aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp862
1 files changed, 862 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp
new file mode 100644
index 000000000000..befacb591762
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopPeel.cpp
@@ -0,0 +1,862 @@
+//===- LoopPeel.cpp -------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Loop Peeling Utilities.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/LoopPeel.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <limits>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "loop-peel"
+
+STATISTIC(NumPeeled, "Number of loops peeled");
+
+static cl::opt<unsigned> UnrollPeelCount(
+ "unroll-peel-count", cl::Hidden,
+ cl::desc("Set the unroll peeling count, for testing purposes"));
+
+static cl::opt<bool>
+ UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden,
+ cl::desc("Allows loops to be peeled when the dynamic "
+ "trip count is known to be low."));
+
+static cl::opt<bool>
+ UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling",
+ cl::init(false), cl::Hidden,
+ cl::desc("Allows loop nests to be peeled."));
+
+static cl::opt<unsigned> UnrollPeelMaxCount(
+ "unroll-peel-max-count", cl::init(7), cl::Hidden,
+ cl::desc("Max average trip count which will cause loop peeling."));
+
+static cl::opt<unsigned> UnrollForcePeelCount(
+ "unroll-force-peel-count", cl::init(0), cl::Hidden,
+ cl::desc("Force a peel count regardless of profiling information."));
+
+static cl::opt<bool> UnrollPeelMultiDeoptExit(
+ "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden,
+ cl::desc("Allow peeling of loops with multiple deopt exits."));
+
+static const char *PeeledCountMetaData = "llvm.loop.peeled.count";
+
+// Designates that a Phi is estimated to become invariant after an "infinite"
+// number of loop iterations (i.e. only may become an invariant if the loop is
+// fully unrolled).
+static const unsigned InfiniteIterationsToInvariance =
+ std::numeric_limits<unsigned>::max();
+
+// Check whether we are capable of peeling this loop.
+bool llvm::canPeel(Loop *L) {
+ // Make sure the loop is in simplified form
+ if (!L->isLoopSimplifyForm())
+ return false;
+
+ if (UnrollPeelMultiDeoptExit) {
+ SmallVector<BasicBlock *, 4> Exits;
+ L->getUniqueNonLatchExitBlocks(Exits);
+
+ if (!Exits.empty()) {
+ // Latch's terminator is a conditional branch, Latch is exiting and
+ // all non Latch exits ends up with deoptimize.
+ const BasicBlock *Latch = L->getLoopLatch();
+ const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator());
+ return T && T->isConditional() && L->isLoopExiting(Latch) &&
+ all_of(Exits, [](const BasicBlock *BB) {
+ return BB->getTerminatingDeoptimizeCall();
+ });
+ }
+ }
+
+ // Only peel loops that contain a single exit
+ if (!L->getExitingBlock() || !L->getUniqueExitBlock())
+ return false;
+
+ // Don't try to peel loops where the latch is not the exiting block.
+ // This can be an indication of two different things:
+ // 1) The loop is not rotated.
+ // 2) The loop contains irreducible control flow that involves the latch.
+ const BasicBlock *Latch = L->getLoopLatch();
+ if (Latch != L->getExitingBlock())
+ return false;
+
+ // Peeling is only supported if the latch is a branch.
+ if (!isa<BranchInst>(Latch->getTerminator()))
+ return false;
+
+ return true;
+}
+
+// This function calculates the number of iterations after which the given Phi
+// becomes an invariant. The pre-calculated values are memorized in the map. The
+// function (shortcut is I) is calculated according to the following definition:
+// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
+// If %y is a loop invariant, then I(%x) = 1.
+// If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
+// Otherwise, I(%x) is infinite.
+// TODO: Actually if %y is an expression that depends only on Phi %z and some
+// loop invariants, we can estimate I(%x) = I(%z) + 1. The example
+// looks like:
+// %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration.
+// %y = phi(0, 5),
+// %a = %y + 1.
+static unsigned calculateIterationsToInvariance(
+ PHINode *Phi, Loop *L, BasicBlock *BackEdge,
+ SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
+ assert(Phi->getParent() == L->getHeader() &&
+ "Non-loop Phi should not be checked for turning into invariant.");
+ assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
+ // If we already know the answer, take it from the map.
