aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp946
1 files changed, 946 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp
new file mode 100644
index 000000000000..2e104334ad96
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp
@@ -0,0 +1,946 @@
+//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs several transformations to transform natural loops into a
+// simpler form, which makes subsequent analyses and transformations simpler and
+// more effective.
+//
+// Loop pre-header insertion guarantees that there is a single, non-critical
+// entry edge from outside of the loop to the loop header. This simplifies a
+// number of analyses and transformations, such as LICM.
+//
+// Loop exit-block insertion guarantees that all exit blocks from the loop
+// (blocks which are outside of the loop that have predecessors inside of the
+// loop) only have predecessors from inside of the loop (and are thus dominated
+// by the loop header). This simplifies transformations such as store-sinking
+// that are built into LICM.
+//
+// This pass also guarantees that loops will have exactly one backedge.
+//
+// Indirectbr instructions introduce several complications. If the loop
+// contains or is entered by an indirectbr instruction, it may not be possible
+// to transform the loop and make these guarantees. Client code should check
+// that these conditions are true before relying on them.
+//
+// Similar complications arise from callbr instructions, particularly in
+// asm-goto where blockaddress expressions are used.
+//
+// Note that the simplifycfg pass will clean up blocks which are split out but
+// end up being unnecessary, so usage of this pass should not pessimize
+// generated code.
+//
+// This pass obviously modifies the CFG, but updates loop information and
+// dominator information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/DependenceAnalysis.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-simplify"
+
+STATISTIC(NumNested , "Number of nested loops split out");
+
+// If the block isn't already, move the new block to right after some 'outside
+// block' block. This prevents the preheader from being placed inside the loop
+// body, e.g. when the loop hasn't been rotated.
+static void placeSplitBlockCarefully(BasicBlock *NewBB,
+ SmallVectorImpl<BasicBlock *> &SplitPreds,
+ Loop *L) {
+ // Check to see if NewBB is already well placed.
+ Function::iterator BBI = --NewBB->getIterator();
+ for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
+ if (&*BBI == SplitPreds[i])
+ return;
+ }
+
+ // If it isn't already after an outside block, move it after one. This is
+ // always good as it makes the uncond branch from the outside block into a
+ // fall-through.
+
+ // Figure out *which* outside block to put this after. Prefer an outside
+ // block that neighbors a BB actually in the loop.
+ BasicBlock *FoundBB = nullptr;
+ for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
+ Function::iterator BBI = SplitPreds[i]->getIterator();
+ if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
+ FoundBB = SplitPreds[i];
+ break;
+ }
+ }
+
+ // If our heuristic for a *good* bb to place this after doesn't find
+ // anything, just pick something. It's likely better than leaving it within
+ // the loop.
+ if (!FoundBB)
+ FoundBB = SplitPreds[0];
+ NewBB->moveAfter(FoundBB);
+}
+
+/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
+/// preheader, this method is called to insert one. This method has two phases:
+/// preheader insertion and analysis updating.
+///
+BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
+ LoopInfo *LI, MemorySSAUpdater *MSSAU,
+ bool PreserveLCSSA) {
+ BasicBlock *Header = L->getHeader();
+
+ // Compute the set of predecessors of the loop that are not in the loop.
+ SmallVector<BasicBlock*, 8> OutsideBlocks;
+ for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
+ PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ if (!L->contains(P)) { // Coming in from outside the loop?
+ // If the loop is branched to from an indirect terminator, we won't
+ // be able to fully transform the loop, because it prohibits
+ // edge splitting.
+ if (P->getTerminator()->isIndirectTerminator())
+ return nullptr;
+
+ // Keep track of it.
+ OutsideBlocks.push_back(P);
+ }
+ }
+
+ // Split out the loop pre-header.
+ BasicBlock *PreheaderBB;
+ PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
+ LI, MSSAU, PreserveLCSSA);
+ if (!PreheaderBB)
+ return nullptr;
+
+ LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
+ << PreheaderBB->getName() << "\n");
+
+ // Make sure that NewBB is put someplace intelligent, which doesn't mess up
+ // code layout too horribly.
+ placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
+
+ return PreheaderBB;
+}
+
+/// Add the specified block, and all of its predecessors, to the specified set,
+/// if it's not already in there. Stop predecessor traversal when we reach
+/// StopBlock.
+static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
+ SmallPtrSetImpl<BasicBlock *> &Blocks) {
+ SmallVector<BasicBlock *, 8> Worklist;
+ Worklist.push_back(InputBB);
+ do {
+ BasicBlock *BB = Worklist.pop_back_val();
+ if (Blocks.insert(BB).second && BB != StopBlock)
+ // If BB is not already processed and it is not a stop block then
+ // insert its predecessor in the work list
+ append_range(Worklist, predecessors(BB));
+ } while (!Worklist.empty());
+}
+
+/// The first part of loop-nestification is to find a PHI node that tells
+/// us how to partition the loops.
+static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
+ AssumptionCache *AC) {
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
+ PHINode *PN = cast<PHINode>(I);
+ ++I;
+ if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
+ // This is a degenerate PHI already, don't modify it!
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ continue;
+ }
+
+ // Scan this PHI node looking for a use of the PHI node by itself.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingValue(i) == PN &&
+ L->contains(PN->getIncomingBlock(i)))
+ // We found something tasty to remove.
+ return PN;
+ }
+ return nullptr;
+}
+
+/// If this loop has multiple backedges, try to pull one of them out into
+/// a nested loop.
+///
+/// This is important for code that looks like
+/// this:
+///
+/// Loop:
+/// ...
+/// br cond, Loop, Next
+/// ...
+/// br cond2, Loop, Out
+///
+/// To identify this common case, we look at the PHI nodes in the header of the
+/// loop. PHI nodes with unchanging values on one backedge correspond to values
+/// that change in the "outer" loop, but not in the "inner" loop.
+///
+/// If we are able to separate out a loop, return the new outer loop that was
+/// created.
+///
+static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
+ DominatorTree *DT, LoopInfo *LI,
+ ScalarEvolution *SE, bool PreserveLCSSA,
+ AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
+ // Don't try to separate loops without a preheader.
+ if (!Preheader)
+ return nullptr;
+
+ // Treat the presence of convergent functions conservatively. The
+ // transformation is invalid if calls to certain convergent
+ // functions (like an AMDGPU barrier) get included in the resulting
+ // inner loop. But blocks meant for the inner loop will be
+ // identified later at a point where it's too late to abort the
+ // transformation. Also, the convergent attribute is not really
+ // sufficient to express the semantics of functions that are
+ // affected by this transformation. So we choose to back off if such
+ // a function call is present until a better alternative becomes
+ // available. This is similar to the conservative treatment of
+ // convergent function calls in GVNHoist and JumpThreading.
+ for (auto BB : L->blocks()) {
+ for (auto &II : *BB) {
+ if (auto CI = dyn_cast<CallBase>(&II)) {
+ if (CI->isConvergent()) {
+ return nullptr;
+ }
+ }
+ }
+ }
+
+ // The header is not a landing pad; preheader insertion should ensure this.
+ BasicBlock *Header = L->getHeader();
+ assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
+
+ PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
+ if (!PN) return nullptr; // No known way to partition.
+
+ // Pull out all predecessors that have varying values in the loop. This
+ // handles the case when a PHI node has multiple instances of itself as
+ // arguments.
+ SmallVector<BasicBlock*, 8> OuterLoopPreds;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ if (PN->getIncomingValue(i) != PN ||
+ !L->contains(PN->getIncomingBlock(i))) {
+ // We can't split indirect control flow edges.
+ if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
+ return nullptr;
+ OuterLoopPreds.push_back(PN->getIncomingBlock(i));
+ }
+ }
+ LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
+
+ // If ScalarEvolution is around and knows anything about values in
+ // this loop, tell it to forget them, because we're about to
+ // substantially change it.
+ if (SE)
+ SE->forgetLoop(L);
+
+ BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
+ DT, LI, MSSAU, PreserveLCSSA);
+
+ // Make sure that NewBB is put someplace intelligent, which doesn't mess up
+ // code layout too horribly.
+ placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
+
+ // Create the new outer loop.
+ Loop *NewOuter = LI->AllocateLoop();
+
+ // Change the parent loop to use the outer loop as its child now.
+ if (Loop *Parent = L->getParentLoop())
+ Parent->replaceChildLoopWith(L, NewOuter);
+ else
+ LI->changeTopLevelLoop(L, NewOuter);
+
+ // L is now a subloop of our outer loop.
+ NewOuter->addChildLoop(L);
+
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I)
+ NewOuter->addBlockEntry(*I);
+
+ // Now reset the header in L, which had been moved by
+ // SplitBlockPredecessors for the outer loop.
+ L->moveToHeader(Header);
+
+ // Determine which blocks should stay in L and which should be moved out to
+ // the Outer loop now.
+ SmallPtrSet<BasicBlock *, 4> BlocksInL;
+ for (BasicBlock *P : predecessors(Header)) {
+ if (DT->dominates(Header, P))
+ addBlockAndPredsToSet(P, Header, BlocksInL);
+ }
+
+ // Scan all of the loop children of L, moving them to OuterLoop if they are
+ // not part of the inner loop.
+ const std::vector<Loop*> &SubLoops = L->getSubLoops();
+ for (size_t I = 0; I != SubLoops.size(); )
+ if (BlocksInL.count(SubLoops[I]->getHeader()))
+ ++I; // Loop remains in L
+ else
+ NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
+
+ SmallVector<BasicBlock *, 8> OuterLoopBlocks;
+ OuterLoopBlocks.push_back(NewBB);
+ // Now that we know which blocks are in L and which need to be moved to
+ // OuterLoop, move any blocks that need it.
+ for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
+ BasicBlock *BB = L->getBlocks()[i];
+ if (!BlocksInL.count(BB)) {
+ // Move this block to the parent, updating the exit blocks sets
+ L->removeBlockFromLoop(BB);
+ if ((*LI)[BB] == L) {
+ LI->changeLoopFor(BB, NewOuter);
+ OuterLoopBlocks.push_back(BB);
+ }
+ --i;
+ }
+ }
+
+ // Split edges to exit blocks from the inner loop, if they emerged in the
+ // process of separating the outer one.
+ formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
+
+ if (PreserveLCSSA) {
+ // Fix LCSSA form for L. Some values, which previously were only used inside
+ // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
+ // in corresponding exit blocks.
+ // We don't need to form LCSSA recursively, because there cannot be uses
+ // inside a newly created loop of defs from inner loops as those would
+ // already be a use of an LCSSA phi node.
+ formLCSSA(*L, *DT, LI, SE);
+
+ assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "LCSSA is broken after separating nested loops!");
+ }
+
+ return NewOuter;
+}
+
+/// This method is called when the specified loop has more than one
+/// backedge in it.
+///
+/// If this occurs, revector all of these backedges to target a new basic block
+/// and have that block branch to the loop header. This ensures that loops
+/// have exactly one backedge.
+static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
+ DominatorTree *DT, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU) {
+ assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
+
+ // Get information about the loop
+ BasicBlock *Header = L->getHeader();
+ Function *F = Header->getParent();
+
+ // Unique backedge insertion currently depends on having a preheader.
+ if (!Preheader)
+ return nullptr;
+
+ // The header is not an EH pad; preheader insertion should ensure this.
+ assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
+
+ // Figure out which basic blocks contain back-edges to the loop header.
+ std::vector<BasicBlock*> BackedgeBlocks;
+ for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
+ BasicBlock *P = *I;
+
+ // Indirect edges cannot be split, so we must fail if we find one.
+ if (P->getTerminator()->isIndirectTerminator())
+ return nullptr;
+
+ if (P != Preheader) BackedgeBlocks.push_back(P);
+ }
+
+ // Create and insert the new backedge block...
+ BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
+ Header->getName() + ".backedge", F);
+ BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
+ BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
+
+ LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
+ << BEBlock->getName() << "\n");
+
+ // Move the new backedge block to right after the last backedge block.
+ Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
+ F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
+
+ // Now that the block has been inserted into the function, create PHI nodes in
+ // the backedge block which correspond to any PHI nodes in the header block.
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
+ PN->getName()+".be", BETerminator);
+
+ // Loop over the PHI node, moving all entries except the one for the
+ // preheader over to the new PHI node.
+ unsigned PreheaderIdx = ~0U;
+ bool HasUniqueIncomingValue = true;
+ Value *UniqueValue = nullptr;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *IBB = PN->getIncomingBlock(i);
+ Value *IV = PN->getIncomingValue(i);
+ if (IBB == Preheader) {
+ PreheaderIdx = i;
+ } else {
+ NewPN->addIncoming(IV, IBB);
+ if (HasUniqueIncomingValue) {
+ if (!UniqueValue)
+ UniqueValue = IV;
+ else if (UniqueValue != IV)
+ HasUniqueIncomingValue = false;
+ }
+ }
+ }
+
+ // Delete all of the incoming values from the old PN except the preheader's
+ assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
+ if (PreheaderIdx != 0) {
+ PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
+ PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
+ }
+ // Nuke all entries except the zero'th.
+ for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
+ PN->removeIncomingValue(e-i, false);
+
+ // Finally, add the newly constructed PHI node as the entry for the BEBlock.
+ PN->addIncoming(NewPN, BEBlock);
+
+ // As an optimization, if all incoming values in the new PhiNode (which is a
+ // subset of the incoming values of the old PHI node) have the same value,
+ // eliminate the PHI Node.
+ if (HasUniqueIncomingValue) {
+ NewPN->replaceAllUsesWith(UniqueValue);
+ BEBlock->getInstList().erase(NewPN);
+ }
+ }
+
+ // Now that all of the PHI nodes have been inserted and adjusted, modify the
+ // backedge blocks to jump to the BEBlock instead of the header.
+ // If one of the backedges has llvm.loop metadata attached, we remove
+ // it from the backedge and add it to BEBlock.
+ unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
+ MDNode *LoopMD = nullptr;
+ for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
+ Instruction *TI = BackedgeBlocks[i]->getTerminator();
+ if (!LoopMD)
+ LoopMD = TI->getMetadata(LoopMDKind);
+ TI->setMetadata(LoopMDKind, nullptr);
+ TI->replaceSuccessorWith(Header, BEBlock);
+ }
+ BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
+
+ //===--- Update all analyses which we must preserve now -----------------===//
+
+ // Update Loop Information - we know that this block is now in the current
+ // loop and all parent loops.
+ L->addBasicBlockToLoop(BEBlock, *LI);
+
+ // Update dominator information
+ DT->splitBlock(BEBlock);
+
+ if (MSSAU)
+ MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
+ BEBlock);
+
+ return BEBlock;
+}
+
+/// Simplify one loop and queue further loops for simplification.
+static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
+ DominatorTree *DT, LoopInfo *LI,
+ ScalarEvolution *SE, AssumptionCache *AC,
+ MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
+ bool Changed = false;
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ReprocessLoop:
+
+ // Check to see that no blocks (other than the header) in this loop have
+ // predecessors that are not in the loop. This is not valid for natural
+ // loops, but can occur if the blocks are unreachable. Since they are
+ // unreachable we can just shamelessly delete those CFG edges!
+ for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
+ BB != E; ++BB) {
+ if (*BB == L->getHeader()) continue;
+
+ SmallPtrSet<BasicBlock*, 4> BadPreds;
+ for (pred_iterator PI = pred_begin(*BB),
+ PE = pred_end(*BB); PI != PE; ++PI) {
+ BasicBlock *P = *PI;
+ if (!L->contains(P))
+ BadPreds.insert(P);
+ }
+
+ // Delete each unique out-of-loop (and thus dead) predecessor.
+ for (BasicBlock *P : BadPreds) {
+
+ LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
+ << P->getName() << "\n");
+
+ // Zap the dead pred's terminator and replace it with unreachable.
