aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp991
1 files changed, 991 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
new file mode 100644
index 000000000000..bb719a499a4c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -0,0 +1,991 @@
+//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some loop unrolling utilities for loops with run-time
+// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
+// trip counts.
+//
+// The functions in this file are used to generate extra code when the
+// run-time trip count modulo the unroll factor is not 0. When this is the
+// case, we need to generate code to execute these 'left over' iterations.
+//
+// The current strategy generates an if-then-else sequence prior to the
+// unrolled loop to execute the 'left over' iterations before or after the
+// unrolled loop.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include <algorithm>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+STATISTIC(NumRuntimeUnrolled,
+ "Number of loops unrolled with run-time trip counts");
+static cl::opt<bool> UnrollRuntimeMultiExit(
+ "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
+ cl::desc("Allow runtime unrolling for loops with multiple exits, when "
+ "epilog is generated"));
+static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
+ "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
+ cl::desc("Assume the non latch exit block to be predictable"));
+
+/// Connect the unrolling prolog code to the original loop.
+/// The unrolling prolog code contains code to execute the
+/// 'extra' iterations if the run-time trip count modulo the
+/// unroll count is non-zero.
+///
+/// This function performs the following:
+/// - Create PHI nodes at prolog end block to combine values
+/// that exit the prolog code and jump around the prolog.
+/// - Add a PHI operand to a PHI node at the loop exit block
+/// for values that exit the prolog and go around the loop.
+/// - Branch around the original loop if the trip count is less
+/// than the unroll factor.
+///
+static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
+ BasicBlock *PrologExit,
+ BasicBlock *OriginalLoopLatchExit,
+ BasicBlock *PreHeader, BasicBlock *NewPreHeader,
+ ValueToValueMapTy &VMap, DominatorTree *DT,
+ LoopInfo *LI, bool PreserveLCSSA) {
+ // Loop structure should be the following:
+ // Preheader
+ // PrologHeader
+ // ...
+ // PrologLatch
+ // PrologExit
+ // NewPreheader
+ // Header
+ // ...
+ // Latch
+ // LatchExit
+ BasicBlock *Latch = L->getLoopLatch();
+ assert(Latch && "Loop must have a latch");
+ BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
+
+ // Create a PHI node for each outgoing value from the original loop
+ // (which means it is an outgoing value from the prolog code too).
+ // The new PHI node is inserted in the prolog end basic block.
+ // The new PHI node value is added as an operand of a PHI node in either
+ // the loop header or the loop exit block.
+ for (BasicBlock *Succ : successors(Latch)) {
+ for (PHINode &PN : Succ->phis()) {
+ // Add a new PHI node to the prolog end block and add the
+ // appropriate incoming values.
+ // TODO: This code assumes that the PrologExit (or the LatchExit block for
+ // prolog loop) contains only one predecessor from the loop, i.e. the
+ // PrologLatch. When supporting multiple-exiting block loops, we can have
+ // two or more blocks that have the LatchExit as the target in the
+ // original loop.
+ PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
+ PrologExit->getFirstNonPHI());
+ // Adding a value to the new PHI node from the original loop preheader.
+ // This is the value that skips all the prolog code.
+ if (L->contains(&PN)) {
+ // Succ is loop header.
+ NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
+ PreHeader);
+ } else {
+ // Succ is LatchExit.
+ NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
+ }
+
+ Value *V = PN.getIncomingValueForBlock(Latch);
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ if (L->contains(I)) {
+ V = VMap.lookup(I);
+ }
+ }
+ // Adding a value to the new PHI node from the last prolog block
+ // that was created.
+ NewPN->addIncoming(V, PrologLatch);
+
+ // Update the existing PHI node operand with the value from the
+ // new PHI node. How this is done depends on if the existing
+ // PHI node is in the original loop block, or the exit block.
+ if (L->contains(&PN))
+ PN.setIncomingValueForBlock(NewPreHeader, NewPN);
+ else
+ PN.addIncoming(NewPN, PrologExit);
+ }
+ }
+
+ // Make sure that created prolog loop is in simplified form
+ SmallVector<BasicBlock *, 4> PrologExitPreds;
+ Loop *PrologLoop = LI->getLoopFor(PrologLatch);
+ if (PrologLoop) {
+ for (BasicBlock *PredBB : predecessors(PrologExit))
+ if (PrologLoop->contains(PredBB))
+ PrologExitPreds.push_back(PredBB);
+
+ SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
+ nullptr, PreserveLCSSA);
+ }
+
+ // Create a branch around the original loop, which is taken if there are no
+ // iterations remaining to be executed after running the prologue.
