diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp | 1044 |
1 files changed, 1044 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp new file mode 100644 index 000000000000..c4c40189fda4 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp @@ -0,0 +1,1044 @@ +//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines common loop utility functions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/MustExecute.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "loop-utils" + +static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; +static const char *LLVMLoopDisableLICM = "llvm.licm.disable"; + +bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, + MemorySSAUpdater *MSSAU, + bool PreserveLCSSA) { + bool Changed = false; + + // We re-use a vector for the in-loop predecesosrs. + SmallVector<BasicBlock *, 4> InLoopPredecessors; + + auto RewriteExit = [&](BasicBlock *BB) { + assert(InLoopPredecessors.empty() && + "Must start with an empty predecessors list!"); + auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); + + // See if there are any non-loop predecessors of this exit block and + // keep track of the in-loop predecessors. + bool IsDedicatedExit = true; + for (auto *PredBB : predecessors(BB)) + if (L->contains(PredBB)) { + if (isa<IndirectBrInst>(PredBB->getTerminator())) + // We cannot rewrite exiting edges from an indirectbr. + return false; + if (isa<CallBrInst>(PredBB->getTerminator())) + // We cannot rewrite exiting edges from a callbr. + return false; + + InLoopPredecessors.push_back(PredBB); + } else { + IsDedicatedExit = false; + } + + assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); + + // Nothing to do if this is already a dedicated exit. + if (IsDedicatedExit) + return false; + + auto *NewExitBB = SplitBlockPredecessors( + BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA); + + if (!NewExitBB) + LLVM_DEBUG( + dbgs() << "WARNING: Can't create a dedicated exit block for loop: " + << *L << "\n"); + else + LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " + << NewExitBB->getName() << "\n"); + return true; + }; + + // Walk the exit blocks directly rather than building up a data structure for + // them, but only visit each one once. + SmallPtrSet<BasicBlock *, 4> Visited; + for (auto *BB : L->blocks()) + for (auto *SuccBB : successors(BB)) { + // We're looking for exit blocks so skip in-loop successors. + if (L->contains(SuccBB)) + continue; + + // Visit each exit block exactly once. + if (!Visited.insert(SuccBB).second) + continue; + + Changed |= RewriteExit(SuccBB); + } + + return Changed; +} + +/// Returns the instructions that use values defined in the loop. +SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { + SmallVector<Instruction *, 8> UsedOutside; + + for (auto *Block : L->getBlocks()) + // FIXME: I believe that this could use copy_if if the Inst reference could + // be adapted into a pointer. + for (auto &Inst : *Block) { + auto Users = Inst.users(); + if (any_of(Users, [&](User *U) { + auto *Use = cast<Instruction>(U); + return !L->contains(Use->getParent()); + })) + UsedOutside.push_back(&Inst); + } + + return UsedOutside; +} + +void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { + // By definition, all loop passes need the LoopInfo analysis and the + // Dominator tree it depends on. Because they all participate in the loop + // pass manager, they must also preserve these. + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); + + // We must also preserve LoopSimplify and LCSSA. We locally access their IDs + // here because users shouldn't directly get them from this header. + extern char &LoopSimplifyID; + extern char &LCSSAID; + AU.addRequiredID(LoopSimplifyID); + AU.addPreservedID(LoopSimplifyID); + AU.addRequiredID(LCSSAID); + AU.addPreservedID(LCSSAID); + // This is used in the LPPassManager to perform LCSSA verification on passes + // which preserve lcssa form + AU.addRequired<LCSSAVerificationPass>(); + AU.addPreserved<LCSSAVerificationPass>(); + + // Loop passes are designed to run inside of a loop pass manager which means + // that any function analyses they require must be required by the first loop + // pass in the manager (so that it is computed before the loop pass manager + // runs) and preserved by all loop pasess in the manager. To make this + // reasonably robust, the set needed for most loop passes is maintained here. + // If your loop pass requires an analysis not listed here, you will need to + // carefully audit the loop pass manager nesting structure that results. + AU.addRequired<AAResultsWrapperPass>(); + AU.addPreserved<AAResultsWrapperPass>(); + AU.addPreserved<BasicAAWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.addPreserved<SCEVAAWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addPreserved<ScalarEvolutionWrapperPass>(); + // FIXME: When all loop passes preserve MemorySSA, it can be required and + // preserved