+ auto I = IterationsToInvariance.find(Phi);
+ if (I != IterationsToInvariance.end())
+ return I->second;
+
+ // Otherwise we need to analyze the input from the back edge.
+ Value *Input = Phi->getIncomingValueForBlock(BackEdge);
+ // Place infinity to map to avoid infinite recursion for cycled Phis. Such
+ // cycles can never stop on an invariant.
+ IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
+ unsigned ToInvariance = InfiniteIterationsToInvariance;
+
+ if (L->isLoopInvariant(Input))
+ ToInvariance = 1u;
+ else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
+ // Only consider Phis in header block.
+ if (IncPhi->getParent() != L->getHeader())
+ return InfiniteIterationsToInvariance;
+ // If the input becomes an invariant after X iterations, then our Phi
+ // becomes an invariant after X + 1 iterations.
+ unsigned InputToInvariance = calculateIterationsToInvariance(
+ IncPhi, L, BackEdge, IterationsToInvariance);
+ if (InputToInvariance != InfiniteIterationsToInvariance)
+ ToInvariance = InputToInvariance + 1u;
+ }
+
+ // If we found that this Phi lies in an invariant chain, update the map.
+ if (ToInvariance != InfiniteIterationsToInvariance)
+ IterationsToInvariance[Phi] = ToInvariance;
+ return ToInvariance;
+}
+
+// Return the number of iterations to peel off that make conditions in the
+// body true/false. For example, if we peel 2 iterations off the loop below,
+// the condition i < 2 can be evaluated at compile time.
+// for (i = 0; i < n; i++)
+// if (i < 2)
+// ..
+// else
+// ..
+// }
+static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
+ ScalarEvolution &SE) {
+ assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
+ unsigned DesiredPeelCount = 0;
+
+ for (auto *BB : L.blocks()) {
+ auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || BI->isUnconditional())
+ continue;
+
+ // Ignore loop exit condition.
+ if (L.getLoopLatch() == BB)
+ continue;
+
+ Value *Condition = BI->getCondition();
+ Value *LeftVal, *RightVal;
+ CmpInst::Predicate Pred;
+ if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
+ continue;
+
+ const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
+ const SCEV *RightSCEV = SE.getSCEV(RightVal);
+
+ // Do not consider predicates that are known to be true or false
+ // independently of the loop iteration.
+ if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
+ SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
+ RightSCEV))
+ continue;
+
+ // Check if we have a condition with one AddRec and one non AddRec
+ // expression. Normalize LeftSCEV to be the AddRec.
+ if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
+ if (isa<SCEVAddRecExpr>(RightSCEV)) {
+ std::swap(LeftSCEV, RightSCEV);
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ } else
+ continue;
+ }
+
+ const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
+
+ // Avoid huge SCEV computations in the loop below, make sure we only
+ // consider AddRecs of the loop we are trying to peel.
+ if (!LeftAR->isAffine() || LeftAR->getLoop() != &L)
+ continue;
+ if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) &&
+ !SE.getMonotonicPredicateType(LeftAR, Pred))
+ continue;
+
+ // Check if extending the current DesiredPeelCount lets us evaluate Pred
+ // or !Pred in the loop body statically.
+ unsigned NewPeelCount = DesiredPeelCount;
+
+ const SCEV *IterVal = LeftAR->evaluateAtIteration(
+ SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
+
+ // If the original condition is not known, get the negated predicate
+ // (which holds on the else branch) and check if it is known. This allows
+ // us to peel of iterations that make the original condition false.
+ if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
+ Pred = ICmpInst::getInversePredicate(Pred);
+
+ const SCEV *Step = LeftAR->getStepRecurrence(SE);
+ const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step);
+ auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step,
+ &NewPeelCount]() {
+ IterVal = NextIterVal;
+ NextIterVal = SE.getAddExpr(IterVal, Step);
+ NewPeelCount++;
+ };
+
+ auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() {
+ return NewPeelCount < MaxPeelCount;
+ };
+
+ while (CanPeelOneMoreIteration() &&
+ SE.isKnownPredicate(Pred, IterVal, RightSCEV))
+ PeelOneMoreIteration();
+
+ // With *that* peel count, does the predicate !Pred become known in the
+ // first iteration of the loop body after peeling?
