diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp | 2720 | 
1 files changed, 2720 insertions, 0 deletions
| diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp new file mode 100644 index 000000000000..6dbfb0b61fea --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp @@ -0,0 +1,2720 @@ +//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the scalar evolution expander, +// which is used to generate the code corresponding to a given scalar evolution +// expression. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/LoopUtils.h" + +using namespace llvm; + +cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( +    "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), +    cl::desc("When performing SCEV expansion only if it is cheap to do, this " +             "controls the budget that is considered cheap (default = 4)")); + +using namespace PatternMatch; + +/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, +/// reusing an existing cast if a suitable one (= dominating IP) exists, or +/// creating a new one. +Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, +                                       Instruction::CastOps Op, +                                       BasicBlock::iterator IP) { +  // This function must be called with the builder having a valid insertion +  // point. It doesn't need to be the actual IP where the uses of the returned +  // cast will be added, but it must dominate such IP. +  // We use this precondition to produce a cast that will dominate all its +  // uses. In particular, this is crucial for the case where the builder's +  // insertion point *is* the point where we were asked to put the cast. +  // Since we don't know the builder's insertion point is actually +  // where the uses will be added (only that it dominates it), we are +  // not allowed to move it. +  BasicBlock::iterator BIP = Builder.GetInsertPoint(); + +  Instruction *Ret = nullptr; + +  // Check to see if there is already a cast! +  for (User *U : V->users()) { +    if (U->getType() != Ty) +      continue; +    CastInst *CI = dyn_cast<CastInst>(U); +    if (!CI || CI->getOpcode() != Op) +      continue; + +    // Found a suitable cast that is at IP or comes before IP. Use it. Note that +    // the cast must also properly dominate the Builder's insertion point. +    if (IP->getParent() == CI->getParent() && &*BIP != CI && +        (&*IP == CI || CI->comesBefore(&*IP))) { +      Ret = CI; +      break; +    } +  } + +  // Create a new cast. +  if (!Ret) { +    Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); +    rememberInstruction(Ret); +  } + +  // We assert at the end of the function since IP might point to an +  // instruction with different dominance properties than a cast +  // (an invoke for example) and not dominate BIP (but the cast does). +  assert(SE.DT.dominates(Ret, &*BIP)); + +  return Ret; +} + +BasicBlock::iterator +SCEVExpander::findInsertPointAfter(Instruction *I, Instruction *MustDominate) { +  BasicBlock::iterator IP = ++I->getIterator(); +  if (auto *II = dyn_cast<InvokeInst>(I)) +    IP = II->getNormalDest()->begin(); + +  while (isa<PHINode>(IP)) +    ++IP; + +  if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { +    ++IP; +  } else if (isa<CatchSwitchInst>(IP)) { +    IP = MustDominate->getParent()->getFirstInsertionPt(); +  } else { +    assert(!IP->isEHPad() && "unexpected eh pad!"); +  } + +  // Adjust insert point to be after instructions inserted by the expander, so +  // we can re-use already inserted instructions. Avoid skipping past the +  // original \p MustDominate, in case it is an inserted instruction. +  while (isInsertedInstruction(&*IP) && &*IP != MustDominate) +    ++IP; + +  return IP; +} + +/// InsertNoopCastOfTo - Insert a cast of V to the specified type, +/// which must be possible with a noop cast, doing what we can to share +/// the casts. +Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { +  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); +  assert((Op == Instruction::BitCast || +          Op == Instruction::PtrToInt || +          Op == Instruction::IntToPtr) && +         "InsertNoopCastOfTo cannot perform non-noop casts!"); +  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && +         "InsertNoopCastOfTo cannot change sizes!"); + +  // inttoptr only works for integral pointers. For non-integral pointers, we +  // can create a GEP on i8* null  with the integral value as index. Note that +  // it is safe to use GEP of null instead of inttoptr here, because only +  // expressions already based on a GEP of null should be converted to pointers +  // during expansion. +  if (Op == Instruction::IntToPtr) { +    auto *PtrTy = cast<PointerType>(Ty); +    if (DL.isNonIntegralPointerType(PtrTy)) { +      auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); +      assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 && +             "alloc size of i8 must by 1 byte for the GEP to be correct"); +      auto *GEP = Builder.CreateGEP( +          Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); +      return Builder.CreateBitCast(GEP, Ty); +    } +  } +  // Short-circuit unnecessary bitcasts. +  if (Op == Instruction::BitCast) { +    if (V->getType() == Ty) +      return V; +    if (CastInst *CI = dyn_cast<CastInst>(V)) { +      if (CI->getOperand(0)->getType() == Ty) +        return CI->getOperand(0); +    } +  } +  // Short-circuit unnecessary inttoptr<->ptrtoint casts. +  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && +      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { +    if (CastInst *CI = dyn_cast<CastInst>(V)) +      if ((CI->getOpcode() == Instruction::PtrToInt || +           CI->getOpcode() == Instruction::IntToPtr) && +          SE.getTypeSizeInBits(CI->getType()) == +          SE.getTypeSizeInBits(CI->getOperand(0)->getType())) +        return CI->getOperand(0); +    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) +      if ((CE->getOpcode() == Instruction::PtrToInt || +           CE->getOpcode() == Instruction::IntToPtr) && +          SE.getTypeSizeInBits(CE->getType()) == +          SE.getTypeSizeInBits(CE->getOperand(0)->getType())) +        return CE->getOperand(0); +  } + +  // Fold a cast of a constant. +  if (Constant *C = dyn_cast<Constant>(V)) +    return ConstantExpr::getCast(Op, C, Ty); + +  // Cast the argument at the beginning of the entry block, after +  // any bitcasts of other arguments. +  if (Argument *A = dyn_cast<Argument>(V)) { +    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); +    while ((isa<BitCastInst>(IP) && +            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && +            cast<BitCastInst>(IP)->getOperand(0) != A) || +           isa<DbgInfoIntrinsic>(IP)) +      ++IP; +    return ReuseOrCreateCast(A, Ty, Op, IP); +  } + +  // Cast the instruction immediately after the instruction. +  Instruction *I = cast<Instruction>(V); +  BasicBlock::iterator IP = findInsertPointAfter(I, &*Builder.GetInsertPoint()); +  return ReuseOrCreateCast(I, Ty, Op, IP); +} + +/// InsertBinop - Insert the specified binary operator, doing a small amount +/// of work to avoid inserting an obviously redundant operation, and hoisting +/// to an outer loop when the opportunity is there and it is safe. +Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, +                                 Value *LHS, Value *RHS, +                                 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { +  // Fold a binop with constant operands. +  if (Constant *CLHS = dyn_cast<Constant>(LHS)) +    if (Constant *CRHS = dyn_cast<Constant>(RHS)) +      return ConstantExpr::get(Opcode, CLHS, CRHS); + +  // Do a quick scan to see if we have this binop nearby.  If so, reuse it. +  unsigned ScanLimit = 6; +  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); +  // Scanning starts from the last instruction before the insertion point. +  BasicBlock::iterator IP = Builder.GetInsertPoint(); +  if (IP != BlockBegin) { +    --IP; +    for (; ScanLimit; --IP, --ScanLimit) { +      // Don't count dbg.value against the ScanLimit, to avoid perturbing the +      // generated code. +      if (isa<DbgInfoIntrinsic>(IP)) +        ScanLimit++; + +      auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { +        // Ensure that no-wrap flags match. +        if (isa<OverflowingBinaryOperator>(I)) { +          if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) +            return true; +          if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) +            return true; +        } +        // Conservatively, do not use any instruction which has any of exact +        // flags installed. +        if (isa<PossiblyExactOperator>(I) && I->isExact()) +          return true; +        return false; +      }; +      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && +          IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) +        return &*IP; +      if (IP == BlockBegin) break; +    } +  } + +  // Save the original insertion point so we can restore it when we're done. +  DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); +  SCEVInsertPointGuard Guard(Builder, this); + +  if (IsSafeToHoist) { +    // Move the insertion point out of as many loops as we can. +    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { +      if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; +      BasicBlock *Preheader = L->getLoopPreheader(); +      if (!Preheader) break; + +      // Ok, move up a level. +      Builder.SetInsertPoint(Preheader->getTerminator()); +    } +  } + +  // If we haven't found this binop, insert it. +  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); +  BO->setDebugLoc(Loc); +  if (Flags & SCEV::FlagNUW) +    BO->setHasNoUnsignedWrap(); +  if (Flags & SCEV::FlagNSW) +    BO->setHasNoSignedWrap(); + +  return BO; +} + +/// FactorOutConstant - Test if S is divisible by Factor, using signed +/// division. If so, update S with Factor divided out and return true. +/// S need not be evenly divisible if a reasonable remainder can be +/// computed. +static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, +                              const SCEV *Factor, ScalarEvolution &SE, +                              const DataLayout &DL) { +  // Everything is divisible by one. +  if (Factor->isOne()) +    return true; + +  // x/x == 1. +  if (S == Factor) { +    S = SE.getConstant(S->getType(), 1); +    return true; +  } + +  // For a Constant, check for a multiple of the given factor. +  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { +    // 0/x == 0. +    if (C->isZero()) +      return true; +    // Check for divisibility. +    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { +      ConstantInt *CI = +          ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); +      // If the quotient is zero and the remainder is non-zero, reject +      // the value at this scale. It will be considered for subsequent +      // smaller scales. +      if (!CI->isZero()) { +        const SCEV *Div = SE.getConstant(CI); +        S = Div; +        Remainder = SE.getAddExpr( +            Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); +        return true; +      } +    } +  } + +  // In a Mul, check if there is a constant operand which is a multiple +  // of the given factor. +  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { +    // Size is known, check if there is a constant operand which is a multiple +    // of the given factor. If so, we can factor it. +    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) +      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) +        if (!C->getAPInt().srem(FC->getAPInt())) { +          SmallVector<const SCEV *, 4> NewMulOps(M->operands()); +          NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); +          S = SE.getMulExpr(NewMulOps); +          return true; +        } +  } + +  // In an AddRec, check if both start and step are divisible. +  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { +    const SCEV *Step = A->getStepRecurrence(SE); +    const SCEV *StepRem = SE.getConstant(Step->getType(), 0); +    if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) +      return false; +    if (!StepRem->isZero()) +      return false; +    const SCEV *Start = A->getStart(); +    if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) +      return false; +    S = SE.getAddRecExpr(Start, Step, A->getLoop(), +                         A->getNoWrapFlags(SCEV::FlagNW)); +    return true; +  } + +  return false; +} + +/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs +/// is the number of SCEVAddRecExprs present, which are kept at the end of +/// the list. +/// +static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, +                                Type *Ty, +                                ScalarEvolution &SE) { +  unsigned NumAddRecs = 0; +  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) +    ++NumAddRecs; +  // Group Ops into non-addrecs and addrecs. +  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); +  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); +  // Let ScalarEvolution sort and simplify the non-addrecs list. +  const SCEV *Sum = NoAddRecs.empty() ? +                    SE.getConstant(Ty, 0) : +                    SE.getAddExpr(NoAddRecs); +  // If it returned an add, use the operands. Otherwise