+ Instruction *InsertPt = PrologExit->getTerminator();
+ IRBuilder<> B(InsertPt);
+
+ assert(Count != 0 && "nonsensical Count!");
+
+ // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
+ // This means %xtraiter is (BECount + 1) and all of the iterations of this
+ // loop were executed by the prologue. Note that if BECount <u (Count - 1)
+ // then (BECount + 1) cannot unsigned-overflow.
+ Value *BrLoopExit =
+ B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
+ // Split the exit to maintain loop canonicalization guarantees
+ SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
+ SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
+ nullptr, PreserveLCSSA);
+ // Add the branch to the exit block (around the unrolled loop)
+ B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
+ InsertPt->eraseFromParent();
+ if (DT) {
+ auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
+ PrologExit);
+ DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
+ }
+}
+
+/// Connect the unrolling epilog code to the original loop.
+/// The unrolling epilog code contains code to execute the
+/// 'extra' iterations if the run-time trip count modulo the
+/// unroll count is non-zero.
+///
+/// This function performs the following:
+/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
+/// - Create PHI nodes at the unrolling loop exit to combine
+/// values that exit the unrolling loop code and jump around it.
+/// - Update PHI operands in the epilog loop by the new PHI nodes
+/// - Branch around the epilog loop if extra iters (ModVal) is zero.
+///
+static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
+ BasicBlock *Exit, BasicBlock *PreHeader,
+ BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
+ ValueToValueMapTy &VMap, DominatorTree *DT,
+ LoopInfo *LI, bool PreserveLCSSA) {
+ BasicBlock *Latch = L->getLoopLatch();
+ assert(Latch && "Loop must have a latch");
+ BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
+
+ // Loop structure should be the following:
+ //
+ // PreHeader
+ // NewPreHeader
+ // Header
+ // ...
+ // Latch
+ // NewExit (PN)
+ // EpilogPreHeader
+ // EpilogHeader
+ // ...
+ // EpilogLatch
+ // Exit (EpilogPN)
+
+ // Update PHI nodes at NewExit and Exit.
+ for (PHINode &PN : NewExit->phis()) {
+ // PN should be used in another PHI located in Exit block as
+ // Exit was split by SplitBlockPredecessors into Exit and NewExit
+ // Basicaly it should look like:
+ // NewExit:
+ // PN = PHI [I, Latch]
+ // ...
+ // Exit:
+ // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
+ //
+ // Exits from non-latch blocks point to the original exit block and the
+ // epilogue edges have already been added.
+ //
+ // There is EpilogPreHeader incoming block instead of NewExit as
+ // NewExit was spilt 1 more time to get EpilogPreHeader.
+ assert(PN.hasOneUse() && "The phi should have 1 use");
+ PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
+ assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
+
+ // Add incoming PreHeader from branch around the Loop
+ PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
+
+ Value *V = PN.getIncomingValueForBlock(Latch);
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (I && L->contains(I))
+ // If value comes from an instruction in the loop add VMap value.
+ V = VMap.lookup(I);
+ // For the instruction out of the loop, constant or undefined value
+ // insert value itself.
+ EpilogPN->addIncoming(V, EpilogLatch);
+
+ assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
+ "EpilogPN should have EpilogPreHeader incoming block");
+ // Change EpilogPreHeader incoming block to NewExit.
+ EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
+ NewExit);
+ // Now PHIs should look like:
+ // NewExit:
+ // PN = PHI [I, Latch], [undef, PreHeader]
+ // ...
+ // Exit:
+ // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
+ }
+
+ // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
+ // Update corresponding PHI nodes in epilog loop.
+ for (BasicBlock *Succ : successors(Latch)) {
+ // Skip this as we already updated phis in exit blocks.
+ if (!L->contains(Succ))
+ continue;
+ for (PHINode &PN : Succ->phis()) {
+ // Add new PHI nodes to the loop exit block and update epilog
+ // PHIs with the new PHI values.
+ PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
+ NewExit->getFirstNonPHI());
+ // Adding a value to the new PHI node from the unrolling loop preheader.
+ NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
+ // Adding a value to the new PHI node from the unrolling loop latch.
+ NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
+
+ // Update the existing PHI node operand with the value from the new PHI
+ // node. Corresponding instruction in epilog loop should be PHI.
+ PHINode *VPN = cast<PHINode>(VMap[&PN]);
+ VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
+ }
+ }
+
+ Instruction *InsertPt = NewExit->getTerminator();
+ IRBuilder<> B(InsertPt);
+ Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
+ assert(Exit && "Loop must have a single exit block only");
+ // Split the epilogue exit to maintain loop canonicalization guarantees
+ SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
+ SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
+ PreserveLCSSA);
+ // Add the branch to the exit block (around the unrolling loop)
+ B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
+ InsertPt->eraseFromParent();
+ if (DT) {
+ auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
+ DT->changeImmediateDominator(Exit, NewDom);
+ }
+
+ // Split the main loop exit to maintain canonicalization guarantees.
+ SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
+ SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
+ PreserveLCSSA);
+}
+
+/// Create a clone of the blocks in a loop and connect them together. A new
+/// loop will be created including all cloned blocks, and the iterator of the
+/// new loop switched to count NewIter down to 0.
+/// The cloned blocks should be inserted between InsertTop and InsertBot.
+/// InsertTop should be new preheader, InsertBot new loop exit.
+/// Returns the new cloned loop that is created.
+static Loop *
+CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
+ const bool UnrollRemainder,
+ BasicBlock *InsertTop,
+ BasicBlock *InsertBot, BasicBlock *Preheader,
+ std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
+ ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
+ StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *Latch = L->getLoopLatch();
+ Function *F = Header->getParent();
+ LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
+ Loop *ParentLoop = L->getParentLoop();
+ NewLoopsMap NewLoops;
+ NewLoops[ParentLoop] = ParentLoop;
+
+ // For each block in the original loop, create a new copy,
+ // and update the value map with the newly created values.
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
+ NewBlocks.push_back(NewBB);
+
+ addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
+
+ VMap[*BB] = NewBB;
+ if (Header == *BB) {
+ // For the first block, add a CFG connection to this newly
+ // created block.
+ InsertTop->getTerminator()->setSuccessor(0, NewBB);
+ }
+
+ if (DT) {
+ if (Header == *BB) {
+ // The header is dominated by the preheader.
+ DT->addNewBlock(NewBB, InsertTop);
+ } else {
+ // Copy information from original loop to unrolled loop.
+ BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
+ DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
+ }
+ }
+
+ if (Latch == *BB) {
+ // For the last block, create a loop back to cloned head.
+ VMap.erase((*BB)->getTerminator());
+ // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count.
+ // Subtle: NewIter can be 0 if we wrapped when computing the trip count,
+ // thus we must compare the post-increment (wrapping) value.
+ BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
+ BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
+ IRBuilder<> Builder(LatchBR);
+ PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
+ suffix + ".iter",
+ FirstLoopBB->getFirstNonPHI());
+ auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
+ auto *One = ConstantInt::get(NewIdx->getType(), 1);
+ Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
+ Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
+ Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
+ NewIdx->addIncoming(Zero, InsertTop);
+ NewIdx->addIncoming(IdxNext, NewBB);
+ LatchBR->eraseFromParent();
+ }
+ }
+
+ // Change the incoming values to the ones defined in the preheader or
+ // cloned loop.
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
+ unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
+ NewPHI->setIncomingBlock(idx, InsertTop);
+ BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
+ idx = NewPHI->getBasicBlockIndex(Latch);
+ Value *InVal = NewPHI->getIncomingValue(idx);
+ NewPHI->setIncomingBlock(idx, NewLatch);
+ if (Value *V = VMap.lookup(InVal))
+ NewPHI->setIncomingValue(idx, V);
+ }
+
+ Loop *NewLoop = NewLoops[L];
+ assert(NewLoop && "L should have been cloned");
+ MDNode *LoopID = NewLoop->getLoopID();
+
+ // Only add loop metadata if the loop is not going to be completely
+ // unrolled.
