diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp | 991 |
1 files changed, 991 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp new file mode 100644 index 000000000000..bb719a499a4c --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp @@ -0,0 +1,991 @@ +//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements some loop unrolling utilities for loops with run-time +// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time +// trip counts. +// +// The functions in this file are used to generate extra code when the +// run-time trip count modulo the unroll factor is not 0. When this is the +// case, we need to generate code to execute these 'left over' iterations. +// +// The current strategy generates an if-then-else sequence prior to the +// unrolled loop to execute the 'left over' iterations before or after the +// unrolled loop. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" +#include "llvm/Transforms/Utils/UnrollLoop.h" +#include <algorithm> + +using namespace llvm; + +#define DEBUG_TYPE "loop-unroll" + +STATISTIC(NumRuntimeUnrolled, + "Number of loops unrolled with run-time trip counts"); +static cl::opt<bool> UnrollRuntimeMultiExit( + "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, + cl::desc("Allow runtime unrolling for loops with multiple exits, when " + "epilog is generated")); +static cl::opt<bool> UnrollRuntimeOtherExitPredictable( + "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, + cl::desc("Assume the non latch exit block to be predictable")); + +/// Connect the unrolling prolog code to the original loop. +/// The unrolling prolog code contains code to execute the +/// 'extra' iterations if the run-time trip count modulo the +/// unroll count is non-zero. +/// +/// This function performs the following: +/// - Create PHI nodes at prolog end block to combine values +/// that exit the prolog code and jump around the prolog. +/// - Add a PHI operand to a PHI node at the loop exit block +/// for values that exit the prolog and go around the loop. +/// - Branch around the original loop if the trip count is less +/// than the unroll factor. +/// +static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, + BasicBlock *PrologExit, + BasicBlock *OriginalLoopLatchExit, + BasicBlock *PreHeader, BasicBlock *NewPreHeader, + ValueToValueMapTy &VMap, DominatorTree *DT, + LoopInfo *LI, bool PreserveLCSSA) { + // Loop structure should be the following: + // Preheader + // PrologHeader + // ... + // PrologLatch + // PrologExit + // NewPreheader + // Header + // ... + // Latch + // LatchExit + BasicBlock *Latch = L->getLoopLatch(); + assert(Latch && "Loop must have a latch"); + BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); + + // Create a PHI node for each outgoing value from the original loop + // (which means it is an outgoing value from the prolog code too). + // The new PHI node is inserted in the prolog end basic block. + // The new PHI node value is added as an operand of a PHI node in either + // the loop header or the loop exit block. + for (BasicBlock *Succ : successors(Latch)) { + for (PHINode &PN : Succ->phis()) { + // Add a new PHI node to the prolog end block and add the + // appropriate incoming values. + // TODO: This code assumes that the PrologExit (or the LatchExit block for + // prolog loop) contains only one predecessor from the loop, i.e. the + // PrologLatch. When supporting multiple-exiting block loops, we can have + // two or more blocks that have the LatchExit as the target in the + // original loop. + PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", + PrologExit->getFirstNonPHI()); + // Adding a value to the new PHI node from the original loop preheader. + // This is the value that skips all the prolog code. + if (L->contains(&PN)) { + // Succ is loop header. + NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), + PreHeader); + } else { + // Succ is LatchExit. + NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); + } + + Value *V = PN.getIncomingValueForBlock(Latch); + if (Instruction *I = dyn_cast<Instruction>(V)) { + if (L->contains(I)) { + V = VMap.lookup(I); + } + } + // Adding a value to the new PHI node from the last prolog block + // that was created. + NewPN->addIncoming(V, PrologLatch); + + // Update the existing PHI node operand with the value from the + // new PHI node. How this is done depends on if the existing + // PHI node is in the original loop block, or the exit block. + if (L->contains(&PN)) + PN.setIncomingValueForBlock(NewPreHeader, NewPN); + else + PN.addIncoming(NewPN, PrologExit); + } + } + + // Make sure that created prolog loop is in simplified form + SmallVector<BasicBlock *, 4> PrologExitPreds; + Loop *PrologLoop = LI->getLoopFor(PrologLatch); + if (PrologLoop) { + for (BasicBlock *PredBB : predecessors(PrologExit)) + if (PrologLoop->contains(PredBB)) + PrologExitPreds.push_back(PredBB); + + SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, + nullptr, PreserveLCSSA); + } + + // Create a branch around the original loop, which is taken if there are no + // iterations remaining to be executed after running the prologue. + Instruction *InsertPt = PrologExit->getTerminator(); + IRBuilder<> B(InsertPt); + + assert(Count != 0 && "nonsensical Count!"); + + // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) + // This means %xtraiter is (BECount + 1) and all of the iterations of this + // loop were executed by the prologue. Note that if BECount <u (Count - 1) + // then (BECount + 1) cannot unsigned-overflow. + Value *BrLoopExit = + B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); + // Split the exit to maintain loop canonicalization guarantees + SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); + SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, + nullptr, PreserveLCSSA); + // Add the branch to the exit block (around the unrolled loop) + B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); + InsertPt->eraseFromParent(); + if (DT) { + auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit, + PrologExit); + DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom); + } +} + +/// Connect the unrolling epilog code to the original loop. +/// The unrolling epilog code contains code to execute the +/// 'extra' iterations if the run-time trip count modulo the +/// unroll count is non-zero. +/// +/// This function performs the following: +/// - Update PHI nodes at the unrolling loop exit and epilog loop exit +/// - Create PHI nodes at the unrolling loop exit to combine +/// values that exit the unrolling loop code and jump around it. +/// - Update PHI operands in the epilog loop by the new PHI nodes +/// - Branch around the epilog loop if extra iters (ModVal) is zero. +/// +static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, + BasicBlock *Exit, BasicBlock *PreHeader, + BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, + ValueToValueMapTy &VMap, DominatorTree *DT, + LoopInfo *LI, bool PreserveLCSSA) { + BasicBlock *Latch = L->getLoopLatch(); + assert(Latch && "Loop must have a latch"); + BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); + + // Loop structure should be the following: + // + // PreHeader + // NewPreHeader + // Header + // ... + // Latch + // NewExit (PN) + // EpilogPreHeader + // EpilogHeader + // ... + // EpilogLatch + // Exit (EpilogPN) + + // Update PHI nodes at NewExit and Exit. + for (PHINode &PN : NewExit->phis()) { + // PN should be used in another PHI located in Exit block as + // Exit was split by SplitBlockPredecessors into Exit and NewExit + // Basicaly it should look like: + // NewExit: + // PN = PHI [I, Latch] + // ... + // Exit: + // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil] + // + // Exits from non-latch blocks point to the original exit block and the + // epilogue edges have already been added. + // + // There is EpilogPreHeader incoming block instead of NewExit as + // NewExit was spilt 1 more time to get EpilogPreHeader. + assert(PN.hasOneUse() && "The phi should have 1 use"); + PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); + assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); + + // Add incoming PreHeader from branch around the Loop + PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); + + Value *V = PN.getIncomingValueForBlock(Latch); + Instruction *I = dyn_cast<Instruction>(V); + if (I && L->contains(I)) + // If value comes from an instruction in the loop add VMap value. + V = VMap.lookup(I); + // For the instruction out of the loop, constant or undefined value + // insert value itself. + EpilogPN->addIncoming(V, EpilogLatch); + + assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && + "EpilogPN should have EpilogPreHeader incoming block"); + // Change EpilogPreHeader incoming block to NewExit. + EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), + NewExit); + // Now PHIs should look like: + // NewExit: + // PN = PHI [I, Latch], [undef, PreHeader] + // ... + // Exit: + // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] + } + + // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). + // Update corresponding PHI nodes in epilog loop. + for (BasicBlock *Succ : successors(Latch)) { + // Skip this as we already updated phis in exit blocks. + if (!L->contains(Succ)) + continue; + for (PHINode &PN : Succ->phis()) { + // Add new PHI nodes to the loop exit block and update epilog + // PHIs with the new PHI values. + PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", + NewExit->getFirstNonPHI()); + // Adding