just a + // deref expression. + bool CanConvert = + DIExpr->isDeref() || (!DIExpr->startsWithDeref() && + valueCoversEntireFragment(DV->getType(), DII)); + if (CanConvert) { + insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc, + SI->getIterator()); + return; + } + + // FIXME: If storing to a part of the variable described by the dbg.declare, + // then we want to insert a dbg.value for the corresponding fragment. + LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII + << '\n'); + // For now, when there is a store to parts of the variable (but we do not + // know which part) we insert an dbg.value intrinsic to indicate that we + // know nothing about the variable's content. + DV = UndefValue::get(DV->getType()); + insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc, + SI->getIterator()); +} + +/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value +/// that has an associated llvm.dbg.declare intrinsic. +void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, + LoadInst *LI, DIBuilder &Builder) { + auto *DIVar = DII->getVariable(); + auto *DIExpr = DII->getExpression(); + assert(DIVar && "Missing variable"); + + if (!valueCoversEntireFragment(LI->getType(), DII)) { + // FIXME: If only referring to a part of the variable described by the + // dbg.declare, then we want to insert a dbg.value for the corresponding + // fragment. + LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " + << *DII << '\n'); + return; + } + + DebugLoc NewLoc = getDebugValueLoc(DII); + + // We are now tracking the loaded value instead of the address. In the + // future if multi-location support is added to the IR, it might be + // preferable to keep tracking both the loaded value and the original + // address in case the alloca can not be elided. + insertDbgValueOrDPValueAfter(Builder, LI, DIVar, DIExpr, NewLoc, + LI->getIterator()); +} + +void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, StoreInst *SI, + DIBuilder &Builder) { + assert(DPV->isAddressOfVariable() || DPV->isDbgAssign()); + auto *DIVar = DPV->getVariable(); + assert(DIVar && "Missing variable"); + auto *DIExpr = DPV->getExpression(); + Value *DV = SI->getValueOperand(); + + DebugLoc NewLoc = getDebugValueLoc(DPV); + + // If the alloca describes the variable itself, i.e. the expression in the + // dbg.declare doesn't start with a dereference, we can perform the + // conversion if the value covers the entire fragment of DII. + // If the alloca describes the *address* of DIVar, i.e. DIExpr is + // *just* a DW_OP_deref, we use DV as is for the dbg.value. + // We conservatively ignore other dereferences, because the following two are + // not equivalent: + // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) + // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) + // The former is adding 2 to the address of the variable, whereas the latter + // is adding 2 to the value of the variable. As such, we insist on just a + // deref expression. + bool CanConvert = + DIExpr->isDeref() || (!DIExpr->startsWithDeref() && + valueCoversEntireFragment(DV->getType(), DPV)); + if (CanConvert) { + insertDbgValueOrDPValue(Builder, DV, DIVar, DIExpr, NewLoc, + SI->getIterator()); + return; + } + + // FIXME: If storing to a part of the variable described by the dbg.declare, + // then we want to insert a dbg.value for the corresponding fragment. + LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DPV + << '\n'); + assert(UseNewDbgInfoFormat); + + // For now, when there is a store to parts of the variable (but we do not + // know which part) we insert an dbg.value intrinsic to indicate that we + // know nothing about the variable's content. + DV = UndefValue::get(DV->getType()); + ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); + DPValue *NewDPV = new DPValue(DVAM, DIVar, DIExpr, NewLoc.get()); + SI->getParent()->insertDPValueBefore(NewDPV, SI->getIterator()); +} + +/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated +/// llvm.dbg.declare intrinsic. +void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, + PHINode *APN, DIBuilder &Builder) { + auto *DIVar = DII->getVariable(); + auto *DIExpr = DII->getExpression(); + assert(DIVar && "Missing variable"); + + if (PhiHasDebugValue(DIVar, DIExpr, APN)) + return; + + if (!valueCoversEntireFragment(APN->getType(), DII)) { + // FIXME: If only referring to a part of the variable described by the + // dbg.declare, then we want to insert a dbg.value for the corresponding + // fragment. + LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " + << *DII << '\n'); + return; + } + + BasicBlock *BB = APN->getParent(); + auto InsertionPt = BB->getFirstInsertionPt(); + + DebugLoc NewLoc = getDebugValueLoc(DII); + + // The block may be a catchswitch block, which does not have a valid + // insertion point. + // FIXME: Insert dbg.value markers in the successors when appropriate. + if (InsertionPt != BB->end()) { + insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt); + } +} + +void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, LoadInst *LI, + DIBuilder &Builder) { + auto *DIVar = DPV->getVariable(); + auto *DIExpr = DPV->getExpression(); + assert(DIVar && "Missing variable"); + + if (!valueCoversEntireFragment(LI->getType(), DPV)) { + // FIXME: If only referring to a part of the variable described by the + // dbg.declare, then we want to insert a DPValue for the corresponding + // fragment. + LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV + << '\n'); + return; + } + + DebugLoc NewLoc = getDebugValueLoc(DPV); + + // We are now tracking the loaded value instead of the address. In the + // future if multi-location support is added to the IR, it might be + // preferable to keep tracking both the loaded value and the original + // address in case the alloca can not be elided. + assert(UseNewDbgInfoFormat); + + // Create a DPValue directly and insert. + ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); + DPValue *DV = new DPValue(LIVAM, DIVar, DIExpr, NewLoc.get()); + LI->getParent()->insertDPValueAfter(DV, LI); +} + +/// Determine whether this alloca is either a VLA or an array. +static bool isArray(AllocaInst *AI) { + return AI->isArrayAllocation() || + (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); +} + +/// Determine whether this alloca is a structure. +static bool isStructure(AllocaInst *AI) { + return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); +} +void llvm::ConvertDebugDeclareToDebugValue(DPValue *DPV, PHINode *APN, + DIBuilder &Builder) { + auto *DIVar = DPV->getVariable(); + auto *DIExpr = DPV->getExpression(); + assert(DIVar && "Missing variable"); + + if (PhiHasDebugValue(DIVar, DIExpr, APN)) + return; + + if (!valueCoversEntireFragment(APN->getType(), DPV)) { + // FIXME: If only referring to a part of the variable described by the + // dbg.declare, then we want to insert a DPValue for the corresponding + // fragment. + LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DPValue: " << *DPV + << '\n'); + return; + } + + BasicBlock *BB = APN->getParent(); + auto InsertionPt = BB->getFirstInsertionPt(); + + DebugLoc NewLoc = getDebugValueLoc(DPV); + + // The block may be a catchswitch block, which does not have a valid + // insertion point. + // FIXME: Insert DPValue markers in the successors when appropriate. + if (InsertionPt != BB->end()) { + insertDbgValueOrDPValue(Builder, APN, DIVar, DIExpr, NewLoc, InsertionPt); + } +} + +/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set +/// of llvm.dbg.value intrinsics. +bool llvm::LowerDbgDeclare(Function &F) { + bool Changed = false; + DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); + SmallVector<DbgDeclareInst *, 4> Dbgs; + SmallVector<DPValue *> DPVs; + for (auto &FI : F) { + for (Instruction &BI : FI) { + if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) + Dbgs.push_back(DDI); + for (DPValue &DPV : BI.getDbgValueRange()) { + if (DPV.getType() == DPValue::LocationType::Declare) + DPVs.push_back(&DPV); + } + } + } + + if (Dbgs.empty() && DPVs.empty()) + return Changed; + + auto LowerOne = [&](auto *DDI) { + AllocaInst *AI = + dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); + // If this is an alloca for a scalar variable, insert a dbg.value + // at each load and store to the alloca and erase the dbg.declare. + // The dbg.values allow tracking a variable even if it is not + // stored on the stack, while the dbg.declare can only describe + // the stack slot (and at a lexical-scope granularity). Later + // passes will attempt to elide the stack slot. + if (!AI || isArray(AI) || isStructure(AI)) + return; + + // A volatile load/store means that the alloca can't be elided anyway. + if (llvm::any_of(AI->users(), [](User *U) -> bool { + if (LoadInst *LI = dyn_cast<LoadInst>(U)) + return LI->isVolatile(); + if (StoreInst *SI = dyn_cast<StoreInst>(U)) + return SI->isVolatile(); + return false; + })) + return; + + SmallVector<const Value *, 8> WorkList; + WorkList.push_back(AI); + while (!WorkList.empty()) { + const Value *V = WorkList.pop_back_val(); + for (const auto &AIUse : V->uses()) { + User *U = AIUse.getUser(); + if (StoreInst *SI = dyn_cast<StoreInst>(U)) { + if (AIUse.getOperandNo() == 1) + ConvertDebugDeclareToDebugValue(DDI, SI, DIB); + } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { + ConvertDebugDeclareToDebugValue(DDI, LI, DIB); + } else if (CallInst *CI = dyn_cast<CallInst>(U)) { + // This is a call by-value or some other instruction that takes a + // pointer to the variable. Insert a *value* intrinsic that describes + // the variable by dereferencing the alloca. + if (!CI->isLifetimeStartOrEnd()) { + DebugLoc NewLoc = getDebugValueLoc(DDI); + auto *DerefExpr = + DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); + insertDbgValueOrDPValue(DIB, AI, DDI->getVariable(), DerefExpr, + NewLoc, CI->getIterator()); + } + } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { + if (BI->getType()->isPointerTy()) + WorkList.push_back(BI); + } + } + } + DDI->eraseFromParent(); + Changed = true; + }; + + for_each(Dbgs, LowerOne); + for_each(DPVs, LowerOne); + + if (Changed) + for (BasicBlock &BB : F) + RemoveRedundantDbgInstrs(&BB); + + return Changed; +} + +// RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the +// debug-info out of the block's DPValues rather than dbg.value intrinsics. +static void insertDPValuesForPHIs(BasicBlock *BB, + SmallVectorImpl<PHINode *> &InsertedPHIs) { + assert(BB && "No BasicBlock to clone DPValue(s) from."); + if (InsertedPHIs.size() == 0) + return; + + // Map existing PHI nodes to their DPValues. + DenseMap<Value *, DPValue *> DbgValueMap; + for (auto &I : *BB) { + for (auto &DPV : I.getDbgValueRange()) { + for (Value *V : DPV.location_ops()) + if (auto *Loc = dyn_cast_or_null<PHINode>(V)) + DbgValueMap.insert({Loc, &DPV}); + } + } + if (DbgValueMap.size() == 0) + return; + + // Map a pair of the destination BB and old DPValue to the new DPValue, + // so that if a DPValue is being rewritten to use more than one of the + // inserted PHIs in the same destination BB, we can update the same DPValue + // with all the new PHIs instead of creating one copy for each. + MapVector<std::pair<BasicBlock *, DPValue *>, DPValue *> NewDbgValueMap; + // Then iterate through the new PHIs and look to see if they use one of the + // previously mapped PHIs. If so, create a new DPValue that will propagate + // the info through the new PHI. If we use more than one new PHI in a single + // destination BB with the same old dbg.value, merge the updates so that we + // get a single new DPValue with all the new PHIs. + for (auto PHI : InsertedPHIs) { + BasicBlock *Parent = PHI->getParent(); + // Avoid inserting a debug-info record into an EH block. + if (Parent->getFirstNonPHI()->isEHPad()) + continue; + for (auto VI : PHI->operand_values()) { + auto V = DbgValueMap.find(VI); + if (V != DbgValueMap.end()) { + DPValue *DbgII = cast<DPValue>(V->second); + auto NewDI = NewDbgValueMap.find({Parent, DbgII}); + if (NewDI == NewDbgValueMap.end()) { + DPValue *NewDbgII = DbgII->clone(); + NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; + } + DPValue *NewDbgII = NewDI->second; + // If PHI contains VI as an operand more than once, we may + // replaced it in NewDbgII; confirm that it is present. + if (is_contained(NewDbgII->location_ops(), VI)) + NewDbgII->replaceVariableLocationOp(VI, PHI); + } + } + } + // Insert the new DPValues into their destination blocks. + for (auto DI : NewDbgValueMap) { + BasicBlock *Parent = DI.first.first; + DPValue *NewDbgII = DI.second; + auto InsertionPt = Parent->getFirstInsertionPt(); + assert(InsertionPt != Parent->end() && "Ill-formed basic block"); + + InsertionPt->DbgMarker->insertDPValue(NewDbgII, true); + } +} + +/// Propagate dbg.value intrinsics through the newly inserted PHIs. +void llvm::insertDebugValuesForPHIs(BasicBlock *BB, + SmallVectorImpl<PHINode *> &InsertedPHIs) { + assert(BB && "No BasicBlock to clone dbg.value(s) from."); + if (InsertedPHIs.size() == 0) + return; + + insertDPValuesForPHIs(BB, InsertedPHIs); + + // Map existing PHI nodes to their dbg.values. + ValueToValueMapTy DbgValueMap; + for (auto &I : *BB) { + if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { + for (Value *V : DbgII->location_ops()) + if (auto *Loc = dyn_cast_or_null<PHINode>(V)) + DbgValueMap.insert({Loc, DbgII}); + } + } + if (DbgValueMap.size() == 0) + return; + + // Map a pair of the destination BB and old dbg.value to the new dbg.value, + // so that if a dbg.value is being rewritten to use more than one of the + // inserted PHIs in the same destination BB, we can update the same dbg.value + // with all the new PHIs instead of creating one copy for each. + MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, + DbgVariableIntrinsic *> + NewDbgValueMap; + // Then iterate through the new PHIs and look to see if they use one of the + // previously mapped PHIs. If so, create a new dbg.value intrinsic that will + // propagate the info through the new PHI. If we use more than one new PHI in + // a single destination BB with the same old dbg.value, merge the updates so + // that we get a single new dbg.value with all the new PHIs. + for (auto *PHI : InsertedPHIs) { + BasicBlock *Parent = PHI->getParent(); + // Avoid inserting an intrinsic into an EH block. + if (Parent->getFirstNonPHI()->isEHPad()) + continue; + for (auto *VI : PHI->operand_values()) { + auto V = DbgValueMap.find(VI); + if (V != DbgValueMap.end()) { + auto *DbgII = cast<DbgVariableIntrinsic>(V->second); + auto NewDI = NewDbgValueMap.find({Parent, DbgII}); + if (NewDI == NewDbgValueMap.end()) { + auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); + NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; + } + DbgVariableIntrinsic *NewDbgII = NewDI->second; + // If PHI contains VI as an operand more than once, we may + // replaced it in NewDbgII; confirm that it is present. + if (is_contained(NewDbgII->location_ops(), VI)) + NewDbgII->replaceVariableLocationOp(VI, PHI); + } + } + } + // Insert thew new dbg.values into their destination blocks. + for (auto DI : NewDbgValueMap) { + BasicBlock *Parent = DI.first.first; + auto *NewDbgII = DI.second; + auto InsertionPt = Parent->getFirstInsertionPt(); + assert(InsertionPt != Parent->end() && "Ill-formed basic block"); + NewDbgII->insertBefore(&*InsertionPt); + } +} + +bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, + DIBuilder &Builder, uint8_t DIExprFlags, + int Offset) { + TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); + TinyPtrVector<DPValue *> DPVDeclares = findDPVDeclares(Address); + + auto ReplaceOne = [&](auto *DII) { + assert(DII->getVariable() && "Missing variable"); + auto *DIExpr = DII->getExpression(); + DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); + DII->setExpression(DIExpr); + DII->replaceVariableLocationOp(Address, NewAddress); + }; + + for_each(DbgDeclares, ReplaceOne); + for_each(DPVDeclares, ReplaceOne); + + return !DbgDeclares.empty() || !DPVDeclares.empty(); +} + +static void updateOneDbgValueForAlloca(const DebugLoc &Loc, + DILocalVariable *DIVar, + DIExpression *DIExpr, Value *NewAddress, + DbgValueInst *DVI, DPValue *DPV, + DIBuilder &Builder, int Offset) { + assert(DIVar && "Missing variable"); + + // This is an alloca-based dbg.value/DPValue. The first thing it should do + // with the alloca pointer is dereference it. Otherwise we don't know how to + // handle it and give up. + if (!DIExpr || DIExpr->getNumElements() < 1 || + DIExpr->getElement(0) != dwarf::DW_OP_deref) + return; + + // Insert the offset before the first deref. + if (Offset) + DIExpr = DIExpression::prepend(DIExpr, 0, Offset); + + if (DVI) { + DVI->setExpression(DIExpr); + DVI->replaceVariableLocationOp(0u, NewAddress); + } else { + assert(DPV); + DPV->setExpression(DIExpr); + DPV->replaceVariableLocationOp(0u, NewAddress); + } +} + +void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, + DIBuilder &Builder, int Offset) { + SmallVector<DbgValueInst *, 1> DbgUsers; + SmallVector<DPValue *, 1> DPUsers; + findDbgValues(DbgUsers, AI, &DPUsers); + + // Attempt to replace dbg.values that use this alloca. + for (auto *DVI : DbgUsers) + updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), + DVI->getExpression(), NewAllocaAddress, DVI, + nullptr, Builder, Offset); + + // Replace any DPValues that use this alloca. + for (DPValue *DPV : DPUsers) + updateOneDbgValueForAlloca(DPV->getDebugLoc(), DPV->getVariable(), + DPV->getExpression(), NewAllocaAddress, nullptr, + DPV, Builder, Offset); +} + +/// Where possible to salvage debug information for \p I do so. +/// If not possible mark undef. +void llvm::salvageDebugInfo(Instruction &I) { + SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; + SmallVector<DPValue *, 1> DPUsers; + findDbgUsers(DbgUsers, &I, &DPUsers); + salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); +} + +template <typename T> static void salvageDbgAssignAddress(T *Assign) { + Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); + // Only instructions can be salvaged at the moment. + if (!I) + return; + + assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && + "address-expression shouldn't have fragment info"); + + // The address component of a dbg.assign cannot be variadic. + uint64_t CurrentLocOps = 0; + SmallVector<Value *, 4> AdditionalValues; + SmallVector<uint64_t, 16> Ops; + Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); + + // Check if the salvage failed. + if (!NewV) + return; + + DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( + Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); + assert(!SalvagedExpr->getFragmentInfo().has_value() && + "address-expression shouldn't have fragment info"); + + // Salvage succeeds if no additional values are required. + if (AdditionalValues.empty()) { + Assign->setAddress(NewV); + Assign->setAddressExpression(SalvagedExpr); + } else { + Assign->setKillAddress(); + } +} + +void llvm::salvageDebugInfoForDbgValues( + Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, + ArrayRef<DPValue *> DPUsers) { + // These are arbitrary chosen limits on the maximum number of values and the + // maximum size of a debug expression we can salvage up to, used for + // performance reasons. + const unsigned MaxDebugArgs = 16; + const unsigned MaxExpressionSize = 128; + bool Salvaged = false; + + for (auto *DII : DbgUsers) { + if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { + if (DAI->getAddress() == &I) { + salvageDbgAssignAddress(DAI); + Salvaged = true; + } + if (DAI->getValue() != &I) + continue; + } + + // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly + // pointing out the value as a DWARF memory location description. + bool StackValue = isa<DbgValueInst>(DII); + auto DIILocation = DII->location_ops(); + assert( + is_contained(DIILocation, &I) && + "DbgVariableIntrinsic must use salvaged instruction as its location"); + SmallVector<Value *, 4> AdditionalValues; + // `I` may appear more than once in DII's location ops, and each use of `I` + // must be updated in the DIExpression and potentially have additional + // values added; thus we call salvageDebugInfoImpl for each `I` instance in + // DIILocation. + Value *Op0 = nullptr; + DIExpression *SalvagedExpr = DII->getExpression(); + auto LocItr = find(DIILocation, &I); + while (SalvagedExpr && LocItr != DIILocation.end()) { + SmallVector<uint64_t, 16> Ops; + unsigned LocNo = std::distance(DIILocation.begin(), LocItr); + uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); + Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); + if (!Op0) + break; + SalvagedExpr = + DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); + LocItr = std::find(++LocItr, DIILocation.end(), &I); + } + // salvageDebugInfoImpl should fail on examining the first element of + // DbgUsers, or none of