+ if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
+ RightSCEV))
+ continue; // If not, give up.
+
+ // However, for equality comparisons, that isn't always sufficient to
+ // eliminate the comparsion in loop body, we may need to peel one more
+ // iteration. See if that makes !Pred become unknown again.
+ if (ICmpInst::isEquality(Pred) &&
+ !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal,
+ RightSCEV) &&
+ !SE.isKnownPredicate(Pred, IterVal, RightSCEV) &&
+ SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) {
+ if (!CanPeelOneMoreIteration())
+ continue; // Need to peel one more iteration, but can't. Give up.
+ PeelOneMoreIteration(); // Great!
+ }
+
+ DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount);
+ }
+
+ return DesiredPeelCount;
+}
+
+// Return the number of iterations we want to peel off.
+void llvm::computePeelCount(Loop *L, unsigned LoopSize,
+ TargetTransformInfo::PeelingPreferences &PP,
+ unsigned &TripCount, ScalarEvolution &SE,
+ unsigned Threshold) {
+ assert(LoopSize > 0 && "Zero loop size is not allowed!");
+ // Save the PP.PeelCount value set by the target in
+ // TTI.getPeelingPreferences or by the flag -unroll-peel-count.
+ unsigned TargetPeelCount = PP.PeelCount;
+ PP.PeelCount = 0;
+ if (!canPeel(L))
+ return;
+
+ // Only try to peel innermost loops by default.
+ // The constraint can be relaxed by the target in TTI.getUnrollingPreferences
+ // or by the flag -unroll-allow-loop-nests-peeling.
+ if (!PP.AllowLoopNestsPeeling && !L->isInnermost())
+ return;
+
+ // If the user provided a peel count, use that.
+ bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
+ if (UserPeelCount) {
+ LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
+ << " iterations.\n");
+ PP.PeelCount = UnrollForcePeelCount;
+ PP.PeelProfiledIterations = true;
+ return;
+ }
+
+ // Skip peeling if it's disabled.
+ if (!PP.AllowPeeling)
+ return;
+
+ unsigned AlreadyPeeled = 0;
+ if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
+ AlreadyPeeled = *Peeled;
+ // Stop if we already peeled off the maximum number of iterations.
+ if (AlreadyPeeled >= UnrollPeelMaxCount)
+ return;
+
+ // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
+ // iterations of the loop. For this we compute the number for iterations after
+ // which every Phi is guaranteed to become an invariant, and try to peel the
+ // maximum number of iterations among these values, thus turning all those
+ // Phis into invariants.
+ // First, check that we can peel at least one iteration.
+ if (2 * LoopSize <= Threshold && UnrollPeelMaxCount > 0) {
+ // Store the pre-calculated values here.
+ SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
+ // Now go through all Phis to calculate their the number of iterations they
+ // need to become invariants.
+ // Start the max computation with the UP.PeelCount value set by the target
+ // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
+ unsigned DesiredPeelCount = TargetPeelCount;
+ BasicBlock *BackEdge = L->getLoopLatch();
+ assert(BackEdge && "Loop is not in simplified form?");
+ for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
+ PHINode *Phi = cast<PHINode>(&*BI);
+ unsigned ToInvariance = calculateIterationsToInvariance(
+ Phi, L, BackEdge, IterationsToInvariance);
+ if (ToInvariance != InfiniteIterationsToInvariance)
+ DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
+ }
+
+ // Pay respect to limitations implied by loop size and the max peel count.
+ unsigned MaxPeelCount = UnrollPeelMaxCount;
+ MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1);
+
+ DesiredPeelCount = std::max(DesiredPeelCount,
+ countToEliminateCompares(*L, MaxPeelCount, SE));
+
+ if (DesiredPeelCount > 0) {
+ DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
+ // Consider max peel count limitation.
+ assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
+ if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) {
+ LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
+ << " iteration(s) to turn"
+ << " some Phis into invariants.\n");
+ PP.PeelCount = DesiredPeelCount;
+ PP.PeelProfiledIterations = false;
+ return;
+ }
+ }
+ }
+
+ // Bail if we know the statically calculated trip count.
