aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp908
1 files changed, 908 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp
new file mode 100644
index 000000000000..e8f585b4a94d
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -0,0 +1,908 @@
+//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some loop unrolling utilities. It does not define any
+// actual pass or policy, but provides a single function to perform loop
+// unrolling.
+//
+// The process of unrolling can produce extraneous basic blocks linked with
+// unconditional branches. This will be corrected in the future.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/ilist_iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GenericDomTree.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <assert.h>
+#include <numeric>
+#include <type_traits>
+#include <vector>
+
+namespace llvm {
+class DataLayout;
+class Value;
+} // namespace llvm
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+// TODO: Should these be here or in LoopUnroll?
+STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
+STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
+STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
+ "latch (completely or otherwise)");
+
+static cl::opt<bool>
+UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
+ cl::desc("Allow runtime unrolled loops to be unrolled "
+ "with epilog instead of prolog."));
+
+static cl::opt<bool>
+UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
+ cl::desc("Verify domtree after unrolling"),
+#ifdef EXPENSIVE_CHECKS
+ cl::init(true)
+#else
+ cl::init(false)
+#endif
+ );
+
+static cl::opt<bool>
+UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
+ cl::desc("Verify loopinfo after unrolling"),
+#ifdef EXPENSIVE_CHECKS
+ cl::init(true)
+#else
+ cl::init(false)
+#endif
+ );
+
+
+/// Check if unrolling created a situation where we need to insert phi nodes to
+/// preserve LCSSA form.
+/// \param Blocks is a vector of basic blocks representing unrolled loop.
+/// \param L is the outer loop.
+/// It's possible that some of the blocks are in L, and some are not. In this
+/// case, if there is a use is outside L, and definition is inside L, we need to
+/// insert a phi-node, otherwise LCSSA will be broken.
+/// The function is just a helper function for llvm::UnrollLoop that returns
+/// true if this situation occurs, indicating that LCSSA needs to be fixed.
+static bool needToInsertPhisForLCSSA(Loop *L,
+ const std::vector<BasicBlock *> &Blocks,
+ LoopInfo *LI) {
+ for (BasicBlock *BB : Blocks) {
+ if (LI->getLoopFor(BB) == L)
+ continue;
+ for (Instruction &I : *BB) {
+ for (Use &U : I.operands()) {
+ if (const auto *Def = dyn_cast<Instruction>(U)) {
+ Loop *DefLoop = LI->getLoopFor(Def->getParent());
+ if (!DefLoop)
+ continue;
+ if (DefLoop->contains(L))
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+}
+
+/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
+/// and adds a mapping from the original loop to the new loop to NewLoops.
+/// Returns nullptr if no new loop was created and a pointer to the
+/// original loop OriginalBB was part of otherwise.
+const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
+ BasicBlock *ClonedBB, LoopInfo *LI,
+ NewLoopsMap &NewLoops) {
+ // Figure out which loop New is in.
+ const Loop *OldLoop = LI->getLoopFor(OriginalBB);
+ assert(OldLoop && "Should (at least) be in the loop being unrolled!");
+
+ Loop *&NewLoop = NewLoops[OldLoop];
+ if (!NewLoop) {
+ // Found a new sub-loop.
+ assert(OriginalBB == OldLoop->getHeader() &&
+ "Header should be first in RPO");
+
+ NewLoop = LI->AllocateLoop();
+ Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
+
+ if (NewLoopParent)
+ NewLoopParent->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+
+ NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
+ return OldLoop;
+ } else {
+ NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
+ return nullptr;
+ }
+}
+
+/// The function chooses which type of unroll (epilog or prolog) is more
+/// profitabale.
+/// Epilog unroll is more profitable when there is PHI that starts from
+/// constant. In this case epilog will leave PHI start from constant,
+/// but prolog will convert it to non-constant.
+///
+/// loop:
+/// PN = PHI [I, Latch], [CI, PreHeader]
+/// I = foo(PN)
+/// ...
+///
+/// Epilog unroll case.
+/// loop:
+/// PN = PHI [I2, Latch], [CI, PreHeader]
+/// I1 = foo(PN)
+/// I2 = foo(I1)
+/// ...