+ if (UnrollRemainder)
+ return NewLoop;
+
+ Optional<MDNode *> NewLoopID = makeFollowupLoopID(
+ LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
+ if (NewLoopID.hasValue()) {
+ NewLoop->setLoopID(NewLoopID.getValue());
+
+ // Do not setLoopAlreadyUnrolled if loop attributes have been defined
+ // explicitly.
+ return NewLoop;
+ }
+
+ // Add unroll disable metadata to disable future unrolling for this loop.
+ NewLoop->setLoopAlreadyUnrolled();
+ return NewLoop;
+}
+
+/// Returns true if we can profitably unroll the multi-exit loop L. Currently,
+/// we return true only if UnrollRuntimeMultiExit is set to true.
+static bool canProfitablyUnrollMultiExitLoop(
+ Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
+ bool UseEpilogRemainder) {
+
+ // Priority goes to UnrollRuntimeMultiExit if it's supplied.
+ if (UnrollRuntimeMultiExit.getNumOccurrences())
+ return UnrollRuntimeMultiExit;
+
+ // The main pain point with multi-exit loop unrolling is that once unrolled,
+ // we will not be able to merge all blocks into a straight line code.
+ // There are branches within the unrolled loop that go to the OtherExits.
+ // The second point is the increase in code size, but this is true
+ // irrespective of multiple exits.
+
+ // Note: Both the heuristics below are coarse grained. We are essentially
+ // enabling unrolling of loops that have a single side exit other than the
+ // normal LatchExit (i.e. exiting into a deoptimize block).
+ // The heuristics considered are:
+ // 1. low number of branches in the unrolled version.
+ // 2. high predictability of these extra branches.
+ // We avoid unrolling loops that have more than two exiting blocks. This
+ // limits the total number of branches in the unrolled loop to be atmost
+ // the unroll factor (since one of the exiting blocks is the latch block).
+ SmallVector<BasicBlock*, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ if (ExitingBlocks.size() > 2)
+ return false;
+
+ // Allow unrolling of loops with no non latch exit blocks.
+ if (OtherExits.size() == 0)
+ return true;
+
+ // The second heuristic is that L has one exit other than the latchexit and
+ // that exit is a deoptimize block. We know that deoptimize blocks are rarely
+ // taken, which also implies the branch leading to the deoptimize block is
+ // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
+ // assume the other exit branch is predictable even if it has no deoptimize
+ // call.
+ return (OtherExits.size() == 1 &&
+ (UnrollRuntimeOtherExitPredictable ||
+ OtherExits[0]->getTerminatingDeoptimizeCall()));
+ // TODO: These can be fine-tuned further to consider code size or deopt states
+ // that are captured by the deoptimize exit block.
+ // Also, we can extend this to support more cases, if we actually
+ // know of kinds of multiexit loops that would benefit from unrolling.
+}
+
+// Assign the maximum possible trip count as the back edge weight for the
+// remainder loop if the original loop comes with a branch weight.
+static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
+ Loop *RemainderLoop,
+ uint64_t UnrollFactor) {
+ uint64_t TrueWeight, FalseWeight;
+ BranchInst *LatchBR =
+ cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
+ if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight))
+ return;
+ uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
+ ? FalseWeight
+ : TrueWeight;
+ assert(UnrollFactor > 1);
+ uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
+ BasicBlock *Header = RemainderLoop->getHeader();
+ BasicBlock *Latch = RemainderLoop->getLoopLatch();
+ auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
+ unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
+ MDBuilder MDB(RemainderLatchBR->getContext());
+ MDNode *WeightNode =
+ HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
+ : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
+ RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
+}
+
+/// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
+/// accounting for the possibility of unsigned overflow in the 2s complement
+/// domain. Preconditions:
+/// 1) TripCount = BECount + 1 (allowing overflow)
+/// 2) Log2(Count) <= BitWidth(BECount)
+static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
+ Value *TripCount, unsigned Count) {
+ // Note that TripCount is BECount + 1.
+ if (isPowerOf2_32(Count))
+ // If the expression is zero, then either:
+ // 1. There are no iterations to be run in the prolog/epilog loop.
+ // OR
+ // 2. The addition computing TripCount overflowed.
+ //
+ // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
+ // the number of iterations that remain to be run in the original loop is a
+ // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
+ // precondition of this method).