+ // In this case we rather prefer partial unrolling.
+ if (TripCount)
+ return;
+
+ // Do not apply profile base peeling if it is disabled.
+ if (!PP.PeelProfiledIterations)
+ return;
+ // If we don't know the trip count, but have reason to believe the average
+ // trip count is low, peeling should be beneficial, since we will usually
+ // hit the peeled section.
+ // We only do this in the presence of profile information, since otherwise
+ // our estimates of the trip count are not reliable enough.
+ if (L->getHeader()->getParent()->hasProfileData()) {
+ Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
+ if (!PeelCount)
+ return;
+
+ LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
+ << "\n");
+
+ if (*PeelCount) {
+ if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) &&
+ (LoopSize * (*PeelCount + 1) <= Threshold)) {
+ LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
+ << " iterations.\n");
+ PP.PeelCount = *PeelCount;
+ return;
+ }
+ LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
+ LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n");
+ LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
+ LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
+ << "\n");
+ LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n");
+ }
+ }
+}
+
+/// Update the branch weights of the latch of a peeled-off loop
+/// iteration.
+/// This sets the branch weights for the latch of the recently peeled off loop
+/// iteration correctly.
+/// Let F is a weight of the edge from latch to header.
+/// Let E is a weight of the edge from latch to exit.
+/// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to
+/// go to exit.
+/// Then, Estimated TripCount = F / E.
+/// For I-th (counting from 0) peeled off iteration we set the the weights for
+/// the peeled latch as (TC - I, 1). It gives us reasonable distribution,
+/// The probability to go to exit 1/(TC-I) increases. At the same time
+/// the estimated trip count of remaining loop reduces by I.
+/// To avoid dealing with division rounding we can just multiple both part
+/// of weights to E and use weight as (F - I * E, E).
+///
+/// \param Header The copy of the header block that belongs to next iteration.
+/// \param LatchBR The copy of the latch branch that belongs to this iteration.
+/// \param[in,out] FallThroughWeight The weight of the edge from latch to
+/// header before peeling (in) and after peeled off one iteration (out).
+static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
+ uint64_t ExitWeight,
+ uint64_t &FallThroughWeight) {
+ // FallThroughWeight is 0 means that there is no branch weights on original
+ // latch block or estimated trip count is zero.
+ if (!FallThroughWeight)
+ return;
+
+ unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
+ MDBuilder MDB(LatchBR->getContext());
+ MDNode *WeightNode =
+ HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
+ : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
+ LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
+ FallThroughWeight =
+ FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1;
+}
+
+/// Initialize the weights.
+///
+/// \param Header The header block.
+/// \param LatchBR The latch branch.
+/// \param[out] ExitWeight The weight of the edge from Latch to Exit.
+/// \param[out] FallThroughWeight The weight of the edge from Latch to Header.
+static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
+ uint64_t &ExitWeight,
+ uint64_t &FallThroughWeight) {
+ uint64_t TrueWeight, FalseWeight;
+ if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
+ return;
+ unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
+ ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
+ FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight;
+}
+
+/// Update the weights of original Latch block after peeling off all iterations.
+///
+/// \param Header The header block.
+/// \param LatchBR The latch branch.
+/// \param ExitWeight The weight of the edge from Latch to Exit.
+/// \param FallThroughWeight The weight of the edge from Latch to Header.
+static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
+ uint64_t ExitWeight,
+ uint64_t FallThroughWeight) {
+ // FallThroughWeight is 0 means that there is no branch weights on original
+ // latch block or estimated trip count is zero.
+ if (!FallThroughWeight)
+ return;
+
+ // Sets the branch weights on the loop exit.
+ MDBuilder MDB(LatchBR->getContext());
+ unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1;
+ MDNode *WeightNode =
+ HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight)
+ : MDB.createBranchWeights(FallThroughWeight, ExitWeight);
+ LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
+}
+
+/// Clones the body of the loop L, putting it between \p InsertTop and \p
+/// InsertBot.
+/// \param IterNumber The serial number of the iteration currently being
+/// peeled off.
