diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp | 980 | 
1 files changed, 980 insertions, 0 deletions
| diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp new file mode 100644 index 000000000000..a7590fc32545 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp @@ -0,0 +1,980 @@ +//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements some loop unrolling utilities. It does not define any +// actual pass or policy, but provides a single function to perform loop +// unrolling. +// +// The process of unrolling can produce extraneous basic blocks linked with +// unconditional branches.  This will be corrected in the future. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/LoopSimplify.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/SimplifyIndVar.h" +#include "llvm/Transforms/Utils/UnrollLoop.h" +using namespace llvm; + +#define DEBUG_TYPE "loop-unroll" + +// TODO: Should these be here or in LoopUnroll? +STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); +STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); +STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a " +                                 "conditional latch (completely or otherwise)"); + +static cl::opt<bool> +UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, +                    cl::desc("Allow runtime unrolled loops to be unrolled " +                             "with epilog instead of prolog.")); + +static cl::opt<bool> +UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, +                    cl::desc("Verify domtree after unrolling"), +#ifdef EXPENSIVE_CHECKS +    cl::init(true) +#else +    cl::init(false) +#endif +                    ); + +/// Convert the instruction operands from referencing the current values into +/// those specified by VMap. +void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) { +  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { +    Value *Op = I->getOperand(op); + +    // Unwrap arguments of dbg.value intrinsics. +    bool Wrapped = false; +    if (auto *V = dyn_cast<MetadataAsValue>(Op)) +      if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) { +        Op = Unwrapped->getValue(); +        Wrapped = true; +      } + +    auto wrap = [&](Value *V) { +      auto &C = I->getContext(); +      return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V; +    }; + +    ValueToValueMapTy::iterator It = VMap.find(Op); +    if (It != VMap.end()) +      I->setOperand(op, wrap(It->second)); +  } + +  if (PHINode *PN = dyn_cast<PHINode>(I)) { +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { +      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); +      if (It != VMap.end()) +        PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); +    } +  } +} + +/// Check if unrolling created a situation where we need to insert phi nodes to +/// preserve LCSSA form. +/// \param Blocks is a vector of basic blocks representing unrolled loop. +/// \param L is the outer loop. +/// It's possible that some of the blocks are in L, and some are not. In this +/// case, if there is a use is outside L, and definition is inside L, we need to +/// insert a phi-node, otherwise LCSSA will be broken. +/// The function is just a helper function for llvm::UnrollLoop that returns +/// true if this situation occurs, indicating that LCSSA needs to be fixed. +static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks, +                                     LoopInfo *LI) { +  for (BasicBlock *BB : Blocks) { +    if (LI->getLoopFor(BB) == L) +      continue; +    for (Instruction &I : *BB) { +      for (Use &U : I.operands()) { +        if (auto Def = dyn_cast<Instruction>(U)) { +          Loop *DefLoop = LI->getLoopFor(Def->getParent()); +          if (!DefLoop) +            continue; +          if (DefLoop->contains(L)) +            return true; +        } +      } +    } +  } +  return false; +} + +/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary +/// and adds a mapping from the original loop to the new loop to NewLoops. +/// Returns nullptr if no new loop was created and a pointer to the +/// original loop OriginalBB was part of otherwise. +const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, +                                           BasicBlock *ClonedBB, LoopInfo *LI, +                                           NewLoopsMap &NewLoops) { +  // Figure out which loop New is in. +  const Loop *OldLoop = LI->getLoopFor(OriginalBB); +  assert(OldLoop && "Should (at least) be in the loop being unrolled!"); + +  Loop *&NewLoop = NewLoops[OldLoop]; +  if (!NewLoop) { +    // Found a new sub-loop. +    assert(OriginalBB == OldLoop->getHeader() && +           "Header should be first in RPO"); + +    NewLoop = LI->AllocateLoop(); +    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); + +    if (NewLoopParent) +      NewLoopParent->addChildLoop(NewLoop); +    else +      LI->addTopLevelLoop(NewLoop); + +    NewLoop->addBasicBlockToLoop(ClonedBB, *LI); +    return OldLoop; +  } else { +    NewLoop->addBasicBlockToLoop(ClonedBB, *LI); +    return nullptr; +  } +} + +/// The function chooses which type of unroll (epilog or prolog) is more +/// profitabale. +/// Epilog unroll is more profitable when there is PHI that starts from +/// constant.  