+/// Prolog unroll case.
+/// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
+/// loop:
+/// PN = PHI [I2, Latch], [NewPN, PreHeader]
+/// I1 = foo(PN)
+/// I2 = foo(I1)
+/// ...
+///
+static bool isEpilogProfitable(Loop *L) {
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ BasicBlock *Header = L->getHeader();
+ assert(PreHeader && Header);
+ for (const PHINode &PN : Header->phis()) {
+ if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
+ return true;
+ }
+ return false;
+}
+
+/// Perform some cleanup and simplifications on loops after unrolling. It is
+/// useful to simplify the IV's in the new loop, as well as do a quick
+/// simplify/dce pass of the instructions.
+void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
+ ScalarEvolution *SE, DominatorTree *DT,
+ AssumptionCache *AC,
+ const TargetTransformInfo *TTI) {
+ // Simplify any new induction variables in the partially unrolled loop.
+ if (SE && SimplifyIVs) {
+ SmallVector<WeakTrackingVH, 16> DeadInsts;
+ simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
+
+ // Aggressively clean up dead instructions that simplifyLoopIVs already
+ // identified. Any remaining should be cleaned up below.
+ while (!DeadInsts.empty()) {
+ Value *V = DeadInsts.pop_back_val();
+ if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
+ RecursivelyDeleteTriviallyDeadInstructions(Inst);
+ }
+ }
+
+ // At this point, the code is well formed. Perform constprop, instsimplify,
+ // and dce.
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ SmallVector<WeakTrackingVH, 16> DeadInsts;
+ for (BasicBlock *BB : L->getBlocks()) {
+ for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
+ if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
+ if (LI->replacementPreservesLCSSAForm(&Inst, V))
+ Inst.replaceAllUsesWith(V);
+ if (isInstructionTriviallyDead(&Inst))
+ DeadInsts.emplace_back(&Inst);
+ }
+ // We can't do recursive deletion until we're done iterating, as we might
+ // have a phi which (potentially indirectly) uses instructions later in
+ // the block we're iterating through.
+ RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
+ }
+}
+
+/// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
+/// can only fail when the loop's latch block is not terminated by a conditional
+/// branch instruction. However, if the trip count (and multiple) are not known,
+/// loop unrolling will mostly produce more code that is no faster.
+///
+/// If Runtime is true then UnrollLoop will try to insert a prologue or
+/// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
+/// will not runtime-unroll the loop if computing the run-time trip count will
+/// be expensive and AllowExpensiveTripCount is false.
+///
+/// The LoopInfo Analysis that is passed will be kept consistent.
+///
+/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
+/// DominatorTree if they are non-null.
+///
+/// If RemainderLoop is non-null, it will receive the remainder loop (if
+/// required and not fully unrolled).
+LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
+ ScalarEvolution *SE, DominatorTree *DT,
+ AssumptionCache *AC,
+ const TargetTransformInfo *TTI,
+ OptimizationRemarkEmitter *ORE,
+ bool PreserveLCSSA, Loop **RemainderLoop) {
+ assert(DT && "DomTree is required");
+
+ if (!L->getLoopPreheader()) {
+ LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ if (!L->getLoopLatch()) {
+ LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ // Loops with indirectbr cannot be cloned.
+ if (!L->isSafeToClone()) {
+ LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ if (L->getHeader()->hasAddressTaken()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ LLVM_DEBUG(
+ dbgs() << " Won't unroll loop: address of header block is taken.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ assert(ULO.Count > 0);
+
+ // All these values should be taken only after peeling because they might have
+ // changed.
+ BasicBlock *Preheader = L->getLoopPreheader();
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ L->getExitBlocks(ExitBlocks);
+ std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
+
+ const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
+ const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
+
+ // Effectively "DCE" unrolled iterations that are beyond the max tripcount
+ // and will never be executed.
