diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp | 866 | 
1 files changed, 866 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp new file mode 100644 index 000000000000..1be1082002fc --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp @@ -0,0 +1,866 @@ +//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements some loop unrolling utilities. It does not define any +// actual pass or policy, but provides a single function to perform loop +// unrolling. +// +// The process of unrolling can produce extraneous basic blocks linked with +// unconditional branches.  This will be corrected in the future. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/ilist_iterator.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GenericDomTree.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopSimplify.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/SimplifyIndVar.h" +#include "llvm/Transforms/Utils/UnrollLoop.h" +#include "llvm/Transforms/Utils/ValueMapper.h" +#include <algorithm> +#include <assert.h> +#include <type_traits> +#include <vector> + +namespace llvm { +class DataLayout; +class Value; +} // namespace llvm + +using namespace llvm; + +#define DEBUG_TYPE "loop-unroll" + +// TODO: Should these be here or in LoopUnroll? +STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); +STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); +STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional " +                               "latch (completely or otherwise)"); + +static cl::opt<bool> +UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, +                    cl::desc("Allow runtime unrolled loops to be unrolled " +                             "with epilog instead of prolog.")); + +static cl::opt<bool> +UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, +                    cl::desc("Verify domtree after unrolling"), +#ifdef EXPENSIVE_CHECKS +    cl::init(true) +#else +    cl::init(false) +#endif +                    ); + +static cl::opt<bool> +UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden, +                    cl::desc("Verify loopinfo after unrolling"), +#ifdef EXPENSIVE_CHECKS +    cl::init(true) +#else +    cl::init(false) +#endif +                    ); + + +/// Check if unrolling created a situation where we need to insert phi nodes to +/// preserve LCSSA form. +/// \param Blocks is a vector of basic blocks representing unrolled loop. +/// \param L is the outer loop. +/// It's possible that some of the blocks are in L, and some are not. In this +/// case, if there is a use is outside L, and definition is inside L, we need to +/// insert a phi-node, otherwise LCSSA will be broken. +/// The function is just a helper function for llvm::UnrollLoop that returns +/// true if this situation occurs, indicating that LCSSA needs to be fixed. +static bool needToInsertPhisForLCSSA(Loop *L, +                                     const std::vector<BasicBlock *> &Blocks, +                                     LoopInfo *LI) { +  for (BasicBlock *BB : Blocks) { +    if (LI->getLoopFor(BB) == L) +      continue; +    for (Instruction &I : *BB) { +      for (Use &U : I.operands()) { +        if (const auto *Def = dyn_cast<Instruction>(U)) { +          Loop *DefLoop = LI->getLoopFor(Def->getParent()); +          if (!DefLoop) +            continue; +          if (DefLoop->contains(L)) +            return true; +        } +      } +    } +  } +  return false; +} + +/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary +/// and adds a mapping from the original loop to the new loop to NewLoops. +/// Returns nullptr if no new loop was created and a pointer to the +/// original loop OriginalBB was part of otherwise. +const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB, +                                           BasicBlock *ClonedBB, LoopInfo *LI, +                                           NewLoopsMap &NewLoops) { +  // Figure out which loop New is in. +  const Loop *OldLoop = LI->getLoopFor(OriginalBB); +  assert(OldLoop && "Should (at least) be in the loop being unrolled!"); + +  Loop *&NewLoop = NewLoops[OldLoop]; +  if (!NewLoop) { +    // Found a new sub-loop. +    assert(OriginalBB == OldLoop->getHeader() && +           "Header should be first in RPO"); + +    NewLoop = LI->AllocateLoop(); +    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); + +    if (NewLoopParent) +      NewLoopParent->addChildLoop(NewLoop); +    else +      LI->addTopLevelLoop(NewLoop); + +    NewLoop->addBasicBlockToLoop(ClonedBB, *LI); +    return OldLoop; +  } else { +    NewLoop->addBasicBlockToLoop(ClonedBB, *LI); +    return nullptr; +  } +} + +/// The function chooses which type of unroll (epilog or prolog) is more +/// profitabale. +/// Epilog unroll is more profitable when there is PHI that starts from +/// constant.  