it simplified +  // the sum into a single value, so just use that. +  Ops.clear(); +  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) +    Ops.append(Add->op_begin(), Add->op_end()); +  else if (!Sum->isZero()) +    Ops.push_back(Sum); +  // Then append the addrecs. +  Ops.append(AddRecs.begin(), AddRecs.end()); +} + +/// SplitAddRecs - Flatten a list of add operands, moving addrec start values +/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. +/// This helps expose more opportunities for folding parts of the expressions +/// into GEP indices. +/// +static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, +                         Type *Ty, +                         ScalarEvolution &SE) { +  // Find the addrecs. +  SmallVector<const SCEV *, 8> AddRecs; +  for (unsigned i = 0, e = Ops.size(); i != e; ++i) +    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { +      const SCEV *Start = A->getStart(); +      if (Start->isZero()) break; +      const SCEV *Zero = SE.getConstant(Ty, 0); +      AddRecs.push_back(SE.getAddRecExpr(Zero, +                                         A->getStepRecurrence(SE), +                                         A->getLoop(), +                                         A->getNoWrapFlags(SCEV::FlagNW))); +      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { +        Ops[i] = Zero; +        Ops.append(Add->op_begin(), Add->op_end()); +        e += Add->getNumOperands(); +      } else { +        Ops[i] = Start; +      } +    } +  if (!AddRecs.empty()) { +    // Add the addrecs onto the end of the list. +    Ops.append(AddRecs.begin(), AddRecs.end()); +    // Resort the operand list, moving any constants to the front. +    SimplifyAddOperands(Ops, Ty, SE); +  } +} + +/// expandAddToGEP - Expand an addition expression with a pointer type into +/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps +/// BasicAliasAnalysis and other passes analyze the result. See the rules +/// for getelementptr vs. inttoptr in +/// http://llvm.org/docs/LangRef.html#pointeraliasing +/// for details. +/// +/// Design note: The correctness of using getelementptr here depends on +/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as +/// they may introduce pointer arithmetic which may not be safely converted +/// into getelementptr. +/// +/// Design note: It might seem desirable for this function to be more +/// loop-aware. If some of the indices are loop-invariant while others +/// aren't, it might seem desirable to emit multiple GEPs, keeping the +/// loop-invariant portions of the overall computation outside the loop. +/// However, there are a few reasons this is not done here. Hoisting simple +/// arithmetic is a low-level optimization that often isn't very +/// important until late in the optimization process. In fact, passes +/// like InstructionCombining will combine GEPs, even if it means +/// pushing loop-invariant computation down into loops, so even if the +/// GEPs were split here, the work would quickly be undone. The +/// LoopStrengthReduction pass, which is usually run quite late (and +/// after the last InstructionCombining pass), takes care of hoisting +/// loop-invariant portions of expressions, after considering what +/// can be folded using target addressing modes. +/// +Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, +                                    const SCEV *const *op_end, +                                    PointerType *PTy, +                                    Type *Ty, +                                    Value *V) { +  Type *OriginalElTy = PTy->getElementType(); +  Type *ElTy = OriginalElTy; +  SmallVector<Value *, 4> GepIndices; +  SmallVector<const SCEV *, 8> Ops(op_begin, op_end); +  bool AnyNonZeroIndices = false; + +  // Split AddRecs up into parts as either of the parts may be usable +  // without the other. +  SplitAddRecs(Ops, Ty, SE); + +  Type *IntIdxTy = DL.getIndexType(PTy); + +  // Descend down the pointer's type and attempt to convert the other +  // operands into GEP indices, at each level. The first index in a GEP +  // indexes into the array implied by the pointer operand; the rest of +  // the indices index into the element or field type selected by the +  // preceding index. +  for (;;) { +    // If the scale size is not 0, attempt to factor out a scale for +    // array indexing. +    SmallVector<const SCEV *, 8> ScaledOps; +    if (ElTy->isSized()) { +      const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); +      if (!ElSize->isZero()) { +        SmallVector<const SCEV *, 8> NewOps; +        for (const SCEV *Op : Ops) { +          const SCEV *Remainder = SE.getConstant(Ty, 0); +          if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { +            // Op now has ElSize factored out. +            ScaledOps.push_back(Op); +            if (!Remainder->isZero()) +              NewOps.push_back(Remainder); +            AnyNonZeroIndices = true; +          } else { +            // The operand was not divisible, so add it to the list of operands +            // we'll scan next iteration. +            NewOps.push_back(Op); +          } +        } +        // If we made any changes, update Ops. +        if (!ScaledOps.empty()) { +          Ops = NewOps; +          SimplifyAddOperands(Ops, Ty, SE); +        } +      } +    } + +    // Record the scaled array index for this level of the type. If +    // we didn't find any operands that could be factored, tentatively +    // assume that element zero was selected (since the zero offset +    // would obviously be folded away). +    Value *Scaled = +        ScaledOps.empty() +            ? Constant::getNullValue(Ty) +            : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); +    GepIndices.push_back(Scaled); + +    // Collect struct field index operands. +    while (StructType *STy = dyn_cast<StructType>(ElTy)) { +      bool FoundFieldNo = false; +      // An empty struct has no fields. +      if (STy->getNumElements() == 0) break; +      // Field offsets are known. See if a constant offset falls within any of +      // the struct fields. +      if (Ops.empty()) +        break; +      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) +        if (SE.getTypeSizeInBits(C->getType()) <= 64) { +          const StructLayout &SL = *DL.getStructLayout(STy); +          uint64_t FullOffset = C->getValue()->getZExtValue(); +          if (FullOffset < SL.getSizeInBytes()) { +            unsigned ElIdx = SL.getElementContainingOffset(FullOffset); +            GepIndices.push_back( +                ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); +            ElTy = STy->getTypeAtIndex(ElIdx); +            Ops[0] = +                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); +            AnyNonZeroIndices = true; +            FoundFieldNo = true; +          } +        } +      // If no struct field offsets were found, tentatively assume that +      // field zero was selected (since the zero offset would obviously +      // be folded away). +      if (!FoundFieldNo) { +        ElTy = STy->getTypeAtIndex(0u); +        GepIndices.push_back( +          Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); +      } +    } + +    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) +      ElTy = ATy->getElementType(); +    else +      // FIXME: Handle VectorType. +      // E.g., If ElTy is scalable vector, then ElSize is not a compile-time +      // constant, therefore can not be factored out. The generated IR is less +      // ideal with base 'V' cast to i8* and do ugly getelementptr over that. +      break; +  } + +  // If none of the operands were convertible to proper GEP indices, cast +  // the base to i8* and do an ugly getelementptr with that. It's still +  // better than ptrtoint+arithmetic+inttoptr at least. +  if (!AnyNonZeroIndices) { +    // Cast the base to i8*. +    V = InsertNoopCastOfTo(V, +       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); + +    assert(!isa<Instruction>(V) || +           SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); + +    // Expand the operands for a plain byte offset. +    Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); + +    // Fold a GEP with constant operands. +    if (Constant *CLHS = dyn_cast<Constant>(V)) +      if (Constant *CRHS = dyn_cast<Constant>(Idx)) +        return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), +                                              CLHS, CRHS); + +    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it. +    unsigned ScanLimit = 6; +    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); +    // Scanning starts from the last instruction before the insertion point. +    BasicBlock::iterator IP = Builder.GetInsertPoint(); +    if (IP != BlockBegin) { +      --IP; +      for (; ScanLimit; --IP, --ScanLimit) { +        // Don't count dbg.value against the ScanLimit, to avoid perturbing the +        // generated code. +        if (isa<DbgInfoIntrinsic>(IP)) +          ScanLimit++; +        if (IP->getOpcode() == Instruction::GetElementPtr && +            IP->getOperand(0) == V && IP->getOperand(1) == Idx) +          return &*IP; +        if (IP == BlockBegin) break; +      } +    } + +    // Save the original insertion point so we can restore it when we're done. +    SCEVInsertPointGuard Guard(Builder, this); + +    // Move the insertion point out of as many loops as we can. +    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { +      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; +      BasicBlock *Preheader = L->getLoopPreheader(); +      if (!Preheader) break; + +      // Ok, move up a level. +      Builder.SetInsertPoint(Preheader->getTerminator()); +    } + +    // Emit a GEP. +    return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); +  } + +  { +    SCEVInsertPointGuard Guard(Builder, this); + +    // Move the insertion point out of as many loops as we can. +    while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { +      if (!L->isLoopInvariant(V)) break; + +      bool AnyIndexNotLoopInvariant = any_of( +          GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); + +      if (AnyIndexNotLoopInvariant) +        break; + +      BasicBlock *Preheader = L->getLoopPreheader(); +      if (!Preheader) break; + +      // Ok, move up a level. +      Builder.SetInsertPoint(Preheader->getTerminator()); +    } + +    // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, +    // because ScalarEvolution may have changed the address arithmetic to +    // compute a value which is beyond the end of the allocated object. +    Value *Casted = V; +    if (V->getType() != PTy) +      Casted = InsertNoopCastOfTo(Casted, PTy); +    Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); +    Ops.push_back(SE.getUnknown(GEP)); +  } + +  return expand(SE.getAddExpr(Ops)); +} + +Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, +                                    Value *V) { +  const SCEV *const Ops[1] = {Op}; +  return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); +} + +/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for +/// SCEV expansion. If they are nested, this is the most nested. If they are +/// neighboring, pick the later. +static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, +                                        DominatorTree &DT) { +  if (!A) return B; +  if (!B) return A; +  if (A->contains(B)) return B; +  if (B->contains(A)) return A; +  if (DT.dominates(A->getHeader(), B->getHeader())) return B; +  if (DT.dominates(B->getHeader(), A->getHeader())) return A; +  return A; // Arbitrarily break the tie. +} + +/// getRelevantLoop - Get the most relevant loop associated with the given +/// expression, according to PickMostRelevantLoop. +const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { +  // Test whether we've already computed the most relevant loop for this SCEV. +  auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); +  if (!Pair.second) +    return Pair.first->second; + +  if (isa<SCEVConstant>(S)) +    // A constant has no relevant loops. +    return nullptr; +  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { +    if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) +      return Pair.first->second = SE.LI.getLoopFor(I->getParent()); +    // A non-instruction has no relevant loops. +    return nullptr; +  } +  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { +    const Loop *L = nullptr; +    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) +      L = AR->getLoop(); +    for (const SCEV *Op : N->operands()) +      L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); +    return RelevantLoops[N] = L; +  } +  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { +    const Loop *Result = getRelevantLoop(C->getOperand()); +    return RelevantLoops[C] = Result; +  } +  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { +    const Loop *Result = PickMostRelevantLoop( +        getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); +    return RelevantLoops[D] = Result; +  } +  llvm_unreachable("Unexpected SCEV type!"); +} + +namespace { + +/// LoopCompare - Compare loops by PickMostRelevantLoop. +class LoopCompare { +  DominatorTree &DT; +public: +  explicit LoopCompare(DominatorTree &dt) : DT(dt) {} + +  bool operator()(std::pair<const Loop *, const SCEV *> LHS, +                  