aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp1724
1 files changed, 1724 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp
new file mode 100644
index 000000000000..f0f423e9812a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUtils.cpp
@@ -0,0 +1,1724 @@
+//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines common loop utility functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PriorityWorklist.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/MustExecute.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+static cl::opt<bool> ForceReductionIntrinsic(
+ "force-reduction-intrinsics", cl::Hidden,
+ cl::desc("Force creating reduction intrinsics for testing."),
+ cl::init(false));
+
+#define DEBUG_TYPE "loop-utils"
+
+static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
+static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
+static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
+
+bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
+ MemorySSAUpdater *MSSAU,
+ bool PreserveLCSSA) {
+ bool Changed = false;
+
+ // We re-use a vector for the in-loop predecesosrs.
+ SmallVector<BasicBlock *, 4> InLoopPredecessors;
+
+ auto RewriteExit = [&](BasicBlock *BB) {
+ assert(InLoopPredecessors.empty() &&
+ "Must start with an empty predecessors list!");
+ auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
+
+ // See if there are any non-loop predecessors of this exit block and
+ // keep track of the in-loop predecessors.
+ bool IsDedicatedExit = true;
+ for (auto *PredBB : predecessors(BB))
+ if (L->contains(PredBB)) {
+ if (isa<IndirectBrInst>(PredBB->getTerminator()))
+ // We cannot rewrite exiting edges from an indirectbr.
+ return false;
+ if (isa<CallBrInst>(PredBB->getTerminator()))
+ // We cannot rewrite exiting edges from a callbr.
+ return false;
+
+ InLoopPredecessors.push_back(PredBB);
+ } else {
+ IsDedicatedExit = false;
+ }
+
+ assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
+
+ // Nothing to do if this is already a dedicated exit.
+ if (IsDedicatedExit)
+ return false;
+
+ auto *NewExitBB = SplitBlockPredecessors(
+ BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
+
+ if (!NewExitBB)
+ LLVM_DEBUG(
+ dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
+ << *L << "\n");
+ else
+ LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
+ << NewExitBB->getName() << "\n");
+ return true;
+ };
+
+ // Walk the exit blocks directly rather than building up a data structure for
+ // them, but only visit each one once.
+ SmallPtrSet<BasicBlock *, 4> Visited;
+ for (auto *BB : L->blocks())
+ for (auto *SuccBB : successors(BB)) {
+ // We're looking for exit blocks so skip in-loop successors.
+ if (L->contains(SuccBB))
+ continue;
+
+ // Visit each exit block exactly once.
+ if (!Visited.insert(SuccBB).second)
+ continue;
+
+ Changed |= RewriteExit(SuccBB);
+ }
+
+ return Changed;
+}
+
+/// Returns the instructions that use values defined in the loop.
+SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
+ SmallVector<Instruction *, 8> UsedOutside;
+
+ for (auto *Block : L->getBlocks())
+ // FIXME: I believe that this could use copy_if if the Inst reference could
+ // be adapted into a pointer.
+ for (auto &Inst : *Block) {
+ auto Users = Inst.users();
+ if (any_of(Users, [&](User *U) {
+ auto *Use = cast<Instruction>(U);
+ return !L->contains(Use->getParent());
+ }))
+ UsedOutside.push_back(&Inst);
+ }
+
+ return UsedOutside;
+}
+
+void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
+ // By definition, all loop passes need the LoopInfo analysis and the
+ // Dominator tree it depends on. Because they all participate in the loop
+ // pass manager, they must also preserve these.
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+
+ // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
+ // here because users shouldn't directly get them from this header.
+ extern char &LoopSimplifyID;
+ extern char &LCSSAID;
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ // This is used in the LPPassManager to perform LCSSA verification on passes
+ // which preserve lcssa form
+ AU.addRequired<LCSSAVerificationPass>();
+ AU.addPreserved<LCSSAVerificationPass>();
+
+ // Loop passes are designed to run inside of a loop pass manager which means
+ // that any function analyses they require must be required by the first loop
+ // pass in the manager (so that it is computed before the loop pass manager
+ // runs) and preserved by all loop pasess in the manager. To make this
+ // reasonably robust, the set needed for most loop passes is maintained here.
+ // If your loop pass requires an analysis not listed here, you will need to
+ // carefully audit the loop pass manager nesting structure that results.
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addPreserved<BasicAAWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<SCEVAAWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
+ // FIXME: When all loop passes preserve MemorySSA, it can be required and
+ // preserved here instead of the individual handling in each pass.
+}
+
+/// Manually defined generic "LoopPass" dependency initialization. This is used
+/// to initialize the exact set of passes from above in \c
+/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
+/// with:
+///
+/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
+///
+/// As-if "LoopPass" were a pass.
+void llvm::initializeLoopPassPass(PassRegistry &Registry) {
+ INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+ INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+}
+
+/// Create MDNode for input string.
+static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ Metadata *MDs[] = {
+ MDString::get(Context, Name),
+ ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
+ return MDNode::get(Context, MDs);
+}
+
+/// Set input string into loop metadata by keeping other values intact.
+/// If the string is already in loop metadata update value if it is
+/// different.
+void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
+ unsigned V) {
+ SmallVector<Metadata *, 4> MDs(1);
+ // If the loop already has metadata, retain it.
+ MDNode *LoopID = TheLoop->getLoopID();
+ if (LoopID) {
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
+ // If it is of form key = value, try to parse it.
+ if (Node->getNumOperands() == 2) {
+ MDString *S = dyn_cast<MDString>(Node->getOperand(0));
+ if (S && S->getString().equals(StringMD)) {
+ ConstantInt *IntMD =
+ mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
+ if (IntMD && IntMD->getSExtValue() == V)
+ // It is already in place. Do nothing.
+ return;
+ // We need to update the value, so just skip it here and it will
+ // be added after copying other existed nodes.
+ continue;
+ }
+ }
+ MDs.push_back(Node);
+ }
+ }
+ // Add new metadata.
+ MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
+ // Replace current metadata node with new one.
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+ TheLoop->setLoopID(NewLoopID);
+}
+
+/// Find string metadata for loop
+///
+/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
+/// operand or null otherwise. If the string metadata is not found return
+/// Optional's not-a-value.
+Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
+ StringRef Name) {
+ MDNode *MD = findOptionMDForLoop(TheLoop, Name);
+ if (!MD)
+ return None;
+ switch (MD->getNumOperands()) {
+ case 1:
+ return nullptr;
+ case 2:
+ return &MD->getOperand(1);
+ default:
+ llvm_unreachable("loop metadata has 0 or 1 operand");
+ }
+}
+
+static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
+ StringRef Name) {
+ MDNode *MD = findOptionMDForLoop(TheLoop, Name);
+ if (!MD)
+ return None;
+ switch (MD->getNumOperands()) {
+ case 1:
+ // When the value is absent it is interpreted as 'attribute set'.
+ return true;
+ case 2:
+ if (ConstantInt *IntMD =
+ mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
+ return IntMD->getZExtValue();
+ return true;
+ }
+ llvm_unreachable("unexpected number of options");
+}
+
+bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
+ return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
+}
+
+Optional<ElementCount>
+llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
+ Optional<int> Width =
+ getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
+
+ if (Width.hasValue()) {
+ Optional<int> IsScalable = getOptionalIntLoopAttribute(
+ TheLoop, "llvm.loop.vectorize.scalable.enable");
+ return ElementCount::get(*Width, IsScalable.getValueOr(false));
+ }
+
+ return None;
+}
+
+llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
+ StringRef Name) {
+ const MDOperand *AttrMD =
+ findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
+ if (!AttrMD)
+ return None;
+
+ ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
+ if (!IntMD)
+ return None;
+
+ return IntMD->getSExtValue();
+}
+
+Optional<MDNode *> llvm::makeFollowupLoopID(
+ MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
+ const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
+ if (!OrigLoopID) {
+ if (AlwaysNew)
+ return nullptr;
+ return None;
+ }
+
+ assert(OrigLoopID->getOperand(0) == OrigLoopID);
+
+ bool InheritAllAttrs = !InheritOptionsExceptPrefix;
+ bool InheritSomeAttrs =
+ InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
+ SmallVector<Metadata *, 8> MDs;
+ MDs.push_back(nullptr);
+
+ bool Changed = false;
+ if (InheritAllAttrs || InheritSomeAttrs) {
+ for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
+ MDNode *Op = cast<MDNode>(Existing.get());
+
+ auto InheritThisAttribute = [InheritSomeAttrs,
+ InheritOptionsExceptPrefix](MDNode *Op) {
+ if (!InheritSomeAttrs)
+ return false;
+
+ // Skip malformatted attribute metadata nodes.
+ if (Op->getNumOperands() == 0)
+ return true;
+ Metadata *NameMD = Op->getOperand(0).get();
+ if (!isa<MDString>(NameMD))
+ return true;
+ StringRef AttrName = cast<MDString>(NameMD)->getString();
+
+ // Do not inherit excluded attributes.
+ return !AttrName.startswith(InheritOptionsExceptPrefix);
+ };
+
+ if (InheritThisAttribute(Op))
+ MDs.push_back(Op);
+ else
+ Changed = true;
+ }
+ } else {
+ // Modified if we dropped at least one attribute.
+ Changed = OrigLoopID->getNumOperands() > 1;
+ }
+
+ bool HasAnyFollowup = false;
+ for (StringRef OptionName : FollowupOptions) {
+ MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
+ if (!FollowupNode)
+ continue;
+
+ HasAnyFollowup = true;
+ for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
+ MDs.push_back(Option.get());
+ Changed = true;
+ }
+ }
+
+ // Attributes of the followup loop not specified explicity, so signal to the
+ // transformation pass to add suitable attributes.
+ if (!AlwaysNew && !HasAnyFollowup)
+ return None;
+
+ // If no attributes were added or remove, the previous loop Id can be reused.
+ if (!AlwaysNew && !Changed)
+ return OrigLoopID;
+
+ // No attributes is equivalent to having no !llvm.loop metadata at all.
+ if (MDs.size() == 1)
+ return nullptr;
+
+ // Build the new loop ID.
+ MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
+ FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
+ return FollowupLoopID;
+}
+
+bool llvm::hasDisableAllTransformsHint(const Loop *L) {
+ return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
+}
+
+bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
+ return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
+}
+
+bool llvm::hasMustProgress(const Loop *L) {
+ return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
+}
+
+TransformationMode llvm::hasUnrollTransformation(Loop *L) {
+ if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
+ return TM_SuppressedByUser;
+
+ Optional<int> Count =
+ getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
+ if (Count.hasValue())
+ return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
+
+ if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
+ return TM_ForcedByUser;
+
+ if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
+ return TM_ForcedByUser;
+
+ if (hasDisableAllTransformsHint(L))
+ return TM_Disable;
+
+ return TM_Unspecified;
+}
+
+TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
+ if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
+ return TM_SuppressedByUser;
+
+ Optional<int> Count =
+ getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
+ if (Count.hasValue())
+ return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
+
+ if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
+ return TM_ForcedByUser;
+
+ if (hasDisableAllTransformsHint(L))
+ return TM_Disable;
+
+ return TM_Unspecified;
+}
+
+TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
+ Optional<bool> Enable =
+ getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
+
+ if (Enable == false)
+ return TM_SuppressedByUser;
+
+ Optional<ElementCount> VectorizeWidth =
+ getOptionalElementCountLoopAttribute(L);
+ Optional<int> InterleaveCount =
+ getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
+
+ // 'Forcing' vector width and interleave count to one effectively disables
+ // this tranformation.
+ if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
+ InterleaveCount == 1)
+ return TM_SuppressedByUser;
+
+ if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
+ return TM_Disable;
+
+ if (Enable == true)
+ return TM_ForcedByUser;
+
+ if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
+ return TM_Disable;
+
+ if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
+ return TM_Enable;
+
+ if (hasDisableAllTransformsHint(L))
+ return TM_Disable;
+
+ return TM_Unspecified;
+}
+
+TransformationMode llvm::hasDistributeTransformation(Loop *L) {
+ if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
+ return TM_ForcedByUser;
+
+ if (hasDisableAllTransformsHint(L))
+ return TM_Disable;
+
+ return TM_Unspecified;
+}
+
+TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
+ if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
+ return TM_SuppressedByUser;
+
+ if (hasDisableAllTransformsHint(L))
+ return TM_Disable;
+
+ return TM_Unspecified;
+}
+
+/// Does a BFS from a given node to all of its children inside a given loop.
+/// The returned vector of nodes includes the starting point.
+SmallVector<DomTreeNode *, 16>
+llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
+ SmallVector<DomTreeNode *, 16> Worklist;
+ auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
+ // Only include subregions in the top level loop.