+ return B.CreateAnd(TripCount, Count - 1, "xtraiter");
+
+ // As (BECount + 1) can potentially unsigned overflow we count
+ // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
+ Constant *CountC = ConstantInt::get(BECount->getType(), Count);
+ Value *ModValTmp = B.CreateURem(BECount, CountC);
+ Value *ModValAdd = B.CreateAdd(ModValTmp,
+ ConstantInt::get(ModValTmp->getType(), 1));
+ // At that point (BECount % Count) + 1 could be equal to Count.
+ // To handle this case we need to take mod by Count one more time.
+ return B.CreateURem(ModValAdd, CountC, "xtraiter");
+}
+
+
+/// Insert code in the prolog/epilog code when unrolling a loop with a
+/// run-time trip-count.
+///
+/// This method assumes that the loop unroll factor is total number
+/// of loop bodies in the loop after unrolling. (Some folks refer
+/// to the unroll factor as the number of *extra* copies added).
+/// We assume also that the loop unroll factor is a power-of-two. So, after
+/// unrolling the loop, the number of loop bodies executed is 2,
+/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
+/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
+/// the switch instruction is generated.
+///
+/// ***Prolog case***
+/// extraiters = tripcount % loopfactor
+/// if (extraiters == 0) jump Loop:
+/// else jump Prol:
+/// Prol: LoopBody;
+/// extraiters -= 1 // Omitted if unroll factor is 2.
+/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
+/// if (tripcount < loopfactor) jump End:
+/// Loop:
+/// ...
+/// End:
+///
+/// ***Epilog case***
+/// extraiters = tripcount % loopfactor
+/// if (tripcount < loopfactor) jump LoopExit:
+/// unroll_iters = tripcount - extraiters
+/// Loop: LoopBody; (executes unroll_iter times);
+/// unroll_iter -= 1
+/// if (unroll_iter != 0) jump Loop:
+/// LoopExit:
+/// if (extraiters == 0) jump EpilExit:
+/// Epil: LoopBody; (executes extraiters times)
+/// extraiters -= 1 // Omitted if unroll factor is 2.
+/// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
+/// EpilExit:
+
+bool llvm::UnrollRuntimeLoopRemainder(
+ Loop *L, unsigned Count, bool AllowExpensiveTripCount,
+ bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
+ LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
+ const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
+ LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
+ LLVM_DEBUG(L->dump());
+ LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
+ : dbgs() << "Using prolog remainder.\n");
+
+ // Make sure the loop is in canonical form.
+ if (!L->isLoopSimplifyForm()) {
+ LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
+ return false;
+ }
+
+ // Guaranteed by LoopSimplifyForm.
+ BasicBlock *Latch = L->getLoopLatch();
+ BasicBlock *Header = L->getHeader();
+
+ BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
+
+ if (!LatchBR || LatchBR->isUnconditional()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ LLVM_DEBUG(
+ dbgs()
+ << "Loop latch not terminated by a conditional branch.\n");
+ return false;
+ }
+
+ unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
+ BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
+
+ if (L->contains(LatchExit)) {
+ // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
+ // targets of the Latch be an exit block out of the loop.
+ LLVM_DEBUG(
+ dbgs()
+ << "One of the loop latch successors must be the exit block.\n");
+ return false;
+ }
+
+ // These are exit blocks other than the target of the latch exiting block.
+ SmallVector<BasicBlock *, 4> OtherExits;
+ L->getUniqueNonLatchExitBlocks(OtherExits);
+ // Support only single exit and exiting block unless multi-exit loop
+ // unrolling is enabled.
+ if (!L->getExitingBlock() || OtherExits.size()) {
+ // We rely on LCSSA form being preserved when the exit blocks are transformed.
+ // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
+ if (!PreserveLCSSA)
+ return false;
+
+ if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit,
+ UseEpilogRemainder)) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
+ "enabled!\n");
+ return false;
+ }
+ }
+ // Use Scalar Evolution to compute the trip count. This allows more loops to
+ // be unrolled than relying on induction var simplification.
+ if (!SE)
+ return false;
+
+ // Only unroll loops with a computable trip count.
+ // We calculate the backedge count by using getExitCount on the Latch block,
+ // which is proven to be the only exiting block in this loop. This is same as
+ // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
+ // exiting blocks).
+ const SCEV *BECountSC = SE->getExitCount(L, Latch);
+ if (isa<SCEVCouldNotCompute>(BECountSC)) {
+ LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
+ return false;
+ }
+
+ unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
+
+ // Add 1 since the backedge count doesn't include the first loop iteration.