a value to the new PHI node from the unrolling loop preheader. + NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); + // Adding a value to the new PHI node from the unrolling loop latch. + NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); + + // Update the existing PHI node operand with the value from the new PHI + // node. Corresponding instruction in epilog loop should be PHI. + PHINode *VPN = cast<PHINode>(VMap[&PN]); + VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); + } + } + + Instruction *InsertPt = NewExit->getTerminator(); + IRBuilder<> B(InsertPt); + Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); + assert(Exit && "Loop must have a single exit block only"); + // Split the epilogue exit to maintain loop canonicalization guarantees + SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); + SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, + PreserveLCSSA); + // Add the branch to the exit block (around the unrolling loop) + B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); + InsertPt->eraseFromParent(); + if (DT) { + auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit); + DT->changeImmediateDominator(Exit, NewDom); + } + + // Split the main loop exit to maintain canonicalization guarantees. + SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; + SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, + PreserveLCSSA); +} + +/// Create a clone of the blocks in a loop and connect them together. A new +/// loop will be created including all cloned blocks, and the iterator of the +/// new loop switched to count NewIter down to 0. +/// The cloned blocks should be inserted between InsertTop and InsertBot. +/// InsertTop should be new preheader, InsertBot new loop exit. +/// Returns the new cloned loop that is created. +static Loop * +CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, + const bool UnrollRemainder, + BasicBlock *InsertTop, + BasicBlock *InsertBot, BasicBlock *Preheader, + std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, + ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { + StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; + BasicBlock *Header = L->getHeader(); + BasicBlock *Latch = L->getLoopLatch(); + Function *F = Header->getParent(); + LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); + LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); + Loop *ParentLoop = L->getParentLoop(); + NewLoopsMap NewLoops; + NewLoops[ParentLoop] = ParentLoop; + + // For each block in the original loop, create a new copy, + // and update the value map with the newly created values. + for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { + BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); + NewBlocks.push_back(NewBB); + + addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); + + VMap[*BB] = NewBB; + if (Header == *BB) { + // For the first block, add a CFG connection to this newly + // created block. + InsertTop->getTerminator()->setSuccessor(0, NewBB); + } + + if (DT) { + if (Header == *BB) { + // The header is dominated by the preheader. + DT->addNewBlock(NewBB, InsertTop); + } else { + // Copy information from original loop to unrolled loop. + BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); + DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); + } + } + + if (Latch == *BB) { + // For the last block, create a loop back to cloned head. + VMap.erase((*BB)->getTerminator()); + // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. + // Subtle: NewIter can be 0 if we wrapped when computing the trip count, + // thus we must compare the post-increment (wrapping) value. + BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); + BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); + IRBuilder<> Builder(LatchBR); + PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, + suffix + ".iter", + FirstLoopBB->getFirstNonPHI()); + auto *Zero = ConstantInt::get(NewIdx->getType(), 0); + auto *One = ConstantInt::get(NewIdx->getType(), 1); + Value *IdxNext = Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); + Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp"); + Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); + NewIdx->addIncoming(Zero, InsertTop); + NewIdx->addIncoming(IdxNext, NewBB); + LatchBR->eraseFromParent(); + } + } + + // Change the incoming values to the ones defined in the preheader or + // cloned loop. + for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { + PHINode *NewPHI = cast<PHINode>(VMap[&*I]); + unsigned idx = NewPHI->getBasicBlockIndex(Preheader); + NewPHI->setIncomingBlock(idx, InsertTop); + BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); + idx = NewPHI->getBasicBlockIndex(Latch); + Value *InVal = NewPHI->getIncomingValue(idx); + NewPHI->setIncomingBlock(idx, NewLatch); + if (Value *V = VMap.lookup(InVal)) + NewPHI->setIncomingValue(idx, V); + } + + Loop *NewLoop = NewLoops[L]; + assert(NewLoop && "L should have been cloned"); + MDNode *LoopID = NewLoop->getLoopID(); + + // Only add loop metadata if the loop is not going to be completely + // unrolled. + if (UnrollRemainder) + return NewLoop; + + Optional<MDNode *> NewLoopID = makeFollowupLoopID( + LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); + if (NewLoopID.hasValue()) { + NewLoop->setLoopID(NewLoopID.getValue()); + + // Do not setLoopAlreadyUnrolled if loop attributes have been defined + // explicitly. + return NewLoop; + } + + // Add unroll disable metadata to disable future unrolling for this loop. + NewLoop->setLoopAlreadyUnrolled(); + return NewLoop; +} + +/// Returns true if we can profitably unroll the multi-exit loop L. Currently, +/// we return true only if UnrollRuntimeMultiExit is set to true. +static bool canProfitablyUnrollMultiExitLoop( + Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, + bool UseEpilogRemainder) { + + // Priority goes to UnrollRuntimeMultiExit if it's supplied. + if (UnrollRuntimeMultiExit.getNumOccurrences()) + return UnrollRuntimeMultiExit; + + // The main pain point with multi-exit loop unrolling is that once unrolled, + // we will not be able to merge all blocks into a straight line code. + // There are branches within the unrolled loop that go to the OtherExits. + // The second point is the increase in code size, but this is true + // irrespective of multiple exits. + + // Note: Both the heuristics below are coarse grained. We are essentially + // enabling unrolling of loops that have a single side exit other than the + // normal LatchExit (i.e. exiting into a deoptimize block). + // The heuristics considered are: + // 1. low number of branches in the unrolled version. + // 2. high predictability of these extra branches. + // We avoid unrolling loops that have more than two exiting blocks. This + // limits the total number of branches in the unrolled loop to be atmost + // the unroll factor (since one of the exiting blocks is the latch block). + SmallVector<BasicBlock*, 4> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + if (ExitingBlocks.size() > 2) + return false; + + // Allow unrolling of loops with no non latch exit blocks. + if (OtherExits.size() == 0) + return true; + + // The second heuristic is that L has one exit other than the latchexit and + // that exit is a deoptimize block. We know that deoptimize blocks are rarely + // taken, which also implies the branch leading to the deoptimize block is + // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we + // assume the other exit branch is predictable even if it has no deoptimize + // call. + return (OtherExits.size() == 1 && + (UnrollRuntimeOtherExitPredictable || + OtherExits[0]->getTerminatingDeoptimizeCall())); + // TODO: These can be fine-tuned further to consider code size or deopt states + // that are captured by the deoptimize exit block. + // Also, we can extend this to support more cases, if we actually + // know of kinds of multiexit loops that would benefit from unrolling. +} + +// Assign the maximum possible trip count as the back edge weight for the +// remainder loop if the original loop comes with a branch weight. +static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop, + Loop *RemainderLoop, + uint64_t UnrollFactor) { + uint64_t TrueWeight, FalseWeight; + BranchInst *LatchBR = + cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); + if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) + return; + uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader() + ? FalseWeight + : TrueWeight; + assert(UnrollFactor > 1); + uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight; + BasicBlock *Header = RemainderLoop->getHeader(); + BasicBlock *Latch = RemainderLoop->getLoopLatch(); + auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator()); + unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1); + MDBuilder MDB(RemainderLatchBR->getContext()); + MDNode *WeightNode = + HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) + : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); + RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); +} + +/// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain +/// accounting for the possibility of unsigned overflow in the 2s complement +/// domain. Preconditions: +/// 1) TripCount = BECount + 1 (allowing overflow) +/// 2) Log2(Count) <= BitWidth(BECount) +static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount, + Value *TripCount, unsigned Count) { + // Note that TripCount is BECount + 1. + if (isPowerOf2_32(Count)) + // If the expression