+ BasicBlock *BB = DTN->getBlock();
+ if (CurLoop->contains(BB))
+ Worklist.push_back(DTN);
+ };
+
+ AddRegionToWorklist(N);
+
+ for (size_t I = 0; I < Worklist.size(); I++) {
+ for (DomTreeNode *Child : Worklist[I]->children())
+ AddRegionToWorklist(Child);
+ }
+
+ return Worklist;
+}
+
+void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
+ LoopInfo *LI, MemorySSA *MSSA) {
+ assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
+ auto *Preheader = L->getLoopPreheader();
+ assert(Preheader && "Preheader should exist!");
+
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+ if (MSSA)
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+
+ // Now that we know the removal is safe, remove the loop by changing the
+ // branch from the preheader to go to the single exit block.
+ //
+ // Because we're deleting a large chunk of code at once, the sequence in which
+ // we remove things is very important to avoid invalidation issues.
+
+ // Tell ScalarEvolution that the loop is deleted. Do this before
+ // deleting the loop so that ScalarEvolution can look at the loop
+ // to determine what it needs to clean up.
+ if (SE)
+ SE->forgetLoop(L);
+
+ auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
+ assert(OldBr && "Preheader must end with a branch");
+ assert(OldBr->isUnconditional() && "Preheader must have a single successor");
+ // Connect the preheader to the exit block. Keep the old edge to the header
+ // around to perform the dominator tree update in two separate steps
+ // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
+ // preheader -> header.
+ //
+ //
+ // 0. Preheader 1. Preheader 2. Preheader
+ // | | | |
+ // V | V |
+ // Header <--\ | Header <--\ | Header <--\
+ // | | | | | | | | | | |
+ // | V | | | V | | | V |
+ // | Body --/ | | Body --/ | | Body --/
+ // V V V V V
+ // Exit Exit Exit
+ //
+ // By doing this is two separate steps we can perform the dominator tree
+ // update without using the batch update API.
+ //
+ // Even when the loop is never executed, we cannot remove the edge from the
+ // source block to the exit block. Consider the case where the unexecuted loop
+ // branches back to an outer loop. If we deleted the loop and removed the edge
+ // coming to this inner loop, this will break the outer loop structure (by
+ // deleting the backedge of the outer loop). If the outer loop is indeed a
+ // non-loop, it will be deleted in a future iteration of loop deletion pass.
+ IRBuilder<> Builder(OldBr);
+
+ auto *ExitBlock = L->getUniqueExitBlock();
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
+ if (ExitBlock) {
+ assert(ExitBlock && "Should have a unique exit block!");
+ assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
+
+ Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
+ // Remove the old branch. The conditional branch becomes a new terminator.
+ OldBr->eraseFromParent();
+
+ // Rewrite phis in the exit block to get their inputs from the Preheader
+ // instead of the exiting block.
+ for (PHINode &P : ExitBlock->phis()) {
+ // Set the zero'th element of Phi to be from the preheader and remove all
+ // other incoming values. Given the loop has dedicated exits, all other
+ // incoming values must be from the exiting blocks.
+ int PredIndex = 0;
+ P.setIncomingBlock(PredIndex, Preheader);
+ // Removes all incoming values from all other exiting blocks (including
+ // duplicate values from an exiting block).
+ // Nuke all entries except the zero'th entry which is the preheader entry.
+ // NOTE! We need to remove Incoming Values in the reverse order as done
+ // below, to keep the indices valid for deletion (removeIncomingValues
+ // updates getNumIncomingValues and shifts all values down into the
+ // operand being deleted).
+ for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
+ P.removeIncomingValue(e - i, false);
+
+ assert((P.getNumIncomingValues() == 1 &&
+ P.getIncomingBlock(PredIndex) == Preheader) &&
+ "Should have exactly one value and that's from the preheader!");
+ }
+
+ if (DT) {
+ DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
+ if (MSSA) {
+ MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
+ *DT);
+ if (VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+ }
+ }
+
+ // Disconnect the loop body by branching directly to its exit.
+ Builder.SetInsertPoint(Preheader->getTerminator());
+ Builder.CreateBr(ExitBlock);
+ // Remove the old branch.
+ Preheader->getTerminator()->eraseFromParent();
+ } else {
+ assert(L->hasNoExitBlocks() &&
+ "Loop should have either zero or one exit blocks.");
+
+ Builder.SetInsertPoint(OldBr);
+ Builder.CreateUnreachable();
+ Preheader->getTerminator()->eraseFromParent();
+ }
+
+ if (DT) {
+ DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
+ if (MSSA) {
+ MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
+ *DT);
+ SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
+ L->block_end());
+ MSSAU->removeBlocks(DeadBlockSet);
+ if (VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+ }
+ }
+
+ // Use a map to unique and a vector to guarantee deterministic ordering.
+ llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
+ llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
+
+ if (ExitBlock) {
+ // Given LCSSA form is satisfied, we should not have users of instructions
+ // within the dead loop outside of the loop. However, LCSSA doesn't take
+ // unreachable uses into account. We handle them here.
+ // We could do it after drop all references (in this case all users in the
+ // loop will be already eliminated and we have less work to do but according
+ // to API doc of User::dropAllReferences only valid operation after dropping
+ // references, is deletion. So let's substitute all usages of
+ // instruction from the loop with undef value of corresponding type first.
+ for (auto *Block : L->blocks())
+ for (Instruction &I : *Block) {
+ auto *Undef = UndefValue::get(I.getType());
+ for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
+ UI != E;) {
+ Use &U = *UI;
+ ++UI;
+ if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
+ if (L->contains(Usr->getParent()))
+ continue;
+ // If we have a DT then we can check that uses outside a loop only in
+ // unreachable block.
+ if (DT)
+ assert(!DT->isReachableFromEntry(U) &&
+ "Unexpected user in reachable block");
+ U.set(Undef);
+ }
+ auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
+ if (!DVI)
+ continue;
+ auto Key =
+ DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
+ if (Key != DeadDebugSet.end())
+ continue;
+ DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
+ DeadDebugInst.push_back(DVI);
+ }
+
+ // After the loop has been deleted all the values defined and modified
+ // inside the loop are going to be unavailable.
+ // Since debug values in the loop have been deleted, inserting an undef
+ // dbg.value truncates the range of any dbg.value before the loop where the
+ // loop used to be. This is particularly important for constant values.
+ DIBuilder DIB(*ExitBlock->getModule());
+ Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
+ assert(InsertDbgValueBefore &&
+ "There should be a non-PHI instruction in exit block, else these "
+ "instructions will have no parent.");
+ for (auto *DVI : DeadDebugInst)
+ DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
+ DVI->getVariable(), DVI->getExpression(),
+ DVI->getDebugLoc(), InsertDbgValueBefore);
+ }
+
+ // Remove the block from the reference counting scheme, so that we can
+ // delete it freely later.