+ // (Note that overflow can occur, this is handled explicitly below)
+ const SCEV *TripCountSC =
+ SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
+ if (isa<SCEVCouldNotCompute>(TripCountSC)) {
+ LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
+ return false;
+ }
+
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
+ const DataLayout &DL = Header->getModule()->getDataLayout();
+ SCEVExpander Expander(*SE, DL, "loop-unroll");
+ if (!AllowExpensiveTripCount &&
+ Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
+ TTI, PreHeaderBR)) {
+ LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
+ return false;
+ }
+
+ // This constraint lets us deal with an overflowing trip count easily; see the
+ // comment on ModVal below.
+ if (Log2_32(Count) > BEWidth) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Count failed constraint on overflow trip count calculation.\n");
+ return false;
+ }
+
+ // Loop structure is the following:
+ //
+ // PreHeader
+ // Header
+ // ...
+ // Latch
+ // LatchExit
+
+ BasicBlock *NewPreHeader;
+ BasicBlock *NewExit = nullptr;
+ BasicBlock *PrologExit = nullptr;
+ BasicBlock *EpilogPreHeader = nullptr;
+ BasicBlock *PrologPreHeader = nullptr;
+
+ if (UseEpilogRemainder) {
+ // If epilog remainder
+ // Split PreHeader to insert a branch around loop for unrolling.
+ NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
+ NewPreHeader->setName(PreHeader->getName() + ".new");
+ // Split LatchExit to create phi nodes from branch above.
+ NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
+ nullptr, PreserveLCSSA);
+ // NewExit gets its DebugLoc from LatchExit, which is not part of the
+ // original Loop.
+ // Fix this by setting Loop's DebugLoc to NewExit.
+ auto *NewExitTerminator = NewExit->getTerminator();
+ NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
+ // Split NewExit to insert epilog remainder loop.
+ EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
+ EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
+
+ // If the latch exits from multiple level of nested loops, then
+ // by assumption there must be another loop exit which branches to the
+ // outer loop and we must adjust the loop for the newly inserted blocks
+ // to account for the fact that our epilogue is still in the same outer
+ // loop. Note that this leaves loopinfo temporarily out of sync with the
+ // CFG until the actual epilogue loop is inserted.
+ if (auto *ParentL = L->getParentLoop())
+ if (LI->getLoopFor(LatchExit) != ParentL) {
+ LI->removeBlock(NewExit);
+ ParentL->addBasicBlockToLoop(NewExit, *LI);
+ LI->removeBlock(EpilogPreHeader);
+ ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
+ }
+
+ } else {
+ // If prolog remainder
+ // Split the original preheader twice to insert prolog remainder loop
+ PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
+ PrologPreHeader->setName(Header->getName() + ".prol.preheader");
+ PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
+ DT, LI);
+ PrologExit->setName(Header->getName() + ".prol.loopexit");
+ // Split PrologExit to get NewPreHeader.
+ NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
+ NewPreHeader->setName(PreHeader->getName() + ".new");
+ }
+ // Loop structure should be the following:
+ // Epilog Prolog
+ //
+ // PreHeader PreHeader
+ // *NewPreHeader *PrologPreHeader
+ // Header *PrologExit
+ // ... *NewPreHeader
+ // Latch Header
+ // *NewExit ...
+ // *EpilogPreHeader Latch
+ // LatchExit LatchExit
+
+ // Calculate conditions for branch around loop for unrolling
+ // in epilog case and around prolog remainder loop in prolog case.
+ // Compute the number of extra iterations required, which is:
+ // extra iterations = run-time trip count % loop unroll factor
+ PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
+ Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
+ PreHeaderBR);
+ Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
+ PreHeaderBR);
+ IRBuilder<> B(PreHeaderBR);
+ Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
+
+ Value *BranchVal =
+ UseEpilogRemainder ? B.CreateICmpULT(BECount,
+ ConstantInt::get(BECount->getType(),
+ Count - 1)) :
+ B.CreateIsNotNull(ModVal, "lcmp.mod");
+ BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
+ BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
+ // Branch to either remainder (extra iterations) loop or unrolling loop.