In this case epilog will leave PHI start from constant, +/// but prolog will convert it to non-constant. +/// +/// loop: +///   PN = PHI [I, Latch], [CI, PreHeader] +///   I = foo(PN) +///   ... +/// +/// Epilog unroll case. +/// loop: +///   PN = PHI [I2, Latch], [CI, PreHeader] +///   I1 = foo(PN) +///   I2 = foo(I1) +///   ... +/// Prolog unroll case. +///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader] +/// loop: +///   PN = PHI [I2, Latch], [NewPN, PreHeader] +///   I1 = foo(PN) +///   I2 = foo(I1) +///   ... +/// +static bool isEpilogProfitable(Loop *L) { +  BasicBlock *PreHeader = L->getLoopPreheader(); +  BasicBlock *Header = L->getHeader(); +  assert(PreHeader && Header); +  for (const PHINode &PN : Header->phis()) { +    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) +      return true; +  } +  return false; +} + +/// Perform some cleanup and simplifications on loops after unrolling. It is +/// useful to simplify the IV's in the new loop, as well as do a quick +/// simplify/dce pass of the instructions. +void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, +                                   ScalarEvolution *SE, DominatorTree *DT, +                                   AssumptionCache *AC) { +  // Simplify any new induction variables in the partially unrolled loop. +  if (SE && SimplifyIVs) { +    SmallVector<WeakTrackingVH, 16> DeadInsts; +    simplifyLoopIVs(L, SE, DT, LI, DeadInsts); + +    // Aggressively clean up dead instructions that simplifyLoopIVs already +    // identified. Any remaining should be cleaned up below. +    while (!DeadInsts.empty()) +      if (Instruction *Inst = +              dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) +        RecursivelyDeleteTriviallyDeadInstructions(Inst); +  } + +  // At this point, the code is well formed.  We now do a quick sweep over the +  // inserted code, doing constant propagation and dead code elimination as we +  // go. +  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); +  for (BasicBlock *BB : L->getBlocks()) { +    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { +      Instruction *Inst = &*I++; + +      if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC})) +        if (LI->replacementPreservesLCSSAForm(Inst, V)) +          Inst->replaceAllUsesWith(V); +      if (isInstructionTriviallyDead(Inst)) +        BB->getInstList().erase(Inst); +    } +  } + +  // TODO: after peeling or unrolling, previously loop variant conditions are +  // likely to fold to constants, eagerly propagating those here will require +  // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be +  // appropriate. +} + +/// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling +/// can only fail when the loop's latch block is not terminated by a conditional +/// branch instruction. However, if the trip count (and multiple) are not known, +/// loop unrolling will mostly produce more code that is no faster. +/// +/// TripCount is the upper bound of the iteration on which control exits +/// LatchBlock. Control may exit the loop prior to TripCount iterations either +/// via an early branch in other loop block or via LatchBlock terminator. This +/// is relaxed from the general definition of trip count which is the number of +/// times the loop header executes. Note that UnrollLoop assumes that the loop +/// counter test is in LatchBlock in order to remove unnecesssary instances of +/// the test.  If control can exit the loop from the LatchBlock's terminator +/// prior to TripCount iterations, flag PreserveCondBr needs to be set. +/// +/// PreserveCondBr indicates whether the conditional branch of the LatchBlock +/// needs to be preserved.  It is needed when we use trip count upper bound to +/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first +/// conditional branch needs to be preserved. +/// +/// Similarly, TripMultiple divides the number of times that the LatchBlock may +/// execute without exiting the loop. +/// +/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that +/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these +/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" +/// iterations before branching into the unrolled loop.  