+ Instruction *TI = P->getTerminator();
+ changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA,
+ /*DTU=*/nullptr, MSSAU);
+ Changed = true;
+ }
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // If there are exiting blocks with branches on undef, resolve the undef in
+ // the direction which will exit the loop. This will help simplify loop
+ // trip count computations.
+ SmallVector<BasicBlock*, 8> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ for (BasicBlock *ExitingBlock : ExitingBlocks)
+ if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
+ if (BI->isConditional()) {
+ if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
+
+ LLVM_DEBUG(dbgs()
+ << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
+ << ExitingBlock->getName() << "\n");
+
+ BI->setCondition(ConstantInt::get(Cond->getType(),
+ !L->contains(BI->getSuccessor(0))));
+
+ Changed = true;
+ }
+ }
+
+ // Does the loop already have a preheader? If so, don't insert one.
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
+ if (Preheader)
+ Changed = true;
+ }
+
+ // Next, check to make sure that all exit nodes of the loop only have
+ // predecessors that are inside of the loop. This check guarantees that the
+ // loop preheader/header will dominate the exit blocks. If the exit block has
+ // predecessors from outside of the loop, split the edge now.
+ if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
+ Changed = true;
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // If the header has more than two predecessors at this point (from the
+ // preheader and from multiple backedges), we must adjust the loop.
+ BasicBlock *LoopLatch = L->getLoopLatch();
+ if (!LoopLatch) {
+ // If this is really a nested loop, rip it out into a child loop. Don't do
+ // this for loops with a giant number of backedges, just factor them into a
+ // common backedge instead.
+ if (L->getNumBackEdges() < 8) {
+ if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
+ PreserveLCSSA, AC, MSSAU)) {
+ ++NumNested;
+ // Enqueue the outer loop as it should be processed next in our
+ // depth-first nest walk.
+ Worklist.push_back(OuterL);
+
+ // This is a big restructuring change, reprocess the whole loop.
+ Changed = true;
+ // GCC doesn't tail recursion eliminate this.
+ // FIXME: It isn't clear we can't rely on LLVM to TRE this.
+ goto ReprocessLoop;
+ }
+ }
+
+ // If we either couldn't, or didn't want to, identify nesting of the loops,
+ // insert a new block that all backedges target, then make it jump to the
+ // loop header.
+ LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
+ if (LoopLatch)
+ Changed = true;
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
+ // Scan over the PHI nodes in the loop header. Since they now have only two
+ // incoming values (the loop is canonicalized), we may have simplified the PHI
+ // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
+ PHINode *PN;
+ for (BasicBlock::iterator I = L->getHeader()->begin();
+ (PN = dyn_cast<PHINode>(I++)); )
+ if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
+ if (SE) SE->forgetValue(PN);
+ if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
+ PN->replaceAllUsesWith(V);
+ PN->eraseFromParent();
+ Changed = true;
+ }
+ }
+
+ // If this loop has multiple exits and the exits all go to the same
+ // block, attempt to merge the exits. This helps several passes, such
+ // as LoopRotation, which do not support loops with multiple exits.
+ // SimplifyCFG also does this (and this code uses the same utility
+ // function), however this code is loop-aware, where SimplifyCFG is
+ // not. That gives it the advantage of being able to hoist
+ // loop-invariant instructions out of the way to open up more
+ // opportunities, and the disadvantage of having the responsibility
+ // to preserve dominator information.
+ auto HasUniqueExitBlock = [&]() {
+ BasicBlock *UniqueExit = nullptr;
+ for (auto *ExitingBB : ExitingBlocks)
+ for (auto *SuccBB : successors(ExitingBB)) {
+ if (L->contains(SuccBB))
+ continue;
+
+ if (!UniqueExit)
+ UniqueExit = SuccBB;
+ else if (UniqueExit != SuccBB)
+ return false;
+ }
+
+ return true;
+ };
+ if (HasUniqueExitBlock()) {
+ for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitingBlock = ExitingBlocks[i];
+ if (!ExitingBlock->getSinglePredecessor()) continue;
+ BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+ if (!BI || !BI->isConditional()) continue;
+ CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
+ if (!CI || CI->getParent() != ExitingBlock) continue;
+
+ // Attempt to hoist out all instructions except for the
+ // comparison and the branch.