+ if (MaxTripCount && ULO.Count > MaxTripCount)
+ ULO.Count = MaxTripCount;
+
+ struct ExitInfo {
+ unsigned TripCount;
+ unsigned TripMultiple;
+ unsigned BreakoutTrip;
+ bool ExitOnTrue;
+ BasicBlock *FirstExitingBlock = nullptr;
+ SmallVector<BasicBlock *> ExitingBlocks;
+ };
+ DenseMap<BasicBlock *, ExitInfo> ExitInfos;
+ SmallVector<BasicBlock *, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ for (auto *ExitingBlock : ExitingBlocks) {
+ // The folding code is not prepared to deal with non-branch instructions
+ // right now.
+ auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
+ if (!BI)
+ continue;
+
+ ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
+ Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
+ Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
+ if (Info.TripCount != 0) {
+ Info.BreakoutTrip = Info.TripCount % ULO.Count;
+ Info.TripMultiple = 0;
+ } else {
+ Info.BreakoutTrip = Info.TripMultiple =
+ (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
+ }
+ Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
+ Info.ExitingBlocks.push_back(ExitingBlock);
+ LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName()
+ << ": TripCount=" << Info.TripCount
+ << ", TripMultiple=" << Info.TripMultiple
+ << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
+ }
+
+ // Are we eliminating the loop control altogether? Note that we can know
+ // we're eliminating the backedge without knowing exactly which iteration
+ // of the unrolled body exits.
+ const bool CompletelyUnroll = ULO.Count == MaxTripCount;
+
+ const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
+
+ // There's no point in performing runtime unrolling if this unroll count
+ // results in a full unroll.
+ if (CompletelyUnroll)
+ ULO.Runtime = false;
+
+ // Go through all exits of L and see if there are any phi-nodes there. We just
+ // conservatively assume that they're inserted to preserve LCSSA form, which
+ // means that complete unrolling might break this form. We need to either fix
+ // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
+ // now we just recompute LCSSA for the outer loop, but it should be possible
+ // to fix it in-place.
+ bool NeedToFixLCSSA =
+ PreserveLCSSA && CompletelyUnroll &&
+ any_of(ExitBlocks,
+ [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
+
+ // The current loop unroll pass can unroll loops that have
+ // (1) single latch; and
+ // (2a) latch is unconditional; or
+ // (2b) latch is conditional and is an exiting block
+ // FIXME: The implementation can be extended to work with more complicated
+ // cases, e.g. loops with multiple latches.
+ BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
+
+ // A conditional branch which exits the loop, which can be optimized to an
+ // unconditional branch in the unrolled loop in some cases.
+ bool LatchIsExiting = L->isLoopExiting(LatchBlock);
+ if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
+ LLVM_DEBUG(
+ dbgs() << "Can't unroll; a conditional latch must exit the loop");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ // Loops containing convergent instructions cannot use runtime unrolling,
+ // as the prologue/epilogue may add additional control-dependencies to
+ // convergent operations.
+ LLVM_DEBUG(
+ {
+ bool HasConvergent = false;
+ for (auto &BB : L->blocks())
+ for (auto &I : *BB)
+ if (auto *CB = dyn_cast<CallBase>(&I))
+ HasConvergent |= CB->isConvergent();
+ assert((!HasConvergent || !ULO.Runtime) &&
+ "Can't runtime unroll if loop contains a convergent operation.");
+ });
+
+ bool EpilogProfitability =
+ UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
+ : isEpilogProfitable(L);
+
+ if (ULO.Runtime &&
+ !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
+ EpilogProfitability, ULO.UnrollRemainder,
+ ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
+ PreserveLCSSA, RemainderLoop)) {
+ if (ULO.Force)
+ ULO.Runtime = false;
+ else {
+ LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
+ "generated when assuming runtime trip count\n");
+ return LoopUnrollResult::Unmodified;
+ }
+ }
+
+ using namespace ore;
+ // Report the unrolling decision.