+ for (auto *Block : L->blocks())
+ Block->dropAllReferences();
+
+ if (MSSA && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+
+ if (LI) {
+ // Erase the instructions and the blocks without having to worry
+ // about ordering because we already dropped the references.
+ // NOTE: This iteration is safe because erasing the block does not remove
+ // its entry from the loop's block list. We do that in the next section.
+ for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
+ LpI != LpE; ++LpI)
+ (*LpI)->eraseFromParent();
+
+ // Finally, the blocks from loopinfo. This has to happen late because
+ // otherwise our loop iterators won't work.
+
+ SmallPtrSet<BasicBlock *, 8> blocks;
+ blocks.insert(L->block_begin(), L->block_end());
+ for (BasicBlock *BB : blocks)
+ LI->removeBlock(BB);
+
+ // The last step is to update LoopInfo now that we've eliminated this loop.
+ // Note: LoopInfo::erase remove the given loop and relink its subloops with
+ // its parent. While removeLoop/removeChildLoop remove the given loop but
+ // not relink its subloops, which is what we want.
+ if (Loop *ParentLoop = L->getParentLoop()) {
+ Loop::iterator I = find(*ParentLoop, L);
+ assert(I != ParentLoop->end() && "Couldn't find loop");
+ ParentLoop->removeChildLoop(I);
+ } else {
+ Loop::iterator I = find(*LI, L);
+ assert(I != LI->end() && "Couldn't find loop");
+ LI->removeLoop(I);
+ }
+ LI->destroy(L);
+ }
+}
+
+static Loop *getOutermostLoop(Loop *L) {
+ while (Loop *Parent = L->getParentLoop())
+ L = Parent;
+ return L;
+}
+
+void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
+ LoopInfo &LI, MemorySSA *MSSA) {
+ auto *Latch = L->getLoopLatch();
+ assert(Latch && "multiple latches not yet supported");
+ auto *Header = L->getHeader();
+ Loop *OutermostLoop = getOutermostLoop(L);
+
+ SE.forgetLoop(L);
+
+ // Note: By splitting the backedge, and then explicitly making it unreachable
+ // we gracefully handle corner cases such as non-bottom tested loops and the
+ // like. We also have the benefit of being able to reuse existing well tested
+ // code. It might be worth special casing the common bottom tested case at
+ // some point to avoid code churn.
+
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+ if (MSSA)
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+
+ auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
+
+ DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
+ (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false,
+ /*PreserveLCSSA*/true, &DTU, MSSAU.get());
+
+ // Erase (and destroy) this loop instance. Handles relinking sub-loops
+ // and blocks within the loop as needed.
+ LI.erase(L);
+
+ // If the loop we broke had a parent, then changeToUnreachable might have
+ // caused a block to be removed from the parent loop (see loop_nest_lcssa
+ // test case in zero-btc.ll for an example), thus changing the parent's
+ // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
+ // loop which might have a had a block removed.
+ if (OutermostLoop != L)
+ formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
+}
+
+
+/// Checks if \p L has single exit through latch block except possibly
+/// "deoptimizing" exits. Returns branch instruction terminating the loop
+/// latch if above check is successful, nullptr otherwise.
+static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
+ BasicBlock *Latch = L->getLoopLatch();
+ if (!Latch)
+ return nullptr;
+
+ BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
+ if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
+ return nullptr;
+
+ assert((LatchBR->getSuccessor(0) == L->getHeader() ||
+ LatchBR->getSuccessor(1) == L->getHeader()) &&
+ "At least one edge out of the latch must go to the header");
+
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ L->getUniqueNonLatchExitBlocks(ExitBlocks);
+ if (any_of(ExitBlocks, [](const BasicBlock *EB) {
+ return !EB->getTerminatingDeoptimizeCall();
+ }))
+ return nullptr;
+
+ return LatchBR;
+}
+
+Optional<unsigned>
+llvm::getLoopEstimatedTripCount(Loop *L,
+ unsigned *EstimatedLoopInvocationWeight) {
+ // Support loops with an exiting latch and other existing exists only
+ // deoptimize.
+ BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
+ if (!LatchBranch)
+ return None;
+
+ // To estimate the number of times the loop body was executed, we want to
+ // know the number of times the backedge was taken, vs. the number of times
+ // we exited the loop.
+ uint64_t BackedgeTakenWeight, LatchExitWeight;
+ if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
+ return None;
+
+ if (LatchBranch->getSuccessor(0) != L->getHeader())
+ std::swap(BackedgeTakenWeight, LatchExitWeight);
+
+ if (!LatchExitWeight)
+ return None;
+
+ if (EstimatedLoopInvocationWeight)
+ *EstimatedLoopInvocationWeight = LatchExitWeight;
+
+ // Estimated backedge taken count is a ratio of the backedge taken weight by
+ // the weight of the edge exiting the loop, rounded to nearest.
+ uint64_t BackedgeTakenCount =
+ llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
+ // Estimated trip count is one plus estimated backedge taken count.
+ return BackedgeTakenCount + 1;
+}
+
+bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
+ unsigned EstimatedloopInvocationWeight) {
+ // Support loops with an exiting latch and other existing exists only
+ // deoptimize.
+ BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
+ if (!LatchBranch)
+ return false;
+
+ // Calculate taken and exit weights.
+ unsigned LatchExitWeight = 0;
+ unsigned BackedgeTakenWeight = 0;
+
+ if (EstimatedTripCount > 0) {
+ LatchExitWeight = EstimatedloopInvocationWeight;
+ BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
+ }
+
+ // Make a swap if back edge is taken when condition is "false".
+ if (LatchBranch->getSuccessor(0) != L->getHeader())
+ std::swap(BackedgeTakenWeight, LatchExitWeight);
+
+ MDBuilder MDB(LatchBranch->getContext());
+
+ // Set/Update profile metadata.
