diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/LowerSwitch.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/LowerSwitch.cpp | 599 |
1 files changed, 599 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/LowerSwitch.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/LowerSwitch.cpp new file mode 100644 index 000000000000..ec8d7a7074cd --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/LowerSwitch.cpp @@ -0,0 +1,599 @@ +//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// The LowerSwitch transformation rewrites switch instructions with a sequence +// of branches, which allows targets to get away with not implementing the +// switch instruction until it is convenient. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/LowerSwitch.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/LazyValueInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <limits> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "lower-switch" + +namespace { + + struct IntRange { + int64_t Low, High; + }; + +} // end anonymous namespace + +namespace { +// Return true iff R is covered by Ranges. +bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { + // Note: Ranges must be sorted, non-overlapping and non-adjacent. + + // Find the first range whose High field is >= R.High, + // then check if the Low field is <= R.Low. If so, we + // have a Range that covers R. + auto I = llvm::lower_bound( + Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; }); + return I != Ranges.end() && I->Low <= R.Low; +} + +struct CaseRange { + ConstantInt *Low; + ConstantInt *High; + BasicBlock *BB; + + CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) + : Low(low), High(high), BB(bb) {} +}; + +using CaseVector = std::vector<CaseRange>; +using CaseItr = std::vector<CaseRange>::iterator; + +/// The comparison function for sorting the switch case values in the vector. +/// WARNING: Case ranges should be disjoint! +struct CaseCmp { + bool operator()(const CaseRange &C1, const CaseRange &C2) { + const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); + const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); + return CI1->getValue().slt(CI2->getValue()); + } +}; + +/// Used for debugging purposes. +LLVM_ATTRIBUTE_USED +raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { + O << "["; + + for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { + O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; + if (++B != E) + O << ", "; + } + + return O << "]"; +} + +/// Update the first occurrence of the "switch statement" BB in the PHI +/// node with the "new" BB. The other occurrences will: +/// +/// 1) Be updated by subsequent calls to this function. Switch statements may +/// have more than one outcoming edge into the same BB if they all have the same +/// value. When the switch statement is converted these incoming edges are now +/// coming from multiple BBs. +/// 2) Removed if subsequent incoming values now share the same case, i.e., +/// multiple outcome edges are condensed into one. This is necessary to keep the +/// number of phi values equal to the number of branches to SuccBB. +void FixPhis( + BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, + const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) { + for (BasicBlock::iterator I = SuccBB->begin(), + IE = SuccBB->getFirstNonPHI()->getIterator(); + I != IE; ++I) { + PHINode *PN = cast<PHINode>(I); + + // Only update the first occurrence. + unsigned Idx = 0, E = PN->getNumIncomingValues(); + unsigned LocalNumMergedCases = NumMergedCases; + for (; Idx != E; ++Idx) { + if (PN->getIncomingBlock(Idx) == OrigBB) { + PN->setIncomingBlock(Idx, NewBB); + break; + } + } + + // Remove additional occurrences coming from condensed cases and keep the + // number of incoming values equal to the number of branches to SuccBB. + SmallVector<unsigned, 8> Indices; + for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx) + if (PN->getIncomingBlock(Idx) == OrigBB) { + Indices.push_back(Idx); + LocalNumMergedCases--; + } + // Remove incoming values in the reverse order to prevent invalidating + // *successive* index. + for (unsigned III : llvm::reverse(Indices)) + PN->removeIncomingValue(III); + } +} + +/// Create a new leaf block for the binary lookup tree. It checks if the +/// switch's value == the case's value. If not, then it jumps to the default +/// branch. At this point in the tree, the value can't be another valid case +/// value, so the jump to the "default" branch is warranted. +BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, + ConstantInt *UpperBound, BasicBlock *OrigBlock, + BasicBlock *Default) { + Function *F = OrigBlock->getParent(); + BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); + F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf); + + // Emit comparison + ICmpInst *Comp = nullptr; + if (Leaf.Low == Leaf.High) { + // Make the seteq instruction... + Comp = + new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); + } else { + // Make range comparison + if (Leaf.Low == LowerBound) { + // Val >= Min && Val <= Hi --> Val <= Hi + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, + "SwitchLeaf"); + } else if (Leaf.High == UpperBound) { + // Val <= Max && Val >= Lo --> Val >= Lo + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, + "SwitchLeaf"); + } else if (Leaf.Low->isZero()) { + // Val >= 0 && Val <= Hi --> Val <=u Hi + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, + "SwitchLeaf"); + } else { + // Emit V-Lo <=u Hi-Lo + Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); + Instruction *Add = BinaryOperator::CreateAdd( + Val, NegLo, Val->getName() + ".off", NewLeaf); + Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); + Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, + "SwitchLeaf"); + } + } + + // Make the conditional branch... + BasicBlock *Succ = Leaf.BB; + BranchInst::Create(Succ, Default, Comp, NewLeaf); + + // If there were any PHI nodes in this successor, rewrite one entry + // from OrigBlock to come from NewLeaf. + for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { + PHINode *PN = cast<PHINode>(I); + // Remove all but one incoming entries from the cluster + uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue(); + for (uint64_t j = 0; j < Range; ++j) { + PN->removeIncomingValue(OrigBlock); + } + + int BlockIdx = PN->getBasicBlockIndex(OrigBlock); + assert(BlockIdx != -1 && "Switch didn't go to this successor??"); + PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); + } + + return NewLeaf; +} + +/// Convert the switch statement into a binary lookup of the case values. +/// The function recursively builds this tree. LowerBound and UpperBound are +/// used to keep track of the bounds for Val that have already been checked by +/// a block emitted by one of the previous calls to switchConvert in the call +/// stack. +BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, + ConstantInt *UpperBound, Value *Val, + BasicBlock *Predecessor, BasicBlock *OrigBlock, + BasicBlock *Default, + const std::vector<IntRange> &UnreachableRanges) { + assert(LowerBound && UpperBound && "Bounds must be initialized"); + unsigned Size = End - Begin; + + if (Size == 1) { + // Check if the Case Range is perfectly squeezed in between + // already checked Upper and Lower bounds. If it is then we can avoid + // emitting the code that checks if the value actually falls in the range + // because the bounds already tell us so. + if (Begin->Low == LowerBound && Begin->High == UpperBound) { + unsigned NumMergedCases = 0; + NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue(); + FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); + return Begin->BB; + } + return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, + Default); + } + + unsigned Mid = Size / 2; + std::vector<CaseRange> LHS(Begin, Begin + Mid); + LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); + std::vector<CaseRange> RHS(Begin + Mid, End); + LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); + + CaseRange &Pivot = *(Begin + Mid); + LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " + << Pivot.High->getValue() << "]\n"); + + // NewLowerBound here should never be the integer minimal value. + // This is because it is computed from a case range that is never + // the smallest, so there is always a case range that has at least + // a smaller value. + ConstantInt *NewLowerBound = Pivot.Low; + + // Because NewLowerBound is never the smallest representable integer + // it is safe here to subtract one. + ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), + NewLowerBound->getValue() - 1); + + if (!UnreachableRanges.empty()) { + // Check if the gap between LHS's highest and NewLowerBound is unreachable. + int64_t GapLow = LHS.back().High->getSExtValue() + 1; + int64_t GapHigh = NewLowerBound->getSExtValue() - 1; + IntRange Gap = { GapLow, GapHigh }; + if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges)) + NewUpperBound = LHS.back().High; + } + + LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", " + << NewUpperBound->getSExtValue() << "]\n" + << "RHS Bounds ==> [" << NewLowerBound->getSExtValue() + << ", " << UpperBound->getSExtValue() << "]\n"); + + // Create a new node that checks if the value is < pivot. Go to the + // left branch if it is and right branch if not. + Function* F = OrigBlock->getParent(); + BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); + + ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT, + Val, Pivot.Low, "Pivot"); + + BasicBlock *LBranch = + SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, + NewNode, OrigBlock, Default, UnreachableRanges); + BasicBlock *RBranch = + SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, + NewNode, OrigBlock, Default, UnreachableRanges); + + F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode); + NewNode->getInstList().push_back(Comp); + + BranchInst::Create(LBranch, RBranch, Comp, NewNode); + return NewNode; +} + +/// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. +/// \post \p Cases wouldn't contain references to \p SI's default BB. +/// \returns Number of \p SI's cases that do not