UnrollLoop will not +/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and +/// AllowExpensiveTripCount is false. +/// +/// If we want to perform PGO-based loop peeling, PeelCount is set to the +/// number of iterations we want to peel off. +/// +/// The LoopInfo Analysis that is passed will be kept consistent. +/// +/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and +/// DominatorTree if they are non-null. +/// +/// If RemainderLoop is non-null, it will receive the remainder loop (if +/// required and not fully unrolled). +LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, +                                  ScalarEvolution *SE, DominatorTree *DT, +                                  AssumptionCache *AC, +                                  OptimizationRemarkEmitter *ORE, +                                  bool PreserveLCSSA, Loop **RemainderLoop) { + +  BasicBlock *Preheader = L->getLoopPreheader(); +  if (!Preheader) { +    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  BasicBlock *LatchBlock = L->getLoopLatch(); +  if (!LatchBlock) { +    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  // Loops with indirectbr cannot be cloned. +  if (!L->isSafeToClone()) { +    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  // The current loop unroll pass can unroll loops with a single latch or header +  // that's a conditional branch exiting the loop. +  // FIXME: The implementation can be extended to work with more complicated +  // cases, e.g. loops with multiple latches. +  BasicBlock *Header = L->getHeader(); +  BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator()); +  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); + +  // FIXME: Support loops without conditional latch and multiple exiting blocks. +  if (!BI || +      (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() || +                                 L->getExitingBlock() != Header))) { +    LLVM_DEBUG(dbgs() << "  Can't unroll; loop not terminated by a conditional " +                         "branch in the latch or header.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) { +    return BI->isConditional() && BI->getSuccessor(S1) == Header && +           !L->contains(BI->getSuccessor(S2)); +  }; + +  // If we have a conditional latch, it must exit the loop. +  if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) && +      !CheckLatchSuccessors(1, 0)) { +    LLVM_DEBUG( +        dbgs() << "Can't unroll; a conditional latch must exit the loop"); +    return LoopUnrollResult::Unmodified; +  } + +  auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) { +    return HeaderBI && HeaderBI->isConditional() && +           L->contains(HeaderBI->getSuccessor(S1)) && +           !L->contains(HeaderBI->getSuccessor(S2)); +  }; + +  // If we do not have a conditional latch, the header must exit the loop. +  if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() && +      !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) { +    LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop"); +    return LoopUnrollResult::Unmodified; +  } + +  if (Header->hasAddressTaken()) { +    // The loop-rotate pass can be helpful to avoid this in many cases. +    LLVM_DEBUG( +        dbgs() << "  Won't unroll loop: address of header block is taken.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  if (ULO.TripCount != 0) +    LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n"); +  if (ULO.TripMultiple != 1) +    LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n"); + +  // Effectively "DCE" unrolled iterations that are beyond the tripcount +  // and will never be executed. +  if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount) +    ULO.Count = ULO.TripCount; + +  // Don't enter the unroll code if there is nothing to do. +  if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) { +    LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n"); +    return LoopUnrollResult::Unmodified; +  } + +  assert(ULO.Count > 0); +  assert(ULO.TripMultiple > 0); +  assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0); + +  // Are we eliminating the loop control altogether? +  bool CompletelyUnroll = ULO.Count == ULO.TripCount; +  SmallVector<BasicBlock *, 4> ExitBlocks; +  L->getExitBlocks(ExitBlocks); +  std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks(); + +  // Go through all exits of L and see if there are any phi-nodes there. We just +  // conservatively assume that they're inserted to preserve LCSSA form, which +  // means that complete unrolling might break this form. We need to either fix +  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For +  // now we just recompute LCSSA for the outer loop, but it should be possible +  // to fix it in-place. +  bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll && +                        any_of(ExitBlocks, [](const BasicBlock *BB) { +                          return isa<PHINode>(BB->begin()); +                        }); + +  // We assume a run-time trip count if the compiler cannot +  // figure out the