here instead of the individual handling in each pass. +} + +/// Manually defined generic "LoopPass" dependency initialization. This is used +/// to initialize the exact set of passes from above in \c +/// getLoopAnalysisUsage. It can be used within a loop pass's initialization +/// with: +/// +/// INITIALIZE_PASS_DEPENDENCY(LoopPass) +/// +/// As-if "LoopPass" were a pass. +void llvm::initializeLoopPassPass(PassRegistry &Registry) { + INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) + INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) + INITIALIZE_PASS_DEPENDENCY(LoopSimplify) + INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) + INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) + INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) + INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) + INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) + INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) + INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +} + +/// Create MDNode for input string. +static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) { + LLVMContext &Context = TheLoop->getHeader()->getContext(); + Metadata *MDs[] = { + MDString::get(Context, Name), + ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; + return MDNode::get(Context, MDs); +} + +/// Set input string into loop metadata by keeping other values intact. +/// If the string is already in loop metadata update value if it is +/// different. +void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD, + unsigned V) { + SmallVector<Metadata *, 4> MDs(1); + // If the loop already has metadata, retain it. + MDNode *LoopID = TheLoop->getLoopID(); + if (LoopID) { + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); + // If it is of form key = value, try to parse it. + if (Node->getNumOperands() == 2) { + MDString *S = dyn_cast<MDString>(Node->getOperand(0)); + if (S && S->getString().equals(StringMD)) { + ConstantInt *IntMD = + mdconst::extract_or_null<ConstantInt>(Node->getOperand(1)); + if (IntMD && IntMD->getSExtValue() == V) + // It is already in place. Do nothing. + return; + // We need to update the value, so just skip it here and it will + // be added after copying other existed nodes. + continue; + } + } + MDs.push_back(Node); + } + } + // Add new metadata. + MDs.push_back(createStringMetadata(TheLoop, StringMD, V)); + // Replace current metadata node with new one. + LLVMContext &Context = TheLoop->getHeader()->getContext(); + MDNode *NewLoopID = MDNode::get(Context, MDs); + // Set operand 0 to refer to the loop id itself. + NewLoopID->replaceOperandWith(0, NewLoopID); + TheLoop->setLoopID(NewLoopID); +} + +/// Find string metadata for loop +/// +/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an +/// operand or null otherwise. If the string metadata is not found return +/// Optional's not-a-value. +Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, + StringRef Name) { + MDNode *MD = findOptionMDForLoop(TheLoop, Name); + if (!MD) + return None; + switch (MD->getNumOperands()) { + case 1: + return nullptr; + case 2: + return &MD->getOperand(1); + default: + llvm_unreachable("loop metadata has 0 or 1 operand"); + } +} + +static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, + StringRef Name) { + MDNode *MD = findOptionMDForLoop(TheLoop, Name); + if (!MD) + return None; + switch (MD->getNumOperands()) { + case 1: + // When the value is absent it is interpreted as 'attribute set'. + return true; + case 2: + if (ConstantInt *IntMD = + mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) + return IntMD->getZExtValue(); + return true; + } + llvm_unreachable("unexpected number of options"); +} + +static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { + return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); +} + +llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, + StringRef Name) { + const MDOperand *AttrMD = + findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); + if (!AttrMD) + return None; + + ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); + if (!IntMD) + return None; + + return IntMD->getSExtValue(); +} + +Optional<MDNode *> llvm::makeFollowupLoopID( + MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, + const char *InheritOptionsExceptPrefix, bool AlwaysNew) { + if (!OrigLoopID) { + if (AlwaysNew) + return nullptr; + return None; + } + + assert(OrigLoopID->getOperand(0) == OrigLoopID); + + bool InheritAllAttrs = !InheritOptionsExceptPrefix; + bool InheritSomeAttrs = + InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; + SmallVector<Metadata *, 8> MDs; + MDs.push_back(nullptr); + + bool Changed = false; + if (InheritAllAttrs || InheritSomeAttrs) { + for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { + MDNode *Op = cast<MDNode>(Existing.get()); + + auto InheritThisAttribute = [InheritSomeAttrs, + InheritOptionsExceptPrefix](MDNode *Op) { + if (!InheritSomeAttrs) + return false; + + // Skip malformatted attribute metadata nodes. + if (Op->getNumOperands() == 0) + return true; + Metadata *NameMD = Op->getOperand(0).get(); + if (!isa<MDString>(NameMD)) + return true; + StringRef AttrName = cast<MDString>(NameMD)->getString(); + + // Do not inherit excluded attributes. + return !AttrName.startswith(InheritOptionsExceptPrefix); + }; + + if (InheritThisAttribute(Op)) + MDs.push_back(Op); + else + Changed = true; + } + } else { + // Modified if we dropped at least one attribute. + Changed = OrigLoopID->getNumOperands() > 1; + } + + bool HasAnyFollowup = false; + for (StringRef OptionName : FollowupOptions) { + MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); + if (!FollowupNode) + continue; + + HasAnyFollowup = true; + for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { + MDs.push_back(Option.get()); + Changed = true; + } + } + + // Attributes of the followup loop not specified explicity, so signal to the + // transformation pass to add suitable attributes. + if (!AlwaysNew && !HasAnyFollowup) + return None; + + // If no attributes were added or remove, the previous loop Id can be reused. + if (!AlwaysNew && !Changed) + return OrigLoopID; + + // No attributes is equivalent to having no !llvm.loop metadata at all. + if (MDs.size() == 1) + return nullptr; + + // Build the new loop ID. + MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); + FollowupLoopID->replaceOperandWith(0, FollowupLoopID); + return FollowupLoopID; +} + +bool llvm::hasDisableAllTransformsHint(const Loop *L) { + return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); +} + +bool llvm::hasDisableLICMTransformsHint(const Loop *L) { + return getBooleanLoopAttribute(L, LLVMLoopDisableLICM); +} + +TransformationMode llvm::hasUnrollTransformation(Loop *L) { + if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) + return TM_SuppressedByUser; + + Optional<int> Count = + getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); + if (Count.hasValue()) + return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; + + if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) + return TM_ForcedByUser; + + if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) + return TM_ForcedByUser; + + if (hasDisableAllTransformsHint(L)) + return TM_Disable; + + return TM_Unspecified; +} + +TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { + if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) + return TM_SuppressedByUser; + + Optional<int> Count = + getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); + if (Count.hasValue()) + return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; + + if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) + return TM_ForcedByUser; + + if (hasDisableAllTransformsHint(L)) + return TM_Disable; + + return TM_Unspecified; +} + +TransformationMode llvm::hasVectorizeTransformation(Loop *L) { + Optional<bool> Enable = + getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); + + if (Enable == false) + return TM_SuppressedByUser; + + Optional<int> VectorizeWidth = + getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); + Optional<int> InterleaveCount = + getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); + + // 'Forcing' vector width and interleave count to one effectively disables + // this tranformation. + if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) + return TM_SuppressedByUser; + + if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) + return TM_Disable; + + if (Enable == true) + return TM_ForcedByUser; + + if (VectorizeWidth == 1 && InterleaveCount == 1) + return TM_Disable; + + if (VectorizeWidth > 1 || InterleaveCount > 1) + return TM_Enable; + + if (hasDisableAllTransformsHint(L)) + return TM_Disable; + + return TM_Unspecified; +} + +TransformationMode llvm::hasDistributeTransformation(Loop *L) { + if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) + return TM_ForcedByUser; + + if (hasDisableAllTransformsHint(L)) + return TM_Disable; + + return TM_Unspecified; +} + +TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { + if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) + return TM_SuppressedByUser; + + if (hasDisableAllTransformsHint(L)) + return TM_Disable; + + return TM_Unspecified; +} + +/// Does a BFS from a given node to all of its children inside a given loop. +/// The returned vector of nodes includes the starting point. +SmallVector<DomTreeNode *, 16> +llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { + SmallVector<DomTreeNode *, 16> Worklist; + auto AddRegionToWorklist = [&](DomTreeNode *DTN) { + // Only include subregions in the top level loop. + BasicBlock *BB = DTN->getBlock(); + if (CurLoop->contains(BB)) + Worklist.push_back(DTN); + }; + + AddRegionToWorklist(N); + + for (size_t I = 0; I < Worklist.size(); I++) + for (DomTreeNode *Child : Worklist[I]->getChildren()) + AddRegionToWorklist(Child); + + return