is zero, then either: + // 1. There are no iterations to be run in the prolog/epilog loop. + // OR + // 2. The addition computing TripCount overflowed. + // + // If (2) is true, we know that TripCount really is (1 << BEWidth) and so + // the number of iterations that remain to be run in the original loop is a + // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a + // precondition of this method). + return B.CreateAnd(TripCount, Count - 1, "xtraiter"); + + // As (BECount + 1) can potentially unsigned overflow we count + // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. + Constant *CountC = ConstantInt::get(BECount->getType(), Count); + Value *ModValTmp = B.CreateURem(BECount, CountC); + Value *ModValAdd = B.CreateAdd(ModValTmp, + ConstantInt::get(ModValTmp->getType(), 1)); + // At that point (BECount % Count) + 1 could be equal to Count. + // To handle this case we need to take mod by Count one more time. + return B.CreateURem(ModValAdd, CountC, "xtraiter"); +} + + +/// Insert code in the prolog/epilog code when unrolling a loop with a +/// run-time trip-count. +/// +/// This method assumes that the loop unroll factor is total number +/// of loop bodies in the loop after unrolling. (Some folks refer +/// to the unroll factor as the number of *extra* copies added). +/// We assume also that the loop unroll factor is a power-of-two. So, after +/// unrolling the loop, the number of loop bodies executed is 2, +/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch +/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for +/// the switch instruction is generated. +/// +/// ***Prolog case*** +/// extraiters = tripcount % loopfactor +/// if (extraiters == 0) jump Loop: +/// else jump Prol: +/// Prol: LoopBody; +/// extraiters -= 1 // Omitted if unroll factor is 2. +/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. +/// if (tripcount < loopfactor) jump End: +/// Loop: +/// ... +/// End: +/// +/// ***Epilog case*** +/// extraiters = tripcount % loopfactor +/// if (tripcount < loopfactor) jump LoopExit: +/// unroll_iters = tripcount - extraiters +/// Loop: LoopBody; (executes unroll_iter times); +/// unroll_iter -= 1 +/// if (unroll_iter != 0) jump Loop: +/// LoopExit: +/// if (extraiters == 0) jump EpilExit: +/// Epil: LoopBody; (executes extraiters times) +/// extraiters -= 1 // Omitted if unroll factor is 2. +/// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. +/// EpilExit: + +bool llvm::UnrollRuntimeLoopRemainder( + Loop *L, unsigned Count, bool AllowExpensiveTripCount, + bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, + LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, + const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { + LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); + LLVM_DEBUG(L->dump()); + LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" + : dbgs() << "Using prolog remainder.\n"); + + // Make sure the loop is in canonical form. + if (!L->isLoopSimplifyForm()) { + LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); + return false; + } + + // Guaranteed by LoopSimplifyForm. + BasicBlock *Latch = L->getLoopLatch(); + BasicBlock *Header = L->getHeader(); + + BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); + + if (!LatchBR || LatchBR->isUnconditional()) { + // The loop-rotate pass can be helpful to avoid this in many cases. + LLVM_DEBUG( + dbgs() + << "Loop latch not terminated by a conditional branch.\n"); + return false; + } + + unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; + BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); + + if (L->contains(LatchExit)) { + // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the + // targets of the Latch be an exit block out of the loop. + LLVM_DEBUG( + dbgs() + << "One of the loop latch successors must be the exit block.\n"); + return false; + } + + // These are exit blocks other than the target of the latch exiting block. + SmallVector<BasicBlock *, 4> OtherExits; + L->getUniqueNonLatchExitBlocks(OtherExits); + // Support only single exit and exiting block unless multi-exit loop + // unrolling is enabled. + if (!L->getExitingBlock() || OtherExits.size()) { + // We rely on LCSSA form being preserved when the exit blocks are transformed. + // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.) + if (!PreserveLCSSA) + return false; + + if (!canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, + UseEpilogRemainder)) { + LLVM_DEBUG( + dbgs() + << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " + "enabled!