them. + if (!Op0) + break; + + DII->replaceVariableLocationOp(&I, Op0); + bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; + if (AdditionalValues.empty() && IsValidSalvageExpr) { + DII->setExpression(SalvagedExpr); + } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && + DII->getNumVariableLocationOps() + AdditionalValues.size() <= + MaxDebugArgs) { + DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); + } else { + // Do not salvage using DIArgList for dbg.declare, as it is not currently + // supported in those instructions. Also do not salvage if the resulting + // DIArgList would contain an unreasonably large number of values. + DII->setKillLocation(); + } + LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); + Salvaged = true; + } + // Duplicate of above block for DPValues. + for (auto *DPV : DPUsers) { + if (DPV->isDbgAssign()) { + if (DPV->getAddress() == &I) { + salvageDbgAssignAddress(DPV); + Salvaged = true; + } + if (DPV->getValue() != &I) + continue; + } + + // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they + // are implicitly pointing out the value as a DWARF memory location + // description. + bool StackValue = DPV->getType() != DPValue::LocationType::Declare; + auto DPVLocation = DPV->location_ops(); + assert( + is_contained(DPVLocation, &I) && + "DbgVariableIntrinsic must use salvaged instruction as its location"); + SmallVector<Value *, 4> AdditionalValues; + // 'I' may appear more than once in DPV's location ops, and each use of 'I' + // must be updated in the DIExpression and potentially have additional + // values added; thus we call salvageDebugInfoImpl for each 'I' instance in + // DPVLocation. + Value *Op0 = nullptr; + DIExpression *SalvagedExpr = DPV->getExpression(); + auto LocItr = find(DPVLocation, &I); + while (SalvagedExpr && LocItr != DPVLocation.end()) { + SmallVector<uint64_t, 16> Ops; + unsigned LocNo = std::distance(DPVLocation.begin(), LocItr); + uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); + Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); + if (!Op0) + break; + SalvagedExpr = + DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); + LocItr = std::find(++LocItr, DPVLocation.end(), &I); + } + // salvageDebugInfoImpl should fail on examining the first element of + // DbgUsers, or none of them. + if (!Op0) + break; + + DPV->replaceVariableLocationOp(&I, Op0); + bool IsValidSalvageExpr = + SalvagedExpr->getNumElements() <= MaxExpressionSize; + if (AdditionalValues.empty() && IsValidSalvageExpr) { + DPV->setExpression(SalvagedExpr); + } else if (DPV->getType() != DPValue::LocationType::Declare && + IsValidSalvageExpr && + DPV->getNumVariableLocationOps() + AdditionalValues.size() <= + MaxDebugArgs) { + DPV->addVariableLocationOps(AdditionalValues, SalvagedExpr); + } else { + // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is + // currently only valid for stack value expressions. + // Also do not salvage if the resulting DIArgList would contain an + // unreasonably large number of values. + DPV->setKillLocation(); + } + LLVM_DEBUG(dbgs() << "SALVAGE: " << DPV << '\n'); + Salvaged = true; + } + + if (Salvaged) + return; + + for (auto *DII : DbgUsers) + DII->setKillLocation(); + + for (auto *DPV : DPUsers) + DPV->setKillLocation(); +} + +Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, + uint64_t CurrentLocOps, + SmallVectorImpl<uint64_t> &Opcodes, + SmallVectorImpl<Value *> &AdditionalValues) { + unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); + // Rewrite a GEP into a DIExpression. + MapVector<Value *, APInt> VariableOffsets; + APInt ConstantOffset(BitWidth, 0); + if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) + return nullptr; + if (!VariableOffsets.empty() && !CurrentLocOps) { + Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); + CurrentLocOps = 1; + } + for (const auto &Offset : VariableOffsets) { + AdditionalValues.push_back(Offset.first); + assert(Offset.second.isStrictlyPositive() && + "Expected strictly positive multiplier for offset."); + Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, + Offset.second.getZExtValue(), dwarf::DW_OP_mul, + dwarf::DW_OP_plus}); + } + DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); + return GEP->getOperand(0); +} + +uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { + switch (Opcode) { + case Instruction::Add: + return dwarf::DW_OP_plus; + case Instruction::Sub: + return dwarf::DW_OP_minus; + case Instruction::Mul: + return dwarf::DW_OP_mul; + case Instruction::SDiv: + return dwarf::DW_OP_div; + case Instruction::SRem: + return dwarf::DW_OP_mod; + case Instruction::Or: + return dwarf::DW_OP_or; + case Instruction::And: + return dwarf::DW_OP_and; + case Instruction::Xor: + return dwarf::DW_OP_xor; + case Instruction::Shl: + return dwarf::DW_OP_shl; + case Instruction::LShr: + return dwarf::DW_OP_shr; + case Instruction::AShr: + return dwarf::DW_OP_shra; + default: + // TODO: Salvage from each kind of binop we know about. + return 0; + } +} + +static void handleSSAValueOperands(uint64_t CurrentLocOps, + SmallVectorImpl<uint64_t> &Opcodes, + SmallVectorImpl<Value *> &AdditionalValues, + Instruction *I) { + if (!CurrentLocOps) { + Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); + CurrentLocOps = 1; + } + Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); + AdditionalValues.push_back(I->getOperand(1)); +} + +Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, + SmallVectorImpl<uint64_t> &Opcodes, + SmallVectorImpl<Value *> &AdditionalValues) { + // Handle binary operations with constant integer operands as a special case. + auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); + // Values wider than 64 bits cannot be represented within a DIExpression. + if (ConstInt && ConstInt->getBitWidth() > 64) + return nullptr; + + Instruction::BinaryOps BinOpcode = BI->getOpcode(); + // Push any Constant Int operand onto the expression stack. + if (ConstInt) { + uint64_t Val = ConstInt->getSExtValue(); + // Add or Sub Instructions with a constant operand can potentially be + // simplified. + if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { + uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); + DIExpression::appendOffset(Opcodes, Offset); + return BI->getOperand(0); + } + Opcodes.append({dwarf::DW_OP_constu, Val}); + } else { + handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); + } + + // Add salvaged binary operator to expression stack, if it has a valid + // representation in a DIExpression. + uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); + if (!DwarfBinOp) + return nullptr; + Opcodes.push_back(DwarfBinOp); + return BI->getOperand(0); +} + +uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { + // The signedness of the operation is implicit in the typed stack, signed and + // unsigned instructions map to the same DWARF opcode. + switch (Pred) { + case CmpInst::ICMP_EQ: + return dwarf::DW_OP_eq; + case CmpInst::ICMP_NE: + return dwarf::DW_OP_ne; + case CmpInst::ICMP_UGT: + case CmpInst::ICMP_SGT: + return dwarf::DW_OP_gt; + case CmpInst::ICMP_UGE: + case CmpInst::ICMP_SGE: + return dwarf::DW_OP_ge; + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_SLT: + return dwarf::DW_OP_lt; + case CmpInst::ICMP_ULE: + case CmpInst::ICMP_SLE: + return dwarf::DW_OP_le; + default: + return 0; + } +} + +Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, + SmallVectorImpl<uint64_t> &Opcodes, + SmallVectorImpl<Value *> &AdditionalValues) { + // Handle icmp operations with constant integer operands as a special case. + auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); + // Values wider than 64 bits cannot be represented within a DIExpression. + if (ConstInt && ConstInt->getBitWidth() > 64) + return nullptr; + // Push any Constant Int operand onto the expression stack. + if (ConstInt) { + if (Icmp->isSigned()) + Opcodes.push_back(dwarf::DW_OP_consts); + else + Opcodes.push_back(dwarf::DW_OP_constu); + uint64_t Val = ConstInt->getSExtValue(); + Opcodes.push_back(Val); + } else { + handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); + } + + // Add salvaged binary operator to expression stack, if it has a valid + // representation in a DIExpression. + uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); + if (!DwarfIcmpOp) + return nullptr; + Opcodes.push_back(DwarfIcmpOp); + return Icmp->getOperand(0); +} + +Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, + SmallVectorImpl<uint64_t> &Ops, + SmallVectorImpl<Value *> &AdditionalValues) { + auto &M = *I.getModule(); + auto &DL = M.getDataLayout(); + + if (auto *CI = dyn_cast<CastInst>(&I)) { + Value *FromValue = CI->getOperand(0); + // No-op casts are irrelevant for debug info. + if (CI->isNoopCast(DL)) { + return FromValue; + } + + Type *Type = CI->getType(); + if (Type->isPointerTy()) + Type = DL.getIntPtrType(Type); + // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. + if (Type->isVectorTy() || + !