In this case epilog will leave PHI start from constant, +/// but prolog will convert it to non-constant. +/// +/// loop: +///   PN = PHI [I, Latch], [CI, PreHeader] +///   I = foo(PN) +///   ... +/// +/// Epilog unroll case. +/// loop: +///   PN = PHI [I2, Latch], [CI, PreHeader] +///   I1 = foo(PN) +///   I2 = foo(I1) +///   ... +/// Prolog unroll case. +///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader] +/// loop: +///   PN = PHI [I2, Latch], [NewPN, PreHeader] +///   I1 = foo(PN) +///   I2 = foo(I1) +///   ... +/// +static bool isEpilogProfitable(Loop *L) { +  BasicBlock *PreHeader = L->getLoopPreheader(); +  BasicBlock *Header = L->getHeader(); +  assert(PreHeader && Header); +  for (const PHINode &PN : Header->phis()) { +    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader))) +      return true; +  } +  return false; +} + +/// Perform some cleanup and simplifications on loops after unrolling. It is +/// useful to simplify the IV's in the new loop, as well as do a quick +/// simplify/dce pass of the instructions. +void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, +                                   ScalarEvolution *SE, DominatorTree *DT, +                                   AssumptionCache *AC, +                                   const TargetTransformInfo *TTI) { +  // Simplify any new induction variables in the partially unrolled loop. +  if (SE && SimplifyIVs) { +    SmallVector<WeakTrackingVH, 16> DeadInsts; +    simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts); + +    // Aggressively clean up dead instructions that simplifyLoopIVs already +    // identified. Any remaining should be cleaned up below. +    while (!DeadInsts.empty()) { +      Value *V = DeadInsts.pop_back_val(); +      if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) +        RecursivelyDeleteTriviallyDeadInstructions(Inst); +    } +  } + +  // At this point, the code is well formed.  Perform constprop, instsimplify, +  // and dce. +  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); +  SmallVector<WeakTrackingVH, 16> DeadInsts; +  for (BasicBlock *BB : L->getBlocks()) { +    for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { +      if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC})) +        if (LI->replacementPreservesLCSSAForm(&Inst, V)) +          Inst.replaceAllUsesWith(V); +      if (isInstructionTriviallyDead(&Inst)) +        DeadInsts.emplace_back(&Inst); +    } +    // We can't do recursive deletion until we're done iterating, as we might +    // have a phi which (potentially indirectly) uses instructions later in +    // the block we're iterating through. +    RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); +  } +} + +/// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling +/// can only fail when the loop's latch block is not terminated by a conditional +/// branch instruction. However, if the trip count (and multiple) are not known, +/// loop unrolling will mostly produce more code that is no faster. +/// +/// If Runtime is true then UnrollLoop will try to insert a prologue or +/// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop +/// will not runtime-unroll the loop if computing the run-time trip count will +/// be expensive and AllowExpensiveTripCount is false. +/// +/// The LoopInfo Analysis that is passed will be kept consistent. +/// +/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and +/// DominatorTree if they are non-null. +/// +/// If RemainderLoop is non-null, it will receive the remainder loop (if +/// required and not fully unrolled). +LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, +                                  ScalarEvolution *SE, DominatorTree *DT, +                                  AssumptionCache *AC, +                                  const TargetTransformInfo *TTI, +                                  OptimizationRemarkEmitter *ORE, +                                  bool PreserveLCSSA, Loop **RemainderLoop) { +  assert(DT && "DomTree is required"); + +  if (!L->getLoopPreheader()) { +    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  if (!L->getLoopLatch()) { +    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  // Loops with indirectbr cannot be cloned. +  if (!L->isSafeToClone()) { +    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  if (L->getHeader()->hasAddressTaken()) { +    // The loop-rotate pass can be helpful to avoid this in many cases. +    LLVM_DEBUG( +        dbgs() << "  Won't unroll loop: address of header block is taken.