std::pair<const Loop *, const SCEV *> RHS) const { +    // Keep pointer operands sorted at the end. +    if (LHS.second->getType()->isPointerTy() != +        RHS.second->getType()->isPointerTy()) +      return LHS.second->getType()->isPointerTy(); + +    // Compare loops with PickMostRelevantLoop. +    if (LHS.first != RHS.first) +      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; + +    // If one operand is a non-constant negative and the other is not, +    // put the non-constant negative on the right so that a sub can +    // be used instead of a negate and add. +    if (LHS.second->isNonConstantNegative()) { +      if (!RHS.second->isNonConstantNegative()) +        return false; +    } else if (RHS.second->isNonConstantNegative()) +      return true; + +    // Otherwise they are equivalent according to this comparison. +    return false; +  } +}; + +} + +Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { +  Type *Ty = SE.getEffectiveSCEVType(S->getType()); + +  // Collect all the add operands in a loop, along with their associated loops. +  // Iterate in reverse so that constants are emitted last, all else equal, and +  // so that pointer operands are inserted first, which the code below relies on +  // to form more involved GEPs. +  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; +  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), +       E(S->op_begin()); I != E; ++I) +    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); + +  // Sort by loop. Use a stable sort so that constants follow non-constants and +  // pointer operands precede non-pointer operands. +  llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); + +  // Emit instructions to add all the operands. Hoist as much as possible +  // out of loops, and form meaningful getelementptrs where possible. +  Value *Sum = nullptr; +  for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { +    const Loop *CurLoop = I->first; +    const SCEV *Op = I->second; +    if (!Sum) { +      // This is the first operand. Just expand it. +      Sum = expand(Op); +      ++I; +    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { +      // The running sum expression is a pointer. Try to form a getelementptr +      // at this level with that as the base. +      SmallVector<const SCEV *, 4> NewOps; +      for (; I != E && I->first == CurLoop; ++I) { +        // If the operand is SCEVUnknown and not instructions, peek through +        // it, to enable more of it to be folded into the GEP. +        const SCEV *X = I->second; +        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) +          if (!isa<Instruction>(U->getValue())) +            X = SE.getSCEV(U->getValue()); +        NewOps.push_back(X); +      } +      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); +    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { +      // The running sum is an integer, and there's a pointer at this level. +      // Try to form a getelementptr. If the running sum is instructions, +      // use a SCEVUnknown to avoid re-analyzing them. +      SmallVector<const SCEV *, 4> NewOps; +      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : +                                               SE.getSCEV(Sum)); +      for (++I; I != E && I->first == CurLoop; ++I) +        NewOps.push_back(I->second); +      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); +    } else if (Op->isNonConstantNegative()) { +      // Instead of doing a negate and add, just do a subtract. +      Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); +      Sum = InsertNoopCastOfTo(Sum, Ty); +      Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, +                        /*IsSafeToHoist*/ true); +      ++I; +    } else { +      // A simple add. +      Value *W = expandCodeForImpl(Op, Ty, false); +      Sum = InsertNoopCastOfTo(Sum, Ty); +      // Canonicalize a constant to the RHS. +      if (isa<Constant>(Sum)) std::swap(Sum, W); +      Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), +                        /*IsSafeToHoist*/ true); +      ++I; +    } +  } + +  return Sum; +} + +Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { +  Type *Ty = SE.getEffectiveSCEVType(S->getType()); + +  // Collect all the mul operands in a loop, along with their associated loops. +  // Iterate in reverse so that constants are emitted last, all else equal. +  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; +  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), +       E(S->op_begin()); I != E; ++I) +    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); + +  // Sort by loop. Use a stable sort so that constants follow non-constants. +  llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); + +  // Emit instructions to mul all the operands. Hoist as much as possible +  // out of loops. +  Value *Prod = nullptr; +  auto I = OpsAndLoops.begin(); + +  // Expand the calculation of X pow N in the following manner: +  // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: +  // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). +  const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { +    auto E = I; +    // Calculate how many times the same operand from the same loop is included +    // into this power. +    uint64_t Exponent = 0; +    const uint64_t MaxExponent = UINT64_MAX >> 1; +    // No one sane will ever try to calculate such huge exponents, but if we +    // need this, we stop on UINT64_MAX / 2 because we need to exit the loop +    // below when the power of 2 exceeds our Exponent, and we want it to be +    // 1u << 31 at most to not deal with unsigned overflow. +    while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { +      ++Exponent; +      ++E; +    } +    assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); + +    // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them +    // that are needed into the result. +    Value *P = expandCodeForImpl(I->second, Ty, false); +    Value *Result = nullptr; +    if (Exponent & 1) +      Result = P; +    for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { +      P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, +                      /*IsSafeToHoist*/ true); +      if (Exponent & BinExp) +        Result = Result ? InsertBinop(Instruction::Mul, Result, P, +                                      SCEV::FlagAnyWrap, +                                      /*IsSafeToHoist*/ true) +                        : P; +    } + +    I = E; +    assert(Result && "Nothing was expanded?"); +    return Result; +  }; + +  while (I != OpsAndLoops.end()) { +    if (!Prod) { +      // This is the first operand. Just expand it. +      Prod = ExpandOpBinPowN(); +    } else if (I->second->isAllOnesValue()) { +      // Instead of doing a multiply by negative one, just do a negate. +      Prod = InsertNoopCastOfTo(Prod, Ty); +      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, +                         SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); +      ++I; +    } else { +      // A simple mul. +      Value *W = ExpandOpBinPowN(); +      Prod = InsertNoopCastOfTo(Prod, Ty); +      // Canonicalize a constant to the RHS. +      if (isa<Constant>(Prod)) std::swap(Prod, W); +      const APInt *RHS; +      if (match(W, m_Power2(RHS))) { +        // Canonicalize Prod*(1<<C) to Prod<<C. +        assert(!Ty->isVectorTy() && "vector types are not SCEVable"); +        auto NWFlags = S->getNoWrapFlags(); +        // clear nsw flag if shl will produce poison value. +        if (RHS->logBase2() == RHS->getBitWidth() - 1) +          NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); +        Prod = InsertBinop(Instruction::Shl, Prod, +                           ConstantInt::get(Ty, RHS->logBase2()), NWFlags, +                           /*IsSafeToHoist*/ true); +      } else { +        Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), +                           /*IsSafeToHoist*/ true); +      } +    } +  } + +  return Prod; +} + +Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { +  Type *Ty = SE.getEffectiveSCEVType(S->getType()); + +  Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); +  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { +    const APInt &RHS = SC->getAPInt(); +    if (RHS.isPowerOf2()) +      return InsertBinop(Instruction::LShr, LHS, +                         ConstantInt::get(Ty, RHS.logBase2()), +                         SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); +  } + +  Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); +  return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, +                     /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); +} + +/// Move parts of Base into Rest to leave Base with the minimal +/// expression that provides a pointer operand suitable for a +/// GEP expansion. +static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, +                              ScalarEvolution &SE) { +  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { +    Base = A->getStart(); +    Rest = SE.getAddExpr(Rest, +                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0), +                                          A->getStepRecurrence(SE), +                                          A->getLoop(), +                                          A->getNoWrapFlags(SCEV::FlagNW))); +  } +  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { +    Base = A->getOperand(A->getNumOperands()-1); +    SmallVector<const SCEV *, 8> NewAddOps(A->operands()); +    NewAddOps.back() = Rest; +    Rest = SE.getAddExpr(NewAddOps); +    ExposePointerBase(Base, Rest, SE); +  } +} + +/// Determine if this is a well-behaved chain of instructions leading back to +/// the PHI. If so, it may be reused by expanded expressions. +bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, +                                         const Loop *L) { +  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || +      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) +    return false; +  // If any of the operands don't dominate the insert position, bail. +  // Addrec operands are always loop-invariant, so this can only happen +  // if there are instructions which haven't been hoisted. +  if (L == IVIncInsertLoop) { +    for (User::op_iterator OI = IncV->op_begin()+1, +           OE = IncV->op_end(); OI != OE; ++OI) +      if (Instruction *OInst = dyn_cast<Instruction>(OI)) +        if (!SE.DT.dominates(OInst, IVIncInsertPos)) +          return false; +  } +  // Advance to the next instruction. +  IncV = dyn_cast<Instruction>(IncV->getOperand(0)); +  if (!IncV) +    return false; + +  if (IncV->mayHaveSideEffects()) +    return false; + +  if (IncV == PN) +    return true; + +  return isNormalAddRecExprPHI(PN, IncV, L); +} + +/// getIVIncOperand returns an induction variable increment's induction +/// variable operand. +/// +/// If allowScale is set, any type of GEP is allowed as long as the nonIV +/// operands dominate InsertPos. +/// +/// If allowScale is not set, ensure that a GEP increment conforms to one of the +/// simple patterns generated by getAddRecExprPHILiterally and +/// expandAddtoGEP. If the pattern isn't recognized, return NULL. +Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, +                                           Instruction *InsertPos, +                                           bool allowScale) { +  if (IncV == InsertPos) +    return nullptr; + +  switch (IncV->getOpcode()) { +  default: +    return nullptr; +  // Check for a simple Add/Sub or GEP of a loop invariant step. +  case Instruction::Add: +  case Instruction::Sub: { +    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); +    if (!OInst || SE.DT.dominates(OInst, InsertPos)) +      return dyn_cast<Instruction>(IncV->getOperand(0)); +    return nullptr; +  } +  case Instruction::BitCast: +    return dyn_cast<Instruction>(IncV->getOperand(0)); +  case Instruction::GetElementPtr: +    for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { +      if (isa<Constant>(*I)) +        continue; +      if (Instruction *OInst = dyn_cast<Instruction>(*I)) { +        if (!SE.DT.dominates(OInst, InsertPos)) +          return nullptr; +      } +      if (allowScale) { +        // allow any kind of GEP as long as it can be hoisted. +        continue; +      } +      // This must be a pointer addition of constants (pretty), which is already +      // handled, or some number of address-size elements (ugly). Ugly geps +      // have 2 operands. i1* is used by the expander to represent an +      // address-size element. +      if (IncV->getNumOperands() != 2) +        return nullptr; +      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); +      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) +          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) +        return nullptr; +      break; +    } +    return dyn_cast<Instruction>(IncV->getOperand(0)); +  } +} + +/// If the insert point of the current builder or any of the builders on the +/// stack of saved builders has 'I' as its insert point, update it to point to +/// the instruction after 'I'.  This is intended to be used when the instruction +/// 'I' is being moved.  