+/// \param ExitEdges The exit edges of the original loop.
+/// \param[out] NewBlocks A list of the blocks in the newly created clone
+/// \param[out] VMap The value map between the loop and the new clone.
+/// \param LoopBlocks A helper for DFS-traversal of the loop.
+/// \param LVMap A value-map that maps instructions from the original loop to
+/// instructions in the last peeled-off iteration.
+static void cloneLoopBlocks(
+ Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot,
+ SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *>> &ExitEdges,
+ SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
+ ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT,
+ LoopInfo *LI, ArrayRef<MDNode *> LoopLocalNoAliasDeclScopes) {
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *Latch = L->getLoopLatch();
+ BasicBlock *PreHeader = L->getLoopPreheader();
+
+ Function *F = Header->getParent();
+ LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
+ Loop *ParentLoop = L->getParentLoop();
+
+ // For each block in the original loop, create a new copy,
+ // and update the value map with the newly created values.
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
+ NewBlocks.push_back(NewBB);
+
+ // If an original block is an immediate child of the loop L, its copy
+ // is a child of a ParentLoop after peeling. If a block is a child of
+ // a nested loop, it is handled in the cloneLoop() call below.
+ if (ParentLoop && LI->getLoopFor(*BB) == L)
+ ParentLoop->addBasicBlockToLoop(NewBB, *LI);
+
+ VMap[*BB] = NewBB;
+
+ // If dominator tree is available, insert nodes to represent cloned blocks.
+ if (DT) {
+ if (Header == *BB)
+ DT->addNewBlock(NewBB, InsertTop);
+ else {
+ DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
+ // VMap must contain entry for IDom, as the iteration order is RPO.
+ DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
+ }
+ }
+ }
+
+ {
+ // Identify what other metadata depends on the cloned version. After
+ // cloning, replace the metadata with the corrected version for both
+ // memory instructions and noalias intrinsics.
+ std::string Ext = (Twine("Peel") + Twine(IterNumber)).str();
+ cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
+ Header->getContext(), Ext);
+ }
+
+ // Recursively create the new Loop objects for nested loops, if any,
+ // to preserve LoopInfo.
+ for (Loop *ChildLoop : *L) {
+ cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr);
+ }
+
+ // Hook-up the control flow for the newly inserted blocks.
+ // The new header is hooked up directly to the "top", which is either
+ // the original loop preheader (for the first iteration) or the previous
+ // iteration's exiting block (for every other iteration)
+ InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
+
+ // Similarly, for the latch:
+ // The original exiting edge is still hooked up to the loop exit.
+ // The backedge now goes to the "bottom", which is either the loop's real
+ // header (for the last peeled iteration) or the copied header of the next
+ // iteration (for every other iteration)
+ BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
+ BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
+ for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx)
+ if (LatchBR->getSuccessor(idx) == Header) {
+ LatchBR->setSuccessor(idx, InsertBot);
+ break;
+ }
+ if (DT)
+ DT->changeImmediateDominator(InsertBot, NewLatch);
+
+ // The new copy of the loop body starts with a bunch of PHI nodes
+ // that pick an incoming value from either the preheader, or the previous
+ // loop iteration. Since this copy is no longer part of the loop, we
+ // resolve this statically:
+ // For the first iteration, we use the value from the preheader directly.
+ // For any other iteration, we replace the phi with the value generated by
+ // the immediately preceding clone of the loop body (which represents
+ // the previous iteration).
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
+ if (IterNumber == 0) {
+ VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
+ } else {
+ Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
+ Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
+ if (LatchInst && L->contains(LatchInst))
+ VMap[&*I] = LVMap[LatchInst];
+ else
+ VMap[&*I] = LatchVal;
+ }
+ cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
+ }
+
+ // Fix up the outgoing values - we need to add a value for the iteration
+ // we've just created. Note that this must happen *after* the incoming
+ // values are adjusted, since the value going out of the latch may also be
+ // a value coming into the header.
+ for (auto Edge : ExitEdges)
+ for (PHINode &PHI : Edge.second->phis()) {
+ Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first);
+ Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
+ if (LatchInst && L->contains(LatchInst))
+ LatchVal = VMap[LatchVal];
+ PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first]));
+ }
+
+ // LastValueMap is updated with the values for the current loop
+ // which are used the next time this function is called.