+ bool AllInvariant = true;
+ bool AnyInvariant = false;
+ for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
+ Instruction *Inst = &*I++;
+ if (Inst == CI)
+ continue;
+ if (!L->makeLoopInvariant(
+ Inst, AnyInvariant,
+ Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
+ AllInvariant = false;
+ break;
+ }
+ }
+ if (AnyInvariant) {
+ Changed = true;
+ // The loop disposition of all SCEV expressions that depend on any
+ // hoisted values have also changed.
+ if (SE)
+ SE->forgetLoopDispositions(L);
+ }
+ if (!AllInvariant) continue;
+
+ // The block has now been cleared of all instructions except for
+ // a comparison and a conditional branch. SimplifyCFG may be able
+ // to fold it now.
+ if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
+ continue;
+
+ // Success. The block is now dead, so remove it from the loop,
+ // update the dominator tree and delete it.
+ LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
+ << ExitingBlock->getName() << "\n");
+
+ assert(pred_empty(ExitingBlock));
+ Changed = true;
+ LI->removeBlock(ExitingBlock);
+
+ DomTreeNode *Node = DT->getNode(ExitingBlock);
+ while (!Node->isLeaf()) {
+ DomTreeNode *Child = Node->back();
+ DT->changeImmediateDominator(Child, Node->getIDom());
+ }
+ DT->eraseNode(ExitingBlock);
+ if (MSSAU) {
+ SmallSetVector<BasicBlock *, 8> ExitBlockSet;
+ ExitBlockSet.insert(ExitingBlock);
+ MSSAU->removeBlocks(ExitBlockSet);
+ }
+
+ BI->getSuccessor(0)->removePredecessor(
+ ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
+ BI->getSuccessor(1)->removePredecessor(
+ ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
+ ExitingBlock->eraseFromParent();
+ }
+ }
+
+ // Changing exit conditions for blocks may affect exit counts of this loop and
+ // any of its paretns, so we must invalidate the entire subtree if we've made
+ // any changes.
+ if (Changed && SE)
+ SE->forgetTopmostLoop(L);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ return Changed;
+}
+
+bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
+ ScalarEvolution *SE, AssumptionCache *AC,
+ MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
+ bool Changed = false;
+
+#ifndef NDEBUG
+ // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
+ // form.
+ if (PreserveLCSSA) {
+ assert(DT && "DT not available.");
+ assert(LI && "LI not available.");
+ assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "Requested to preserve LCSSA, but it's already broken.");
+ }
+#endif
+
+ // Worklist maintains our depth-first queue of loops in this nest to process.
+ SmallVector<Loop *, 4> Worklist;
+ Worklist.push_back(L);
+
+ // Walk the worklist from front to back, pushing newly found sub loops onto
+ // the back. This will let us process loops from back to front in depth-first
+ // order. We can use this simple process because loops form a tree.
+ for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
+ Loop *L2 = Worklist[Idx];
+ Worklist.append(L2->begin(), L2->end());
+ }
+
+ while (!Worklist.empty())
+ Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
+ AC, MSSAU, PreserveLCSSA);
+
+ return Changed;
+}
+
+namespace {
+ struct LoopSimplify : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ LoopSimplify() : FunctionPass(ID) {
+ initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+
+ // We need loop information to identify the loops...
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+
+ AU.addPreserved<BasicAAWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<SCEVAAWrapperPass>();
+ AU.addPreservedID(LCSSAID);
+ AU.addPreserved<DependenceAnalysisWrapperPass>();
+ AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
+ AU.addPreserved<BranchProbabilityInfoWrapperPass>();
+ if (EnableMSSALoopDependency)
+ AU.addPreserved<MemorySSAWrapperPass>();
+ }
+
+ /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
+ void verifyAnalysis() const override;
+ };
+}
+
+char LoopSimplify::ID = 0;
+INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
+ "Canonicalize natural loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
+ "Canonicalize natural loops", false, false)
+
+// Publicly exposed interface to pass...