reference \p SI's default BB. +unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { + unsigned NumSimpleCases = 0; + + // Start with "simple" cases + for (auto Case : SI->cases()) { + if (Case.getCaseSuccessor() == SI->getDefaultDest()) + continue; + Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), + Case.getCaseSuccessor())); + ++NumSimpleCases; + } + + llvm::sort(Cases, CaseCmp()); + + // Merge case into clusters + if (Cases.size() >= 2) { + CaseItr I = Cases.begin(); + for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { + int64_t nextValue = J->Low->getSExtValue(); + int64_t currentValue = I->High->getSExtValue(); + BasicBlock* nextBB = J->BB; + BasicBlock* currentBB = I->BB; + + // If the two neighboring cases go to the same destination, merge them + // into a single case. + assert(nextValue > currentValue && "Cases should be strictly ascending"); + if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { + I->High = J->High; + // FIXME: Combine branch weights. + } else if (++I != J) { + *I = *J; + } + } + Cases.erase(std::next(I), Cases.end()); + } + + return NumSimpleCases; +} + +/// Replace the specified switch instruction with a sequence of chained if-then +/// insts in a balanced binary search. +void ProcessSwitchInst(SwitchInst *SI, + SmallPtrSetImpl<BasicBlock *> &DeleteList, + AssumptionCache *AC, LazyValueInfo *LVI) { + BasicBlock *OrigBlock = SI->getParent(); + Function *F = OrigBlock->getParent(); + Value *Val = SI->getCondition(); // The value we are switching on... + BasicBlock* Default = SI->getDefaultDest(); + + // Don't handle unreachable blocks. If there are successors with phis, this + // would leave them behind with missing predecessors. + if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || + OrigBlock->getSinglePredecessor() == OrigBlock) { + DeleteList.insert(OrigBlock); + return; + } + + // Prepare cases vector. + CaseVector Cases; + const unsigned NumSimpleCases = Clusterify(Cases, SI); + LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() + << ". Total non-default cases: " << NumSimpleCases + << "\nCase clusters: " << Cases << "\n"); + + // If there is only the default destination, just branch. + if (Cases.empty()) { + BranchInst::Create(Default, OrigBlock); + // Remove all the references from Default's PHIs to OrigBlock, but one. + FixPhis(Default, OrigBlock, OrigBlock); + SI->eraseFromParent(); + return; + } + + ConstantInt *LowerBound = nullptr; + ConstantInt *UpperBound = nullptr; + bool DefaultIsUnreachableFromSwitch = false; + + if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { + // Make the bounds tightly fitted around the case value range, because we + // know that the value passed to the switch must be exactly one of the case + // values. + LowerBound = Cases.front().Low; + UpperBound = Cases.back().High; + DefaultIsUnreachableFromSwitch = true; + } else { + // Constraining the range of the value being switched over helps eliminating + // unreachable BBs and minimizing the number of `add` instructions + // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after + // LowerSwitch isn't as good, and also much more expensive in terms of + // compile time for the following reasons: + // 1. it processes many kinds of instructions, not just switches; + // 2. even if limited to icmp instructions only, it will have to process + // roughly C icmp's per switch, where C is the number of cases in the + // switch, while LowerSwitch only needs to call LVI once per switch. + const DataLayout &DL = F->getParent()->getDataLayout(); + KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); + // TODO Shouldn't this create a signed range? + ConstantRange KnownBitsRange = + ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); + const ConstantRange LVIRange = LVI->getConstantRange(Val, SI); + ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); + // We delegate removal of unreachable non-default cases to other passes. In + // the unlikely event that some of them survived, we just conservatively + // maintain the invariant that all the cases lie between the bounds. This + // may, however, still render the default case effectively unreachable. + APInt Low = Cases.front().Low->getValue(); + APInt High = Cases.back().High->getValue(); + APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); + APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); + + LowerBound = ConstantInt::get(SI->getContext(), Min); + UpperBound = ConstantInt::get(SI->getContext(), Max); + DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); + } + + std::vector<IntRange> UnreachableRanges; + + if (DefaultIsUnreachableFromSwitch) { + DenseMap<BasicBlock *, unsigned> Popularity; + unsigned MaxPop = 0; + BasicBlock *PopSucc = nullptr; + + IntRange R = {std::numeric_limits<int64_t>::min(), + std::numeric_limits<int64_t>::max()}; + UnreachableRanges.push_back(R); + for (const auto &I : Cases) { + int64_t Low = I.Low->getSExtValue(); + int64_t High = I.High->getSExtValue(); + + IntRange &LastRange = UnreachableRanges.back(); + if (LastRange.Low == Low) { + // There is