+ for (auto KV : VMap)
+ LVMap[KV.first] = KV.second;
+}
+
+TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(
+ Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
+ Optional<bool> UserAllowPeeling,
+ Optional<bool> UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) {
+ TargetTransformInfo::PeelingPreferences PP;
+
+ // Set the default values.
+ PP.PeelCount = 0;
+ PP.AllowPeeling = true;
+ PP.AllowLoopNestsPeeling = false;
+ PP.PeelProfiledIterations = true;
+
+ // Get the target specifc values.
+ TTI.getPeelingPreferences(L, SE, PP);
+
+ // User specified values using cl::opt.
+ if (UnrollingSpecficValues) {
+ if (UnrollPeelCount.getNumOccurrences() > 0)
+ PP.PeelCount = UnrollPeelCount;
+ if (UnrollAllowPeeling.getNumOccurrences() > 0)
+ PP.AllowPeeling = UnrollAllowPeeling;
+ if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0)
+ PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling;
+ }
+
+ // User specifed values provided by argument.
+ if (UserAllowPeeling.hasValue())
+ PP.AllowPeeling = *UserAllowPeeling;
+ if (UserAllowProfileBasedPeeling.hasValue())
+ PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling;
+
+ return PP;
+}
+
+/// Peel off the first \p PeelCount iterations of loop \p L.
+///
+/// Note that this does not peel them off as a single straight-line block.
+/// Rather, each iteration is peeled off separately, and needs to check the
+/// exit condition.
+/// For loops that dynamically execute \p PeelCount iterations or less
+/// this provides a benefit, since the peeled off iterations, which account
+/// for the bulk of dynamic execution, can be further simplified by scalar
+/// optimizations.
+bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
+ ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
+ bool PreserveLCSSA) {
+ assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
+ assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
+
+ LoopBlocksDFS LoopBlocks(L);
+ LoopBlocks.perform(LI);
+
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ BasicBlock *Latch = L->getLoopLatch();
+ SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges;
+ L->getExitEdges(ExitEdges);
+
+ DenseMap<BasicBlock *, BasicBlock *> ExitIDom;
+ if (DT) {
+ // We'd like to determine the idom of exit block after peeling one
+ // iteration.
+ // Let Exit is exit block.
+ // Let ExitingSet - is a set of predecessors of Exit block. They are exiting
+ // blocks.
+ // Let Latch' and ExitingSet' are copies after a peeling.
+ // We'd like to find an idom'(Exit) - idom of Exit after peeling.
+ // It is an evident that idom'(Exit) will be the nearest common dominator
+ // of ExitingSet and ExitingSet'.
+ // idom(Exit) is a nearest common dominator of ExitingSet.
+ // idom(Exit)' is a nearest common dominator of ExitingSet'.
+ // Taking into account that we have a single Latch, Latch' will dominate
+ // Header and idom(Exit).
+ // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
+ // All these basic blocks are in the same loop, so what we find is
+ // (nearest common dominator of idom(Exit) and Latch)'.
+ // In the loop below we remember nearest common dominator of idom(Exit) and
+ // Latch to update idom of Exit later.
+ assert(L->hasDedicatedExits() && "No dedicated exits?");
+ for (auto Edge : ExitEdges) {
+ if (ExitIDom.count(Edge.second))
+ continue;
+ BasicBlock *BB = DT->findNearestCommonDominator(
+ DT->getNode(Edge.second)->getIDom()->getBlock(), Latch);
+ assert(L->contains(BB) && "IDom is not in a loop");
+ ExitIDom[Edge.second] = BB;
+ }
+ }
+
+ Function *F = Header->getParent();
+
+ // Set up all the necessary basic blocks. It is convenient to split the
+ // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
+ // body, and a new preheader for the "real" loop.
+
+ // Peeling the first iteration transforms.
+ //
+ // PreHeader:
+ // ...