loop trip count and the unroll-runtime +  // flag is specified. +  bool RuntimeTripCount = +      (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime); + +  assert((!RuntimeTripCount || !ULO.PeelCount) && +         "Did not expect runtime trip-count unrolling " +         "and peeling for the same loop"); + +  bool Peeled = false; +  if (ULO.PeelCount) { +    Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA); + +    // Successful peeling may result in a change in the loop preheader/trip +    // counts. If we later unroll the loop, we want these to be updated. +    if (Peeled) { +      // According to our guards and profitability checks the only +      // meaningful exit should be latch block. Other exits go to deopt, +      // so we do not worry about them. +      BasicBlock *ExitingBlock = L->getLoopLatch(); +      assert(ExitingBlock && "Loop without exiting block?"); +      assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"); +      Preheader = L->getLoopPreheader(); +      ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); +      ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); +    } +  } + +  // Loops containing convergent instructions must have a count that divides +  // their TripMultiple. +  LLVM_DEBUG( +      { +        bool HasConvergent = false; +        for (auto &BB : L->blocks()) +          for (auto &I : *BB) +            if (auto CS = CallSite(&I)) +              HasConvergent |= CS.isConvergent(); +        assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && +               "Unroll count must divide trip multiple if loop contains a " +               "convergent operation."); +      }); + +  bool EpilogProfitability = +      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog +                                              : isEpilogProfitable(L); + +  if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 && +      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, +                                  EpilogProfitability, ULO.UnrollRemainder, +                                  ULO.ForgetAllSCEV, LI, SE, DT, AC, +                                  PreserveLCSSA, RemainderLoop)) { +    if (ULO.Force) +      RuntimeTripCount = false; +    else { +      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " +                           "generated when assuming runtime trip count\n"); +      return LoopUnrollResult::Unmodified; +    } +  } + +  // If we know the trip count, we know the multiple... +  unsigned BreakoutTrip = 0; +  if (ULO.TripCount != 0) { +    BreakoutTrip = ULO.TripCount % ULO.Count; +    ULO.TripMultiple = 0; +  } else { +    // Figure out what multiple to use. +    BreakoutTrip = ULO.TripMultiple = +        (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple); +  } + +  using namespace ore; +  // Report the unrolling decision. +  if (CompletelyUnroll) { +    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() +                      << " with trip count " << ULO.TripCount << "!\n"); +    if (ORE) +      ORE->emit([&]() { +        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), +                                  L->getHeader()) +               << "completely unrolled loop with " +               << NV("UnrollCount", ULO.TripCount) << " iterations"; +      }); +  } else if (ULO.PeelCount) { +    LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName() +                      << " with iteration count " << ULO.PeelCount << "!\n"); +    if (ORE) +      ORE->emit([&]() { +        return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(), +                                  L->getHeader()) +               << " peeled loop by " << NV("PeelCount", ULO.PeelCount) +               << " iterations"; +      }); +  } else { +    auto DiagBuilder = [&]() { +      OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), +                              L->getHeader()); +      return Diag << "unrolled loop by a factor of " +                  << NV("UnrollCount", ULO.Count); +    }; + +    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " +                      << ULO.Count); +    if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) { +      LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); +      if (ORE) +        ORE->emit([&]() { +          return DiagBuilder() << " with a breakout at trip " +                               << NV("BreakoutTrip", BreakoutTrip); +        }); +    } else if (ULO.TripMultiple != 1) { +      LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch"); +      if (ORE) +        ORE->emit([&]() { +          return DiagBuilder() +                 << " with " << NV("TripMultiple", ULO.TripMultiple) +                 << " trips per branch"; +        }); +    } else if (RuntimeTripCount) { +      LLVM_DEBUG(dbgs() << " with run-time trip count"); +      if (ORE) +        ORE->emit( +            [&]() { return DiagBuilder() << " with run-time trip count"; }); +    } +    LLVM_DEBUG(dbgs() << "!