+ B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
+ PreHeaderBR->eraseFromParent();
+ if (DT) {
+ if (UseEpilogRemainder)
+ DT->changeImmediateDominator(NewExit, PreHeader);
+ else
+ DT->changeImmediateDominator(PrologExit, PreHeader);
+ }
+ Function *F = Header->getParent();
+ // Get an ordered list of blocks in the loop to help with the ordering of the
+ // cloned blocks in the prolog/epilog code
+ LoopBlocksDFS LoopBlocks(L);
+ LoopBlocks.perform(LI);
+
+ //
+ // For each extra loop iteration, create a copy of the loop's basic blocks
+ // and generate a condition that branches to the copy depending on the
+ // number of 'left over' iterations.
+ //
+ std::vector<BasicBlock *> NewBlocks;
+ ValueToValueMapTy VMap;
+
+ // Clone all the basic blocks in the loop. If Count is 2, we don't clone
+ // the loop, otherwise we create a cloned loop to execute the extra
+ // iterations. This function adds the appropriate CFG connections.
+ BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
+ BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
+ Loop *remainderLoop = CloneLoopBlocks(
+ L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
+ NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
+
+ // Assign the maximum possible trip count as the back edge weight for the
+ // remainder loop if the original loop comes with a branch weight.
+ if (remainderLoop && !UnrollRemainder)
+ updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
+
+ // Insert the cloned blocks into the function.
+ F->getBasicBlockList().splice(InsertBot->getIterator(),
+ F->getBasicBlockList(),
+ NewBlocks[0]->getIterator(),
+ F->end());
+
+ // Now the loop blocks are cloned and the other exiting blocks from the
+ // remainder are connected to the original Loop's exit blocks. The remaining
+ // work is to update the phi nodes in the original loop, and take in the
+ // values from the cloned region.
+ for (auto *BB : OtherExits) {
+ // Given we preserve LCSSA form, we know that the values used outside the
+ // loop will be used through these phi nodes at the exit blocks that are
+ // transformed below.
+ for (PHINode &PN : BB->phis()) {
+ unsigned oldNumOperands = PN.getNumIncomingValues();
+ // Add the incoming values from the remainder code to the end of the phi
+ // node.
+ for (unsigned i = 0; i < oldNumOperands; i++){
+ auto *PredBB =PN.getIncomingBlock(i);
+ if (PredBB == Latch)
+ // The latch exit is handled seperately, see connectX
+ continue;
+ if (!L->contains(PredBB))
+ // Even if we had dedicated exits, the code above inserted an
+ // extra branch which can reach the latch exit.
+ continue;
+
+ auto *V = PN.getIncomingValue(i);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (L->contains(I))
+ V = VMap.lookup(I);
+ PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
+ }
+ }
+#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
+ for (BasicBlock *SuccBB : successors(BB)) {
+ assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
+ "Breaks the definition of dedicated exits!");
+ }
+#endif
+ }
+
+ // Update the immediate dominator of the exit blocks and blocks that are
+ // reachable from the exit blocks. This is needed because we now have paths
+ // from both the original loop and the remainder code reaching the exit
+ // blocks. While the IDom of these exit blocks were from the original loop,
+ // now the IDom is the preheader (which decides whether the original loop or
+ // remainder code should run).
+ if (DT && !L->getExitingBlock()) {
+ SmallVector<BasicBlock *, 16> ChildrenToUpdate;
+ // NB! We have to examine the dom children of all loop blocks, not just
+ // those which are the IDom of the exit blocks. This is because blocks
+ // reachable from the exit blocks can have their IDom as the nearest common
+ // dominator of the exit blocks.
+ for (auto *BB : L->blocks()) {
+ auto *DomNodeBB = DT->getNode(BB);
+ for (auto *DomChild : DomNodeBB->children()) {
+ auto *DomChildBB = DomChild->getBlock();
+ if (!L->contains(LI->getLoopFor(DomChildBB)))
+ ChildrenToUpdate.push_back(DomChildBB);
+ }
+ }
+ for (auto *BB : ChildrenToUpdate)
+ DT->changeImmediateDominator(BB, PreHeader);
+ }
+
+ // Loop structure should be the following:
+ // Epilog Prolog
+ //
+ // PreHeader PreHeader
+ // NewPreHeader PrologPreHeader
+ // Header PrologHeader
+ // ... ...