If this fixup is not done and 'I' is moved to a +/// different block, the inconsistent insert point (with a mismatched +/// Instruction and Block) can lead to an instruction being inserted in a block +/// other than its parent. +void SCEVExpander::fixupInsertPoints(Instruction *I) { +  BasicBlock::iterator It(*I); +  BasicBlock::iterator NewInsertPt = std::next(It); +  if (Builder.GetInsertPoint() == It) +    Builder.SetInsertPoint(&*NewInsertPt); +  for (auto *InsertPtGuard : InsertPointGuards) +    if (InsertPtGuard->GetInsertPoint() == It) +      InsertPtGuard->SetInsertPoint(NewInsertPt); +} + +/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make +/// it available to other uses in this loop. Recursively hoist any operands, +/// until we reach a value that dominates InsertPos. +bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { +  if (SE.DT.dominates(IncV, InsertPos)) +      return true; + +  // InsertPos must itself dominate IncV so that IncV's new position satisfies +  // its existing users. +  if (isa<PHINode>(InsertPos) || +      !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) +    return false; + +  if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) +    return false; + +  // Check that the chain of IV operands leading back to Phi can be hoisted. +  SmallVector<Instruction*, 4> IVIncs; +  for(;;) { +    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); +    if (!Oper) +      return false; +    // IncV is safe to hoist. +    IVIncs.push_back(IncV); +    IncV = Oper; +    if (SE.DT.dominates(IncV, InsertPos)) +      break; +  } +  for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { +    fixupInsertPoints(*I); +    (*I)->moveBefore(InsertPos); +  } +  return true; +} + +/// Determine if this cyclic phi is in a form that would have been generated by +/// LSR. We don't care if the phi was actually expanded in this pass, as long +/// as it is in a low-cost form, for example, no implied multiplication. This +/// should match any patterns generated by getAddRecExprPHILiterally and +/// expandAddtoGEP. +bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, +                                           const Loop *L) { +  for(Instruction *IVOper = IncV; +      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), +                                /*allowScale=*/false));) { +    if (IVOper == PN) +      return true; +  } +  return false; +} + +/// expandIVInc - Expand an IV increment at Builder's current InsertPos. +/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may +/// need to materialize IV increments elsewhere to handle difficult situations. +Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, +                                 Type *ExpandTy, Type *IntTy, +                                 bool useSubtract) { +  Value *IncV; +  // If the PHI is a pointer, use a GEP, otherwise use an add or sub. +  if (ExpandTy->isPointerTy()) { +    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); +    // If the step isn't constant, don't use an implicitly scaled GEP, because +    // that would require a multiply inside the loop. +    if (!isa<ConstantInt>(StepV)) +      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), +                                  GEPPtrTy->getAddressSpace()); +    IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); +    if (IncV->getType() != PN->getType()) +      IncV = Builder.CreateBitCast(IncV, PN->getType()); +  } else { +    IncV = useSubtract ? +      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : +      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); +  } +  return IncV; +} + +/// Hoist the addrec instruction chain rooted in the loop phi above the +/// position. This routine assumes that this is possible (has been checked). +void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, +                                  Instruction *Pos, PHINode *LoopPhi) { +  do { +    if (DT->dominates(InstToHoist, Pos)) +      break; +    // Make sure the increment is where we want it. But don't move it +    // down past a potential existing post-inc user. +    fixupInsertPoints(InstToHoist); +    InstToHoist->moveBefore(Pos); +    Pos = InstToHoist; +    InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); +  } while (InstToHoist != LoopPhi); +} + +/// Check whether we can cheaply express the requested SCEV in terms of +/// the available PHI SCEV by truncation and/or inversion of the step. +static bool canBeCheaplyTransformed(ScalarEvolution &SE, +                                    const SCEVAddRecExpr *Phi, +                                    const SCEVAddRecExpr *Requested, +                                    bool &InvertStep) { +  Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); +  Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); + +  if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) +    return false; + +  // Try truncate it if necessary. +  Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); +  if (!Phi) +    return false; + +  // Check whether truncation will help. +  if (Phi == Requested) { +    InvertStep = false; +    return true; +  } + +  // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. +  if (SE.getAddExpr(Requested->getStart(), +                    SE.getNegativeSCEV(Requested)) == Phi) { +    InvertStep = true; +    return true; +  } + +  return false; +} + +static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { +  if (!isa<IntegerType>(AR->getType())) +    return false; + +  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); +  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); +  const SCEV *Step = AR->getStepRecurrence(SE); +  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), +                                            SE.getSignExtendExpr(AR, WideTy)); +  const SCEV *ExtendAfterOp = +    SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); +  return ExtendAfterOp == OpAfterExtend; +} + +static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { +  if (!isa<IntegerType>(AR->getType())) +    return false; + +  unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); +  Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); +  const SCEV *Step = AR->getStepRecurrence(SE); +  const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), +                                            SE.getZeroExtendExpr(AR, WideTy)); +  const SCEV *ExtendAfterOp = +    SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); +  return ExtendAfterOp == OpAfterExtend; +} + +/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand +/// the base addrec, which is the addrec without any non-loop-dominating +/// values, and return the PHI. +PHINode * +SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, +                                        const Loop *L, +                                        Type *ExpandTy, +                                        Type *IntTy, +                                        Type *&TruncTy, +                                        bool &InvertStep) { +  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); + +  // Reuse a previously-inserted PHI, if present. +  BasicBlock *LatchBlock = L->getLoopLatch(); +  if (LatchBlock) { +    PHINode *AddRecPhiMatch = nullptr; +    Instruction *IncV = nullptr; +    TruncTy = nullptr; +    InvertStep = false; + +    // Only try partially matching scevs that need truncation and/or +    // step-inversion if we know this loop is outside the current loop. +    bool TryNonMatchingSCEV = +        IVIncInsertLoop && +        SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); + +    for (PHINode &PN : L->getHeader()->phis()) { +      if (!SE.isSCEVable(PN.getType())) +        continue; + +      // We should not look for a incomplete PHI. Getting SCEV for a incomplete +      // PHI has no meaning at all. +      if (!PN.isComplete()) { +        DEBUG_WITH_TYPE( +            DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); +        continue; +      } + +      const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); +      if (!PhiSCEV) +        continue; + +      bool IsMatchingSCEV = PhiSCEV == Normalized; +      // We only handle truncation and inversion of phi recurrences for the +      // expanded expression if the expanded expression's loop dominates the +      // loop we insert to. Check now, so we can bail out early. +      if (!IsMatchingSCEV && !TryNonMatchingSCEV) +          continue; + +      // TODO: this possibly can be reworked to avoid this cast at all. +      Instruction *TempIncV = +          dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); +      if (!TempIncV) +        continue; + +      // Check whether we can reuse this PHI node. +      if (LSRMode) { +        if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) +          continue; +        if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) +          continue; +      } else { +        if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) +          continue; +      } + +      // Stop if we have found an exact match SCEV. +      if (IsMatchingSCEV) { +        IncV = TempIncV; +        TruncTy = nullptr; +        InvertStep = false; +        AddRecPhiMatch = &PN; +        break; +      } + +      // Try whether the phi can be translated into the requested form +      // (truncated and/or offset by a constant). +      if ((!TruncTy || InvertStep) && +          canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { +        // Record the phi node. But don't stop we might find an exact match +        // later. +        AddRecPhiMatch = &PN; +        IncV = TempIncV; +        TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); +      } +    } + +    if (AddRecPhiMatch) { +      // Potentially, move the increment. We have made sure in +      // isExpandedAddRecExprPHI or hoistIVInc that this is possible. +      if (L == IVIncInsertLoop) +        hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); + +      // Ok, the add recurrence looks usable. +      // Remember this PHI, even in post-inc mode. +      InsertedValues.insert(AddRecPhiMatch); +      // Remember the increment. +      rememberInstruction(IncV); +      // Those values were not actually inserted but re-used. +      ReusedValues.insert(AddRecPhiMatch); +      ReusedValues.insert(IncV); +      return AddRecPhiMatch; +    } +  } + +  // Save the original insertion point so we can restore it when we're done. +  SCEVInsertPointGuard Guard(Builder, this); + +  // Another AddRec may need to be recursively expanded below. For example, if +  // this AddRec is quadratic, the StepV may itself be an AddRec in this +  // loop. Remove this loop from the PostIncLoops set before expanding such +  // AddRecs. Otherwise, we cannot find a valid position for the step +  // (i.e. StepV can never dominate its loop header).  Ideally, we could do +  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, +  // so it's not worth implementing SmallPtrSet::swap. +  PostIncLoopSet SavedPostIncLoops = PostIncLoops; +  PostIncLoops.clear(); + +  // Expand code for the start value into the loop preheader. +  assert(L->getLoopPreheader() && +         "Can't expand add recurrences without a loop preheader!"); +  Value *StartV = +      expandCodeForImpl(Normalized->getStart(), ExpandTy, +                        L->getLoopPreheader()->getTerminator(), false); + +  // StartV must have been be inserted into L's preheader to dominate the new +  // phi. +  assert(!isa<Instruction>(StartV) || +         SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), +                                 L->getHeader())); + +  // Expand code for the step value. Do this before creating the PHI so that PHI +  // reuse code doesn't see an incomplete PHI. +  const SCEV *Step = Normalized->getStepRecurrence(SE); +  // If the stride is negative, insert a sub instead of an add for the increment +  // (unless it's a constant, because subtracts of constants are canonicalized +  // to adds). +  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); +  if (useSubtract) +    Step = SE.getNegativeSCEV(Step); +  // Expand the step somewhere that dominates the loop header. +  Value *StepV = expandCodeForImpl( +      Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); + +  // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if +  // we actually do emit an addition.  