+ LatchBranch->setMetadata(
+ LLVMContext::MD_prof,
+ MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
+
+ return true;
+}
+
+bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
+ ScalarEvolution &SE) {
+ Loop *OuterL = InnerLoop->getParentLoop();
+ if (!OuterL)
+ return true;
+
+ // Get the backedge taken count for the inner loop
+ BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
+ const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
+ if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
+ !InnerLoopBECountSC->getType()->isIntegerTy())
+ return false;
+
+ // Get whether count is invariant to the outer loop
+ ScalarEvolution::LoopDisposition LD =
+ SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
+ if (LD != ScalarEvolution::LoopInvariant)
+ return false;
+
+ return true;
+}
+
+Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
+ Value *Right) {
+ CmpInst::Predicate Pred;
+ switch (RK) {
+ default:
+ llvm_unreachable("Unknown min/max recurrence kind");
+ case RecurKind::UMin:
+ Pred = CmpInst::ICMP_ULT;
+ break;
+ case RecurKind::UMax:
+ Pred = CmpInst::ICMP_UGT;
+ break;
+ case RecurKind::SMin:
+ Pred = CmpInst::ICMP_SLT;
+ break;
+ case RecurKind::SMax:
+ Pred = CmpInst::ICMP_SGT;
+ break;
+ case RecurKind::FMin:
+ Pred = CmpInst::FCMP_OLT;
+ break;
+ case RecurKind::FMax:
+ Pred = CmpInst::FCMP_OGT;
+ break;
+ }
+
+ // We only match FP sequences that are 'fast', so we can unconditionally
+ // set it on any generated instructions.
+ IRBuilderBase::FastMathFlagGuard FMFG(Builder);
+ FastMathFlags FMF;
+ FMF.setFast();
+ Builder.setFastMathFlags(FMF);
+ Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
+ Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
+ return Select;
+}
+
+// Helper to generate an ordered reduction.
+Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
+ unsigned Op, RecurKind RdxKind,
+ ArrayRef<Value *> RedOps) {
+ unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
+
+ // Extract and apply reduction ops in ascending order:
+ // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
+ Value *Result = Acc;
+ for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
+ Value *Ext =
+ Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
+
+ if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
+ Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
+ "bin.rdx");
+ } else {
+ assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
+ "Invalid min/max");
+ Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
+ }
+
+ if (!RedOps.empty())
+ propagateIRFlags(Result, RedOps);
+ }
+
+ return Result;
+}
+
+// Helper to generate a log2 shuffle reduction.
+Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
+ unsigned Op, RecurKind RdxKind,
+ ArrayRef<Value *> RedOps) {
+ unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = Src;
+ SmallVector<int, 32> ShuffleMask(VF);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i / 2; ++j)
+ ShuffleMask[j] = i / 2 + j;
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
+
+ Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
+
+ if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
+ // The builder propagates its fast-math-flags setting.
+ TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
+ "bin.rdx");
+ } else {
+ assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
+ "Invalid min/max");
+ TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
+ }
+ if (!RedOps.empty())
+ propagateIRFlags(TmpVec, RedOps);
+
+ // We may compute the reassociated scalar ops in a way that does not
+ // preserve nsw/nuw etc. Conservatively, drop those flags.
+ if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
+ ReductionInst->dropPoisonGeneratingFlags();
+ }
+ // The result is in the first element of the vector.
+ return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+}
+
+Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
+ const TargetTransformInfo *TTI,
+ Value *Src, RecurKind RdxKind,
+ ArrayRef<Value *> RedOps) {
+ unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind);
+ TargetTransformInfo::ReductionFlags RdxFlags;
+ RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax ||
+ RdxKind == RecurKind::FMax;
+ RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
+ if (!ForceReductionIntrinsic &&
+ !TTI->useReductionIntrinsic(Opcode, Src->getType(), RdxFlags))
+ return getShuffleReduction(Builder, Src, Opcode, RdxKind, RedOps);
+
+ auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
+ switch (RdxKind) {
+ case RecurKind::Add:
+ return Builder.CreateAddReduce(Src);
+ case RecurKind::Mul:
+ return Builder.CreateMulReduce(Src);
+ case RecurKind::And:
+ return Builder.CreateAndReduce(Src);
+ case RecurKind::Or:
+ return Builder.CreateOrReduce(Src);
+ case RecurKind::Xor:
+ return Builder.CreateXorReduce(Src);
+ case RecurKind::FAdd:
+ return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
+ Src);
+ case RecurKind::FMul:
+ return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
+ case RecurKind::SMax:
+ return Builder.CreateIntMaxReduce(Src, true);
+ case RecurKind::SMin:
+ return Builder.CreateIntMinReduce(Src, true);
+ case RecurKind::UMax:
+ return Builder.CreateIntMaxReduce(Src, false);
+ case RecurKind::UMin:
+ return Builder.CreateIntMinReduce(Src, false);
+ case RecurKind::FMax:
+ return Builder.CreateFPMaxReduce(Src);
+ case RecurKind::FMin:
+ return Builder.CreateFPMinReduce(Src);
+ default:
+ llvm_unreachable("Unhandled opcode");
+ }
+}
+
+Value *llvm::createTargetReduction(IRBuilderBase &B,
+ const TargetTransformInfo *TTI,
+ RecurrenceDescriptor &Desc, Value *Src) {
+ // TODO: Support in-order reductions based on the recurrence descriptor.
+ // All ops in the reduction inherit fast-math-flags from the recurrence
+ // descriptor.
+ IRBuilderBase::FastMathFlagGuard FMFGuard(B);
+ B.setFastMathFlags(Desc.getFastMathFlags());
+ return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
+}
+
+void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
+ auto *VecOp = dyn_cast<Instruction>(I);
+ if (!VecOp)
+ return;
+ auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
+ : dyn_cast<Instruction>(OpValue);
+ if (!Intersection)
+ return;
+ const unsigned Opcode = Intersection->getOpcode();
+ VecOp->copyIRFlags(Intersection);
+ for (auto *V : VL) {
+ auto *Instr = dyn_cast<Instruction>(V);
+ if (!Instr)
+ continue;
+ if (OpValue == nullptr || Opcode == Instr->getOpcode())
+ VecOp->andIRFlags(V);
+ }
+}
+
+bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
+ ScalarEvolution &SE) {
+ const SCEV *Zero = SE.getZero(S->getType());
+ return SE.isAvailableAtLoopEntry(S, L) &&
+ SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
+}
+
+bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
+ ScalarEvolution &SE) {
+ const SCEV *Zero = SE.getZero(S->getType());
+ return SE.isAvailableAtLoopEntry(S, L) &&
+ SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
+}
+
+bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
+ bool Signed) {
+ unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
+ APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
+ APInt::getMinValue(BitWidth);
+ auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ return SE.isAvailableAtLoopEntry(S, L) &&
+ SE.isLoopEntryGuardedByCond(L, Predicate, S,
+ SE.getConstant(Min));
+}
+
+bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
+ bool Signed) {
+ unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
+ APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
+ APInt::getMaxValue(BitWidth);
+ auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
+ return SE.isAvailableAtLoopEntry(S, L) &&
+ SE.isLoopEntryGuardedByCond(L, Predicate, S,
+ SE.getConstant(Max));
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteLoopExitValues - Optimize IV users outside the loop.