\n"); +  } + +  // We are going to make changes to this loop. SCEV may be keeping cached info +  // about it, in particular about backedge taken count. The changes we make +  // are guaranteed to invalidate this information for our loop. It is tempting +  // to only invalidate the loop being unrolled, but it is incorrect as long as +  // all exiting branches from all inner loops have impact on the outer loops, +  // and if something changes inside them then any of outer loops may also +  // change. When we forget outermost loop, we also forget all contained loops +  // and this is what we need here. +  if (SE) { +    if (ULO.ForgetAllSCEV) +      SE->forgetAllLoops(); +    else +      SE->forgetTopmostLoop(L); +  } + +  bool ContinueOnTrue; +  bool LatchIsExiting = BI->isConditional(); +  BasicBlock *LoopExit = nullptr; +  if (LatchIsExiting) { +    ContinueOnTrue = L->contains(BI->getSuccessor(0)); +    LoopExit = BI->getSuccessor(ContinueOnTrue); +  } else { +    NumUnrolledWithHeader++; +    ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0)); +    LoopExit = HeaderBI->getSuccessor(ContinueOnTrue); +  } + +  // For the first iteration of the loop, we should use the precloned values for +  // PHI nodes.  Insert associations now. +  ValueToValueMapTy LastValueMap; +  std::vector<PHINode*> OrigPHINode; +  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { +    OrigPHINode.push_back(cast<PHINode>(I)); +  } + +  std::vector<BasicBlock *> Headers; +  std::vector<BasicBlock *> HeaderSucc; +  std::vector<BasicBlock *> Latches; +  Headers.push_back(Header); +  Latches.push_back(LatchBlock); + +  if (!LatchIsExiting) { +    auto *Term = cast<BranchInst>(Header->getTerminator()); +    if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) { +      assert(L->contains(Term->getSuccessor(0))); +      HeaderSucc.push_back(Term->getSuccessor(0)); +    } else { +      assert(L->contains(Term->getSuccessor(1))); +      HeaderSucc.push_back(Term->getSuccessor(1)); +    } +  } + +  // The current on-the-fly SSA update requires blocks to be processed in +  // reverse postorder so that LastValueMap contains the correct value at each +  // exit. +  LoopBlocksDFS DFS(L); +  DFS.perform(LI); + +  // Stash the DFS iterators before adding blocks to the loop. +  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); +  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); + +  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); + +  // Loop Unrolling might create new loops. While we do preserve LoopInfo, we +  // might break loop-simplified form for these loops (as they, e.g., would +  // share the same exit blocks). We'll keep track of loops for which we can +  // break this so that later we can re-simplify them. +  SmallSetVector<Loop *, 4> LoopsToSimplify; +  for (Loop *SubLoop : *L) +    LoopsToSimplify.insert(SubLoop); + +  if (Header->getParent()->isDebugInfoForProfiling()) +    for (BasicBlock *BB : L->getBlocks()) +      for (Instruction &I : *BB) +        if (!isa<DbgInfoIntrinsic>(&I)) +          if (const DILocation *DIL = I.getDebugLoc()) { +            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); +            if (NewDIL) +              I.setDebugLoc(NewDIL.getValue()); +            else +              LLVM_DEBUG(dbgs() +                         << "Failed to create new discriminator: " +                         << DIL->getFilename() << " Line: " << DIL->getLine()); +          } + +  for (unsigned It = 1; It != ULO.Count; ++It) { +    std::vector<BasicBlock*> NewBlocks; +    SmallDenseMap<const Loop *, Loop *, 4> NewLoops; +    NewLoops[L] = L; + +    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { +      ValueToValueMapTy VMap; +      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); +      Header->getParent()->getBasicBlockList().push_back(New); + +      assert((*BB != Header || LI->getLoopFor(*BB) == L) && +             "Header should not be in a sub-loop"); +      // Tell LI about New. +      const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); +      if (OldLoop) +        LoopsToSimplify.insert(NewLoops[OldLoop]); + +      if (*BB == Header) +        // Loop over all of the PHI nodes in the block, changing them to use +        // the incoming values from the previous block. +        for (PHINode *OrigPHI : OrigPHINode) { +          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); +          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); +          if (Instruction *InValI = dyn_cast<Instruction>(InVal)) +            if (It > 1 && L->contains(InValI)) +              InVal = LastValueMap[InValI]; +          VMap[OrigPHI] = InVal; +          New->getInstList().erase(NewPHI); +        } + +      // Update our running map of newest clones +      LastValueMap[*BB] = New; +      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); +           VI != VE; ++VI) +        LastValueMap[VI->first] = VI->second; + +      // Add phi entries for newly created values to all exit blocks. +      for (BasicBlock *Succ : successors(*BB)) { +        if (L->contains(Succ)) +          continue; +        for (PHINode &PHI : Succ->phis()) { +          Value *Incoming = PHI.getIncomingValueForBlock(*BB); +          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); +          if (It != LastValueMap.end()) +            Incoming = It->second; +          PHI.addIncoming(Incoming, New); +        } +      } +      // Keep track of new headers and latches as we create them, so that +      // we can insert the proper branches later. +      if (*BB == Header) +        Headers.push_back(New); +      if (*BB == LatchBlock) +        Latches.push_back(New); + +      // Keep track of the successor of the new header in the current iteration. +      for (auto *Pred : predecessors(*BB)) +        if (Pred == Header) { +          HeaderSucc.push_back(New); +          break; +        } + +      NewBlocks.push_back(New); +      UnrolledLoopBlocks.push_back(New); + +      // Update DomTree: since we just copy the loop body, and each copy has a +      // dedicated entry block (copy of the header block), this header's copy +      // dominates all copied blocks. That means, dominance relations in the +      // copied body are the same as in the original body. +      if (DT) { +        if (*BB == Header) +          DT->addNewBlock(New, Latches[It - 1]); +        else { +          auto BBDomNode = DT->getNode(*BB); +          auto BBIDom = BBDomNode->getIDom(); +          BasicBlock *OriginalBBIDom = BBIDom->getBlock(); +          DT->addNewBlock( +              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); +        } +      } +    } + +    // Remap all instructions in the most recent iteration +    for (BasicBlock *NewBlock : NewBlocks) { +      for (Instruction &I : *NewBlock) { +        ::remapInstruction(&I, LastValueMap); +        if (auto *II = dyn_cast<IntrinsicInst>(&I)) +          if (II->getIntrinsicID() == Intrinsic::assume) +            AC->registerAssumption(II); +      } +    } +  } + +  // Loop over the PHI nodes in the original block, setting incoming values. +  for (PHINode *PN : OrigPHINode) { +    if (CompletelyUnroll) { +      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); +      Header->getInstList().erase(PN); +    } else if (ULO.Count > 1) { +      Value *InVal = PN->removeIncomingValue(LatchBlock, false); +      // If this value was defined in the loop, take the value defined by the +      // last iteration of the loop. +      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { +        if (L->contains(InValI)) +          InVal = LastValueMap[InVal]; +      } +      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); +      PN->addIncoming(InVal, Latches.back()); +    } +  } + +  auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest, +                                            ArrayRef<BasicBlock *> NextBlocks, +                                            BasicBlock *BlockInLoop, +                                            bool NeedConditional) { +    auto *Term = cast<BranchInst>(Src->getTerminator()); +    if (NeedConditional) { +      // Update the conditional branch's successor for the following +      // iteration. +      Term->setSuccessor(!ContinueOnTrue, Dest); +    } else { +      // Remove phi operands at this loop exit +      if (Dest != LoopExit) { +        BasicBlock *BB = Src; +        for (BasicBlock *Succ : successors(BB)) { +          // Preserve the incoming value from BB if we are jumping to the block +          // in the current loop. +          if (Succ == BlockInLoop) +            continue; +          for (PHINode &Phi : Succ->phis()) +            Phi.removeIncomingValue(BB, false); +        } +      } +      // Replace the conditional branch with an unconditional one. +      BranchInst::Create(Dest, Term); +      Term->eraseFromParent(); +    } +  }; + +  // Now that all the basic blocks for the unrolled iterations are in place, +  // set up the branches to connect them. +  if (LatchIsExiting) { +    // Set up latches to branch to the new header in the unrolled iterations or +    // the loop exit for the last latch in a fully unrolled loop. +    for (unsigned i = 0, e = Latches.size(); i != e; ++i) { +      // The branch destination. +      unsigned j = (i + 1) % e; +      BasicBlock *Dest = Headers[j]; +      bool NeedConditional = true; + +      if (RuntimeTripCount && j != 0) { +        NeedConditional = false; +      } + +      // For a complete unroll, make the last iteration end with a branch +      // to the