It does not apply if we emit a +  // subtraction. +  bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); +  bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); + +  // Create the PHI. +  BasicBlock *Header = L->getHeader(); +  Builder.SetInsertPoint(Header, Header->begin()); +  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); +  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), +                                  Twine(IVName) + ".iv"); + +  // Create the step instructions and populate the PHI. +  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { +    BasicBlock *Pred = *HPI; + +    // Add a start value. +    if (!L->contains(Pred)) { +      PN->addIncoming(StartV, Pred); +      continue; +    } + +    // Create a step value and add it to the PHI. +    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the +    // instructions at IVIncInsertPos. +    Instruction *InsertPos = L == IVIncInsertLoop ? +      IVIncInsertPos : Pred->getTerminator(); +    Builder.SetInsertPoint(InsertPos); +    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); + +    if (isa<OverflowingBinaryOperator>(IncV)) { +      if (IncrementIsNUW) +        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); +      if (IncrementIsNSW) +        cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); +    } +    PN->addIncoming(IncV, Pred); +  } + +  // After expanding subexpressions, restore the PostIncLoops set so the caller +  // can ensure that IVIncrement dominates the current uses. +  PostIncLoops = SavedPostIncLoops; + +  // Remember this PHI, even in post-inc mode. +  InsertedValues.insert(PN); + +  return PN; +} + +Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { +  Type *STy = S->getType(); +  Type *IntTy = SE.getEffectiveSCEVType(STy); +  const Loop *L = S->getLoop(); + +  // Determine a normalized form of this expression, which is the expression +  // before any post-inc adjustment is made. +  const SCEVAddRecExpr *Normalized = S; +  if (PostIncLoops.count(L)) { +    PostIncLoopSet Loops; +    Loops.insert(L); +    Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); +  } + +  // Strip off any non-loop-dominating component from the addrec start. +  const SCEV *Start = Normalized->getStart(); +  const SCEV *PostLoopOffset = nullptr; +  if (!SE.properlyDominates(Start, L->getHeader())) { +    PostLoopOffset = Start; +    Start = SE.getConstant(Normalized->getType(), 0); +    Normalized = cast<SCEVAddRecExpr>( +      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), +                       Normalized->getLoop(), +                       Normalized->getNoWrapFlags(SCEV::FlagNW))); +  } + +  // Strip off any non-loop-dominating component from the addrec step. +  const SCEV *Step = Normalized->getStepRecurrence(SE); +  const SCEV *PostLoopScale = nullptr; +  if (!SE.dominates(Step, L->getHeader())) { +    PostLoopScale = Step; +    Step = SE.getConstant(Normalized->getType(), 1); +    if (!Start->isZero()) { +        // The normalization below assumes that Start is constant zero, so if +        // it isn't re-associate Start to PostLoopOffset. +        assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); +        PostLoopOffset = Start; +        Start = SE.getConstant(Normalized->getType(), 0); +    } +    Normalized = +      cast<SCEVAddRecExpr>(SE.getAddRecExpr( +                             Start, Step, Normalized->getLoop(), +                             Normalized->getNoWrapFlags(SCEV::FlagNW))); +  } + +  // Expand the core addrec. If we need post-loop scaling, force it to +  // expand to an integer type to avoid the need for additional casting. +  Type *ExpandTy = PostLoopScale ? IntTy : STy; +  // We can't use a pointer type for the addrec if the pointer type is +  // non-integral. +  Type *AddRecPHIExpandTy = +      DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; + +  // In some cases, we decide to reuse an existing phi node but need to truncate +  // it and/or invert the step. +  Type *TruncTy = nullptr; +  bool InvertStep = false; +  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, +                                          IntTy, TruncTy, InvertStep); + +  // Accommodate post-inc mode, if necessary. +  Value *Result; +  if (!PostIncLoops.count(L)) +    Result = PN; +  else { +    // In PostInc mode, use the post-incremented value. +    BasicBlock *LatchBlock = L->getLoopLatch(); +    assert(LatchBlock && "PostInc mode requires a unique loop latch!"); +    Result = PN->getIncomingValueForBlock(LatchBlock); + +    // We might be introducing a new use of the post-inc IV that is not poison +    // safe, in which case we should drop poison generating flags. Only keep +    // those flags for which SCEV has proven that they always hold. +    if (isa<OverflowingBinaryOperator>(Result)) { +      auto *I = cast<Instruction>(Result); +      if (!S->hasNoUnsignedWrap()) +        I->setHasNoUnsignedWrap(false); +      if (!S->hasNoSignedWrap()) +        I->setHasNoSignedWrap(false); +    } + +    // For an expansion to use the postinc form, the client must call +    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop +    // or dominated by IVIncInsertPos. +    if (isa<Instruction>(Result) && +        !SE.DT.dominates(cast<Instruction>(Result), +                         &*Builder.GetInsertPoint())) { +      // The induction variable's postinc expansion does not dominate this use. +      // IVUsers tries to prevent this case, so it is rare. However, it can +      // happen when an IVUser outside the loop is not dominated by the latch +      // block. Adjusting IVIncInsertPos before expansion begins cannot handle +      // all cases. Consider a phi outside whose operand is replaced during +      // expansion with the value of the postinc user. Without fundamentally +      // changing the way postinc users are tracked, the only remedy is +      // inserting an extra IV increment. StepV might fold into PostLoopOffset, +      // but hopefully expandCodeFor handles that. +      bool useSubtract = +        !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); +      if (useSubtract) +        Step = SE.getNegativeSCEV(Step); +      Value *StepV; +      { +        // Expand the step somewhere that dominates the loop header. +        SCEVInsertPointGuard Guard(Builder, this); +        StepV = expandCodeForImpl( +            Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); +      } +      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); +    } +  } + +  // We have decided to reuse an induction variable of a dominating loop. Apply +  // truncation and/or inversion of the step. +  if (TruncTy) { +    Type *ResTy = Result->getType(); +    // Normalize the result type. +    if (ResTy != SE.getEffectiveSCEVType(ResTy)) +      Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); +    // Truncate the result. +    if (TruncTy != Result->getType()) +      Result = Builder.CreateTrunc(Result, TruncTy); + +    // Invert the result. +    if (InvertStep) +      Result = Builder.CreateSub( +          expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); +  } + +  // Re-apply any non-loop-dominating scale. +  if (PostLoopScale) { +    assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); +    Result = InsertNoopCastOfTo(Result, IntTy); +    Result = Builder.CreateMul(Result, +                               expandCodeForImpl(PostLoopScale, IntTy, false)); +  } + +  // Re-apply any non-loop-dominating offset. +  if (PostLoopOffset) { +    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { +      if (Result->getType()->isIntegerTy()) { +        Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); +        Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); +      } else { +        Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); +      } +    } else { +      Result = InsertNoopCastOfTo(Result, IntTy); +      Result = Builder.CreateAdd( +          Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); +    } +  } + +  return Result; +} + +Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { +  // In canonical mode we compute the addrec as an expression of a canonical IV +  // using evaluateAtIteration and expand the resulting SCEV expression. This +  // way we avoid introducing new IVs to carry on the comutation of the addrec +  // throughout the loop. +  // +  // For nested addrecs evaluateAtIteration might need a canonical IV of a +  // type wider than the addrec itself. Emitting a canonical IV of the +  // proper type might produce non-legal types, for example expanding an i64 +  // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall +  // back to non-canonical mode for nested addrecs. +  if (!CanonicalMode || (S->getNumOperands() > 2)) +    return expandAddRecExprLiterally(S); + +  Type *Ty = SE.getEffectiveSCEVType(S->getType()); +  const Loop *L = S->getLoop(); + +  // First check for an existing canonical IV in a suitable type. +  PHINode *CanonicalIV = nullptr; +  if (PHINode *PN = L->getCanonicalInductionVariable()) +    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) +      CanonicalIV = PN; + +  // Rewrite an AddRec in terms of the canonical induction variable, if +  // its type is more narrow. +  if (CanonicalIV && +      SE.getTypeSizeInBits(CanonicalIV->getType()) > +      SE.getTypeSizeInBits(Ty)) { +    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); +    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) +      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); +    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), +                                       S->getNoWrapFlags(SCEV::FlagNW))); +    BasicBlock::iterator NewInsertPt = +        findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); +    V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, +                          &*NewInsertPt, false); +    return V; +  } + +  // {X,+,F} --> X + {0,+,F} +  if (!S->getStart()->isZero()) { +    SmallVector<const SCEV *, 4> NewOps(S->operands()); +    NewOps[0] = SE.getConstant(Ty, 0); +    const SCEV *Rest = SE.getAddRecExpr(NewOps, L, +                                        S->getNoWrapFlags(SCEV::FlagNW)); + +    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the +    // comments on expandAddToGEP for details. +    const SCEV *Base = S->getStart(); +    // Dig into the expression to find the pointer base for a GEP. +    const SCEV *ExposedRest = Rest; +    ExposePointerBase(Base, ExposedRest, SE); +    // If we found a pointer, expand the AddRec with a GEP. +    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { +      // Make sure the Base isn't something exotic, such as a multiplied +      // or divided pointer value. In those cases, the result type isn't +      // actually a pointer type. +      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { +        Value *StartV = expand(Base); +        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); +        return expandAddToGEP(ExposedRest, PTy, Ty, StartV); +      } +    } + +    // Just do a normal add. Pre-expand the operands to suppress folding. +    // +    // The LHS and RHS values are factored out of the expand call to make the +    // output independent of the argument evaluation order. +    const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); +    const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); +    return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); +  } + +  // If we don't yet have a canonical IV, create one. +  if (!CanonicalIV) { +    // Create and insert the PHI node for the induction variable in the +    // specified loop. +    BasicBlock *Header = L->getHeader(); +    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); +    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", +                                  &Header->front()); +    rememberInstruction(CanonicalIV); + +    SmallSet<BasicBlock *, 4> PredSeen; +    Constant *One = ConstantInt::get(Ty, 1); +    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { +      BasicBlock *HP = *HPI; +      if (!PredSeen.insert(HP).second) { +        // There must be an incoming value for each predecessor, even the +        // duplicates! +        CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); +        continue; +      } + +      if (L->contains(HP)) { +        // Insert a unit add instruction right before the terminator +        // corresponding to the back-edge. +        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, +                                                     "indvar.next", +                                                     HP->getTerminator()); +        Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); +        rememberInstruction(Add); +        CanonicalIV->addIncoming(Add, HP); +      } else { +        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); +      } +    } +  } + +  // {0,+,1} --> Insert a canonical induction variable into the loop! +  if (S->isAffine() && S->getOperand(1)->isOne()) { +    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && +           "IVs with types different from the canonical IV should " +           "already have been handled!"); +    return CanonicalIV; +  } + +  // {0,+,F} --> {0,+,1} * F + +  // If this is a simple linear addrec, emit it now as a special case. +  if (S->isAffine())    // {0,+,F} --> i*F +    return +      expand(SE.getTruncateOrNoop( +        SE.getMulExpr(SE.getUnknown(CanonicalIV), +                      SE.getNoopOrAnyExtend(S->getOperand(1), +                                            CanonicalIV->getType())), +        Ty)); + +  // If this is a chain of recurrences, turn it into a closed form, using the +  // folders, then expandCodeFor the closed form.  