+// As a side effect, reduces the amount of IV processing within the loop.
+//===----------------------------------------------------------------------===//
+
+// Return true if the SCEV expansion generated by the rewriter can replace the
+// original value. SCEV guarantees that it produces the same value, but the way
+// it is produced may be illegal IR. Ideally, this function will only be
+// called for verification.
+static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
+ // If an SCEV expression subsumed multiple pointers, its expansion could
+ // reassociate the GEP changing the base pointer. This is illegal because the
+ // final address produced by a GEP chain must be inbounds relative to its
+ // underlying object. Otherwise basic alias analysis, among other things,
+ // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
+ // producing an expression involving multiple pointers. Until then, we must
+ // bail out here.
+ //
+ // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
+ // because it understands lcssa phis while SCEV does not.
+ Value *FromPtr = FromVal;
+ Value *ToPtr = ToVal;
+ if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
+ FromPtr = GEP->getPointerOperand();
+
+ if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
+ ToPtr = GEP->getPointerOperand();
+
+ if (FromPtr != FromVal || ToPtr != ToVal) {
+ // Quickly check the common case
+ if (FromPtr == ToPtr)
+ return true;
+
+ // SCEV may have rewritten an expression that produces the GEP's pointer
+ // operand. That's ok as long as the pointer operand has the same base
+ // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
+ // base of a recurrence. This handles the case in which SCEV expansion
+ // converts a pointer type recurrence into a nonrecurrent pointer base
+ // indexed by an integer recurrence.
+
+ // If the GEP base pointer is a vector of pointers, abort.
+ if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
+ return false;
+
+ const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
+ const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
+ if (FromBase == ToBase)
+ return true;
+
+ LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
+ << *FromBase << " != " << *ToBase << "\n");
+
+ return false;
+ }
+ return true;
+}
+
+static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
+ SmallPtrSet<const Instruction *, 8> Visited;
+ SmallVector<const Instruction *, 8> WorkList;
+ Visited.insert(I);
+ WorkList.push_back(I);
+ while (!WorkList.empty()) {
+ const Instruction *Curr = WorkList.pop_back_val();
+ // This use is outside the loop, nothing to do.
+ if (!L->contains(Curr))
+ continue;
+ // Do we assume it is a "hard" use which will not be eliminated easily?
+ if (Curr->mayHaveSideEffects())
+ return true;
+ // Otherwise, add all its users to worklist.
+ for (auto U : Curr->users()) {
+ auto *UI = cast<Instruction>(U);
+ if (Visited.insert(UI).second)
+ WorkList.push_back(UI);
+ }
+ }
+ return false;
+}
+
+// Collect information about PHI nodes which can be transformed in
+// rewriteLoopExitValues.
+struct RewritePhi {
+ PHINode *PN; // For which PHI node is this replacement?
+ unsigned Ith; // For which incoming value?
+ const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
+ Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
+ bool HighCost; // Is this expansion a high-cost?
+
+ Value *Expansion = nullptr;
+ bool ValidRewrite = false;
+
+ RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
+ bool H)
+ : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
+ HighCost(H) {}
+};
+
+// Check whether it is possible to delete the loop after rewriting exit
+// value. If it is possible, ignore ReplaceExitValue and do rewriting
+// aggressively.
+static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
+ BasicBlock *Preheader = L->getLoopPreheader();
+ // If there is no preheader, the loop will not be deleted.
+ if (!Preheader)
+ return false;
+
+ // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
+ // We obviate multiple ExitingBlocks case for simplicity.
+ // TODO: If we see testcase with multiple ExitingBlocks can be deleted
+ // after exit value rewriting, we can enhance the logic here.
+ SmallVector<BasicBlock *, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+ if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
+ return false;
+
+ BasicBlock *ExitBlock = ExitBlocks[0];
+ BasicBlock::iterator BI = ExitBlock->begin();
+ while (PHINode *P = dyn_cast<PHINode>(BI)) {
+ Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
+
+ // If the Incoming value of P is found in RewritePhiSet, we know it
+ // could be rewritten to use a loop invariant value in transformation
+ // phase later. Skip it in the loop invariant check below.
+ bool found = false;
+ for (const RewritePhi &Phi : RewritePhiSet) {
+ if (!Phi.ValidRewrite)
+ continue;
+ unsigned i = Phi.Ith;
+ if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
+ found = true;
+ break;
+ }
+ }
+
+ Instruction *I;
+ if (!found && (I = dyn_cast<Instruction>(Incoming)))
+ if (!L->hasLoopInvariantOperands(I))
+ return false;
+
+ ++BI;
+ }
+
+ for (auto *BB : L->blocks())
+ if (llvm::any_of(*BB, [](Instruction &I) {
+ return I.mayHaveSideEffects();
+ }))
+ return false;
+
+ return true;
+}
+
+int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
+ ScalarEvolution *SE,
+ const TargetTransformInfo *TTI,
+ SCEVExpander &Rewriter, DominatorTree *DT,
+ ReplaceExitVal ReplaceExitValue,
+ SmallVector<WeakTrackingVH, 16> &DeadInsts) {
+ // Check a pre-condition.
+ assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "Indvars did not preserve LCSSA!");
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ SmallVector<RewritePhi, 8> RewritePhiSet;
+ // Find all values that are computed inside the loop, but used outside of it.
+ // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
+ // the exit blocks of the loop to find them.
+ for (BasicBlock *ExitBB : ExitBlocks) {
+ // If there are no PHI nodes in this exit block, then no values defined
+ // inside the loop are used on this path, skip it.
+ PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
+ if (!PN) continue;
+
+ unsigned NumPreds = PN->getNumIncomingValues();
+
+ // Iterate over all of the PHI nodes.
+ BasicBlock::iterator BBI = ExitBB->begin();
+ while ((PN = dyn_cast<PHINode>(BBI++))) {
+ if (PN->use_empty())
+ continue; // dead use, don't replace it
+
+ if (!SE->isSCEVable(PN->getType()))
+ continue;
+
+ // It's necessary to tell ScalarEvolution about this explicitly so that
+ // it can walk the def-use list and forget all SCEVs, as it may not be
+ // watching the PHI itself. Once the new exit value is in place, there
+ // may not be a def-use connection between the loop and every instruction
+ // which got a SCEVAddRecExpr for that loop.