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || + isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) + return nullptr; + + llvm::Type *FromType = FromValue->getType(); + if (FromType->isPointerTy()) + FromType = DL.getIntPtrType(FromType); + + unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); + unsigned ToTypeBitSize = Type->getScalarSizeInBits(); + + auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, + isa<SExtInst>(&I)); + Ops.append(ExtOps.begin(), ExtOps.end()); + return FromValue; + } + + if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) + return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); + if (auto *BI = dyn_cast<BinaryOperator>(&I)) + return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); + if (auto *IC = dyn_cast<ICmpInst>(&I)) + return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); + + // *Not* to do: we should not attempt to salvage load instructions, + // because the validity and lifetime of a dbg.value containing + // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. + return nullptr; +} + +/// A replacement for a dbg.value expression. +using DbgValReplacement = std::optional<DIExpression *>; + +/// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, +/// possibly moving/undefing users to prevent use-before-def. Returns true if +/// changes are made. +static bool rewriteDebugUsers( + Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, + function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, + function_ref<DbgValReplacement(DPValue &DPV)> RewriteDPVExpr) { + // Find debug users of From. + SmallVector<DbgVariableIntrinsic *, 1> Users; + SmallVector<DPValue *, 1> DPUsers; + findDbgUsers(Users, &From, &DPUsers); + if (Users.empty() && DPUsers.empty()) + return false; + + // Prevent use-before-def of To. + bool Changed = false; + + SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; + SmallPtrSet<DPValue *, 1> UndefOrSalvageDPV; + if (isa<Instruction>(&To)) { + bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; + + for (auto *DII : Users) { + // It's common to see a debug user between From and DomPoint. Move it + // after DomPoint to preserve the variable update without any reordering. + if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { + LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); + DII->moveAfter(&DomPoint); + Changed = true; + + // Users which otherwise aren't dominated by the replacement value must + // be salvaged or deleted. + } else if (!DT.dominates(&DomPoint, DII)) { + UndefOrSalvage.insert(DII); + } + } + + // DPValue implementation of the above. + for (auto *DPV : DPUsers) { + Instruction *MarkedInstr = DPV->getMarker()->MarkedInstr; + Instruction *NextNonDebug = MarkedInstr; + // The next instruction might still be a dbg.declare, skip over it. + if (isa<DbgVariableIntrinsic>(NextNonDebug)) + NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); + + if (DomPointAfterFrom && NextNonDebug == &DomPoint) { + LLVM_DEBUG(dbgs() << "MOVE: " << *DPV << '\n'); + DPV->removeFromParent(); + // Ensure there's a marker. + DomPoint.getParent()->insertDPValueAfter(DPV, &DomPoint); + Changed = true; + } else if (!DT.dominates(&DomPoint, MarkedInstr)) { + UndefOrSalvageDPV.insert(DPV); + } + } + } + + // Update debug users without use-before-def risk. + for (auto *DII : Users) { + if (UndefOrSalvage.count(DII)) + continue; + + DbgValReplacement DVR = RewriteExpr(*DII); + if (!DVR) + continue; + + DII->replaceVariableLocationOp(&From, &To); + DII->setExpression(*DVR); + LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); + Changed = true; + } + for (auto *DPV : DPUsers) { + if (UndefOrSalvageDPV.count(DPV)) + continue; + + DbgValReplacement DVR = RewriteDPVExpr(*DPV); + if (!DVR) + continue; + + DPV->replaceVariableLocationOp(&From, &To); + DPV->setExpression(*DVR); + LLVM_DEBUG(dbgs() << "REWRITE: " << DPV << '\n'); + Changed = true; + } + + if (!UndefOrSalvage.empty() || !UndefOrSalvageDPV.empty()) { + // Try to salvage the remaining debug users. + salvageDebugInfo(From); + Changed = true; + } + + return Changed; +} + +/// Check if a bitcast between a value of type \p FromTy to type \p ToTy would +/// losslessly preserve the bits and semantics of the value. This predicate is +/// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. +/// +/// Note that Type::canLosslesslyBitCastTo is not suitable here because it +/// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, +/// and also does not allow lossless pointer <-> integer conversions. +static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, + Type *ToTy) { + // Trivially compatible types. + if (FromTy == ToTy) + return true; + + // Handle compatible pointer <-> integer conversions. + if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { + bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); + bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && + !DL.isNonIntegralPointerType(ToTy); + return SameSize && LosslessConversion; + } + + // TODO: This is not exhaustive. + return false; +} + +bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, + Instruction &DomPoint, DominatorTree &DT) { + // Exit early if From has no debug users. + if (!From.isUsedByMetadata()) + return false; + + assert(&From != &To && "Can't replace something with itself"); + + Type *FromTy = From.getType(); + Type *ToTy = To.getType(); + + auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { + return DII.getExpression(); + }; + auto IdentityDPV = [&](DPValue &DPV) -> DbgValReplacement { + return DPV.getExpression(); + }; + + // Handle no-op conversions. + Module &M = *From.getModule(); + const DataLayout &DL = M.getDataLayout(); + if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) + return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV); + + // Handle integer-to-integer widening and narrowing. + // FIXME: Use DW_OP_convert when it's available everywhere. + if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { + uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); + uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); + assert(FromBits != ToBits && "Unexpected no-op conversion"); + + // When the width of the result grows, assume that a debugger will only + // access the low `FromBits` bits when inspecting the source variable. + if (FromBits < ToBits) + return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDPV); + + // The width of the result has shrunk. Use sign/zero extension to describe + // the source variable's high bits. + auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { + DILocalVariable *Var = DII.getVariable(); + + // Without knowing signedness, sign/zero extension isn't possible. + auto Signedness = Var->getSignedness(); + if (!Signedness) + return std::nullopt; + + bool Signed = *Signedness == DIBasicType::Signedness::Signed; + return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, + Signed); + }; + // RemoveDIs: duplicate implementation working on DPValues rather than on + // dbg.value intrinsics. + auto SignOrZeroExtDPV = [&](DPValue &DPV) -> DbgValReplacement { + DILocalVariable *Var = DPV.getVariable(); + + // Without knowing signedness, sign/zero extension isn't possible. + auto Signedness = Var->getSignedness(); + if (!Signedness) + return std::nullopt; + + bool Signed = *Signedness == DIBasicType::Signedness::Signed; + return DIExpression::appendExt(DPV.getExpression(), ToBits, FromBits, + Signed); + }; + return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, + SignOrZeroExtDPV); + } + + // TODO: Floating-point conversions, vectors. + return false; +} + +std::pair<unsigned, unsigned> +llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { + unsigned NumDeadInst = 0; + unsigned NumDeadDbgInst = 0; + // Delete the instructions backwards, as it has a reduced likelihood of + // having to update as many def-use and use-def chains. + Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. + // RemoveDIs: erasing debug-info must be done manually. + EndInst->dropDbgValues(); + while (EndInst != &BB->front()) { + // Delete the next to last instruction. + Instruction *Inst = &*--EndInst->getIterator(); + if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) + Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); + if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { + // EHPads can't have DPValues attached to them, but it might be possible + // for things with token type. + Inst->dropDbgValues(); + EndInst = Inst; + continue; + } + if (isa<DbgInfoIntrinsic>(Inst)) + ++NumDeadDbgInst; + else + ++NumDeadInst; + // RemoveDIs: erasing debug-info must be done manually. + Inst->dropDbgValues(); + Inst->eraseFromParent(); + } + return {NumDeadInst, NumDeadDbgInst}; +} + +unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, + DomTreeUpdater *DTU, + MemorySSAUpdater *MSSAU) { + BasicBlock *BB = I->getParent(); + + if (MSSAU) + MSSAU->changeToUnreachable(I); + + SmallSet<BasicBlock *, 8> UniqueSuccessors; + + // Loop over all of the successors, removing BB's entry from any PHI + // nodes. + for (BasicBlock *Successor : successors(BB)) { + Successor->removePredecessor(BB, PreserveLCSSA); + if (DTU) + UniqueSuccessors.insert(Successor); + } + auto *UI = new UnreachableInst(I->getContext(), I); + UI->setDebugLoc(I->getDebugLoc()); + + // All instructions after this are dead. + unsigned NumInstrsRemoved = 0; + BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); + while (BBI != BBE) { + if (!BBI->use_empty()) + BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); + BBI++->eraseFromParent(); + ++NumInstrsRemoved; + } + if (DTU) { + SmallVector<DominatorTree::UpdateType, 8> Updates; + Updates.reserve(UniqueSuccessors.size()); + for (BasicBlock *UniqueSuccessor : UniqueSuccessors) + Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); + DTU->applyUpdates(Updates); + } + BB->flushTerminatorDbgValues(); + return NumInstrsRemoved; +} + +CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { + SmallVector<Value *, 8> Args(II->args()); + SmallVector<OperandBundleDef, 1> OpBundles; + II->getOperandBundlesAsDefs(OpBundles); + CallInst *NewCall = CallInst::Create(II->getFunctionType(), + II->getCalledOperand(), Args, OpBundles); + NewCall->setCallingConv(II->getCallingConv()); + NewCall->setAttributes(II->getAttributes()); + NewCall->setDebugLoc(II->getDebugLoc()); + NewCall->copyMetadata(*II); + + // If the invoke had profile metadata, try converting them for CallInst. + uint64_t TotalWeight; + if (NewCall->extractProfTotalWeight(TotalWeight)) { + // Set the total weight if it fits into i32, otherwise reset. + MDBuilder MDB(NewCall->getContext()); + auto NewWeights = uint32_t(TotalWeight) != TotalWeight + ? nullptr + : MDB.createBranchWeights({uint32_t(TotalWeight)}); + NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); + } + + return NewCall; +} + +// changeToCall - Convert the specified invoke into a normal call. +CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { + CallInst *NewCall = createCallMatchingInvoke(II); + NewCall->takeName(II); + NewCall->insertBefore(II); + II->replaceAllUsesWith(NewCall); + + // Follow the call by a branch to the normal destination. + BasicBlock *NormalDestBB = II->getNormalDest(); + BranchInst::Create(NormalDestBB, II); + + // Update PHI nodes in the unwind destination + BasicBlock *BB = II->getParent(); + BasicBlock *UnwindDestBB = II->getUnwindDest(); + UnwindDestBB->removePredecessor(BB); + II->eraseFromParent(); + if (DTU) + DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); + return NewCall; +} + +BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, + BasicBlock *UnwindEdge, + DomTreeUpdater *DTU) { + BasicBlock *BB = CI->getParent(); + + // Convert this function call into an invoke instruction. First, split the + // basic block. + BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, + CI->getName() + ".noexc"); + + // Delete