+ if (CompletelyUnroll) {
+ LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
+ << " with trip count " << ULO.Count << "!\n");
+ if (ORE)
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
+ L->getHeader())
+ << "completely unrolled loop with "
+ << NV("UnrollCount", ULO.Count) << " iterations";
+ });
+ } else {
+ LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
+ << ULO.Count);
+ if (ULO.Runtime)
+ LLVM_DEBUG(dbgs() << " with run-time trip count");
+ LLVM_DEBUG(dbgs() << "!\n");
+
+ if (ORE)
+ ORE->emit([&]() {
+ OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
+ L->getHeader());
+ Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
+ if (ULO.Runtime)
+ Diag << " with run-time trip count";
+ return Diag;
+ });
+ }
+
+ // We are going to make changes to this loop. SCEV may be keeping cached info
+ // about it, in particular about backedge taken count. The changes we make
+ // are guaranteed to invalidate this information for our loop. It is tempting
+ // to only invalidate the loop being unrolled, but it is incorrect as long as
+ // all exiting branches from all inner loops have impact on the outer loops,
+ // and if something changes inside them then any of outer loops may also
+ // change. When we forget outermost loop, we also forget all contained loops
+ // and this is what we need here.
+ if (SE) {
+ if (ULO.ForgetAllSCEV)
+ SE->forgetAllLoops();
+ else {
+ SE->forgetTopmostLoop(L);
+ SE->forgetBlockAndLoopDispositions();
+ }
+ }
+
+ if (!LatchIsExiting)
+ ++NumUnrolledNotLatch;
+
+ // For the first iteration of the loop, we should use the precloned values for
+ // PHI nodes. Insert associations now.
+ ValueToValueMapTy LastValueMap;
+ std::vector<PHINode*> OrigPHINode;
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ OrigPHINode.push_back(cast<PHINode>(I));
+ }
+
+ std::vector<BasicBlock *> Headers;
+ std::vector<BasicBlock *> Latches;
+ Headers.push_back(Header);
+ Latches.push_back(LatchBlock);
+
+ // The current on-the-fly SSA update requires blocks to be processed in
+ // reverse postorder so that LastValueMap contains the correct value at each
+ // exit.
+ LoopBlocksDFS DFS(L);
+ DFS.perform(LI);
+
+ // Stash the DFS iterators before adding blocks to the loop.
+ LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
+
+ std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
+
+ // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
+ // might break loop-simplified form for these loops (as they, e.g., would
+ // share the same exit blocks). We'll keep track of loops for which we can
+ // break this so that later we can re-simplify them.
+ SmallSetVector<Loop *, 4> LoopsToSimplify;
+ for (Loop *SubLoop : *L)
+ LoopsToSimplify.insert(SubLoop);
+
+ // When a FSDiscriminator is enabled, we don't need to add the multiply
+ // factors to the discriminators.
+ if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
+ !EnableFSDiscriminator)
+ for (BasicBlock *BB : L->getBlocks())
+ for (Instruction &I : *BB)
+ if (!isa<DbgInfoIntrinsic>(&I))
+ if (const DILocation *DIL = I.getDebugLoc()) {
+ auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
+ if (NewDIL)
+ I.setDebugLoc(*NewDIL);
+ else
+ LLVM_DEBUG(dbgs()
+ << "Failed to create new discriminator: "
+ << DIL->getFilename() << " Line: " << DIL->getLine());
+ }
+
+ // Identify what noalias metadata is inside the loop: if it is inside the
+ // loop, the associated metadata must be cloned for each iteration.
+ SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
+ identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
+
+ // We place the unrolled iterations immediately after the original loop
+ // latch. This is a reasonable default placement if we don't have block
+ // frequencies, and if we do, well the layout will be adjusted later.
+ auto BlockInsertPt = std::next(LatchBlock->getIterator());
+ for (unsigned It = 1; It != ULO.Count; ++It) {
+ SmallVector<BasicBlock *, 8> NewBlocks;
+ SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
+ NewLoops[L] = L;
+
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ ValueToValueMapTy VMap;
+ BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
+ Header->getParent()->insert(BlockInsertPt, New);
+
+ assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
+ "Header should not be in a sub-loop");
+ // Tell LI about New.
+ const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
+ if (OldLoop)
+ LoopsToSimplify.insert(NewLoops[OldLoop]);
+
+ if (*BB == Header)
+ // Loop over all of the PHI nodes in the block, changing them to use
+ // the incoming values from the previous block.