+ // Latch PrologLatch
+ // NewExit PrologExit
+ // EpilogPreHeader NewPreHeader
+ // EpilogHeader Header
+ // ... ...
+ // EpilogLatch Latch
+ // LatchExit LatchExit
+
+ // Rewrite the cloned instruction operands to use the values created when the
+ // clone is created.
+ for (BasicBlock *BB : NewBlocks) {
+ for (Instruction &I : *BB) {
+ RemapInstruction(&I, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+ }
+ }
+
+ if (UseEpilogRemainder) {
+ // Connect the epilog code to the original loop and update the
+ // PHI functions.
+ ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
+ EpilogPreHeader, NewPreHeader, VMap, DT, LI,
+ PreserveLCSSA);
+
+ // Update counter in loop for unrolling.
+ // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count.
+ // Subtle: TestVal can be 0 if we wrapped when computing the trip count,
+ // thus we must compare the post-increment (wrapping) value.
+ IRBuilder<> B2(NewPreHeader->getTerminator());
+ Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
+ BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
+ PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
+ Header->getFirstNonPHI());
+ B2.SetInsertPoint(LatchBR);
+ auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
+ auto *One = ConstantInt::get(NewIdx->getType(), 1);
+ Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
+ auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
+ Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
+ NewIdx->addIncoming(Zero, NewPreHeader);
+ NewIdx->addIncoming(IdxNext, Latch);
+ LatchBR->setCondition(IdxCmp);
+ } else {
+ // Connect the prolog code to the original loop and update the
+ // PHI functions.
+ ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
+ NewPreHeader, VMap, DT, LI, PreserveLCSSA);
+ }
+
+ // If this loop is nested, then the loop unroller changes the code in the any
+ // of its parent loops, so the Scalar Evolution pass needs to be run again.
+ SE->forgetTopmostLoop(L);
+
+ // Verify that the Dom Tree and Loop Info are correct.
+#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
+ if (DT) {
+ assert(DT->verify(DominatorTree::VerificationLevel::Full));
+ LI->verify(*DT);
+ }
+#endif
+
+ // For unroll factor 2 remainder loop will have 1 iteration.
+ if (Count == 2 && DT && LI && SE) {
+ // TODO: This code could probably be pulled out into a helper function
+ // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
+ BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
+ assert(RemainderLatch);
+ SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(),
+ remainderLoop->getBlocks().end());
+ breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
+ remainderLoop = nullptr;
+
+ // Simplify loop values after breaking the backedge
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ SmallVector<WeakTrackingVH, 16> DeadInsts;
+ for (BasicBlock *BB : RemainderBlocks) {
+ for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
+ if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
+ if (LI->replacementPreservesLCSSAForm(&Inst, V))
+ Inst.replaceAllUsesWith(V);
+ if (isInstructionTriviallyDead(&Inst))
+ DeadInsts.emplace_back(&Inst);
+ }
+ // We can't do recursive deletion until we're done iterating, as we might
+ // have a phi which (potentially indirectly) uses instructions later in
+ // the block we're iterating through.
+ RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
+ }
+
+ // Merge latch into exit block.
+ auto *ExitBB = RemainderLatch->getSingleSuccessor();
+ assert(ExitBB && "required after breaking cond br backedge");
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
+ MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
+ }
+
+ // Canonicalize to LoopSimplifyForm both original and remainder loops. We
+ // cannot rely on the LoopUnrollPass to do this because it only does
+ // canonicalization for parent/subloops and not the sibling loops.
+ if (OtherExits.size() > 0) {
+ // Generate dedicated exit blocks for the original loop, to preserve
+ // LoopSimplifyForm.
+ formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
+ // Generate dedicated exit blocks for the remainder loop if one exists, to
+ // preserve LoopSimplifyForm.
+ if (remainderLoop)
+ formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
+ }
+
+ auto UnrollResult = LoopUnrollResult::Unmodified;
+ if (remainderLoop && UnrollRemainder) {
+ LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
+ UnrollResult =
+ UnrollLoop(remainderLoop,
+ {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
+ /*AllowExpensiveTripCount*/ false,
+ /*UnrollRemainder*/ false, ForgetAllSCEV},
+ LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
+ }
+
+ if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
+ *ResultLoop = remainderLoop;
+ NumRuntimeUnrolled++;
+ return true;
+}