\n"); +    return LoopUnrollResult::Unmodified; +  } + +  assert(ULO.Count > 0); + +  // All these values should be taken only after peeling because they might have +  // changed. +  BasicBlock *Preheader = L->getLoopPreheader(); +  BasicBlock *Header = L->getHeader(); +  BasicBlock *LatchBlock = L->getLoopLatch(); +  SmallVector<BasicBlock *, 4> ExitBlocks; +  L->getExitBlocks(ExitBlocks); +  std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); + +  const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L); +  const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L); + +  // Effectively "DCE" unrolled iterations that are beyond the max tripcount +  // and will never be executed. +  if (MaxTripCount && ULO.Count > MaxTripCount) +    ULO.Count = MaxTripCount; + +  struct ExitInfo { +    unsigned TripCount; +    unsigned TripMultiple; +    unsigned BreakoutTrip; +    bool ExitOnTrue; +    SmallVector<BasicBlock *> ExitingBlocks; +  }; +  DenseMap<BasicBlock *, ExitInfo> ExitInfos; +  SmallVector<BasicBlock *, 4> ExitingBlocks; +  L->getExitingBlocks(ExitingBlocks); +  for (auto *ExitingBlock : ExitingBlocks) { +    // The folding code is not prepared to deal with non-branch instructions +    // right now. +    auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); +    if (!BI) +      continue; + +    ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second; +    Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock); +    Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock); +    if (Info.TripCount != 0) { +      Info.BreakoutTrip = Info.TripCount % ULO.Count; +      Info.TripMultiple = 0; +    } else { +      Info.BreakoutTrip = Info.TripMultiple = +          (unsigned)GreatestCommonDivisor64(ULO.Count, Info.TripMultiple); +    } +    Info.ExitOnTrue = !L->contains(BI->getSuccessor(0)); +    Info.ExitingBlocks.push_back(ExitingBlock); +    LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName() +                      << ": TripCount=" << Info.TripCount +                      << ", TripMultiple=" << Info.TripMultiple +                      << ", BreakoutTrip=" << Info.BreakoutTrip << "\n"); +  } + +  // Are we eliminating the loop control altogether?  Note that we can know +  // we're eliminating the backedge without knowing exactly which iteration +  // of the unrolled body exits. +  const bool CompletelyUnroll = ULO.Count == MaxTripCount; + +  const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero; + +  // There's no point in performing runtime unrolling if this unroll count +  // results in a full unroll. +  if (CompletelyUnroll) +    ULO.Runtime = false; + +  // Go through all exits of L and see if there are any phi-nodes there. We just +  // conservatively assume that they're inserted to preserve LCSSA form, which +  // means that complete unrolling might break this form. We need to either fix +  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For +  // now we just recompute LCSSA for the outer loop, but it should be possible +  // to fix it in-place. +  bool NeedToFixLCSSA = +      PreserveLCSSA && CompletelyUnroll && +      any_of(ExitBlocks, +             [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); + +  // The current loop unroll pass can unroll loops that have +  // (1) single latch; and +  // (2a) latch is unconditional; or +  // (2b) latch is conditional and is an exiting block +  // FIXME: The implementation can be extended to work with more complicated +  // cases, e.g. loops with multiple latches. +  BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); + +  // A conditional branch which exits the loop, which can be optimized to an +  // unconditional branch in the unrolled loop in some cases. +  bool LatchIsExiting = L->isLoopExiting(LatchBlock); +  if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { +    LLVM_DEBUG( +        dbgs() << "Can't unroll; a conditional latch must exit the loop"); +    return LoopUnrollResult::Unmodified; +  } + +  // Loops containing convergent instructions cannot use runtime unrolling, +  // as the prologue/epilogue may add additional control-dependencies to +  // convergent operations. +  LLVM_DEBUG( +      { +        bool HasConvergent = false; +        for (auto &BB : L->blocks()) +          for (auto &I : *BB) +            if (auto *CB = dyn_cast<CallBase>(&I)) +              HasConvergent |= CB->isConvergent(); +        assert((!HasConvergent || !ULO.Runtime) && +               "Can't runtime unroll if loop contains a convergent operation."); +      }); + +  bool EpilogProfitability = +      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog +                                              : isEpilogProfitable(L); + +  if (ULO.Runtime && +      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount, +                                  EpilogProfitability, ULO.UnrollRemainder, +                                  ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI, +                                  PreserveLCSSA, RemainderLoop)) { +    if (ULO.Force) +      ULO.Runtime = false; +    else { +      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be " +                           "generated when assuming runtime trip count\n"); +      return LoopUnrollResult::Unmodified; +    } +  } + +  using namespace ore; +  // Report the unrolling decision. +  if (CompletelyUnroll) { +    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() +                      << " with trip count " << ULO.Count << "!\n"); +    if (ORE) +      ORE->emit([&]() { +        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), +                                  L->getHeader()) +               << "completely unrolled loop with " +               << NV("UnrollCount", ULO.Count) << " iterations"; +      }); +  } else { +    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " +                      << ULO.Count); +    if (ULO.Runtime) +      LLVM_DEBUG(dbgs() << " with run-time trip count"); +    LLVM_DEBUG(dbgs() << "!\n"); + +    if (ORE) +      ORE->emit([&]() { +        OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), +                                L->getHeader()); +        Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count); +        if (ULO.Runtime) +          Diag << " with run-time trip count"; +        return Diag; +      }); +  } + +  // We are going to make changes to this loop. SCEV may be keeping cached info +  // about it, in particular about backedge taken count. The changes we make +  // are guaranteed to invalidate this information for our loop. It is tempting +  // to only invalidate the loop being unrolled, but it is incorrect as long as +  // all exiting branches from all inner loops have impact on the outer loops, +  // and if something changes inside them then any of outer loops may also +  // change. When we forget outermost loop, we also forget all contained loops +  // and this is what we need here. +  if (SE) { +    if (ULO.ForgetAllSCEV) +      SE->forgetAllLoops(); +    else +      SE->forgetTopmostLoop(L); +  } + +  if (!LatchIsExiting) +    ++NumUnrolledNotLatch; + +  // For the first iteration of the loop, we should use the precloned values for +  // PHI nodes.  Insert associations now. +  ValueToValueMapTy LastValueMap; +  std::vector<PHINode*> OrigPHINode; +  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { +    OrigPHINode.push_back(cast<PHINode>(I)); +  } + +  std::vector<BasicBlock *> Headers; +  std::vector<BasicBlock *> Latches; +  Headers.push_back(Header); +  Latches.push_back(LatchBlock); + +  // The current on-the-fly SSA update requires blocks to be processed in +  // reverse postorder so that LastValueMap contains the correct value at each +  // exit. +  LoopBlocksDFS DFS(L); +  DFS.perform(LI); + +  // Stash the DFS iterators before adding blocks to the loop. +  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); +  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); + +  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks(); + +  // Loop Unrolling might create new loops. While we do preserve LoopInfo, we +  // might break loop-simplified form for these loops (as they, e.g., would +  // share the same exit blocks). We'll keep track of loops for which we can +  // break this so that later we can re-simplify them. +  SmallSetVector<Loop *, 4> LoopsToSimplify; +  for (Loop *SubLoop : *L) +    LoopsToSimplify.insert(SubLoop); + +  // When a FSDiscriminator is enabled, we don't need to add the multiply +  // factors to the discriminators. +  if (Header->getParent()->isDebugInfoForProfiling() && !EnableFSDiscriminator) +    for (BasicBlock *BB : L->getBlocks()) +      for (Instruction &I : *BB) +        if (!isa<DbgInfoIntrinsic>(&I)) +          if (const DILocation *DIL = I.getDebugLoc()) { +            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count); +            if (NewDIL) +              I.setDebugLoc(*NewDIL); +            else +              LLVM_DEBUG(dbgs() +                         << "Failed to create new discriminator: " +                         << DIL->getFilename() << " Line: " << DIL->getLine()); +          } + +  // Identify what noalias metadata is inside the loop: if it is inside the +  // loop, the associated metadata must be cloned for each iteration. +  SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; +  identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); + +  // We place the unrolled iterations immediately after the original loop +  // latch.  