This allows the folders to +  // simplify the expression without having to build a bunch of special code +  // into this folder. +  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV. + +  // Promote S up to the canonical IV type, if the cast is foldable. +  const SCEV *NewS = S; +  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); +  if (isa<SCEVAddRecExpr>(Ext)) +    NewS = Ext; + +  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); +  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n"; + +  // Truncate the result down to the original type, if needed. +  const SCEV *T = SE.getTruncateOrNoop(V, Ty); +  return expand(T); +} + +Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { +  Value *V = +      expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); +  return Builder.CreatePtrToInt(V, S->getType()); +} + +Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { +  Type *Ty = SE.getEffectiveSCEVType(S->getType()); +  Value *V = expandCodeForImpl( +      S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), +      false); +  return Builder.CreateTrunc(V, Ty); +} + +Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { +  Type *Ty = SE.getEffectiveSCEVType(S->getType()); +  Value *V = expandCodeForImpl( +      S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), +      false); +  return Builder.CreateZExt(V, Ty); +} + +Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { +  Type *Ty = SE.getEffectiveSCEVType(S->getType()); +  Value *V = expandCodeForImpl( +      S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), +      false); +  return Builder.CreateSExt(V, Ty); +} + +Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { +  Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); +  Type *Ty = LHS->getType(); +  for (int i = S->getNumOperands()-2; i >= 0; --i) { +    // In the case of mixed integer and pointer types, do the +    // rest of the comparisons as integer. +    Type *OpTy = S->getOperand(i)->getType(); +    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { +      Ty = SE.getEffectiveSCEVType(Ty); +      LHS = InsertNoopCastOfTo(LHS, Ty); +    } +    Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); +    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); +    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); +    LHS = Sel; +  } +  // In the case of mixed integer and pointer types, cast the +  // final result back to the pointer type. +  if (LHS->getType() != S->getType()) +    LHS = InsertNoopCastOfTo(LHS, S->getType()); +  return LHS; +} + +Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { +  Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); +  Type *Ty = LHS->getType(); +  for (int i = S->getNumOperands()-2; i >= 0; --i) { +    // In the case of mixed integer and pointer types, do the +    // rest of the comparisons as integer. +    Type *OpTy = S->getOperand(i)->getType(); +    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { +      Ty = SE.getEffectiveSCEVType(Ty); +      LHS = InsertNoopCastOfTo(LHS, Ty); +    } +    Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); +    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); +    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); +    LHS = Sel; +  } +  // In the case of mixed integer and pointer types, cast the +  // final result back to the pointer type. +  if (LHS->getType() != S->getType()) +    LHS = InsertNoopCastOfTo(LHS, S->getType()); +  return LHS; +} + +Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { +  Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); +  Type *Ty = LHS->getType(); +  for (int i = S->getNumOperands() - 2; i >= 0; --i) { +    // In the case of mixed integer and pointer types, do the +    // rest of the comparisons as integer. +    Type *OpTy = S->getOperand(i)->getType(); +    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { +      Ty = SE.getEffectiveSCEVType(Ty); +      LHS = InsertNoopCastOfTo(LHS, Ty); +    } +    Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); +    Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); +    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); +    LHS = Sel; +  } +  // In the case of mixed integer and pointer types, cast the +  // final result back to the pointer type. +  if (LHS->getType() != S->getType()) +    LHS = InsertNoopCastOfTo(LHS, S->getType()); +  return LHS; +} + +Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { +  Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); +  Type *Ty = LHS->getType(); +  for (int i = S->getNumOperands() - 2; i >= 0; --i) { +    // In the case of mixed integer and pointer types, do the +    // rest of the comparisons as integer. +    Type *OpTy = S->getOperand(i)->getType(); +    if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { +      Ty = SE.getEffectiveSCEVType(Ty); +      LHS = InsertNoopCastOfTo(LHS, Ty); +    } +    Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); +    Value *ICmp = Builder.CreateICmpULT(LHS, RHS); +    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); +    LHS = Sel; +  } +  // In the case of mixed integer and pointer types, cast the +  // final result back to the pointer type. +  if (LHS->getType() != S->getType()) +    LHS = InsertNoopCastOfTo(LHS, S->getType()); +  return LHS; +} + +Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, +                                       Instruction *IP, bool Root) { +  setInsertPoint(IP); +  Value *V = expandCodeForImpl(SH, Ty, Root); +  return V; +} + +Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { +  // Expand the code for this SCEV. +  Value *V = expand(SH); + +  if (PreserveLCSSA) { +    if (auto *Inst = dyn_cast<Instruction>(V)) { +      // Create a temporary instruction to at the current insertion point, so we +      // can hand it off to the helper to create LCSSA PHIs if required for the +      // new use. +      // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) +      // would accept a insertion point and return an LCSSA phi for that +      // insertion point, so there is no need to insert & remove the temporary +      // instruction. +      Instruction *Tmp; +      if (Inst->getType()->isIntegerTy()) +        Tmp = +            cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user")); +      else { +        assert(Inst->getType()->isPointerTy()); +        Tmp = cast<Instruction>( +            Builder.CreateGEP(Inst, Builder.getInt32(1), "tmp.lcssa.user")); +      } +      V = fixupLCSSAFormFor(Tmp, 0); + +      // Clean up temporary instruction. +      InsertedValues.erase(Tmp); +      InsertedPostIncValues.erase(Tmp); +      Tmp->eraseFromParent(); +    } +  } + +  InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; +  if (Ty) { +    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && +           "non-trivial casts should be done with the SCEVs directly!"); +    V = InsertNoopCastOfTo(V, Ty); +  } +  return V; +} + +ScalarEvolution::ValueOffsetPair +SCEVExpander::FindValueInExprValueMap(const SCEV *S, +                                      const Instruction *InsertPt) { +  SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); +  // If the expansion is not in CanonicalMode, and the SCEV contains any +  // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. +  if (CanonicalMode || !SE.containsAddRecurrence(S)) { +    // If S is scConstant, it may be worse to reuse an existing Value. +    if (S->getSCEVType() != scConstant && Set) { +      // Choose a Value from the set which dominates the insertPt. +      // insertPt should be inside the Value's parent loop so as not to break +      // the LCSSA form. +      for (auto const &VOPair : *Set) { +        Value *V = VOPair.first; +        ConstantInt *Offset = VOPair.second; +        Instruction *EntInst = nullptr; +        if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && +            S->getType() == V->getType() && +            EntInst->getFunction() == InsertPt->getFunction() && +            SE.DT.dominates(EntInst, InsertPt) && +            (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || +             SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) +          return {V, Offset}; +      } +    } +  } +  return {nullptr, nullptr}; +} + +// The expansion of SCEV will either reuse a previous Value in ExprValueMap, +// or expand the SCEV literally. Specifically, if the expansion is in LSRMode, +// and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded +// literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, +// the expansion will try to reuse Value from ExprValueMap, and only when it +// fails, expand the SCEV literally. +Value *SCEVExpander::expand(const SCEV *S) { +  // Compute an insertion point for this SCEV object. Hoist the instructions +  // as far out in the loop nest as possible. +  Instruction *InsertPt = &*Builder.GetInsertPoint(); + +  // We can move insertion point only if there is no div or rem operations +  // otherwise we are risky to move it over the check for zero denominator. +  auto SafeToHoist = [](const SCEV *S) { +    return !SCEVExprContains(S, [](const SCEV *S) { +              if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { +                if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) +                  // Division by non-zero constants can be hoisted. +                  return SC->getValue()->isZero(); +                // All other divisions should not be moved as they may be +                // divisions by zero and should be kept within the +                // conditions of the surrounding loops that guard their +                // execution (see PR35406). +                return true; +              } +              return false; +            }); +  }; +  if (SafeToHoist(S)) { +    for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; +         L = L->getParentLoop()) { +      if (SE.isLoopInvariant(S, L)) { +        if (!L) break; +        if (BasicBlock *Preheader = L->getLoopPreheader()) +          InsertPt = Preheader->getTerminator(); +        else +          // LSR sets the insertion point for AddRec start/step values to the +          // block start to simplify value reuse, even though it's an invalid +          // position. SCEVExpander must correct for this in all cases. +          InsertPt = &*L->getHeader()->getFirstInsertionPt(); +      } else { +        // If the SCEV is computable at this level, insert it into the header +        // after the PHIs (and after any other instructions that we've inserted +        // there) so that it is guaranteed to dominate any user inside the loop. +        if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) +          InsertPt = &*L->getHeader()->getFirstInsertionPt(); + +        while (InsertPt->getIterator() != Builder.GetInsertPoint() && +               (isInsertedInstruction(InsertPt) || +                isa<DbgInfoIntrinsic>(InsertPt))) { +          InsertPt = &*std::next(InsertPt->getIterator()); +        } +        break; +      } +    } +  } + +  // Check to see if we already expanded this here. +  auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); +  if (I != InsertedExpressions.end()) +    return I->second; + +  SCEVInsertPointGuard Guard(Builder, this); +  Builder.SetInsertPoint(InsertPt); + +  // Expand the expression into instructions. +  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); +  Value *V = VO.first; + +  if (!V) +    V = visit(S); +  else if (VO.second) { +    if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { +      Type *Ety = Vty->getPointerElementType(); +      int64_t Offset = VO.second->getSExtValue(); +      int64_t ESize = SE.getTypeSizeInBits(Ety); +      if ((Offset * 8) % ESize == 0) { +        ConstantInt *Idx = +            ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); +        V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); +      } else { +        ConstantInt *Idx = +            ConstantInt::getSigned(VO.second->getType(), -Offset); +        unsigned AS = Vty->getAddressSpace(); +        V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); +        V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, +                              "uglygep"); +        V = Builder.CreateBitCast(V, Vty); +      } +    } else { +      V = Builder.CreateSub(V, VO.second); +    } +  } +  // Remember the expanded value for this SCEV at this location. +  // +  // This is independent of PostIncLoops. The mapped value simply materializes +  // the expression at this insertion point. If the mapped value happened to be +  // a postinc expansion, it could be reused by a non-postinc user, but only if +  // its insertion point was already at the head of the loop. +  InsertedExpressions[std::make_pair(S, InsertPt)] = V; +  return V; +} + +void SCEVExpander::rememberInstruction(Value *I) { +  auto DoInsert = [this](Value *V) { +    if (!PostIncLoops.empty()) +      InsertedPostIncValues.insert(V); +    else +      InsertedValues.insert(V); +  }; +  DoInsert(I); + +  if (!PreserveLCSSA) +    return; + +  if (auto *Inst = dyn_cast<Instruction>(I)) { +    // A new instruction has been added, which might introduce new uses outside +    // a defining loop. Fix LCSSA from for each operand of the new instruction, +    // if required. +    for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; +         OpIdx++) +      fixupLCSSAFormFor(Inst, OpIdx); +  } +} + +/// replaceCongruentIVs - Check for congruent phis in this loop header and +/// replace them with their most canonical representative. Return the number of +/// phis eliminated. +/// +/// This does not depend on any SCEVExpander state but should be used in +/// the same context that SCEVExpander is used. +unsigned +SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, +                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts, +                                  const TargetTransformInfo *TTI) { +  // Find integer phis in order of increasing width. +  SmallVector<PHINode*, 8> Phis; +  for (PHINode &PN : L->getHeader()->phis()) +    Phis.push_back(&PN); + +  if (TTI) +    llvm::sort(Phis, [](Value *LHS, Value *RHS) { +      // Put pointers at the back and make sure pointer < pointer = false. +      if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) +        return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); +      return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < +             LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); +    }); + +  unsigned NumElim = 0; +  DenseMap<const SCEV *, PHINode *> ExprToIVMap; +  // Process phis from wide to narrow. Map wide phis to their truncation +  // so narrow phis can reuse them. +  for (PHINode *Phi : Phis) { +    auto SimplifyPHINode = [&](PHINode *PN) -> Value * { +      if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) +        return V; +      if (!SE.isSCEVable(PN->getType())) +        return nullptr; +      auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); +      if (!Const) +        return nullptr; +      return Const->getValue(); +    }; + +    // Fold constant phis. They may be congruent to other constant phis and +    // would confuse the logic below that expects proper IVs. +    if (Value *V = SimplifyPHINode(Phi)) { +      if (V->getType() != Phi->getType()) +        continue; +      Phi->replaceAllUsesWith(V); +      DeadInsts.emplace_back(Phi); +      ++NumElim; +      DEBUG_WITH_TYPE(DebugType, dbgs() +                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); +      continue; +    } + +    if (!SE.isSCEVable(Phi->getType())) +      continue; + +    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; +    if (!OrigPhiRef) { +      OrigPhiRef = Phi; +      if (Phi->getType()->isIntegerTy() && TTI && +          TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { +        // This phi can be freely truncated to the narrowest phi type. Map the +        // truncated expression to it so it will be reused for narrow types. +        const SCEV *TruncExpr = +          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); +        ExprToIVMap[TruncExpr] = Phi; +      } +      continue; +    } + +    // Replacing a pointer phi with an integer phi or vice-versa doesn't make +    // sense. +    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) +      continue; + +    if (BasicBlock *LatchBlock = L->getLoopLatch()) { +      Instruction *OrigInc = dyn_cast<Instruction>( +          OrigPhiRef->getIncomingValueForBlock(LatchBlock)); +      Instruction *IsomorphicInc = +          dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); + +      if (OrigInc && IsomorphicInc) { +        // If this phi has the same width but is more canonical, replace the +        // original with it. As part of the "more canonical" determination, +        // respect a prior decision to use an IV chain. +        if (OrigPhiRef->getType() == Phi->getType() && +            !(ChainedPhis.count(Phi) || +              isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && +            (ChainedPhis.count(Phi) || +             isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { +          std::swap(OrigPhiRef, Phi); +          std::swap(OrigInc, IsomorphicInc); +        } +        // Replacing the congruent phi is sufficient because acyclic +        // redundancy elimination, CSE/GVN, should handle the +        // rest. However, once SCEV proves that a phi is congruent, +        // it's often the head of an IV user cycle that is isomorphic +        // with the original phi. It's worth eagerly cleaning up the +        // common case of a single IV increment so that DeleteDeadPHIs +        // can remove cycles that had postinc uses. +        const SCEV *TruncExpr = +            SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); +        if (OrigInc != IsomorphicInc && +            TruncExpr == SE.getSCEV(IsomorphicInc) && +            SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && +            hoistIVInc(OrigInc, IsomorphicInc)) { +          DEBUG_WITH_TYPE(DebugType, +                          dbgs() << "INDVARS: Eliminated congruent iv.inc: " +                                 << *IsomorphicInc << '\n'); +          Value *NewInc = OrigInc; +          if (OrigInc->getType() != IsomorphicInc->getType()) { +            Instruction *IP = nullptr; +            if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) +              IP = &*PN->getParent()->getFirstInsertionPt(); +            else +              IP = OrigInc->getNextNode(); + +            IRBuilder<> Builder(IP); +            Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); +            NewInc = Builder.CreateTruncOrBitCast( +                OrigInc, IsomorphicInc->getType(), IVName); +          } +          IsomorphicInc->replaceAllUsesWith(NewInc); +          DeadInsts.emplace_back(IsomorphicInc); +        } +      } +    } +    DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " +                                      << *Phi << '\n'); +    DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Original iv: " +                                      << *OrigPhiRef << '\n'); +    ++NumElim; +    Value *NewIV = OrigPhiRef; +    if (OrigPhiRef->getType() != Phi->getType()) { +      IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); +      Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); +      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); +    } +    Phi->replaceAllUsesWith(NewIV); +    DeadInsts.emplace_back(Phi); +  } +  return NumElim; +} + +Optional<ScalarEvolution::ValueOffsetPair> +SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, +                                          Loop *L) { +  using namespace llvm::PatternMatch; + +  SmallVector<BasicBlock *, 4> ExitingBlocks; +  L->getExitingBlocks(ExitingBlocks); + +  // Look for suitable value in simple conditions at the loop exits. +  for (BasicBlock *BB : ExitingBlocks) { +    ICmpInst::Predicate Pred; +    Instruction *LHS, *RHS; + +    if (!match(BB->getTerminator(), +               m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), +                    m_BasicBlock(), m_BasicBlock()))) +      continue; + +    if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) +      return ScalarEvolution::ValueOffsetPair(LHS, nullptr); + +    if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) +      return ScalarEvolution::ValueOffsetPair(RHS, nullptr); +  } + +  // Use expand's logic which is used for reusing a previous Value in +  // ExprValueMap. +  ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); +  if (VO.first) +    return VO; + +  // There is potential to make this significantly smarter, but this simple +  // heuristic already gets some interesting cases. + +  // Can not find suitable value. +  return None; +} + +template<typename T> static int costAndCollectOperands( +  const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, +  TargetTransformInfo::TargetCostKind CostKind, +  SmallVectorImpl<SCEVOperand> &Worklist) { + +  const T *S = cast<T>(WorkItem.S); +  int Cost = 0; +  // Object to help map SCEV operands to expanded IR instructions. +  struct OperationIndices { +    OperationIndices(unsigned Opc, size_t min, size_t max) : +      Opcode(Opc), MinIdx(min), MaxIdx(max) { } +    unsigned Opcode; +    size_t MinIdx; +    size_t MaxIdx; +  }; + +  // Collect the operations of all the instructions that will be needed to +  // expand the SCEVExpr. This is so that when we come to cost the operands, +  // we know what the generated user(s) will be. +  SmallVector<OperationIndices, 2> Operations; + +  auto CastCost = [&](unsigned Opcode) { +    Operations.emplace_back(Opcode, 0, 0); +    return TTI.getCastInstrCost(Opcode, S->getType(), +                                S->getOperand(0)->getType(), +                                TTI::CastContextHint::None, CostKind); +  }; + +  auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, +                       unsigned MinIdx = 0, unsigned MaxIdx = 1) { +    Operations.emplace_back(Opcode, MinIdx, MaxIdx); +    return NumRequired * +      TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); +  }; + +  auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, +                        unsigned MinIdx, unsigned MaxIdx) { +    Operations.emplace_back(Opcode, MinIdx, MaxIdx); +    Type *OpType = S->getOperand(0)->getType(); +    return NumRequired * TTI.getCmpSelInstrCost( +                             Opcode, OpType, CmpInst::makeCmpResultType(OpType), +                             CmpInst::BAD_ICMP_PREDICATE, CostKind); +  }; + +  switch (S->getSCEVType()) { +  case scCouldNotCompute: +    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); +  case scUnknown: +  case scConstant: +    return 0; +  case scPtrToInt: +    Cost = CastCost(Instruction::PtrToInt); +    break; +  case scTruncate: +    Cost = CastCost(Instruction::Trunc); +    break; +  case scZeroExtend: +    Cost = CastCost(Instruction::ZExt); +    break; +  case scSignExtend: +    Cost = CastCost(Instruction::SExt); +    break; +  case scUDivExpr: { +    unsigned Opcode = Instruction::UDiv; +    if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) +      if (SC->getAPInt().isPowerOf2()) +        Opcode = Instruction::LShr; +    Cost = ArithCost(Opcode, 1); +    break; +  } +  case scAddExpr: +    Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); +    break; +  case scMulExpr: +    // TODO: this is a very pessimistic cost modelling for Mul, +    // because of Bin Pow algorithm actually used by the expander, +    // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). +    Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); +    break; +  case scSMaxExpr: +  case scUMaxExpr: +  case scSMinExpr: +  case scUMinExpr: { +    Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); +    Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); +    break; +  } +  case scAddRecExpr: { +    // In this polynominal, we may have some zero operands, and we shouldn't +    // really charge for those. So how many non-zero coeffients are there? +    int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { +                                    return !Op->isZero(); +                                  }); + +    assert(NumTerms >= 1 && "Polynominal should have at least one term."); +    assert(!(*std::prev(S->operands().end()))->isZero() && +           "Last operand should not be zero"); + +    // Ignoring constant term (operand 0), how many of the coeffients are u> 1? +    int NumNonZeroDegreeNonOneTerms = +      llvm::count_if(S->operands(), [](const SCEV *Op) { +                      auto *SConst = dyn_cast<SCEVConstant>(Op); +                      return !SConst || SConst->getAPInt().ugt(1); +                    }); + +    // Much like with normal add expr, the polynominal will require +    // one less addition than the number of it's terms. +    int AddCost = ArithCost(Instruction::Add, NumTerms - 1, +                            /*MinIdx*/1, /*MaxIdx*/1); +    // Here, *each* one of those will require a multiplication. +    int MulCost = ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); +    Cost = AddCost + MulCost; + +    // What is the degree of this polynominal? +    int PolyDegree = S->getNumOperands() - 1; +    assert(PolyDegree >= 1 && "Should be at least affine."); + +    // The final term will be: +    //   Op_{PolyDegree} * x ^ {PolyDegree} +    // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations. +    // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for +    // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free. +    // FIXME: this is conservatively correct, but might be overly pessimistic. +    Cost += MulCost * (PolyDegree - 1); +    break; +  } +  } + +  for (auto &CostOp : Operations) { +    for (auto SCEVOp : enumerate(S->operands())) { +      // Clamp the index to account for multiple IR operations being chained. +      size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); +      size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); +      Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); +    } +  } +  return Cost; +} + +bool SCEVExpander::isHighCostExpansionHelper( +    const SCEVOperand &WorkItem, Loop *L, const Instruction &At, +    int &BudgetRemaining, const TargetTransformInfo &TTI, +    SmallPtrSetImpl<const SCEV *> &Processed, +    SmallVectorImpl<SCEVOperand> &Worklist) { +  if (BudgetRemaining < 0) +    return true; // Already run out of budget, give up. + +  const SCEV *S = WorkItem.S; +  // Was the cost of expansion of this expression already accounted for? +  if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) +    return false; // We have already accounted for this expression. + +  // If we can find an existing value for this scev available at the point "At" +  // then consider the expression cheap. +  if (getRelatedExistingExpansion(S, &At, L)) +    return false; // Consider the expression to be free. + +  TargetTransformInfo::TargetCostKind CostKind = +      L->getHeader()->getParent()->hasMinSize() +          ? TargetTransformInfo::TCK_CodeSize +          : TargetTransformInfo::TCK_RecipThroughput; + +  switch (S->getSCEVType()) { +  case scCouldNotCompute: +    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); +  case scUnknown: +    // Assume to be zero-cost. +    return false; +  case scConstant: { +    // Only evalulate the costs of constants when optimizing for size. +    if (CostKind != TargetTransformInfo::TCK_CodeSize) +      