\n"); + return false; + } + } + // Use Scalar Evolution to compute the trip count. This allows more loops to + // be unrolled than relying on induction var simplification. + if (!SE) + return false; + + // Only unroll loops with a computable trip count. + // We calculate the backedge count by using getExitCount on the Latch block, + // which is proven to be the only exiting block in this loop. This is same as + // calculating getBackedgeTakenCount on the loop (which computes SCEV for all + // exiting blocks). + const SCEV *BECountSC = SE->getExitCount(L, Latch); + if (isa<SCEVCouldNotCompute>(BECountSC)) { + LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); + return false; + } + + unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); + + // Add 1 since the backedge count doesn't include the first loop iteration. + // (Note that overflow can occur, this is handled explicitly below) + const SCEV *TripCountSC = + SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); + if (isa<SCEVCouldNotCompute>(TripCountSC)) { + LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); + return false; + } + + BasicBlock *PreHeader = L->getLoopPreheader(); + BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); + const DataLayout &DL = Header->getModule()->getDataLayout(); + SCEVExpander Expander(*SE, DL, "loop-unroll"); + if (!AllowExpensiveTripCount && + Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, + TTI, PreHeaderBR)) { + LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); + return false; + } + + // This constraint lets us deal with an overflowing trip count easily; see the + // comment on ModVal below. + if (Log2_32(Count) > BEWidth) { + LLVM_DEBUG( + dbgs() + << "Count failed constraint on overflow trip count calculation.\n"); + return false; + } + + // Loop structure is the following: + // + // PreHeader + // Header + // ... + // Latch + // LatchExit + + BasicBlock *NewPreHeader; + BasicBlock *NewExit = nullptr; + BasicBlock *PrologExit = nullptr; + BasicBlock *EpilogPreHeader = nullptr; + BasicBlock *PrologPreHeader = nullptr; + + if (UseEpilogRemainder) { + // If epilog remainder + // Split PreHeader to insert a branch around loop for unrolling. + NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); + NewPreHeader->setName(PreHeader->getName() + ".new"); + // Split LatchExit to create phi nodes from branch above. + NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI, + nullptr, PreserveLCSSA); + // NewExit gets its DebugLoc from LatchExit, which is not part of the + // original Loop. + // Fix this by setting Loop's DebugLoc to NewExit. + auto *NewExitTerminator = NewExit->getTerminator(); + NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); + // Split NewExit to insert epilog remainder loop. + EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); + EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); + + // If the latch exits from multiple level of nested loops, then + // by assumption there must be another loop exit which branches to the + // outer loop and we must adjust the loop for the newly inserted blocks + // to account for the fact that our epilogue is still in the same outer + // loop. Note that this leaves loopinfo temporarily out of sync with the + // CFG until the actual epilogue loop is inserted. + if (auto *ParentL = L->getParentLoop()) + if (LI->getLoopFor(LatchExit) != ParentL) { + LI->removeBlock(NewExit); + ParentL->addBasicBlockToLoop(NewExit, *LI); + LI->removeBlock(EpilogPreHeader); + ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI); + } + + } else { + // If prolog remainder + // Split the original preheader twice to insert prolog remainder loop + PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); + PrologPreHeader->setName(Header->getName() + ".prol.preheader"); + PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), + DT, LI); + PrologExit->setName(Header->getName() + ".prol.loopexit"); + // Split PrologExit to get NewPreHeader. + NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); + NewPreHeader->setName(PreHeader->getName() + ".new"); + } + // Loop structure should be the following: + // Epilog Prolog + // + // PreHeader PreHeader + // *NewPreHeader *PrologPreHeader + // Header *PrologExit + // ... *NewPreHeader + // Latch Header + // *NewExit ... + // *EpilogPreHeader Latch + // LatchExit LatchExit + + // Calculate conditions for branch around loop for unrolling + // in epilog case and around prolog remainder loop in prolog case. + // Compute the number of extra iterations required, which is: + // extra iterations = run-time trip count % loop unroll factor + PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); + Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), + PreHeaderBR); + Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), + PreHeaderBR); + IRBuilder<> B(PreHeaderBR); + Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count); + + Value *BranchVal = + UseEpilogRemainder ? B.CreateICmpULT(BECount, + ConstantInt::get(BECount->getType(), + Count - 1)) : + B.CreateIsNotNull(ModVal, "lcmp.mod"); + BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; + BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; + // Branch to either remainder (extra iterations) loop or unrolling loop. + B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); + PreHeaderBR->eraseFromParent(); + if (DT) { + if (UseEpilogRemainder) + DT->changeImmediateDominator(NewExit, PreHeader); + else + DT->changeImmediateDominator(PrologExit, PreHeader); + } + Function *F = Header->getParent(); + // Get an ordered list of blocks in the loop to help with the ordering of the + // cloned blocks in the prolog/epilog code + LoopBlocksDFS LoopBlocks(L); + LoopBlocks.perform(LI); + + // + // For each extra loop iteration, create a copy of the loop's basic blocks + // and generate a condition that branches to the copy depending on the + // number of 'left over' iterations. + // + std::vector<BasicBlock *> NewBlocks; + ValueToValueMapTy VMap; + + // Clone all the basic blocks in the loop. If Count is 2, we don't clone + // the loop, otherwise we create a cloned loop to execute the extra + // iterations. This function adds the appropriate CFG connections. + BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; + BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; + Loop *remainderLoop = CloneLoopBlocks( + L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot, + NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); + + // Assign the maximum possible trip count as the back edge weight for the + // remainder loop if the original loop comes with a branch weight. + if (remainderLoop && !UnrollRemainder) + updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count); + + // Insert the cloned blocks into the function. + F->getBasicBlockList().splice(InsertBot->getIterator(), + F->getBasicBlockList(), + NewBlocks[0]->getIterator(), + F->end()); + + // Now the loop blocks are cloned and the other exiting blocks from the + // remainder are connected to the original Loop's exit blocks. The remaining + // work is to update the phi nodes in the original loop, and take in the + // values from the cloned region. + for (auto *BB : OtherExits) { + // Given we preserve LCSSA form, we know that the values used outside the + // loop will be used through these phi nodes at the exit blocks that are + // transformed below. + for (PHINode &PN : BB->phis()) { + unsigned oldNumOperands = PN.getNumIncomingValues(); + // Add the incoming values from the remainder code to the end of the phi + // node. + for (unsigned i = 0; i < oldNumOperands; i++){ + auto *PredBB =PN.getIncomingBlock(i); + if (PredBB == Latch) + // The latch exit is handled seperately, see connectX + continue; + if (!L->contains(PredBB)) + // Even if we had dedicated exits, the code above inserted an + // extra branch which can reach the latch exit. + continue; + + auto *V = PN.getIncomingValue(i); + if (Instruction *I = dyn_cast<Instruction>(V)) + if (L->contains(I)) + V = VMap.lookup(I); + PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB])); + } + } +#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) + for (BasicBlock *SuccBB : successors(BB)) { + assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) && + "Breaks the definition of dedicated exits!"); + } +#endif + } + + // Update the immediate dominator of the exit blocks and blocks that are + // reachable from the exit blocks. This is needed because we now have paths + // from both the original loop and the remainder code reaching the exit + // blocks. While the IDom of these exit blocks were from the original loop, + // now the IDom is the preheader (which decides whether the original loop or + // remainder code should run). + if (DT && !L->getExitingBlock()) { + SmallVector<BasicBlock *, 16> ChildrenToUpdate; + // NB! We have to examine the dom children of all loop blocks, not just + // those which are the IDom of the exit blocks. This is because blocks + // reachable from the exit blocks can have their IDom as the nearest common + // dominator of the exit blocks. + for (auto *BB : L->blocks()) { + auto *DomNodeBB = DT->getNode(BB); + for (auto *DomChild : DomNodeBB->children()) { + auto *DomChildBB = DomChild->getBlock(); + if (!L->contains(LI->getLoopFor(DomChildBB))) + ChildrenToUpdate.push_back(DomChildBB); + } + } + for (auto *BB : ChildrenToUpdate) + DT->changeImmediateDominator(BB, PreHeader); + } + + // Loop structure should be the following: + // Epilog Prolog + // + // PreHeader PreHeader + // NewPreHeader PrologPreHeader + // Header PrologHeader + // ... ... + // Latch PrologLatch + // NewExit PrologExit + // EpilogPreHeader NewPreHeader + // EpilogHeader Header + // ... ... + // EpilogLatch Latch + // LatchExit LatchExit + + // Rewrite the cloned instruction operands to use the values created when the + // clone is created. + for (BasicBlock *BB : NewBlocks) { + for (Instruction &I : *BB) { + RemapInstruction(&I, VMap, + RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); + } + } + + if (UseEpilogRemainder) { + // Connect the epilog code to the original loop and update the + // PHI functions. + ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, + EpilogPreHeader, NewPreHeader, VMap, DT, LI, + PreserveLCSSA); + + // Update counter in loop for unrolling. + // Use an incrementing IV. Pre-incr/post-incr is backedge/trip count. + // Subtle: TestVal can be 0 if we wrapped when computing the trip count, + // thus we must compare the post-increment (wrapping) value. + IRBuilder<> B2(NewPreHeader->getTerminator()); + Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); + BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); + PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", + Header->getFirstNonPHI()); + B2.SetInsertPoint(LatchBR); + auto *Zero = ConstantInt::get(NewIdx->getType(), 0); + auto *One = ConstantInt::get(NewIdx->getType(), 1); + Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next"); + auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; + Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp"); + NewIdx->addIncoming(Zero, NewPreHeader); + NewIdx->addIncoming(IdxNext, Latch); + LatchBR->setCondition(IdxCmp); + } else { + // Connect the prolog code to the original loop and update the + // PHI functions. + ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, + NewPreHeader, VMap, DT, LI, PreserveLCSSA); + } + + // If this loop is nested, then the loop unroller changes the code in the any + // of its parent loops, so the Scalar Evolution pass needs to be run again. + SE->forgetTopmostLoop(L); + + // Verify that the Dom Tree and Loop Info are correct. +#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) + if (DT) { + assert(DT->verify(DominatorTree::VerificationLevel::Full)); + LI->verify(*DT); + } +#endif + + // For unroll factor 2 remainder loop will have 1 iteration. + if (Count == 2 && DT && LI && SE) { + // TODO: This code could probably be pulled out into a helper function + // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion. + BasicBlock *RemainderLatch = remainderLoop->getLoopLatch(); + assert(RemainderLatch); + SmallVector<BasicBlock*> RemainderBlocks(remainderLoop->getBlocks().begin(), + remainderLoop->getBlocks().end()); + breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr); + remainderLoop = nullptr; + + // Simplify loop values after breaking the backedge + const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + SmallVector<WeakTrackingVH, 16> DeadInsts; + for (BasicBlock *BB : RemainderBlocks) { + for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { + if (Value *V = SimplifyInstruction(&Inst, {DL, nullptr, DT, AC})) + if (LI->replacementPreservesLCSSAForm(&Inst, V)) + Inst.replaceAllUsesWith(V); + if (isInstructionTriviallyDead(&Inst)) + DeadInsts.emplace_back(&Inst); + } + // We can't do recursive deletion until we're done iterating, as we might + // have a phi which (potentially indirectly) uses instructions later in + // the block we're iterating through. + RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); + } + + // Merge latch into exit block. + auto *ExitBB = RemainderLatch->getSingleSuccessor(); + assert(ExitBB && "required after breaking cond br backedge"); + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); + MergeBlockIntoPredecessor(ExitBB, &DTU, LI); + } + + // Canonicalize to LoopSimplifyForm both original and remainder loops. We + // cannot rely on the LoopUnrollPass to do this because it only does + // canonicalization for parent/subloops and not the sibling loops. + if (OtherExits.size() > 0) { + // Generate dedicated exit blocks for the original loop, to preserve + // LoopSimplifyForm. + formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); + // Generate dedicated exit blocks for the remainder loop if one exists, to + // preserve LoopSimplifyForm. + if (remainderLoop) + formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); + } + + auto UnrollResult = LoopUnrollResult::Unmodified; + if (remainderLoop && UnrollRemainder) { + LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); + UnrollResult = + UnrollLoop(remainderLoop, + {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false, + /*AllowExpensiveTripCount*/ false, + /*UnrollRemainder*/ false, ForgetAllSCEV}, + LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); + } + + if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) + *ResultLoop = remainderLoop; + NumRuntimeUnrolled++; + return true; +} |