Worklist; +} + +void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, + ScalarEvolution *SE = nullptr, + LoopInfo *LI = nullptr) { + assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); + auto *Preheader = L->getLoopPreheader(); + assert(Preheader && "Preheader should exist!"); + + // Now that we know the removal is safe, remove the loop by changing the + // branch from the preheader to go to the single exit block. + // + // Because we're deleting a large chunk of code at once, the sequence in which + // we remove things is very important to avoid invalidation issues. + + // Tell ScalarEvolution that the loop is deleted. Do this before + // deleting the loop so that ScalarEvolution can look at the loop + // to determine what it needs to clean up. + if (SE) + SE->forgetLoop(L); + + auto *ExitBlock = L->getUniqueExitBlock(); + assert(ExitBlock && "Should have a unique exit block!"); + assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); + + auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); + assert(OldBr && "Preheader must end with a branch"); + assert(OldBr->isUnconditional() && "Preheader must have a single successor"); + // Connect the preheader to the exit block. Keep the old edge to the header + // around to perform the dominator tree update in two separate steps + // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge + // preheader -> header. + // + // + // 0. Preheader 1. Preheader 2. Preheader + // | | | | + // V | V | + // Header <--\ | Header <--\ | Header <--\ + // | | | | | | | | | | | + // | V | | | V | | | V | + // | Body --/ | | Body --/ | | Body --/ + // V V V V V + // Exit Exit Exit + // + // By doing this is two separate steps we can perform the dominator tree + // update without using the batch update API. + // + // Even when the loop is never executed, we cannot remove the edge from the + // source block to the exit block. Consider the case where the unexecuted loop + // branches back to an outer loop. If we deleted the loop and removed the edge + // coming to this inner loop, this will break the outer loop structure (by + // deleting the backedge of the outer loop). If the outer loop is indeed a + // non-loop, it will be deleted in a future iteration of loop deletion pass. + IRBuilder<> Builder(OldBr); + Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); + // Remove the old branch. The conditional branch becomes a new terminator. + OldBr->eraseFromParent(); + + // Rewrite phis in the exit block to get their inputs from the Preheader + // instead of the exiting block. + for (PHINode &P : ExitBlock->phis()) { + // Set the zero'th element of Phi to be from the preheader and remove all + // other incoming values. Given the loop has dedicated exits, all other + // incoming values must be from the exiting blocks. + int PredIndex = 0; + P.setIncomingBlock(PredIndex, Preheader); + // Removes all incoming values from all other exiting blocks (including + // duplicate values from an exiting block). + // Nuke all entries except the zero'th entry which is the preheader entry. + // NOTE! We need to remove Incoming Values in the reverse order as done + // below, to keep the indices valid for deletion (removeIncomingValues + // updates getNumIncomingValues and shifts all values down into the operand + // being deleted). + for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) + P.removeIncomingValue(e - i, false); + + assert((P.getNumIncomingValues() == 1 && + P.getIncomingBlock(PredIndex) == Preheader) && + "Should have exactly one value and that's from the preheader!"); + } + + // Disconnect the loop body by branching directly to its exit. + Builder.SetInsertPoint(Preheader->getTerminator()); + Builder.CreateBr(ExitBlock); + // Remove the old branch. + Preheader->getTerminator()->eraseFromParent(); + + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); + if (DT) { + // Update the dominator tree by informing it about the new edge from the + // preheader to the exit and the removed edge. + DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}, + {DominatorTree::Delete, Preheader, L->getHeader()}}); + } + + // Use a map to unique and a vector to guarantee deterministic ordering. + llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; + llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; + + // Given LCSSA form is satisfied, we should not have users of instructions + // within the dead loop outside of the loop. However, LCSSA doesn't take + // unreachable uses into account. We handle them here. + // We could do it after drop all references (in this case all users in the + // loop will be already eliminated and we have less work to do but according + // to API doc of User::dropAllReferences only valid operation after dropping + // references, is deletion. So let's substitute all usages of + // instruction from the loop with undef value of corresponding type