+ SE->forgetValue(PN);
+
+ // Iterate over all of the values in all the PHI nodes.
+ for (unsigned i = 0; i != NumPreds; ++i) {
+ // If the value being merged in is not integer or is not defined
+ // in the loop, skip it.
+ Value *InVal = PN->getIncomingValue(i);
+ if (!isa<Instruction>(InVal))
+ continue;
+
+ // If this pred is for a subloop, not L itself, skip it.
+ if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
+ continue; // The Block is in a subloop, skip it.
+
+ // Check that InVal is defined in the loop.
+ Instruction *Inst = cast<Instruction>(InVal);
+ if (!L->contains(Inst))
+ continue;
+
+ // Okay, this instruction has a user outside of the current loop
+ // and varies predictably *inside* the loop. Evaluate the value it
+ // contains when the loop exits, if possible. We prefer to start with
+ // expressions which are true for all exits (so as to maximize
+ // expression reuse by the SCEVExpander), but resort to per-exit
+ // evaluation if that fails.
+ const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
+ if (isa<SCEVCouldNotCompute>(ExitValue) ||
+ !SE->isLoopInvariant(ExitValue, L) ||
+ !isSafeToExpand(ExitValue, *SE)) {
+ // TODO: This should probably be sunk into SCEV in some way; maybe a
+ // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
+ // most SCEV expressions and other recurrence types (e.g. shift
+ // recurrences). Is there existing code we can reuse?
+ const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
+ if (isa<SCEVCouldNotCompute>(ExitCount))
+ continue;
+ if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
+ if (AddRec->getLoop() == L)
+ ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
+ if (isa<SCEVCouldNotCompute>(ExitValue) ||
+ !SE->isLoopInvariant(ExitValue, L) ||
+ !isSafeToExpand(ExitValue, *SE))
+ continue;
+ }
+
+ // Computing the value outside of the loop brings no benefit if it is
+ // definitely used inside the loop in a way which can not be optimized
+ // away. Avoid doing so unless we know we have a value which computes
+ // the ExitValue already. TODO: This should be merged into SCEV
+ // expander to leverage its knowledge of existing expressions.
+ if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
+ !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
+ continue;
+
+ // Check if expansions of this SCEV would count as being high cost.
+ bool HighCost = Rewriter.isHighCostExpansion(
+ ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
+
+ // Note that we must not perform expansions until after
+ // we query *all* the costs, because if we perform temporary expansion
+ // inbetween, one that we might not intend to keep, said expansion
+ // *may* affect cost calculation of the the next SCEV's we'll query,
+ // and next SCEV may errneously get smaller cost.
+
+ // Collect all the candidate PHINodes to be rewritten.
+ RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
+ }
+ }
+ }
+
+ // Now that we've done preliminary filtering and billed all the SCEV's,
+ // we can perform the last sanity check - the expansion must be valid.
+ for (RewritePhi &Phi : RewritePhiSet) {
+ Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
+ Phi.ExpansionPoint);
+
+ LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
+ << *(Phi.Expansion) << '\n'
+ << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
+
+ // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
+ Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
+ if (!Phi.ValidRewrite) {
+ DeadInsts.push_back(Phi.Expansion);
+ continue;
+ }
+
+#ifndef NDEBUG
+ // If we reuse an instruction from a loop which is neither L nor one of
+ // its containing loops, we end up breaking LCSSA form for this loop by
+ // creating a new use of its instruction.
+ if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
+ if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
+ if (EVL != L)
+ assert(EVL->contains(L) && "LCSSA breach detected!");
+#endif
+ }
+
+ // TODO: after isValidRewrite() is an assertion, evaluate whether
+ // it is beneficial to change how we calculate high-cost:
+ // if we have SCEV 'A' which we know we will expand, should we calculate
+ // the cost of other SCEV's after expanding SCEV 'A',
+ // thus potentially giving cost bonus to those other SCEV's?
+
+ bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
+ int NumReplaced = 0;
+
+ // Transformation.
+ for (const RewritePhi &Phi : RewritePhiSet) {
+ if (!Phi.ValidRewrite)
+ continue;
+
+ PHINode *PN = Phi.PN;
+ Value *ExitVal = Phi.Expansion;
+
+ // Only do the rewrite when the ExitValue can be expanded cheaply.
+ // If LoopCanBeDel is true, rewrite exit value aggressively.
+ if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
+ DeadInsts.push_back(ExitVal);
+ continue;
+ }
+
+ NumReplaced++;
+ Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
+ PN->setIncomingValue(Phi.Ith, ExitVal);
+
+ // If this instruction is dead now, delete it. Don't do it now to avoid
+ // invalidating iterators.
+ if (isInstructionTriviallyDead(Inst, TLI))
+ DeadInsts.push_back(Inst);
+
+ // Replace PN with ExitVal if that is legal and does not break LCSSA.
+ if (PN->getNumIncomingValues() == 1 &&
+ LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
+ PN->replaceAllUsesWith(ExitVal);
+ PN->eraseFromParent();
+ }
+ }
+
+ // The insertion point instruction may have been deleted; clear it out
+ // so that the rewriter doesn't trip over it later.
+ Rewriter.clearInsertPoint();
+ return NumReplaced;
+}
+
+/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
+/// \p OrigLoop.
+void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
+ Loop *RemainderLoop, uint64_t UF) {
+ assert(UF > 0 && "Zero unrolled factor is not supported");
+ assert(UnrolledLoop != RemainderLoop &&
+ "Unrolled and Remainder loops are expected to distinct");
+
+ // Get number of iterations in the original scalar loop.
+ unsigned OrigLoopInvocationWeight = 0;
+ Optional<unsigned> OrigAverageTripCount =
+ getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
+ if (!OrigAverageTripCount)
+ return;
+
+ // Calculate number of iterations in unrolled loop.
+ unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
+ // Calculate number of iterations for remainder loop.
+ unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
+
+ setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
+ OrigLoopInvocationWeight);
+ setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
+ OrigLoopInvocationWeight);
+}
+
+/// Utility that implements appending of loops onto a worklist.
+/// Loops are added in preorder (analogous for reverse postorder for trees),
+/// and the worklist is processed LIFO.
+template <typename RangeT>
+void llvm::appendReversedLoopsToWorklist(
+ RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
+ // We use an internal worklist to build up the preorder traversal without
+ // recursion.
+ SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
+
+ // We walk the initial sequence of loops in reverse because we generally want
+ // to visit defs before uses and the worklist is LIFO.