+char &llvm::LoopSimplifyID = LoopSimplify::ID;
+Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
+
+/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
+/// it in any convenient order) inserting preheaders...
+///
+bool LoopSimplify::runOnFunction(Function &F) {
+ bool Changed = false;
+ LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
+ ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
+ AssumptionCache *AC =
+ &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ MemorySSA *MSSA = nullptr;
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+ if (EnableMSSALoopDependency) {
+ auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
+ if (MSSAAnalysis) {
+ MSSA = &MSSAAnalysis->getMSSA();
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+ }
+ }
+
+ bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
+
+ // Simplify each loop nest in the function.
+ for (auto *L : *LI)
+ Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
+
+#ifndef NDEBUG
+ if (PreserveLCSSA) {
+ bool InLCSSA = all_of(
+ *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
+ assert(InLCSSA && "LCSSA is broken after loop-simplify.");
+ }
+#endif
+ return Changed;
+}
+
+PreservedAnalyses LoopSimplifyPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ bool Changed = false;
+ LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
+ DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
+ ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
+ AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
+ auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+ if (MSSAAnalysis) {
+ auto *MSSA = &MSSAAnalysis->getMSSA();
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+ }
+
+
+ // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
+ // after simplifying the loops. MemorySSA is preserved if it exists.
+ for (auto *L : *LI)
+ Changed |=
+ simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<LoopAnalysis>();
+ PA.preserve<BasicAA>();
+ PA.preserve<GlobalsAA>();
+ PA.preserve<SCEVAA>();
+ PA.preserve<ScalarEvolutionAnalysis>();
+ PA.preserve<DependenceAnalysis>();
+ if (MSSAAnalysis)
+ PA.preserve<MemorySSAAnalysis>();
+ // BPI maps conditional terminators to probabilities, LoopSimplify can insert
+ // blocks, but it does so only by splitting existing blocks and edges. This
+ // results in the interesting property that all new terminators inserted are
+ // unconditional branches which do not appear in BPI. All deletions are
+ // handled via ValueHandle callbacks w/in BPI.
+ PA.preserve<BranchProbabilityAnalysis>();
+ return PA;
+}
+
+// FIXME: Restore this code when we re-enable verification in verifyAnalysis
+// below.
+#if 0
+static void verifyLoop(Loop *L) {
+ // Verify subloops.
+ for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
+ verifyLoop(*I);
+
+ // It used to be possible to just assert L->isLoopSimplifyForm(), however
+ // with the introduction of indirectbr, there are now cases where it's
+ // not possible to transform a loop as necessary. We can at least check
+ // that there is an indirectbr near any time there's trouble.
+
+ // Indirectbr can interfere with preheader and unique backedge insertion.
+ if (!L->getLoopPreheader() || !L->getLoopLatch()) {
+ bool HasIndBrPred = false;
+ for (pred_iterator PI = pred_begin(L->getHeader()),
+ PE = pred_end(L->getHeader()); PI != PE; ++PI)
+ if (isa<IndirectBrInst>((*PI)->getTerminator())) {
+ HasIndBrPred = true;
+ break;
+ }
+ assert(HasIndBrPred &&
+ "LoopSimplify has no excuse for missing loop header info!");
+ (void)HasIndBrPred;
+ }
+
+ // Indirectbr can interfere with exit block canonicalization.
+ if (!L->hasDedicatedExits()) {
+ bool HasIndBrExiting = false;
+ SmallVector<BasicBlock*, 8> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
+ if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
+ HasIndBrExiting = true;
+ break;
+ }
+ }
+
+ assert(HasIndBrExiting &&
+ "LoopSimplify has no excuse for missing exit block info!");
+ (void)HasIndBrExiting;
+ }
+}
+#endif
+
+void LoopSimplify::verifyAnalysis() const {
+ // FIXME: This routine is being called mid-way through the loop pass manager
+ // as loop passes destroy this analysis. That's actually fine, but we have no
+ // way of expressing that here. Once all of the passes that destroy this are
+ // hoisted out of the loop pass manager we can add back verification here.
+#if 0
+ for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
+ verifyLoop(*I);
+#endif
+}