This is a reasonable default placement if we don't have block +  // frequencies, and if we do, well the layout will be adjusted later. +  auto BlockInsertPt = std::next(LatchBlock->getIterator()); +  for (unsigned It = 1; It != ULO.Count; ++It) { +    SmallVector<BasicBlock *, 8> NewBlocks; +    SmallDenseMap<const Loop *, Loop *, 4> NewLoops; +    NewLoops[L] = L; + +    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { +      ValueToValueMapTy VMap; +      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); +      Header->getParent()->getBasicBlockList().insert(BlockInsertPt, New); + +      assert((*BB != Header || LI->getLoopFor(*BB) == L) && +             "Header should not be in a sub-loop"); +      // Tell LI about New. +      const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); +      if (OldLoop) +        LoopsToSimplify.insert(NewLoops[OldLoop]); + +      if (*BB == Header) +        // Loop over all of the PHI nodes in the block, changing them to use +        // the incoming values from the previous block. +        for (PHINode *OrigPHI : OrigPHINode) { +          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]); +          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); +          if (Instruction *InValI = dyn_cast<Instruction>(InVal)) +            if (It > 1 && L->contains(InValI)) +              InVal = LastValueMap[InValI]; +          VMap[OrigPHI] = InVal; +          New->getInstList().erase(NewPHI); +        } + +      // Update our running map of newest clones +      LastValueMap[*BB] = New; +      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); +           VI != VE; ++VI) +        LastValueMap[VI->first] = VI->second; + +      // Add phi entries for newly created values to all exit blocks. +      for (BasicBlock *Succ : successors(*BB)) { +        if (L->contains(Succ)) +          continue; +        for (PHINode &PHI : Succ->phis()) { +          Value *Incoming = PHI.getIncomingValueForBlock(*BB); +          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); +          if (It != LastValueMap.end()) +            Incoming = It->second; +          PHI.addIncoming(Incoming, New); +        } +      } +      // Keep track of new headers and latches as we create them, so that +      // we can insert the proper branches later. +      if (*BB == Header) +        Headers.push_back(New); +      if (*BB == LatchBlock) +        Latches.push_back(New); + +      // Keep track of the exiting block and its successor block contained in +      // the loop for the current iteration. +      auto ExitInfoIt = ExitInfos.find(*BB); +      if (ExitInfoIt != ExitInfos.end()) +        ExitInfoIt->second.ExitingBlocks.push_back(New); + +      NewBlocks.push_back(New); +      UnrolledLoopBlocks.push_back(New); + +      // Update DomTree: since we just copy the loop body, and each copy has a +      // dedicated entry block (copy of the header block), this header's copy +      // dominates all copied blocks. That means, dominance relations in the +      // copied body are the same as in the original body. +      if (*BB == Header) +        DT->addNewBlock(New, Latches[It - 1]); +      else { +        auto BBDomNode = DT->getNode(*BB); +        auto BBIDom = BBDomNode->getIDom(); +        BasicBlock *OriginalBBIDom = BBIDom->getBlock(); +        DT->addNewBlock( +            New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); +      } +    } + +    // Remap all instructions in the most recent iteration +    remapInstructionsInBlocks(NewBlocks, LastValueMap); +    for (BasicBlock *NewBlock : NewBlocks) +      for (Instruction &I : *NewBlock) +        if (auto *II = dyn_cast<AssumeInst>(&I)) +          AC->registerAssumption(II); + +    { +      // Identify what other metadata depends on the cloned version. After +      // cloning, replace the metadata with the corrected version for both +      // memory instructions and noalias intrinsics. +      std::string ext = (Twine("It") + Twine(It)).str(); +      cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, +                                 Header->getContext(), ext); +    } +  } + +  // Loop over the PHI nodes in the original block, setting incoming values. +  for (PHINode *PN : OrigPHINode) { +    if (CompletelyUnroll) { +      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); +      