exit block. +      if (CompletelyUnroll) { +        if (j == 0) +          Dest = LoopExit; +        // If using trip count upper bound to completely unroll, we need to keep +        // the conditional branch except the last one because the loop may exit +        // after any iteration. +        assert(NeedConditional && +               "NeedCondition cannot be modified by both complete " +               "unrolling and runtime unrolling"); +        NeedConditional = +            (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0)); +      } else if (j != BreakoutTrip && +                 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) { +        // If we know the trip count or a multiple of it, we can safely use an +        // unconditional branch for some iterations. +        NeedConditional = false; +      } + +      setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional); +    } +  } else { +    // Setup headers to branch to their new successors in the unrolled +    // iterations. +    for (unsigned i = 0, e = Headers.size(); i != e; ++i) { +      // The branch destination. +      unsigned j = (i + 1) % e; +      BasicBlock *Dest = HeaderSucc[i]; +      bool NeedConditional = true; + +      if (RuntimeTripCount && j != 0) +        NeedConditional = false; + +      if (CompletelyUnroll) +        // We cannot drop the conditional branch for the last condition, as we +        // may have to execute the loop body depending on the condition. +        NeedConditional = j == 0 || ULO.PreserveCondBr; +      else if (j != BreakoutTrip && +               (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) +        // If we know the trip count or a multiple of it, we can safely use an +        // unconditional branch for some iterations. +        NeedConditional = false; + +      setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional); +    } + +    // Set up latches to branch to the new header in the unrolled iterations or +    // the loop exit for the last latch in a fully unrolled loop. + +    for (unsigned i = 0, e = Latches.size(); i != e; ++i) { +      // The original branch was replicated in each unrolled iteration. +      BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); + +      // The branch destination. +      unsigned j = (i + 1) % e; +      BasicBlock *Dest = Headers[j]; + +      // When completely unrolling, the last latch becomes unreachable. +      if (CompletelyUnroll && j == 0) +        new UnreachableInst(Term->getContext(), Term); +      else +        // Replace the conditional branch with an unconditional one. +        BranchInst::Create(Dest, Term); + +      Term->eraseFromParent(); +    } +  } + +  // Update dominators of blocks we might reach through exits. +  // Immediate dominator of such block might change, because we add more +  // routes which can lead to the exit: we can now reach it from the copied +  // iterations too. +  if (DT && ULO.Count > 1) { +    for (auto *BB : OriginalLoopBlocks) { +      auto *BBDomNode = DT->getNode(BB); +      SmallVector<BasicBlock *, 16> ChildrenToUpdate; +      for (auto *ChildDomNode : BBDomNode->getChildren()) { +        auto *ChildBB = ChildDomNode->getBlock(); +        if (!L->contains(ChildBB)) +          ChildrenToUpdate.push_back(ChildBB); +      } +      BasicBlock *NewIDom; +      BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header; +      auto &TermBlocks = LatchIsExiting ? Latches : Headers; +      if (BB == TermBlock) { +        // The latch is special because we emit unconditional branches in +        // some cases where the original loop contained a conditional branch. +        // Since the latch is always at the bottom of the loop, if the latch +        // dominated an exit before unrolling, the new dominator of that exit +        // must also be a latch.  Specifically, the dominator is the first +        // latch which ends in a conditional branch, or the last latch if +        // there is no such latch. +        // For loops exiting from the header, we limit the supported loops +        // to have a single exiting block. +        NewIDom = TermBlocks.back(); +        for (BasicBlock *Iter : TermBlocks) { +          Instruction *Term = Iter->getTerminator(); +          if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) { +            NewIDom = Iter; +            break; +          } +        } +      } else { +        // The new idom of the block will be the nearest common dominator +        // of all copies of the previous idom. This is equivalent to the +        // nearest common dominator of the previous idom and the first latch, +        // which dominates all copies of the previous idom. +        NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); +      } +      for (auto *ChildBB : ChildrenToUpdate) +        DT->changeImmediateDominator(ChildBB, NewIDom); +    } +  } + +  assert(!DT || !UnrollVerifyDomtree || +         DT->verify(DominatorTree::VerificationLevel::Fast)); + +  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); +  // Merge adjacent basic blocks, if possible. +  for (BasicBlock *Latch : Latches) { +    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); +    assert((Term || +            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && +           "Need a branch as terminator, except when fully unrolling with " +           "unconditional latch"); +    if (Term && Term->isUnconditional()) { +      BasicBlock *Dest = Term->getSuccessor(0); +      BasicBlock *Fold = Dest->getUniquePredecessor(); +      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { +        // Dest has been folded into Fold. Update our worklists accordingly. +        std::replace(Latches.begin(), Latches.end(), Dest, Fold); +        UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(), +                                             UnrolledLoopBlocks.end(), Dest), +                                 UnrolledLoopBlocks.end()); +      } +    } +  } +  // Apply updates to the DomTree. +  DT = &DTU.getDomTree(); + +  // At this point, the code is well formed.  We now simplify the unrolled loop, +  // doing constant propagation and dead code elimination as we go. +  simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI, +                          SE, DT, AC); + +  NumCompletelyUnrolled += CompletelyUnroll; +  ++NumUnrolled; + +  Loop *OuterL = L->getParentLoop(); +  // Update LoopInfo if the loop is completely removed. +  if (CompletelyUnroll) +    LI->erase(L); + +  // After complete unrolling most of the blocks should be contained in OuterL. +  // However, some of them might happen to be out of OuterL (e.g. if they +  // precede a loop exit). In this case we might need to insert PHI nodes in +  // order to preserve LCSSA form. +  // We don't need to check this if we already know that we need to fix LCSSA +  // form. +  // TODO: For now we just recompute LCSSA for the outer loop in this case, but +  // it should be possible to fix it in-place. +  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) +    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); + +  // If we have a pass and a DominatorTree we should re-simplify impacted loops +  // to ensure subsequent analyses can rely on this form. We want to simplify +  // at least one layer outside of the loop that was unrolled so that any +  // changes to the parent loop exposed by the unrolling are considered. +  if (DT) { +    if (OuterL) { +      // OuterL includes all loops for which we can break loop-simplify, so +      // it's sufficient to simplify only it (it'll recursively simplify inner +      // loops too). +      if (NeedToFixLCSSA) { +        // LCSSA must be performed on the outermost affected loop. The unrolled +        // loop's last loop latch is guaranteed to be in the outermost loop +        // after LoopInfo's been updated by LoopInfo::erase. +        Loop *LatchLoop = LI->getLoopFor(Latches.back()); +        Loop *FixLCSSALoop = OuterL; +        if (!FixLCSSALoop->contains(LatchLoop)) +          while (FixLCSSALoop->getParentLoop() != LatchLoop) +            FixLCSSALoop = FixLCSSALoop->getParentLoop(); + +        formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); +      } else if (PreserveLCSSA) { +        assert(OuterL->isLCSSAForm(*DT) && +               "Loops should be in LCSSA form after loop-unroll."); +      } + +      // TODO: That potentially might be compile-time expensive. We should try +      // to fix the loop-simplified form incrementally. +      simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); +    } else { +      // Simplify loops for which we might've broken loop-simplify form. +      for (Loop *SubLoop : LoopsToSimplify) +        simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); +    } +  } + +  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled +                          : LoopUnrollResult::PartiallyUnrolled; +} + +/// Given an llvm.loop loop id metadata node, returns the loop hint metadata +/// node with the given name (for example, "llvm.loop.unroll.count"). If no +/// such metadata node exists, then nullptr is returned. +MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { +  // First operand should refer to the loop id itself. +  assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); +  assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); + +  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { +    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); +    if (!MD) +      continue; + +    MDString *S = dyn_cast<MDString>(MD->getOperand(0)); +    if (!S) +      continue; + +    if (Name.equals(S->getString())) +      return MD; +  } +  return nullptr; +} | 