the unconditional branch inserted by SplitBlock + BB->back().eraseFromParent(); + + // Create the new invoke instruction. + SmallVector<Value *, 8> InvokeArgs(CI->args()); + SmallVector<OperandBundleDef, 1> OpBundles; + + CI->getOperandBundlesAsDefs(OpBundles); + + // Note: we're round tripping operand bundles through memory here, and that + // can potentially be avoided with a cleverer API design that we do not have + // as of this time. + + InvokeInst *II = + InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, + UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); + II->setDebugLoc(CI->getDebugLoc()); + II->setCallingConv(CI->getCallingConv()); + II->setAttributes(CI->getAttributes()); + II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); + + if (DTU) + DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); + + // Make sure that anything using the call now uses the invoke! This also + // updates the CallGraph if present, because it uses a WeakTrackingVH. + CI->replaceAllUsesWith(II); + + // Delete the original call + Split->front().eraseFromParent(); + return Split; +} + +static bool markAliveBlocks(Function &F, + SmallPtrSetImpl<BasicBlock *> &Reachable, + DomTreeUpdater *DTU = nullptr) { + SmallVector<BasicBlock*, 128> Worklist; + BasicBlock *BB = &F.front(); + Worklist.push_back(BB); + Reachable.insert(BB); + bool Changed = false; + do { + BB = Worklist.pop_back_val(); + + // Do a quick scan of the basic block, turning any obviously unreachable + // instructions into LLVM unreachable insts. The instruction combining pass + // canonicalizes unreachable insts into stores to null or undef. + for (Instruction &I : *BB) { + if (auto *CI = dyn_cast<CallInst>(&I)) { + Value *Callee = CI->getCalledOperand(); + // Handle intrinsic calls. + if (Function *F = dyn_cast<Function>(Callee)) { + auto IntrinsicID = F->getIntrinsicID(); + // Assumptions that are known to be false are equivalent to + // unreachable. Also, if the condition is undefined, then we make the + // choice most beneficial to the optimizer, and choose that to also be + // unreachable. + if (IntrinsicID == Intrinsic::assume) { + if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { + // Don't insert a call to llvm.trap right before the unreachable. + changeToUnreachable(CI, false, DTU); + Changed = true; + break; + } + } else if (IntrinsicID == Intrinsic::experimental_guard) { + // A call to the guard intrinsic bails out of the current + // compilation unit if the predicate passed to it is false. If the + // predicate is a constant false, then we know the guard will bail + // out of the current compile unconditionally, so all code following + // it is dead. + // + // Note: unlike in llvm.assume, it is not "obviously profitable" for + // guards to treat `undef` as `false` since a guard on `undef` can + // still be useful for widening. + if (match(CI->getArgOperand(0), m_Zero())) + if (!isa<UnreachableInst>(CI->getNextNode())) { + changeToUnreachable(CI->getNextNode(), false, DTU); + Changed = true; + break; + } + } + } else if ((isa<ConstantPointerNull>(Callee) && + !NullPointerIsDefined(CI->getFunction(), + cast<PointerType>(Callee->getType()) + ->getAddressSpace())) || + isa<UndefValue>(Callee)) { + changeToUnreachable(CI, false, DTU); + Changed = true; + break; + } + if (CI->doesNotReturn() && !CI->isMustTailCall()) { + // If we found a call to a no-return function, insert an unreachable + // instruction after it. Make sure there isn't *already* one there + // though. + if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { + // Don't insert a call to llvm.trap right before the unreachable. + changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); + Changed = true; + } + break; + } + } else if (auto *SI = dyn_cast<StoreInst>(&I)) { + // Store to undef and store to null are undefined and used to signal + // that they should be changed to unreachable by passes that can't + // modify the CFG. + + // Don't touch volatile stores. + if (SI->isVolatile()) continue; + + Value *Ptr = SI->getOperand(1); + + if (isa<UndefValue>(Ptr) || + (isa<ConstantPointerNull>(Ptr) && + !NullPointerIsDefined(SI->getFunction(), + SI->getPointerAddressSpace()))) { + changeToUnreachable(SI, false, DTU); + Changed = true; + break; + } + } + } + + Instruction *Terminator = BB->getTerminator(); + if (auto *II = dyn_cast<InvokeInst>(Terminator)) { + // Turn invokes that call 'nounwind' functions into ordinary calls. + Value *Callee = II->getCalledOperand(); + if ((isa<ConstantPointerNull>(Callee) && + !NullPointerIsDefined(BB->getParent())) || + isa<UndefValue>(Callee)) { + changeToUnreachable(II, false, DTU); + Changed = true; + } else { + if (II->doesNotReturn() && + !isa<UnreachableInst>(II->getNormalDest()->front())) { + // If we found an invoke of a no-return function, + // create a new empty basic block with an `unreachable` terminator, + // and set it as the normal destination for the invoke, + // unless that is already the case. + // Note that the original normal destination could have other uses. + BasicBlock *OrigNormalDest = II->getNormalDest(); + OrigNormalDest->removePredecessor(II->getParent()); + LLVMContext &Ctx = II->getContext(); + BasicBlock *UnreachableNormalDest = BasicBlock::Create( + Ctx, OrigNormalDest->getName() + ".unreachable", + II->getFunction(), OrigNormalDest); + new UnreachableInst(Ctx, UnreachableNormalDest); + II->setNormalDest(UnreachableNormalDest); + if (DTU) + DTU->applyUpdates( + {{DominatorTree::Delete, BB, OrigNormalDest}, + {DominatorTree::Insert, BB, UnreachableNormalDest}}); + Changed = true; + } + if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { + if (II->use_empty() && !II->mayHaveSideEffects()) { + // jump to the normal destination branch. + BasicBlock *NormalDestBB = II->getNormalDest(); + BasicBlock *UnwindDestBB = II->getUnwindDest(); + BranchInst::Create(NormalDestBB, II); + UnwindDestBB->removePredecessor(II->getParent()); + II->eraseFromParent(); + if (DTU) + DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); + } else + changeToCall(II, DTU); + Changed = true; + } + } + } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { + // Remove catchpads which cannot be reached. + struct CatchPadDenseMapInfo { + static CatchPadInst *getEmptyKey() { + return DenseMapInfo<CatchPadInst *>::getEmptyKey(); + } + + static CatchPadInst *getTombstoneKey() { + return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); + } + + static unsigned getHashValue(CatchPadInst *CatchPad) { + return static_cast<unsigned>(hash_combine_range( + CatchPad->value_op_begin(), CatchPad->value_op_end())); + } + + static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { + if (LHS == getEmptyKey() || LHS == getTombstoneKey() || + RHS == getEmptyKey() || RHS == getTombstoneKey()) + return LHS == RHS; + return LHS->isIdenticalTo(RHS); + } + }; + + SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; + // Set of unique CatchPads. + SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, + CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> + HandlerSet; + detail::DenseSetEmpty Empty; + for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), + E = CatchSwitch->handler_end(); + I != E; ++I) { + BasicBlock *HandlerBB = *I; + if (DTU) + ++NumPerSuccessorCases[HandlerBB]; + auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); + if (!HandlerSet.insert({CatchPad, Empty}).second) { + if (DTU) + --NumPerSuccessorCases[HandlerBB]; + CatchSwitch->removeHandler(I); + --I; + --E; + Changed = true; + } + } + if (DTU) { + std::vector<DominatorTree::UpdateType> Updates; + for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) + if (I.second == 0) + Updates.push_back({DominatorTree::Delete, BB, I.first}); + DTU->applyUpdates(Updates); + } + } + + Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); + for (BasicBlock *Successor : successors(BB)) + if (Reachable.insert(Successor).second) + Worklist.push_back(Successor); + } while (!Worklist.empty()); + return Changed; +} + +Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { + Instruction *TI = BB->getTerminator(); + + if (auto *II = dyn_cast<InvokeInst>(TI)) + return changeToCall(II, DTU); + + Instruction *NewTI; + BasicBlock *UnwindDest; + + if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { + NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); + UnwindDest = CRI->getUnwindDest(); + } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { + auto *NewCatchSwitch = CatchSwitchInst::Create( + CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), + CatchSwitch->getName(), CatchSwitch); + for (BasicBlock *PadBB : CatchSwitch->handlers()) + NewCatchSwitch->addHandler(PadBB); + + NewTI = NewCatchSwitch; + UnwindDest = CatchSwitch->getUnwindDest(); + } else { + llvm_unreachable("Could not find unwind successor"); + } + + NewTI->takeName(TI); + NewTI->setDebugLoc(TI->getDebugLoc()); + UnwindDest->removePredecessor(BB); + TI->replaceAllUsesWith(NewTI); + TI->eraseFromParent(); + if (DTU) + DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); + return NewTI; +} + +/// removeUnreachableBlocks - Remove blocks that are not reachable, even +/// if they are in a dead cycle. Return true if a change was made, false +/// otherwise. +bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, + MemorySSAUpdater *MSSAU) { + SmallPtrSet<BasicBlock *, 16> Reachable; + bool Changed = markAliveBlocks(F, Reachable, DTU); + + // If there are unreachable blocks in the CFG... + if (Reachable.size() == F.size()) + return Changed; + + assert(Reachable.size() < F.size()); + + // Are there any blocks left to actually delete? + SmallSetVector<BasicBlock *, 8> BlocksToRemove; + for (BasicBlock &BB : F) { + // Skip reachable basic blocks + if (Reachable.count(&BB)) + continue; + // Skip already-deleted blocks + if (DTU && DTU->isBBPendingDeletion(&BB)) + continue; + BlocksToRemove.insert(&BB); + } + + if (BlocksToRemove.empty()) + return Changed; + + Changed = true; + NumRemoved += BlocksToRemove.size(); + + if (MSSAU) + MSSAU->removeBlocks(BlocksToRemove); + + DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); + + return Changed; +} + +void llvm::combineMetadata(Instruction *K, const Instruction *J, + ArrayRef<unsigned> KnownIDs, bool DoesKMove) { + SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; + K->dropUnknownNonDebugMetadata(KnownIDs); + K->getAllMetadataOtherThanDebugLoc(Metadata); + for (const auto &MD : Metadata) { + unsigned Kind = MD.first; + MDNode *JMD = J->getMetadata(Kind); + MDNode *KMD = MD.second; + + switch (Kind) { + default: + K->setMetadata(Kind, nullptr); // Remove unknown metadata + break; + case LLVMContext::MD_dbg: + llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); + case LLVMContext::MD_DIAssignID: + K->mergeDIAssignID(J); + break; + case LLVMContext::MD_tbaa: + K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); + break; + case LLVMContext::MD_alias_scope: + K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); + break; + case LLVMContext::MD_noalias: + case LLVMContext::MD_mem_parallel_loop_access: + K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); + break; + case LLVMContext::MD_access_group: + K->setMetadata(LLVMContext::MD_access_group, + intersectAccessGroups(K, J)); + break; + case LLVMContext::MD_range: + if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) + K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); + break; + case LLVMContext::MD_fpmath: + K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); + break; + case LLVMContext::MD_invariant_load: + // If K moves, only set the !invariant.load if it is present in both + // instructions. + if (DoesKMove) + K->setMetadata(Kind, JMD); + break; + case LLVMContext::MD_nonnull: + if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) + K->setMetadata(Kind, JMD); + break; + case LLVMContext::MD_invariant_group: + // Preserve !invariant.group in K. + break; + case LLVMContext::MD_align: + if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) + K->setMetadata( + Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); + break; + case LLVMContext::MD_dereferenceable: + case LLVMContext::MD_dereferenceable_or_null: + if (DoesKMove) + K->setMetadata(Kind, + MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); + break; + case LLVMContext::MD_preserve_access_index: + // Preserve !preserve.access.index in K. + break; + case LLVMContext::MD_noundef: + // If K does move, keep noundef if it is present in both instructions. + if (DoesKMove) + K->setMetadata(Kind, JMD); + break; + case LLVMContext::MD_nontemporal: + // Preserve !nontemporal if it is present on both instructions. + K->setMetadata(Kind, JMD); + break; + case LLVMContext::MD_prof: + if (DoesKMove) + K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); + break; + } + } + // Set !invariant.group from J if J has it. If both instructions have it + // then we will just pick it from J - even when they are different. + // Also make sure that K is load or store - f.e. combining bitcast with load + // could produce bitcast with invariant.group metadata, which is invalid. + // FIXME: we should try to preserve both invariant.group md if they are + // different, but right now instruction can only have one invariant.group. + if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) + if (isa<LoadInst>(K) || isa<StoreInst>(K)) + K->setMetadata(LLVMContext::MD_invariant_group, JMD); +} + +void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, + bool KDominatesJ) { + unsigned KnownIDs[] = {LLVMContext::MD_tbaa, + LLVMContext::MD_alias_scope, + LLVMContext::MD_noalias, + LLVMContext::MD_range, + LLVMContext::MD_fpmath, + LLVMContext::MD_invariant_load, + LLVMContext::MD_nonnull, + LLVMContext::MD_invariant_group, + LLVMContext::MD_align, + LLVMContext::MD_dereferenceable, + LLVMContext::MD_dereferenceable_or_null, + LLVMContext::MD_access_group, + LLVMContext::MD_preserve_access_index, + LLVMContext::MD_prof, + LLVMContext::MD_nontemporal, + LLVMContext::MD_noundef}; + combineMetadata(K, J, KnownIDs, KDominatesJ); +} + +void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { + SmallVector<std::pair<unsigned, MDNode *>, 8> MD; + Source.getAllMetadata(MD); + MDBuilder MDB(Dest.getContext()); + Type *NewType = Dest.getType(); + const DataLayout &DL = Source.getModule()->getDataLayout(); + for (const auto &MDPair : MD) { + unsigned ID = MDPair.first; + MDNode *N = MDPair.second; + // Note, essentially every kind of metadata should be preserved here! This + // routine is supposed to clone a load instruction changing *only its type*. + // The only metadata it makes sense to drop is metadata which is invalidated + // when the pointer type changes. This should essentially never be the case + // in LLVM, but we explicitly switch over only known metadata to be + // conservatively correct. If you are adding metadata to LLVM which pertains + // to loads, you almost certainly want to add it here. + switch (ID) { + case LLVMContext::MD_dbg: + case LLVMContext::MD_tbaa: + case LLVMContext::MD_prof: + case LLVMContext::MD_fpmath: + case LLVMContext::MD_tbaa_struct: + case LLVMContext::MD_invariant_load: + case LLVMContext::MD_alias_scope: + case LLVMContext::MD_noalias: + case LLVMContext::MD_nontemporal: + case LLVMContext::MD_mem_parallel_loop_access: + case LLVMContext::MD_access_group: + case LLVMContext::MD_noundef: + // All of these directly apply. + Dest.setMetadata(ID, N); + break; + + case LLVMContext::MD_nonnull: + copyNonnullMetadata(Source, N, Dest); + break; + + case LLVMContext::MD_align: + case LLVMContext::MD_dereferenceable: + case LLVMContext::MD_dereferenceable_or_null: + // These only directly apply if the new type is also a pointer. + if (NewType->isPointerTy()) + Dest.setMetadata(ID, N); + break; + + case LLVMContext::MD_range: + copyRangeMetadata(DL, Source, N, Dest); + break; + } + } +} + +void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { + auto *ReplInst = dyn_cast<Instruction>(Repl); + if (!ReplInst) + return; + + // Patch the replacement so that it is not more restrictive than the value + // being replaced. + // Note that if 'I' is a load being replaced by some operation, + // for example, by an arithmetic operation, then andIRFlags() + // would just erase all math flags from the original arithmetic + // operation, which is clearly not wanted and not needed. + if (!isa<LoadInst>(I)) + ReplInst->andIRFlags(I); + + // FIXME: If both the original and replacement value are part of the + // same control-flow region (meaning that the execution of one + // guarantees the execution of the other), then we can combine the + // noalias scopes here and do better than the general conservative + // answer used in combineMetadata(). + + // In general, GVN unifies expressions over different control-flow + // regions, and so we need a conservative combination of the noalias + // scopes. + combineMetadataForCSE(ReplInst, I, false); +} + +template <typename RootType, typename DominatesFn> +static unsigned replaceDominatedUsesWith(Value *From, Value *To, + const RootType &Root, + const DominatesFn &Dominates) { + assert(From->getType() == To->getType()); + + unsigned Count = 0; + for (Use &U : llvm::make_early_inc_range(From->uses())) { + if (!Dominates(Root, U)) + continue; + LLVM_DEBUG(dbgs() << "Replace dominated use of '"; + From->printAsOperand(dbgs()); + dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); + U.set(To); + ++Count; + } + return Count; +} + +unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { + assert(From->getType() == To->getType()); + auto *BB = From->getParent(); + unsigned Count = 0; + + for (Use &U : llvm::make_early_inc_range(From->uses())) { + auto *I = cast<Instruction>(U.getUser()); + if (I->getParent() == BB) + continue; + U.set(To); + ++Count; + } + return Count; +} + +unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, + DominatorTree &DT, + const BasicBlockEdge &Root) { + auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { + return DT.dominates(Root, U); + }; + return ::replaceDominatedUsesWith(From, To, Root, Dominates); +} + +unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, + DominatorTree &DT, + const BasicBlock *BB) { + auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { + return DT.dominates(BB, U); + }; + return ::replaceDominatedUsesWith(From, To, BB, Dominates); +} + +bool llvm::callsGCLeafFunction(const CallBase *Call, + const TargetLibraryInfo &TLI) { + // Check if the function is specifically marked as a gc leaf function. + if (Call->hasFnAttr("gc-leaf-function")) + return true; + if (const Function *F = Call->getCalledFunction()) { + if (F->hasFnAttribute("gc-leaf-function")) + return true; + + if (auto IID = F->getIntrinsicID()) { + // Most LLVM intrinsics do not take safepoints. + return IID != Intrinsic::experimental_gc_statepoint && + IID != Intrinsic::experimental_deoptimize && + IID != Intrinsic::memcpy_element_unordered_atomic && + IID != Intrinsic::memmove_element_unordered_atomic; + } + } + + // Lib calls can be materialized by some passes, and won't be + // marked as 'gc-leaf-function.' All available Libcalls are + // GC-leaf. + LibFunc LF; + if (TLI.getLibFunc(*Call, LF)) { + return TLI.has(LF); + } + + return false; +} + +void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, + LoadInst &NewLI) { + auto *NewTy = NewLI.getType(); + + // This only directly applies if the new type is also a pointer. + if (NewTy->isPointerTy()) { + NewLI.setMetadata(LLVMContext::MD_nonnull, N); + return; + } + + // The only other translation we can do is to integral loads with !range + // metadata. + if (!NewTy->isIntegerTy()) + return; + + MDBuilder MDB(NewLI.getContext()); + const Value *Ptr = OldLI.getPointerOperand(); + auto *ITy = cast<IntegerType>(NewTy); + auto *NullInt = ConstantExpr::getPtrToInt( + ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); + auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); + NewLI.setMetadata(LLVMContext::MD_range, + MDB.createRange(NonNullInt, NullInt)); +} + +void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, + MDNode *N, LoadInst &NewLI) { + auto *NewTy = NewLI.getType(); + // Simply copy the metadata if the type did not change. + if (NewTy == OldLI.getType()) { + NewLI.setMetadata(LLVMContext::MD_range, N); + return; + } + + // Give up unless it is converted to a pointer where there is a single very + // valuable mapping we can do reliably. + // FIXME: It would be nice to propagate this in more ways, but the type + // conversions make it hard. + if (!NewTy->isPointerTy()) + return; + + unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); + if (BitWidth == OldLI.getType()->getScalarSizeInBits() && + !