first. + for (auto *Block : L->blocks()) + for (Instruction &I : *Block) { + auto *Undef = UndefValue::get(I.getType()); + for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { + Use &U = *UI; + ++UI; + if (auto *Usr = dyn_cast<Instruction>(U.getUser())) + if (L->contains(Usr->getParent())) + continue; + // If we have a DT then we can check that uses outside a loop only in + // unreachable block. + if (DT) + assert(!DT->isReachableFromEntry(U) && + "Unexpected user in reachable block"); + U.set(Undef); + } + auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); + if (!DVI) + continue; + auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); + if (Key != DeadDebugSet.end()) + continue; + DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); + DeadDebugInst.push_back(DVI); + } + + // After the loop has been deleted all the values defined and modified + // inside the loop are going to be unavailable. + // Since debug values in the loop have been deleted, inserting an undef + // dbg.value truncates the range of any dbg.value before the loop where the + // loop used to be. This is particularly important for constant values. + DIBuilder DIB(*ExitBlock->getModule()); + Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); + assert(InsertDbgValueBefore && + "There should be a non-PHI instruction in exit block, else these " + "instructions will have no parent."); + for (auto *DVI : DeadDebugInst) + DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), + DVI->getVariable(), DVI->getExpression(), + DVI->getDebugLoc(), InsertDbgValueBefore); + + // Remove the block from the reference counting scheme, so that we can + // delete it freely later. + for (auto *Block : L->blocks()) + Block->dropAllReferences(); + + if (LI) { + // Erase the instructions and the blocks without having to worry + // about ordering because we already dropped the references. + // NOTE: This iteration is safe because erasing the block does not remove + // its entry from the loop's block list. We do that in the next section. + for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); + LpI != LpE; ++LpI) + (*LpI)->eraseFromParent(); + + // Finally, the blocks from loopinfo. This has to happen late because + // otherwise our loop iterators won't work. + + SmallPtrSet<BasicBlock *, 8> blocks; + blocks.insert(L->block_begin(), L->block_end()); + for (BasicBlock *BB : blocks) + LI->removeBlock(BB); + + // The last step is to update LoopInfo now that we've eliminated this loop. + // Note: LoopInfo::erase remove the given loop and relink its subloops with + // its parent. While removeLoop/removeChildLoop remove the given loop but + // not relink its subloops, which is what we want. + if (Loop *ParentLoop = L->getParentLoop()) { + Loop::iterator I = find(ParentLoop->begin(), ParentLoop->end(), L); + assert(I != ParentLoop->end() && "Couldn't find loop"); + ParentLoop->removeChildLoop(I); + } else { + Loop::iterator I = find(LI->begin(), LI->end(), L); + assert(I != LI->end() && "Couldn't find loop"); + LI->removeLoop(I); + } + LI->destroy(L); + } +} + +Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { + // Support loops with an exiting latch and other existing exists only + // deoptimize. + + // Get the branch weights for the loop's backedge. + BasicBlock *Latch = L->getLoopLatch(); + if (!Latch) + return None; + BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator()); + if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) + return None; + + assert((LatchBR->getSuccessor(0) == L->getHeader() || + LatchBR->getSuccessor(1) == L->getHeader()) && + "At least one edge out of the latch must go to the header"); + + SmallVector<BasicBlock *, 4> ExitBlocks; + L->getUniqueNonLatchExitBlocks(ExitBlocks); + if (any_of(ExitBlocks, [](const BasicBlock *EB) { + return !EB->getTerminatingDeoptimizeCall(); + })) + return None; + + // To estimate the number of times the loop body was executed, we want to + // know the number of times the backedge was taken, vs. the number of times + // we exited the loop. + uint64_t BackedgeTakenWeight, LatchExitWeight; + if (!LatchBR->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight)) + return None; + + if (LatchBR->getSuccessor(0) != L->getHeader()) + std::swap(BackedgeTakenWeight, LatchExitWeight); + + if (!BackedgeTakenWeight || !LatchExitWeight) + return 0; + + // Divide the count of the backedge by the count of the edge exiting the loop, + // rounding to nearest. + return llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight); +} + +bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, + ScalarEvolution &SE) { + Loop *OuterL = InnerLoop->getParentLoop(); + if (!OuterL) + return true; + + // Get the backedge taken count for the inner loop + BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); + const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); + if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || + !InnerLoopBECountSC->getType()->isIntegerTy()) + return