+ // Header:
+ // LoopBody
+ // If (cond) goto Header
+ // Exit:
+ //
+ // into
+ //
+ // InsertTop:
+ // LoopBody
+ // If (!cond) goto Exit
+ // InsertBot:
+ // NewPreHeader:
+ // ...
+ // Header:
+ // LoopBody
+ // If (cond) goto Header
+ // Exit:
+ //
+ // Each following iteration will split the current bottom anchor in two,
+ // and put the new copy of the loop body between these two blocks. That is,
+ // after peeling another iteration from the example above, we'll split
+ // InsertBot, and get:
+ //
+ // InsertTop:
+ // LoopBody
+ // If (!cond) goto Exit
+ // InsertBot:
+ // LoopBody
+ // If (!cond) goto Exit
+ // InsertBot.next:
+ // NewPreHeader:
+ // ...
+ // Header:
+ // LoopBody
+ // If (cond) goto Header
+ // Exit:
+
+ BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
+ BasicBlock *InsertBot =
+ SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
+ BasicBlock *NewPreHeader =
+ SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
+
+ InsertTop->setName(Header->getName() + ".peel.begin");
+ InsertBot->setName(Header->getName() + ".peel.next");
+ NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
+
+ ValueToValueMapTy LVMap;
+
+ // If we have branch weight information, we'll want to update it for the
+ // newly created branches.
+ BranchInst *LatchBR =
+ cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
+ uint64_t ExitWeight = 0, FallThroughWeight = 0;
+ initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
+
+ // Identify what noalias metadata is inside the loop: if it is inside the
+ // loop, the associated metadata must be cloned for each iteration.
+ SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
+ identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
+
+ // For each peeled-off iteration, make a copy of the loop.
+ for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
+ SmallVector<BasicBlock *, 8> NewBlocks;
+ ValueToValueMapTy VMap;
+
+ cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks,
+ LoopBlocks, VMap, LVMap, DT, LI,
+ LoopLocalNoAliasDeclScopes);
+
+ // Remap to use values from the current iteration instead of the
+ // previous one.
+ remapInstructionsInBlocks(NewBlocks, VMap);
+
+ if (DT) {
+ // Latches of the cloned loops dominate over the loop exit, so idom of the
+ // latter is the first cloned loop body, as original PreHeader dominates
+ // the original loop body.
+ if (Iter == 0)
+ for (auto Exit : ExitIDom)
+ DT->changeImmediateDominator(Exit.first,
+ cast<BasicBlock>(LVMap[Exit.second]));
+#ifdef EXPENSIVE_CHECKS
+ assert(DT->verify(DominatorTree::VerificationLevel::Fast));
+#endif
+ }
+
+ auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
+ updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight);
+ // Remove Loop metadata from the latch branch instruction
+ // because it is not the Loop's latch branch anymore.
+ LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
+
+ InsertTop = InsertBot;
+ InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
+ InsertBot->setName(Header->getName() + ".peel.next");
+
+ F->getBasicBlockList().splice(InsertTop->getIterator(),
+ F->getBasicBlockList(),
+ NewBlocks[0]->getIterator(), F->end());
+ }
+
+ // Now adjust the phi nodes in the loop header to get their initial values
+ // from the last peeled-off iteration instead of the preheader.
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PHI = cast<PHINode>(I);
+ Value *NewVal = PHI->getIncomingValueForBlock(Latch);
+ Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
+ if (LatchInst && L->contains(LatchInst))
+ NewVal = LVMap[LatchInst];
+
+ PHI->setIncomingValueForBlock(NewPreHeader, NewVal);
+ }
+
+ fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight);
+
+ // Update Metadata for count of peeled off iterations.
+ unsigned AlreadyPeeled = 0;
+ if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData))
+ AlreadyPeeled = *Peeled;
+ addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount);
+
+ if (Loop *ParentLoop = L->getParentLoop())
+ L = ParentLoop;
+
+ // We modified the loop, update SE.
+ SE->forgetTopmostLoop(L);
+
+ // Finally DomtTree must be correct.
+ assert(DT->verify(DominatorTree::VerificationLevel::Fast));
+
+ // FIXME: Incrementally update loop-simplify
+ simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA);
+
+ NumPeeled++;
+
+ return true;
+}