+ for (Loop *RootL : Loops) {
+ assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
+ assert(PreOrderWorklist.empty() &&
+ "Must start with an empty preorder walk worklist.");
+ PreOrderWorklist.push_back(RootL);
+ do {
+ Loop *L = PreOrderWorklist.pop_back_val();
+ PreOrderWorklist.append(L->begin(), L->end());
+ PreOrderLoops.push_back(L);
+ } while (!PreOrderWorklist.empty());
+
+ Worklist.insert(std::move(PreOrderLoops));
+ PreOrderLoops.clear();
+ }
+}
+
+template <typename RangeT>
+void llvm::appendLoopsToWorklist(RangeT &&Loops,
+ SmallPriorityWorklist<Loop *, 4> &Worklist) {
+ appendReversedLoopsToWorklist(reverse(Loops), Worklist);
+}
+
+template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
+ ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
+
+template void
+llvm::appendLoopsToWorklist<Loop &>(Loop &L,
+ SmallPriorityWorklist<Loop *, 4> &Worklist);
+
+void llvm::appendLoopsToWorklist(LoopInfo &LI,
+ SmallPriorityWorklist<Loop *, 4> &Worklist) {
+ appendReversedLoopsToWorklist(LI, Worklist);
+}
+
+Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
+ LoopInfo *LI, LPPassManager *LPM) {
+ Loop &New = *LI->AllocateLoop();
+ if (PL)
+ PL->addChildLoop(&New);
+ else
+ LI->addTopLevelLoop(&New);
+
+ if (LPM)
+ LPM->addLoop(New);
+
+ // Add all of the blocks in L to the new loop.
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I)
+ if (LI->getLoopFor(*I) == L)
+ New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
+
+ // Add all of the subloops to the new loop.
+ for (Loop *I : *L)
+ cloneLoop(I, &New, VM, LI, LPM);
+
+ return &New;
+}
+
+/// IR Values for the lower and upper bounds of a pointer evolution. We
+/// need to use value-handles because SCEV expansion can invalidate previously
+/// expanded values. Thus expansion of a pointer can invalidate the bounds for
+/// a previous one.
+struct PointerBounds {
+ TrackingVH<Value> Start;
+ TrackingVH<Value> End;
+};
+
+/// Expand code for the lower and upper bound of the pointer group \p CG
+/// in \p TheLoop. \return the values for the bounds.
+static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
+ Loop *TheLoop, Instruction *Loc,
+ SCEVExpander &Exp, ScalarEvolution *SE) {
+ // TODO: Add helper to retrieve pointers to CG.
+ Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
+ const SCEV *Sc = SE->getSCEV(Ptr);
+
+ unsigned AS = Ptr->getType()->getPointerAddressSpace();
+ LLVMContext &Ctx = Loc->getContext();
+
+ // Use this type for pointer arithmetic.
+ Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
+
+ if (SE->isLoopInvariant(Sc, TheLoop)) {
+ LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
+ << *Ptr << "\n");
+ // Ptr could be in the loop body. If so, expand a new one at the correct
+ // location.
+ Instruction *Inst = dyn_cast<Instruction>(Ptr);
+ Value *NewPtr = (Inst && TheLoop->contains(Inst))
+ ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
+ : Ptr;
+ // We must return a half-open range, which means incrementing Sc.
+ const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
+ Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
+ return {NewPtr, NewPtrPlusOne};
+ } else {
+ Value *Start = nullptr, *End = nullptr;
+ LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
+ Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
+ End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
+ LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
+ << "\n");
+ return {Start, End};
+ }
+}
+
+/// Turns a collection of checks into a collection of expanded upper and
+/// lower bounds for both pointers in the check.
+static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
+expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
+ Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
+ SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
+
+ // Here we're relying on the SCEV Expander's cache to only emit code for the
+ // same bounds once.
+ transform(PointerChecks, std::back_inserter(ChecksWithBounds),
+ [&](const RuntimePointerCheck &Check) {
+ PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
+ Second =
+ expandBounds(Check.second, L, Loc, Exp, SE);
+ return std::make_pair(First, Second);
+ });
+
+ return ChecksWithBounds;
+}
+
+std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
+ Instruction *Loc, Loop *TheLoop,
+ const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
+ ScalarEvolution *SE) {
+ // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
+ // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
+ const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
+ SCEVExpander Exp(*SE, DL, "induction");
+ auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
+
+ LLVMContext &Ctx = Loc->getContext();
+ Instruction *FirstInst = nullptr;
+ IRBuilder<> ChkBuilder(Loc);
+ // Our instructions might fold to a constant.
+ Value *MemoryRuntimeCheck = nullptr;
+
+ // FIXME: this helper is currently a duplicate of the one in
+ // LoopVectorize.cpp.
+ auto GetFirstInst = [](Instruction *FirstInst, Value *V,
+ Instruction *Loc) -> Instruction * {
+ if (FirstInst)
+ return FirstInst;
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return I->getParent() == Loc->getParent() ? I : nullptr;
+ return nullptr;
+ };
+
+ for (const auto &Check : ExpandedChecks) {
+ const PointerBounds &A = Check.first, &B = Check.second;
+ // Check if two pointers (A and B) conflict where conflict is computed as:
+ // start(A) <= end(B) && start(B) <= end(A)
+ unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
+ unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
+
+ assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
+ (AS1 == A.End->getType()->getPointerAddressSpace()) &&
+ "Trying to bounds check pointers with different address spaces");
+
+ Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
+ Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
+
+ Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
+ Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
+ Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
+ Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
+
+ // [A|B].Start points to the first accessed byte under base [A|B].
+ // [A|B].End points to the last accessed byte, plus one.
+ // There is no conflict when the intervals are disjoint:
+ // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
+ //
+ // bound0 = (B.Start < A.End)
+ // bound1 = (A.Start < B.End)
+ // IsConflict = bound0 & bound1
+ Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
+ FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
+ Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
+ FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
+ Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
+ FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
+ if (MemoryRuntimeCheck) {
+ IsConflict =
+ ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
+ FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
+ }
+ MemoryRuntimeCheck = IsConflict;
+ }
+
+ if (!MemoryRuntimeCheck)
+ return std::make_pair(nullptr, nullptr);
+
+ // We have to do this trickery because the IRBuilder might fold the check to a
+ // constant expression in which case there is no Instruction anchored in a
+ // the block.
+ Instruction *Check =
+ BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
+ ChkBuilder.Insert(Check, "memcheck.conflict");
+ FirstInst = GetFirstInst(FirstInst, Check, Loc);
+ return std::make_pair(FirstInst, Check);
+}