return 0; +    const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); +    Type *Ty = S->getType(); +    BudgetRemaining -= TTI.getIntImmCostInst( +        WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); +    return BudgetRemaining < 0; +  } +  case scTruncate: +  case scPtrToInt: +  case scZeroExtend: +  case scSignExtend: { +    int Cost = +        costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); +    BudgetRemaining -= Cost; +    return false; // Will answer upon next entry into this function. +  } +  case scUDivExpr: { +    // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or +    // HowManyLessThans produced to compute a precise expression, rather than a +    // UDiv from the user's code. If we can't find a UDiv in the code with some +    // simple searching, we need to account for it's cost. + +    // At the beginning of this function we already tried to find existing +    // value for plain 'S'. Now try to lookup 'S + 1' since it is common +    // pattern involving division. This is just a simple search heuristic. +    if (getRelatedExistingExpansion( +            SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) +      return false; // Consider it to be free. + +    int Cost = +        costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); +    // Need to count the cost of this UDiv. +    BudgetRemaining -= Cost; +    return false; // Will answer upon next entry into this function. +  } +  case scAddExpr: +  case scMulExpr: +  case scUMaxExpr: +  case scSMaxExpr: +  case scUMinExpr: +  case scSMinExpr: { +    assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && +           "Nary expr should have more than 1 operand."); +    // The simple nary expr will require one less op (or pair of ops) +    // than the number of it's terms. +    int Cost = +        costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); +    BudgetRemaining -= Cost; +    return BudgetRemaining < 0; +  } +  case scAddRecExpr: { +    assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && +           "Polynomial should be at least linear"); +    BudgetRemaining -= costAndCollectOperands<SCEVAddRecExpr>( +        WorkItem, TTI, CostKind, Worklist); +    return BudgetRemaining < 0; +  } +  } +  llvm_unreachable("Unknown SCEV kind!"); +} + +Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, +                                            Instruction *IP) { +  assert(IP); +  switch (Pred->getKind()) { +  case SCEVPredicate::P_Union: +    return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); +  case SCEVPredicate::P_Equal: +    return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); +  case SCEVPredicate::P_Wrap: { +    auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); +    return expandWrapPredicate(AddRecPred, IP); +  } +  } +  llvm_unreachable("Unknown SCEV predicate type"); +} + +Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, +                                          Instruction *IP) { +  Value *Expr0 = +      expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); +  Value *Expr1 = +      expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); + +  Builder.SetInsertPoint(IP); +  auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); +  return I; +} + +Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, +                                           Instruction *Loc, bool Signed) { +  assert(AR->isAffine() && "Cannot generate RT check for " +                           "non-affine expression"); + +  SCEVUnionPredicate Pred; +  const SCEV *ExitCount = +      SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); + +  assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); + +  const SCEV *Step = AR->getStepRecurrence(SE); +  const SCEV *Start = AR->getStart(); + +  Type *ARTy = AR->getType(); +  unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); +  unsigned DstBits = SE.getTypeSizeInBits(ARTy); + +  // The expression {Start,+,Step} has nusw/nssw if +  //   Step < 0, Start - |Step| * Backedge <= Start +  //   Step >= 0, Start + |Step| * Backedge > Start +  // and |Step| * Backedge doesn't unsigned overflow. + +  IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); +  Builder.SetInsertPoint(Loc); +  Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); + +  IntegerType *Ty = +      IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); +  Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; + +  Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); +  Value *NegStepValue = +      expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); +  Value *StartValue = expandCodeForImpl(Start, ARExpandTy, Loc, false); + +  ConstantInt *Zero = +      ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); + +  Builder.SetInsertPoint(Loc); +  // Compute |Step| +  Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); +  Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); + +  // Get the backedge taken count and truncate or extended to the AR type. +  Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); +  auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), +                                         Intrinsic::umul_with_overflow, Ty); + +  // Compute |Step| * Backedge +  CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); +  Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); +  Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); + +  // Compute: +  //   Start + |Step| * Backedge < Start +  //   Start - |Step| * Backedge > Start +  Value *Add = nullptr, *Sub = nullptr; +  if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { +    const SCEV *MulS = SE.getSCEV(MulV); +    const SCEV *NegMulS = SE.getNegativeSCEV(MulS); +    Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), +                                ARPtrTy); +    Sub = Builder.CreateBitCast( +        expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); +  } else { +    Add = Builder.CreateAdd(StartValue, MulV); +    Sub = Builder.CreateSub(StartValue, MulV); +  } + +  Value *EndCompareGT = Builder.CreateICmp( +      Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); + +  Value *EndCompareLT = Builder.CreateICmp( +      Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); + +  // Select the answer based on the sign of Step. +  Value *EndCheck = +      Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); + +  // If the backedge taken count type is larger than the AR type, +  // check that we don't drop any bits by truncating it. If we are +  // dropping bits, then we have overflow (unless the step is zero). +  if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { +    auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); +    auto *BackedgeCheck = +        Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, +                           ConstantInt::get(Loc->getContext(), MaxVal)); +    BackedgeCheck = Builder.CreateAnd( +        BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); + +    EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); +  } + +  return Builder.CreateOr(EndCheck, OfMul); +} + +Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, +                                         Instruction *IP) { +  const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); +  Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; + +  // Add a check for NUSW +  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) +    NUSWCheck = generateOverflowCheck(A, IP, false); + +  // Add a check for NSSW +  if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) +    NSSWCheck = generateOverflowCheck(A, IP, true); + +  if (NUSWCheck && NSSWCheck) +    return Builder.CreateOr(NUSWCheck, NSSWCheck); + +  if (NUSWCheck) +    return NUSWCheck; + +  if (NSSWCheck) +    return NSSWCheck; + +  return ConstantInt::getFalse(IP->getContext()); +} + +Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, +                                          Instruction *IP) { +  auto *BoolType = IntegerType::get(IP->getContext(), 1); +  Value *Check = ConstantInt::getNullValue(BoolType); + +  // Loop over all checks in this set. +  for (auto Pred : Union->getPredicates()) { +    auto *NextCheck = expandCodeForPredicate(Pred, IP); +    Builder.SetInsertPoint(IP); +    Check = Builder.CreateOr(Check, NextCheck); +  } + +  return Check; +} + +Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { +  assert(PreserveLCSSA); +  SmallVector<Instruction *, 1> ToUpdate; + +  auto *OpV = User->getOperand(OpIdx); +  auto *OpI = dyn_cast<Instruction>(OpV); +  if (!OpI) +    return OpV; + +  Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); +  Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); +  if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) +    return OpV; + +  ToUpdate.push_back(OpI); +  SmallVector<PHINode *, 16> PHIsToRemove; +  formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); +  for (PHINode *PN : PHIsToRemove) { +    if (!PN->use_empty()) +      continue; +    InsertedValues.erase(PN); +    InsertedPostIncValues.erase(PN); +    PN->eraseFromParent(); +  } + +  return User->getOperand(OpIdx); +} + +namespace { +// Search for a SCEV subexpression that is not safe to expand.  Any expression +// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely +// UDiv expressions. We don't know if the UDiv is derived from an IR divide +// instruction, but the important thing is that we prove the denominator is +// nonzero before expansion. +// +// IVUsers already checks that IV-derived expressions are safe. So this check is +// only needed when the expression includes some subexpression that is not IV +// derived. +// +// Currently, we only allow division by a nonzero constant here. If this is +// inadequate, we could easily allow division by SCEVUnknown by using +// ValueTracking to check isKnownNonZero(). +// +// We cannot generally expand recurrences unless the step dominates the loop +// header. The expander handles the special case of affine recurrences by +// scaling the recurrence outside the loop, but this technique isn't generally +// applicable. Expanding a nested recurrence outside a loop requires computing +// binomial coefficients. This could be done, but the recurrence has to be in a +// perfectly reduced form, which can't be guaranteed. +struct SCEVFindUnsafe { +  ScalarEvolution &SE; +  bool IsUnsafe; + +  SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} + +  bool follow(const SCEV *S) { +    if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { +      const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); +      if (!SC || SC->getValue()->isZero()) { +        IsUnsafe = true; +        return false; +      } +    } +    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { +      const SCEV *Step = AR->getStepRecurrence(SE); +      if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { +        IsUnsafe = true; +        return false; +      } +    } +    return true; +  } +  bool isDone() const { return IsUnsafe; } +}; +} + +namespace llvm { +bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { +  SCEVFindUnsafe Search(SE); +  visitAll(S, Search); +  return !Search.IsUnsafe; +} + +bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, +                      ScalarEvolution &SE) { +  if (!isSafeToExpand(S, SE)) +    return false; +  // We have to prove that the expanded site of S dominates InsertionPoint. +  // This is easy when not in the same block, but hard when S is an instruction +  // to be expanded somewhere inside the same block as our insertion point. +  // What we really need here is something analogous to an OrderedBasicBlock, +  // but for the moment, we paper over the problem by handling two common and +  // cheap to check cases. +  if (SE.properlyDominates(S, InsertionPoint->getParent())) +    return true; +  if (SE.dominates(S, InsertionPoint->getParent())) { +    if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) +      return true; +    if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) +      for (const Value *V : InsertionPoint->operand_values()) +        if (V == U->getValue()) +          return true; +  } +  return false; +} + +SCEVExpanderCleaner::~SCEVExpanderCleaner() { +  // Result is used, nothing to remove. +  if (ResultUsed) +    return; + +  auto InsertedInstructions = Expander.getAllInsertedInstructions(); +#ifndef NDEBUG +  SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), +                                            InsertedInstructions.end()); +  (void)InsertedSet; +#endif +  // Remove sets with value handles. +  Expander.clear(); + +  // Sort so that earlier instructions do not dominate later instructions. +  stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) { +    return DT.dominates(B, A); +  }); +  // Remove all inserted instructions. +  for (Instruction *I : InsertedInstructions) { + +#ifndef NDEBUG +    assert(all_of(I->users(), +                  [&InsertedSet](Value *U) { +                    return InsertedSet.contains(cast<Instruction>(U)); +                  }) && +           "removed instruction should only be used by instructions inserted " +           "during expansion"); +#endif +    assert(!I->getType()->isVoidTy() && +           "inserted instruction should have non-void types"); +    I->replaceAllUsesWith(UndefValue::get(I->getType())); +    I->eraseFromParent(); +  } +} +} | 