false; + + // Get whether count is invariant to the outer loop + ScalarEvolution::LoopDisposition LD = + SE.getLoopDisposition(InnerLoopBECountSC, OuterL); + if (LD != ScalarEvolution::LoopInvariant) + return false; + + return true; +} + +Value *llvm::createMinMaxOp(IRBuilder<> &Builder, + RecurrenceDescriptor::MinMaxRecurrenceKind RK, + Value *Left, Value *Right) { + CmpInst::Predicate P = CmpInst::ICMP_NE; + switch (RK) { + default: + llvm_unreachable("Unknown min/max recurrence kind"); + case RecurrenceDescriptor::MRK_UIntMin: + P = CmpInst::ICMP_ULT; + break; + case RecurrenceDescriptor::MRK_UIntMax: + P = CmpInst::ICMP_UGT; + break; + case RecurrenceDescriptor::MRK_SIntMin: + P = CmpInst::ICMP_SLT; + break; + case RecurrenceDescriptor::MRK_SIntMax: + P = CmpInst::ICMP_SGT; + break; + case RecurrenceDescriptor::MRK_FloatMin: + P = CmpInst::FCMP_OLT; + break; + case RecurrenceDescriptor::MRK_FloatMax: + P = CmpInst::FCMP_OGT; + break; + } + + // We only match FP sequences that are 'fast', so we can unconditionally + // set it on any generated instructions. + IRBuilder<>::FastMathFlagGuard FMFG(Builder); + FastMathFlags FMF; + FMF.setFast(); + Builder.setFastMathFlags(FMF); + + Value *Cmp; + if (RK == RecurrenceDescriptor::MRK_FloatMin || + RK == RecurrenceDescriptor::MRK_FloatMax) + Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); + else + Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); + + Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); + return Select; +} + +// Helper to generate an ordered reduction. +Value * +llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, + unsigned Op, + RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, + ArrayRef<Value *> RedOps) { + unsigned VF = Src->getType()->getVectorNumElements(); + + // Extract and apply reduction ops in ascending order: + // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] + Value *Result = Acc; + for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { + Value *Ext = + Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); + + if (Op != Instruction::ICmp && Op != Instruction::FCmp) { + Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, + "bin.rdx"); + } else { + assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && + "Invalid min/max"); + Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); + } + + if (!RedOps.empty()) + propagateIRFlags(Result, RedOps); + } + + return Result; +} + +// Helper to generate a log2 shuffle reduction. +Value * +llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, + RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, + ArrayRef<Value *> RedOps) { + unsigned VF = Src->getType()->getVectorNumElements(); + // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles + // and vector ops, reducing the set of values being computed by half each + // round. + assert(isPowerOf2_32(VF) && + "Reduction emission only supported for pow2 vectors!"); + Value *TmpVec = Src; + SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); + for (unsigned i = VF; i != 1; i >>= 1) { + // Move the upper half of the vector to the lower half. + for (unsigned j = 0; j != i / 2; ++j) + ShuffleMask[j] = Builder.getInt32(i / 2 + j); + + // Fill the rest of the mask with undef. + std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), + UndefValue::get(Builder.getInt32Ty())); + + Value *Shuf = Builder.CreateShuffleVector( + TmpVec, UndefValue::get(TmpVec->getType()), + ConstantVector::get(ShuffleMask), "rdx.shuf"); + + if (Op != Instruction::ICmp && Op != Instruction::FCmp) { + // The builder propagates its fast-math-flags setting. + TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, + "bin.rdx"); + } else { + assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && + "Invalid min/max"); + TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); + } + if (!RedOps.empty()) + propagateIRFlags(TmpVec, RedOps); + } + // The result is in the first element of the vector. + return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); +} + +/// Create a simple vector reduction specified by an opcode and some +/// flags (if generating min/max reductions). +Value *llvm::createSimpleTargetReduction( + IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, + Value *Src, TargetTransformInfo::ReductionFlags Flags, + ArrayRef<Value *> RedOps) { + assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); + + std::function<Value *()> BuildFunc; + using RD = RecurrenceDescriptor; + RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; + + switch (Opcode) { + case Instruction::Add: + BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; + break; + case Instruction::Mul: + BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; + break; + case Instruction::And: + BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; + break; + case Instruction::Or: + BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; + break; + case Instruction::Xor: + BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; + break; + case Instruction::FAdd: + BuildFunc = [&]() { + auto Rdx = Builder.CreateFAddReduce( + Constant::getNullValue(Src->getType()->getVectorElementType()), Src); + return Rdx; + }; + break; + case Instruction::FMul: + BuildFunc = [&]() { + Type *Ty = Src->getType()->getVectorElementType(); + auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src); + return Rdx; + }; + break; + case Instruction::ICmp: + if (Flags.IsMaxOp) { + MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; + BuildFunc = [&]() { + return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); + }; + } else { + MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; + BuildFunc = [&]() { + return Builder.CreateIntMinReduce(Src, Flags.IsSigned); + }; + } + break; + case Instruction::FCmp: + if (Flags.IsMaxOp) { + MinMaxKind = RD::MRK_FloatMax; + BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; + } else { + MinMaxKind = RD::MRK_FloatMin; + BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; + } + break; + default: + llvm_unreachable("Unhandled opcode"); + break; + } + if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) + return BuildFunc(); + return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); +} + +/// Create a vector reduction using a given recurrence descriptor. +Value *llvm::createTargetReduction(IRBuilder<> &B, + const TargetTransformInfo *TTI, + RecurrenceDescriptor &Desc, Value *Src, + bool NoNaN) { + // TODO: Support in-order reductions based on the recurrence descriptor. + using RD = RecurrenceDescriptor; + RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); + TargetTransformInfo::ReductionFlags Flags; + Flags.NoNaN = NoNaN; + + // All ops in the reduction inherit fast-math-flags from the recurrence + // descriptor. + IRBuilder<>::FastMathFlagGuard FMFGuard(B); + B.setFastMathFlags(Desc.getFastMathFlags()); + + switch (RecKind) { + case RD::RK_FloatAdd: + return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); + case RD::RK_FloatMult: + return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); + case RD::RK_IntegerAdd: + return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); + case RD::RK_IntegerMult: + return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); + case RD::RK_IntegerAnd: + return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); + case RD::RK_IntegerOr: + return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); + case RD::RK_IntegerXor: + return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); + case RD::RK_IntegerMinMax: { + RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); + Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); + Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); + return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); + } + case RD::RK_FloatMinMax: { + Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; + return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); + } + default: + llvm_unreachable("Unhandled RecKind"); + } +} + +void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { + auto *VecOp = dyn_cast<Instruction>(I); + if (!VecOp) + return; + auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) + : dyn_cast<Instruction>(OpValue); + if (!Intersection) + return; + const unsigned Opcode = Intersection->getOpcode(); + VecOp->copyIRFlags(Intersection); + for (auto *V : VL) { + auto *Instr = dyn_cast<Instruction>(V); + if (!Instr) + continue; + if (OpValue == nullptr || Opcode == Instr->getOpcode()) + VecOp->andIRFlags(V); + } +} + +bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, + ScalarEvolution &SE) { + const SCEV *Zero = SE.getZero(S->getType()); + return SE.isAvailableAtLoopEntry(S, L) && + SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); +} + +bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, + ScalarEvolution &SE) { + const SCEV *Zero = SE.getZero(S->getType()); + return SE.isAvailableAtLoopEntry(S, L) && + SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); +} + +bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, + bool Signed) { + unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); + APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : + APInt::getMinValue(BitWidth); + auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; + return SE.isAvailableAtLoopEntry(S, L) && + SE.isLoopEntryGuardedByCond(L, Predicate, S, + SE.getConstant(Min)); +} + +bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, + bool Signed) { + unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); + APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : + APInt::getMaxValue(BitWidth); + auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + return SE.isAvailableAtLoopEntry(S, L) && + SE.isLoopEntryGuardedByCond(L, Predicate, S, + SE.getConstant(Max)); +} |