+ for (PHINode *OrigPHI : OrigPHINode) {
+ PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
+ Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal))
+ if (It > 1 && L->contains(InValI))
+ InVal = LastValueMap[InValI];
+ VMap[OrigPHI] = InVal;
+ NewPHI->eraseFromParent();
+ }
+
+ // Update our running map of newest clones
+ LastValueMap[*BB] = New;
+ for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
+ VI != VE; ++VI)
+ LastValueMap[VI->first] = VI->second;
+
+ // Add phi entries for newly created values to all exit blocks.
+ for (BasicBlock *Succ : successors(*BB)) {
+ if (L->contains(Succ))
+ continue;
+ for (PHINode &PHI : Succ->phis()) {
+ Value *Incoming = PHI.getIncomingValueForBlock(*BB);
+ ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
+ if (It != LastValueMap.end())
+ Incoming = It->second;
+ PHI.addIncoming(Incoming, New);
+ SE->forgetValue(&PHI);
+ }
+ }
+ // Keep track of new headers and latches as we create them, so that
+ // we can insert the proper branches later.
+ if (*BB == Header)
+ Headers.push_back(New);
+ if (*BB == LatchBlock)
+ Latches.push_back(New);
+
+ // Keep track of the exiting block and its successor block contained in
+ // the loop for the current iteration.
+ auto ExitInfoIt = ExitInfos.find(*BB);
+ if (ExitInfoIt != ExitInfos.end())
+ ExitInfoIt->second.ExitingBlocks.push_back(New);
+
+ NewBlocks.push_back(New);
+ UnrolledLoopBlocks.push_back(New);
+
+ // Update DomTree: since we just copy the loop body, and each copy has a
+ // dedicated entry block (copy of the header block), this header's copy
+ // dominates all copied blocks. That means, dominance relations in the
+ // copied body are the same as in the original body.
+ if (*BB == Header)
+ DT->addNewBlock(New, Latches[It - 1]);
+ else {
+ auto BBDomNode = DT->getNode(*BB);
+ auto BBIDom = BBDomNode->getIDom();
+ BasicBlock *OriginalBBIDom = BBIDom->getBlock();
+ DT->addNewBlock(
+ New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
+ }
+ }
+
+ // Remap all instructions in the most recent iteration
+ remapInstructionsInBlocks(NewBlocks, LastValueMap);
+ for (BasicBlock *NewBlock : NewBlocks)
+ for (Instruction &I : *NewBlock)
+ if (auto *II = dyn_cast<AssumeInst>(&I))
+ AC->registerAssumption(II);
+
+ {
+ // Identify what other metadata depends on the cloned version. After
+ // cloning, replace the metadata with the corrected version for both
+ // memory instructions and noalias intrinsics.
+ std::string ext = (Twine("It") + Twine(It)).str();
+ cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
+ Header->getContext(), ext);
+ }
+ }
+
+ // Loop over the PHI nodes in the original block, setting incoming values.
+ for (PHINode *PN : OrigPHINode) {
+ if (CompletelyUnroll) {
+ PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
+ PN->eraseFromParent();
+ } else if (ULO.Count > 1) {
+ Value *InVal = PN->removeIncomingValue(LatchBlock, false);
+ // If this value was defined in the loop, take the value defined by the
+ // last iteration of the loop.
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
+ if (L->contains(InValI))
+ InVal = LastValueMap[InVal];
+ }
+ assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
+ PN->addIncoming(InVal, Latches.back());
+ }
+ }
+
+ // Connect latches of the unrolled iterations to the headers of the next
+ // iteration. Currently they point to the header of the same iteration.
+ for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
+ unsigned j = (i + 1) % e;
+ Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
+ }
+
+ // Update dominators of blocks we might reach through exits.
+ // Immediate dominator of such block might change, because we add more
+ // routes which can lead to the exit: we can now reach it from the copied
+ // iterations too.
+ if (ULO.Count > 1) {
+ for (auto *BB : OriginalLoopBlocks) {
+ auto *BBDomNode = DT->getNode(BB);
+ SmallVector<BasicBlock *, 16> ChildrenToUpdate;
+ for (auto *ChildDomNode : BBDomNode->children()) {
+ auto *ChildBB = ChildDomNode->getBlock();
+ if (!L->contains(ChildBB))
+ ChildrenToUpdate.push_back(ChildBB);
+ }
+ // The new idom of the block will be the nearest common dominator
+ // of all copies of the previous idom. This is equivalent to the
+ // nearest common dominator of the previous idom and the first latch,
+ // which dominates all copies of the previous idom.
+ BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
+ for (auto *ChildBB : ChildrenToUpdate)
+ DT->changeImmediateDominator(ChildBB, NewIDom);
+ }
+ }
+
+ assert(!UnrollVerifyDomtree ||
+ DT->verify(DominatorTree::VerificationLevel::Fast));
+
+ SmallVector<DominatorTree::UpdateType> DTUpdates;
+ auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
+ auto *Term = cast<BranchInst>(Src->getTerminator());
+ const unsigned Idx = ExitOnTrue ^ WillExit;
+ BasicBlock *Dest = Term->getSuccessor(Idx);
+ BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
+
+ // Remove predecessors from all non-Dest successors.
+ DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
+
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Dest, Term);
+ Term->eraseFromParent();
+
+ DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
+ };
+
+ auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
+ bool IsLatch) -> std::optional<bool> {
+ if (CompletelyUnroll) {
+ if (PreserveOnlyFirst) {
+ if (i == 0)
+ return std::nullopt;
+ return j == 0;
+ }
+ // Complete (but possibly inexact) unrolling
+ if (j == 0)
+ return true;
+ if (Info.TripCount && j != Info.TripCount)
+ return false;
+ return std::nullopt;
+ }
+
+ if (ULO.Runtime) {
+ // If runtime unrolling inserts a prologue, information about non-latch
+ // exits may be stale.
+ if (IsLatch && j != 0)
+ return false;
+ return std::nullopt;
+ }
+
+ if (j != Info.BreakoutTrip &&
+ (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
+ // If we know the trip count or a multiple of it, we can safely use an
+ // unconditional branch for some iterations.
+ return false;
+ }
+ return std::nullopt;
+ };
+
+ // Fold branches for iterations where we know that they will exit or not
+ // exit.
+ for (auto &Pair : ExitInfos) {
+ ExitInfo &Info = Pair.second;
+ for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
+ // The branch destination.
+ unsigned j = (i + 1) % e;
+ bool IsLatch = Pair.first == LatchBlock;
+ std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
+ if (!KnownWillExit) {
+ if (!Info.FirstExitingBlock)
+ Info.FirstExitingBlock = Info.ExitingBlocks[i];
+ continue;
+ }
+
+ // We don't fold known-exiting branches for non-latch exits here,
+ // because this ensures that both all loop blocks and all exit blocks
+ // remain reachable in the CFG.
+ // TODO: We could fold these branches, but it would require much more
+ // sophisticated updates to LoopInfo.
+ if (*KnownWillExit && !IsLatch) {
+ if (!Info.FirstExitingBlock)
+ Info.FirstExitingBlock = Info.ExitingBlocks[i];
+ continue;
+ }
+
+ SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
+ }
+ }
+
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+ DomTreeUpdater *DTUToUse = &DTU;
+ if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
+ // Manually update the DT if there's a single exiting node. In that case
+ // there's a single exit node and it is sufficient to update the nodes
+ // immediately dominated by the original exiting block. They will become
+ // dominated by the first exiting block that leaves the loop after
+ // unrolling. Note that the CFG inside the loop does not change, so there's
+ // no need to update the DT inside the unrolled loop.
+ DTUToUse = nullptr;
+ auto &[OriginalExit, Info] = *ExitInfos.begin();
+ if (!Info.FirstExitingBlock)
+ Info.FirstExitingBlock = Info.ExitingBlocks.back();
+ for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
+ if (L->contains(C->getBlock()))
+ continue;
+ C->setIDom(DT->getNode(Info.FirstExitingBlock));
+ }
+ } else {
+ DTU.applyUpdates(DTUpdates);
+ }
+
+ // When completely unrolling, the last latch becomes unreachable.
+ if (!LatchIsExiting && CompletelyUnroll) {
+ // There is no need to update the DT here, because there must be a unique
+ // latch. Hence if the latch is not exiting it must directly branch back to
+ // the original loop header and does not dominate any nodes.
+ assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
+ changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
+ }
+
+ // Merge adjacent basic blocks, if possible.
+ for (BasicBlock *Latch : Latches) {
+ BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
+ assert((Term ||
+ (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
+ "Need a branch as terminator, except when fully unrolling with "
+ "unconditional latch");
+ if (Term && Term->isUnconditional()) {
+ BasicBlock *Dest = Term->getSuccessor(0);
+ BasicBlock *Fold = Dest->getUniquePredecessor();
+ if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
+ /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
+ /*PredecessorWithTwoSuccessors=*/false,
+ DTUToUse ? nullptr : DT)) {
+ // Dest has been folded into Fold. Update our worklists accordingly.
+ std::replace(Latches.begin(), Latches.end(), Dest, Fold);
+ llvm::erase_value(UnrolledLoopBlocks, Dest);
+ }
+ }
+ }
+
+ if (DTUToUse) {
+ // Apply updates to the DomTree.
+ DT = &DTU.getDomTree();
+ }
+ assert(!UnrollVerifyDomtree ||
+ DT->verify(DominatorTree::VerificationLevel::Fast));
+
+ // At this point, the code is well formed. We now simplify the unrolled loop,
+ // doing constant propagation and dead code elimination as we go.
+ simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
+ TTI);
+
+ NumCompletelyUnrolled += CompletelyUnroll;
+ ++NumUnrolled;
+
+ Loop *OuterL = L->getParentLoop();
+ // Update LoopInfo if the loop is completely removed.
+ if (CompletelyUnroll)
+ LI->erase(L);
+
+ // LoopInfo should not be valid, confirm that.
+ if (UnrollVerifyLoopInfo)
+ LI->verify(*DT);
+
+ // After complete unrolling most of the blocks should be contained in OuterL.
+ // However, some of them might happen to be out of OuterL (e.g. if they
+ // precede a loop exit). In this case we might need to insert PHI nodes in
+ // order to preserve LCSSA form.
+ // We don't need to check this if we already know that we need to fix LCSSA
+ // form.
+ // TODO: For now we just recompute LCSSA for the outer loop in this case, but
+ // it should be possible to fix it in-place.
+ if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
+ NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
+
+ // Make sure that loop-simplify form is preserved. We want to simplify
+ // at least one layer outside of the loop that was unrolled so that any
+ // changes to the parent loop exposed by the unrolling are considered.
+ if (OuterL) {
+ // OuterL includes all loops for which we can break loop-simplify, so
+ // it's sufficient to simplify only it (it'll recursively simplify inner
+ // loops too).
+ if (NeedToFixLCSSA) {
+ // LCSSA must be performed on the outermost affected loop. The unrolled
+ // loop's last loop latch is guaranteed to be in the outermost loop
+ // after LoopInfo's been updated by LoopInfo::erase.
+ Loop *LatchLoop = LI->getLoopFor(Latches.back());
+ Loop *FixLCSSALoop = OuterL;
+ if (!FixLCSSALoop->contains(LatchLoop))
+ while (FixLCSSALoop->getParentLoop() != LatchLoop)
+ FixLCSSALoop = FixLCSSALoop->getParentLoop();
+
+ formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
+ } else if (PreserveLCSSA) {
+ assert(OuterL->isLCSSAForm(*DT) &&
+ "Loops should be in LCSSA form after loop-unroll.");
+ }
+
+ // TODO: That potentially might be compile-time expensive. We should try
+ // to fix the loop-simplified form incrementally.
+ simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
+ } else {
+ // Simplify loops for which we might've broken loop-simplify form.
+ for (Loop *SubLoop : LoopsToSimplify)
+ simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
+ }
+
+ return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
+ : LoopUnrollResult::PartiallyUnrolled;
+}
+
+/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
+/// node with the given name (for example, "llvm.loop.unroll.count"). If no
+/// such metadata node exists, then nullptr is returned.
+MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (!MD)
+ continue;
+
+ MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ if (!S)
+ continue;
+
+ if (Name.equals(S->getString()))
+ return MD;
+ }
+ return nullptr;
+}