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { + MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt); + NewLI.setMetadata(LLVMContext::MD_nonnull, NN); + } +} + +void llvm::dropDebugUsers(Instruction &I) { + SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; + SmallVector<DPValue *, 1> DPUsers; + findDbgUsers(DbgUsers, &I, &DPUsers); + for (auto *DII : DbgUsers) + DII->eraseFromParent(); + for (auto *DPV : DPUsers) + DPV->eraseFromParent(); +} + +void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, + BasicBlock *BB) { + // Since we are moving the instructions out of its basic block, we do not + // retain their original debug locations (DILocations) and debug intrinsic + // instructions. + // + // Doing so would degrade the debugging experience and adversely affect the + // accuracy of profiling information. + // + // Currently, when hoisting the instructions, we take the following actions: + // - Remove their debug intrinsic instructions. + // - Set their debug locations to the values from the insertion point. + // + // As per PR39141 (comment #8), the more fundamental reason why the dbg.values + // need to be deleted, is because there will not be any instructions with a + // DILocation in either branch left after performing the transformation. We + // can only insert a dbg.value after the two branches are joined again. + // + // See PR38762, PR39243 for more details. + // + // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to + // encode predicated DIExpressions that yield different results on different + // code paths. + + for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { + Instruction *I = &*II; + I->dropUBImplyingAttrsAndMetadata(); + if (I->isUsedByMetadata()) + dropDebugUsers(*I); + // RemoveDIs: drop debug-info too as the following code does. + I->dropDbgValues(); + if (I->isDebugOrPseudoInst()) { + // Remove DbgInfo and pseudo probe Intrinsics. + II = I->eraseFromParent(); + continue; + } + I->setDebugLoc(InsertPt->getDebugLoc()); + ++II; + } + DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), + BB->getTerminator()->getIterator()); +} + +DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, + Type &Ty) { + // Create integer constant expression. + auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { + const APInt &API = cast<ConstantInt>(&CV)->getValue(); + std::optional<int64_t> InitIntOpt = API.trySExtValue(); + return InitIntOpt ? DIB.createConstantValueExpression( + static_cast<uint64_t>(*InitIntOpt)) + : nullptr; + }; + + if (isa<ConstantInt>(C)) + return createIntegerExpression(C); + + auto *FP = dyn_cast<ConstantFP>(&C); + if (FP && (Ty.isFloatTy() || Ty.isDoubleTy())) { + const APFloat &APF = FP->getValueAPF(); + return DIB.createConstantValueExpression( + APF.bitcastToAPInt().getZExtValue()); + } + + if (!Ty.isPointerTy()) + return nullptr; + + if (isa<ConstantPointerNull>(C)) + return DIB.createConstantValueExpression(0); + + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) + if (CE->getOpcode() == Instruction::IntToPtr) { + const Value *V = CE->getOperand(0); + if (auto CI = dyn_cast_or_null<ConstantInt>(V)) + return createIntegerExpression(*CI); + } + return nullptr; +} + +namespace { + +/// A potential constituent of a bitreverse or bswap expression. See +/// collectBitParts for a fuller explanation. +struct BitPart { + BitPart(Value *P, unsigned BW) : Provider(P) { + Provenance.resize(BW); + } + + /// The Value that this is a bitreverse/bswap of. + Value *Provider; + + /// The "provenance" of each bit. Provenance[A] = B means that bit A + /// in Provider becomes bit B in the result of this expression. + SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. + + enum { Unset = -1 }; +}; + +} // end anonymous namespace + +/// Analyze the specified subexpression and see if it is capable of providing +/// pieces of a bswap or bitreverse. The subexpression provides a potential +/// piece of a bswap or bitreverse if it can be proved that each non-zero bit in +/// the output of the expression came from a corresponding bit in some other +/// value. This function is recursive, and the end result is a mapping of +/// bitnumber to bitnumber. It is the caller's responsibility to validate that +/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. +/// +/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know +/// that the expression deposits the low byte of %X into the high byte of the +/// result and that all other bits are zero. This expression is accepted and a +/// BitPart is returned with Provider set to %X and Provenance[24-31] set to +/// [0-7]. +/// +/// For vector types, all analysis is performed at the per-element level. No +/// cross-element analysis is supported (shuffle/insertion/reduction), and all +/// constant masks must be splatted across all elements. +/// +/// To avoid revisiting values, the BitPart results are memoized into the +/// provided map. To avoid unnecessary copying of BitParts, BitParts are +/// constructed in-place in the \c BPS map. Because of this \c BPS needs to +/// store BitParts objects, not pointers. As we need the concept of a nullptr +/// BitParts (Value has been analyzed and the analysis failed), we an Optional +/// type instead to provide the same functionality. +/// +/// Because we pass around references into \c BPS, we must use a container that +/// does not invalidate internal references (std::map instead of DenseMap). +static const std::optional<BitPart> & +collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, + std::map<Value *, std::optional<BitPart>> &BPS, int Depth, + bool &FoundRoot) { + auto I = BPS.find(V); + if (I != BPS.end()) + return I->second; + + auto &Result = BPS[V] = std::nullopt; + auto BitWidth = V->getType()->getScalarSizeInBits(); + + // Can't do integer/elements > 128 bits. + if (BitWidth > 128) + return Result; + + // Prevent stack overflow by limiting the recursion depth + if (Depth == BitPartRecursionMaxDepth) { + LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); + return Result; + } + + if (auto *I = dyn_cast<Instruction>(V)) { + Value *X, *Y; + const APInt *C; + + // If this is an or instruction, it may be an inner node of the bswap. + if (match(V, m_Or(m_Value(X), m_Value(Y)))) { + // Check we have both sources and they are from the same provider. + const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!A || !A->Provider) + return Result; + + const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!B || A->Provider != B->Provider) + return Result; + + // Try and merge the two together. + Result = BitPart(A->Provider, BitWidth); + for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { + if (A->Provenance[BitIdx] != BitPart::Unset && + B->Provenance[BitIdx] != BitPart::Unset && + A->Provenance[BitIdx] != B->Provenance[BitIdx]) + return Result = std::nullopt; + + if (A->Provenance[BitIdx] == BitPart::Unset) + Result->Provenance[BitIdx] = B->Provenance[BitIdx]; + else + Result->Provenance[BitIdx] = A->Provenance[BitIdx]; + } + + return Result; + } + + // If this is a logical shift by a constant, recurse then shift the result. + if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { + const APInt &BitShift = *C; + + // Ensure the shift amount is defined. + if (BitShift.uge(BitWidth)) + return Result; + + // For bswap-only, limit shift amounts to whole bytes, for an early exit. + if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) + return Result; + + const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!Res) + return Result; + Result = Res; + + // Perform the "shift" on BitProvenance. + auto &P = Result->Provenance; + if (I->getOpcode() == Instruction::Shl) { + P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); + P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); + } else { + P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); + P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); + } + + return Result; + } + + // If this is a logical 'and' with a mask that clears bits, recurse then + // unset the appropriate bits. + if (match(V, m_And(m_Value(X), m_APInt(C)))) { + const APInt &AndMask = *C; + + // Check that the mask allows a multiple of 8 bits for a bswap, for an + // early exit. + unsigned NumMaskedBits = AndMask.popcount(); + if (!MatchBitReversals && (NumMaskedBits % 8) != 0) + return Result; + + const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!Res) + return Result; + Result = Res; + + for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) + // If the AndMask is zero for this bit, clear the bit. + if (AndMask[BitIdx] == 0) + Result->Provenance[BitIdx] = BitPart::Unset; + return Result; + } + + // If this is a zext instruction zero extend the result. + if (match(V, m_ZExt(m_Value(X)))) { + const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!Res) + return Result; + + Result = BitPart(Res->Provider, BitWidth); + auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); + for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) + Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; + for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) + Result->Provenance[BitIdx] = BitPart::Unset; + return Result; + } + + // If this is a truncate instruction, extract the lower bits. + if (match(V, m_Trunc(m_Value(X)))) { + const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!Res) + return Result; + + Result = BitPart(Res->Provider, BitWidth); + for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) + Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; + return Result; + } + + // BITREVERSE - most likely due to us previous matching a partial + // bitreverse. + if (match(V, m_BitReverse(m_Value(X)))) { + const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!Res) + return Result; + + Result = BitPart(Res->Provider, BitWidth); + for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) + Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; + return Result; + } + + // BSWAP - most likely due to us previous matching a partial bswap. + if (match(V, m_BSwap(m_Value(X)))) { + const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!Res) + return Result; + + unsigned ByteWidth = BitWidth / 8; + Result = BitPart(Res->Provider, BitWidth); + for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { + unsigned ByteBitOfs = ByteIdx * 8; + for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) + Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = + Res->Provenance[ByteBitOfs + BitIdx]; + } + return Result; + } + + // Funnel 