Header->getInstList().erase(PN); +    } else if (ULO.Count > 1) { +      Value *InVal = PN->removeIncomingValue(LatchBlock, false); +      // If this value was defined in the loop, take the value defined by the +      // last iteration of the loop. +      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { +        if (L->contains(InValI)) +          InVal = LastValueMap[InVal]; +      } +      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); +      PN->addIncoming(InVal, Latches.back()); +    } +  } + +  // Connect latches of the unrolled iterations to the headers of the next +  // iteration. Currently they point to the header of the same iteration. +  for (unsigned i = 0, e = Latches.size(); i != e; ++i) { +    unsigned j = (i + 1) % e; +    Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]); +  } + +  // Update dominators of blocks we might reach through exits. +  // Immediate dominator of such block might change, because we add more +  // routes which can lead to the exit: we can now reach it from the copied +  // iterations too. +  if (ULO.Count > 1) { +    for (auto *BB : OriginalLoopBlocks) { +      auto *BBDomNode = DT->getNode(BB); +      SmallVector<BasicBlock *, 16> ChildrenToUpdate; +      for (auto *ChildDomNode : BBDomNode->children()) { +        auto *ChildBB = ChildDomNode->getBlock(); +        if (!L->contains(ChildBB)) +          ChildrenToUpdate.push_back(ChildBB); +      } +      // The new idom of the block will be the nearest common dominator +      // of all copies of the previous idom. This is equivalent to the +      // nearest common dominator of the previous idom and the first latch, +      // which dominates all copies of the previous idom. +      BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock); +      for (auto *ChildBB : ChildrenToUpdate) +        DT->changeImmediateDominator(ChildBB, NewIDom); +    } +  } + +  assert(!UnrollVerifyDomtree || +         DT->verify(DominatorTree::VerificationLevel::Fast)); + +  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); + +  auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) { +    auto *Term = cast<BranchInst>(Src->getTerminator()); +    const unsigned Idx = ExitOnTrue ^ WillExit; +    BasicBlock *Dest = Term->getSuccessor(Idx); +    BasicBlock *DeadSucc = Term->getSuccessor(1-Idx); + +    // Remove predecessors from all non-Dest successors. +    DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true); + +    // Replace the conditional branch with an unconditional one. +    BranchInst::Create(Dest, Term); +    Term->eraseFromParent(); + +    DTU.applyUpdates({{DominatorTree::Delete, Src, DeadSucc}}); +  }; + +  auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j, +                      bool IsLatch) -> Optional<bool> { +    if (CompletelyUnroll) { +      if (PreserveOnlyFirst) { +        if (i == 0) +          return None; +        return j == 0; +      } +      // Complete (but possibly inexact) unrolling +      if (j == 0) +        return true; +      if (Info.TripCount && j != Info.TripCount) +        return false; +      return None; +    } + +    if (ULO.Runtime) { +      // If runtime unrolling inserts a prologue, information about non-latch +      // exits may be stale. +      if (IsLatch && j != 0) +        return false; +      return None; +    } + +    if (j != Info.BreakoutTrip && +        (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) { +      // If we know the trip count or a multiple of it, we can safely use an +      // unconditional branch for some iterations. +      return false; +    } +    return None; +  }; + +  // Fold branches for iterations where we know that they will exit or not +  // exit. +  for (const auto &Pair : ExitInfos) { +    const ExitInfo &Info = Pair.second; +    for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) { +      // The branch destination. +      unsigned j = (i + 1) % e; +      bool IsLatch = Pair.first == LatchBlock; +      Optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch); +      if (!KnownWillExit) +        continue; + +      // We don't fold known-exiting branches for non-latch exits here, +      // because this ensures that both all loop blocks and all exit blocks +      // remain reachable in the CFG. +      // TODO: We could fold these branches, but it would require much more +      // sophisticated updates to LoopInfo. +      if (*KnownWillExit && !IsLatch) +        continue; + +      SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue); +    } +  } + +  // When completely unrolling, the last latch becomes unreachable. +  if (!LatchIsExiting && CompletelyUnroll) +    changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA, &DTU); + +  // Merge adjacent basic blocks, if possible. +  for (BasicBlock *Latch : Latches) { +    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator()); +    assert((Term || +            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && +           "Need a branch as terminator, except when fully unrolling with " +           "unconditional latch"); +    if (Term && Term->isUnconditional()) { +      BasicBlock *Dest = Term->getSuccessor(0); +      BasicBlock *Fold = Dest->getUniquePredecessor(); +      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) { +        // Dest has been folded into Fold. Update our worklists accordingly. +        std::replace(Latches.begin(), Latches.end(), Dest, Fold); +        llvm::erase_value(UnrolledLoopBlocks, Dest); +      } +    } +  } +  // Apply updates to the DomTree. +  DT = &DTU.getDomTree(); + +  assert(!UnrollVerifyDomtree || +         DT->verify(DominatorTree::VerificationLevel::Fast)); + +  // At this point, the code is well formed.  We now simplify the unrolled loop, +  // doing constant propagation and dead code elimination as we go. +  simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC, +                          TTI); + +  NumCompletelyUnrolled += CompletelyUnroll; +  ++NumUnrolled; + +  Loop *OuterL = L->getParentLoop(); +  // Update LoopInfo if the loop is completely removed. +  if (CompletelyUnroll) +    LI->erase(L); + +  // LoopInfo should not be valid, confirm that. +  if (UnrollVerifyLoopInfo) +    LI->verify(*DT); + +  // After complete unrolling most of the blocks should be contained in OuterL. +  // However, some of them might happen to be out of OuterL (e.g. if they +  // precede a loop exit). In this case we might need to insert PHI nodes in +  // order to preserve LCSSA form. +  // We don't need to check this if we already know that we need to fix LCSSA +  // form. +  // TODO: For now we just recompute LCSSA for the outer loop in this case, but +  // it should be possible to fix it in-place. +  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA) +    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI); + +  // Make sure that loop-simplify form is preserved. We want to simplify +  // at least one layer outside of the loop that was unrolled so that any +  // changes to the parent loop exposed by the unrolling are considered. +  if (OuterL) { +    // OuterL includes all loops for which we can break loop-simplify, so +    // it's sufficient to simplify only it (it'll recursively simplify inner +    // loops too). +    if (NeedToFixLCSSA) { +      // LCSSA must be performed on the outermost affected loop. The unrolled +      // loop's last loop latch is guaranteed to be in the outermost loop +      // after LoopInfo's been updated by LoopInfo::erase. +      Loop *LatchLoop = LI->getLoopFor(Latches.back()); +      Loop *FixLCSSALoop = OuterL; +      if (!FixLCSSALoop->contains(LatchLoop)) +        while (FixLCSSALoop->getParentLoop() != LatchLoop) +          FixLCSSALoop = FixLCSSALoop->getParentLoop(); + +      formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE); +    } else if (PreserveLCSSA) { +      assert(OuterL->isLCSSAForm(*DT) && +             "Loops should be in LCSSA form after loop-unroll."); +    } + +    // TODO: That potentially might be compile-time expensive. We should try +    // to fix the loop-simplified form incrementally. +    simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA); +  } else { +    // Simplify loops for which we might've broken loop-simplify form. +    for (Loop *SubLoop : LoopsToSimplify) +      simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA); +  } + +  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled +                          : LoopUnrollResult::PartiallyUnrolled; +} + +/// Given an llvm.loop loop id metadata node, returns the loop hint metadata +/// node with the given name (for example, "llvm.loop.unroll.count"). If no +/// such metadata node exists, then nullptr is returned. +MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { +  // First operand should refer to the loop id itself. +  assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); +  assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); + +  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { +    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); +    if (!MD) +      continue; + +    MDString *S = dyn_cast<MDString>(MD->getOperand(0)); +    if (!S) +      continue; + +    if (Name.equals(S->getString())) +      return MD; +  } +  return nullptr; +}  | 