nothing left of the previous range. + UnreachableRanges.pop_back(); + } else { + // Terminate the previous range. + assert(Low > LastRange.Low); + LastRange.High = Low - 1; + } + if (High != std::numeric_limits<int64_t>::max()) { + IntRange R = { High + 1, std::numeric_limits<int64_t>::max() }; + UnreachableRanges.push_back(R); + } + + // Count popularity. + int64_t N = High - Low + 1; + unsigned &Pop = Popularity[I.BB]; + if ((Pop += N) > MaxPop) { + MaxPop = Pop; + PopSucc = I.BB; + } + } +#ifndef NDEBUG + /* UnreachableRanges should be sorted and the ranges non-adjacent. */ + for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); + I != E; ++I) { + assert(I->Low <= I->High); + auto Next = I + 1; + if (Next != E) { + assert(Next->Low > I->High); + } + } +#endif + + // As the default block in the switch is unreachable, update the PHI nodes + // (remove all of the references to the default block) to reflect this. + const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; + for (unsigned I = 0; I < NumDefaultEdges; ++I) + Default->removePredecessor(OrigBlock); + + // Use the most popular block as the new default, reducing the number of + // cases. + assert(MaxPop > 0 && PopSucc); + Default = PopSucc; + llvm::erase_if(Cases, + [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); + + // If there are no cases left, just branch. + if (Cases.empty()) { + BranchInst::Create(Default, OrigBlock); + SI->eraseFromParent(); + // As all the cases have been replaced with a single branch, only keep + // one entry in the PHI nodes. + for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I) + PopSucc->removePredecessor(OrigBlock); + return; + } + + // If the condition was a PHI node with the switch block as a predecessor + // removing predecessors may have caused the condition to be erased. + // Getting the condition value again here protects against that. + Val = SI->getCondition(); + } + + // Create a new, empty default block so that the new hierarchy of + // if-then statements go to this and the PHI nodes are happy. + BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault"); + F->getBasicBlockList().insert(Default->getIterator(), NewDefault); + BranchInst::Create(Default, NewDefault); + + BasicBlock *SwitchBlock = + SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, + OrigBlock, OrigBlock, NewDefault, UnreachableRanges); + + // If there are entries in any PHI nodes for the default edge, make sure + // to update them as well. + FixPhis(Default, OrigBlock, NewDefault); + + // Branch to our shiny new if-then stuff... + BranchInst::Create(SwitchBlock, OrigBlock); + + // We are now done with the switch instruction, delete it. + BasicBlock *OldDefault = SI->getDefaultDest(); + OrigBlock->getInstList().erase(SI); + + // If the Default block has no more predecessors just add it to DeleteList. + if (pred_empty(OldDefault)) + DeleteList.insert(OldDefault); +} + +bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { + bool Changed = false; + SmallPtrSet<BasicBlock *, 8> DeleteList; + + for (Function::iterator I = F.begin(), E = F.end(); I != E;) { + BasicBlock *Cur = + &*I++; // Advance over block so we don't traverse new blocks + + // If the block is a dead Default block that will be deleted later, don't + // waste time processing it. + if (DeleteList.count(Cur)) + continue; + + if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) { + Changed = true; + ProcessSwitchInst(SI, DeleteList, AC, LVI); + } + } + + for (BasicBlock *BB : DeleteList) { + LVI->eraseBlock(BB); + DeleteDeadBlock(BB); + } + + return Changed; +} + +/// Replace all SwitchInst instructions with chained branch instructions. +class LowerSwitchLegacyPass : public FunctionPass { +public: + // Pass identification, replacement for typeid + static char ID; + + LowerSwitchLegacyPass() : FunctionPass(ID) { + initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<LazyValueInfoWrapperPass>(); + } +}; + +} // end anonymous namespace + +char LowerSwitchLegacyPass::ID = 0; + +// Publicly exposed interface to pass... +char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; + +INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", + "Lower SwitchInst's to branches", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) +INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", + "Lower SwitchInst's to branches", false, false) + +// createLowerSwitchPass - Interface to this file... +FunctionPass *llvm::createLowerSwitchPass() { + return new LowerSwitchLegacyPass(); +} + +bool LowerSwitchLegacyPass::runOnFunction(Function &F) { + LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); + auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); + AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; + return LowerSwitch(F, LVI, AC); +} + +PreservedAnalyses LowerSwitchPass::run(Function &F, + FunctionAnalysisManager &AM) { + LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); + AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); + return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() + : PreservedAnalyses::all(); +} |