'double' shifts take 3 operands, 2 inputs and the shift + // amount (modulo). + // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) + // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) + if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || + match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { + // We can treat fshr as a fshl by flipping the modulo amount. + unsigned ModAmt = C->urem(BitWidth); + if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) + ModAmt = BitWidth - ModAmt; + + // For bswap-only, limit shift amounts to whole bytes, for an early exit. + if (!MatchBitReversals && (ModAmt % 8) != 0) + return Result; + + // Check we have both sources and they are from the same provider. + const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!LHS || !LHS->Provider) + return Result; + + const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, + Depth + 1, FoundRoot); + if (!RHS || LHS->Provider != RHS->Provider) + return Result; + + unsigned StartBitRHS = BitWidth - ModAmt; + Result = BitPart(LHS->Provider, BitWidth); + for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) + Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; + for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) + Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; + return Result; + } + } + + // If we've already found a root input value then we're never going to merge + // these back together. + if (FoundRoot) + return Result; + + // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must + // be the root input value to the bswap/bitreverse. + FoundRoot = true; + Result = BitPart(V, BitWidth); + for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) + Result->Provenance[BitIdx] = BitIdx; + return Result; +} + +static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, + unsigned BitWidth) { + if (From % 8 != To % 8) + return false; + // Convert from bit indices to byte indices and check for a byte reversal. + From >>= 3; + To >>= 3; + BitWidth >>= 3; + return From == BitWidth - To - 1; +} + +static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, + unsigned BitWidth) { + return From == BitWidth - To - 1; +} + +bool llvm::recognizeBSwapOrBitReverseIdiom( + Instruction *I, bool MatchBSwaps, bool MatchBitReversals, + SmallVectorImpl<Instruction *> &InsertedInsts) { + if (!match(I, m_Or(m_Value(), m_Value())) && + !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && + !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && + !match(I, m_BSwap(m_Value()))) + return false; + if (!MatchBSwaps && !MatchBitReversals) + return false; + Type *ITy = I->getType(); + if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) + return false; // Can't do integer/elements > 128 bits. + + // Try to find all the pieces corresponding to the bswap. + bool FoundRoot = false; + std::map<Value *, std::optional<BitPart>> BPS; + const auto &Res = + collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); + if (!Res) + return false; + ArrayRef<int8_t> BitProvenance = Res->Provenance; + assert(all_of(BitProvenance, + [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && + "Illegal bit provenance index"); + + // If the upper bits are zero, then attempt to perform as a truncated op. + Type *DemandedTy = ITy; + if (BitProvenance.back() == BitPart::Unset) { + while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) + BitProvenance = BitProvenance.drop_back(); + if (BitProvenance.empty()) + return false; // TODO - handle null value? + DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); + if (auto *IVecTy = dyn_cast<VectorType>(ITy)) + DemandedTy = VectorType::get(DemandedTy, IVecTy); + } + + // Check BitProvenance hasn't found a source larger than the result type. + unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); + if (DemandedBW > ITy->getScalarSizeInBits()) + return false; + + // Now, is the bit permutation correct for a bswap or a bitreverse? We can + // only byteswap values with an even number of bytes. + APInt DemandedMask = APInt::getAllOnes(DemandedBW); + bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; + bool OKForBitReverse = MatchBitReversals; + for (unsigned BitIdx = 0; + (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { + if (BitProvenance[BitIdx] == BitPart::Unset) { + DemandedMask.clearBit(BitIdx); + continue; + } + OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, + DemandedBW); + OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], + BitIdx, DemandedBW); + } + + Intrinsic::ID Intrin; + if (OKForBSwap) + Intrin = Intrinsic::bswap; + else if (OKForBitReverse) + Intrin = Intrinsic::bitreverse; + else + return false; + + Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); + Value *Provider = Res->Provider; + + // We may need to truncate the provider. + if (DemandedTy != Provider->getType()) { + auto *Trunc = + CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I); + InsertedInsts.push_back(Trunc); + Provider = Trunc; + } + + Instruction *Result = CallInst::Create(F, Provider, "rev", I); + InsertedInsts.push_back(Result); + + if (!DemandedMask.isAllOnes()) { + auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); + Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I); + InsertedInsts.push_back(Result); + } + + // We may need to zeroextend back to the result type. + if (ITy != Result->getType()) { + auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I); + InsertedInsts.push_back(ExtInst); + } + + return true; +} + +// CodeGen has special handling for some string functions that may replace +// them with target-specific intrinsics. Since that'd skip our interceptors +// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, +// we mark affected calls as NoBuiltin, which will disable optimization +// in CodeGen. +void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( + CallInst *CI, const TargetLibraryInfo *TLI) { + Function *F = CI->getCalledFunction(); + LibFunc Func; + if (F && !F->hasLocalLinkage() && F->hasName() && + TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && + !F->doesNotAccessMemory()) + CI->addFnAttr(Attribute::NoBuiltin); +} + +bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { + // We can't have a PHI with a metadata type. + if (I->getOperand(OpIdx)->getType()->isMetadataTy()) + return false; + + // Early exit. + if (!isa<Constant>(I->getOperand(OpIdx))) + return true; + + switch (I->getOpcode()) { + default: + return true; + case Instruction::Call: + case Instruction::Invoke: { + const auto &CB = cast<CallBase>(*I); + + // Can't handle inline asm. Skip it. + if (CB.isInlineAsm()) + return false; + + // Constant bundle operands may need to retain their constant-ness for + // correctness. + if (CB.isBundleOperand(OpIdx)) + return false; + + if (OpIdx < CB.arg_size()) { + // Some variadic intrinsics require constants in the variadic arguments, + // which currently aren't markable as immarg. + if (isa<IntrinsicInst>(CB) && + OpIdx >= CB.getFunctionType()->getNumParams()) { + // This is known to be OK for stackmap. + return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; + } + + // gcroot is a special case, since it requires a constant argument which + // isn't also required to be a simple ConstantInt. + if (CB.getIntrinsicID() == Intrinsic::gcroot) + return false; + + // Some intrinsic operands are required to be immediates. + return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); + } + + // It is never allowed to replace the call argument to an intrinsic, but it + // may be possible for a call. + return !isa<IntrinsicInst>(CB); + } + case Instruction::ShuffleVector: + // Shufflevector masks are constant. + return OpIdx != 2; + case Instruction::Switch: + case Instruction::ExtractValue: + // All operands apart from the first are constant. + return OpIdx == 0; + case Instruction::InsertValue: + // All operands apart from the first and the second are constant. + return OpIdx < 2; + case Instruction::Alloca: + // Static allocas (constant size in the entry block) are handled by + // prologue/epilogue insertion so they're free anyway. We definitely don't + // want to make them non-constant. + return !cast<AllocaInst>(I)->isStaticAlloca(); + case Instruction::GetElementPtr: + if (OpIdx == 0) + return true; + gep_type_iterator It = gep_type_begin(I); + for (auto E = std::next(It, OpIdx); It != E; ++It) + if (It.isStruct()) + return false; + return true; + } +} + +Value *llvm::invertCondition(Value *Condition) { + // First: Check if it's a constant + if (Constant *C = dyn_cast<Constant>(Condition)) + return ConstantExpr::getNot(C); + + // Second: If the condition is already inverted, return the original value + Value *NotCondition; + if (match(Condition, m_Not(m_Value(NotCondition)))) + return NotCondition; + + BasicBlock *Parent = nullptr; + Instruction *Inst = dyn_cast<Instruction>(Condition); + if (Inst) + Parent = Inst->getParent(); + else if (Argument *Arg = dyn_cast<Argument>(Condition)) + Parent = &Arg->getParent()->getEntryBlock(); + assert(Parent && "Unsupported condition to invert"); + + // Third: Check all the users for an invert + for (User *U : Condition->users()) + if (Instruction *I = dyn_cast<Instruction>(U)) + if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) + return I; + + // Last option: Create a new instruction + auto *Inverted = + BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); + if (Inst && !isa<PHINode>(Inst)) + Inverted->insertAfter(Inst); + else + Inverted->insertBefore(&*Parent->getFirstInsertionPt()); + return Inverted; +} + +bool llvm::inferAttributesFromOthers(Function &F) { + // Note: We explicitly check for attributes rather than using cover functions + // because some of the cover functions include the logic being implemented. + + bool Changed = false; + // readnone + not convergent implies nosync + if (!F.hasFnAttribute(Attribute::NoSync) && + F.doesNotAccessMemory() && !F.isConvergent()) { + F.setNoSync(); + Changed = true; + } + + // readonly implies nofree + if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { + F.setDoesNotFreeMemory(); + Changed = true; + } + + // willreturn implies mustprogress + if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { + F.setMustProgress(); + Changed = true; + } + + // TODO: There are a bunch of cases of restrictive memory effects we + // can infer by inspecting arguments of argmemonly-ish functions. + + return Changed; +} |
