diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp | 3563 |
1 files changed, 3563 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp new file mode 100644 index 000000000000..f9a9dd237b6c --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp @@ -0,0 +1,3563 @@ +//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the library calls simplifier. It does not implement +// any pass, but can't be used by other passes to do simplifications. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" +#include "llvm/Transforms/Utils/SizeOpts.h" + +using namespace llvm; +using namespace PatternMatch; + +static cl::opt<bool> + EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, + cl::init(false), + cl::desc("Enable unsafe double to float " + "shrinking for math lib calls")); + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +static bool ignoreCallingConv(LibFunc Func) { + return Func == LibFunc_abs || Func == LibFunc_labs || + Func == LibFunc_llabs || Func == LibFunc_strlen; +} + +static bool isCallingConvCCompatible(CallInst *CI) { + switch(CI->getCallingConv()) { + default: + return false; + case llvm::CallingConv::C: + return true; + case llvm::CallingConv::ARM_APCS: + case llvm::CallingConv::ARM_AAPCS: + case llvm::CallingConv::ARM_AAPCS_VFP: { + + // The iOS ABI diverges from the standard in some cases, so for now don't + // try to simplify those calls. + if (Triple(CI->getModule()->getTargetTriple()).isiOS()) + return false; + + auto *FuncTy = CI->getFunctionType(); + + if (!FuncTy->getReturnType()->isPointerTy() && + !FuncTy->getReturnType()->isIntegerTy() && + !FuncTy->getReturnType()->isVoidTy()) + return false; + + for (auto Param : FuncTy->params()) { + if (!Param->isPointerTy() && !Param->isIntegerTy()) + return false; + } + return true; + } + } + return false; +} + +/// Return true if it is only used in equality comparisons with With. +static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { + for (User *U : V->users()) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) + if (IC->isEquality() && IC->getOperand(1) == With) + continue; + // Unknown instruction. + return false; + } + return true; +} + +static bool callHasFloatingPointArgument(const CallInst *CI) { + return any_of(CI->operands(), [](const Use &OI) { + return OI->getType()->isFloatingPointTy(); + }); +} + +static bool callHasFP128Argument(const CallInst *CI) { + return any_of(CI->operands(), [](const Use &OI) { + return OI->getType()->isFP128Ty(); + }); +} + +static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { + if (Base < 2 || Base > 36) + // handle special zero base + if (Base != 0) + return nullptr; + + char *End; + std::string nptr = Str.str(); + errno = 0; + long long int Result = strtoll(nptr.c_str(), &End, Base); + if (errno) + return nullptr; + + // if we assume all possible target locales are ASCII supersets, + // then if strtoll successfully parses a number on the host, + // it will also successfully parse the same way on the target + if (*End != '\0') + return nullptr; + + if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) + return nullptr; + + return ConstantInt::get(CI->getType(), Result); +} + +static bool isOnlyUsedInComparisonWithZero(Value *V) { + for (User *U : V->users()) { + if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) + if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) + if (C->isNullValue()) + continue; + // Unknown instruction. + return false; + } + return true; +} + +static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, + const DataLayout &DL) { + if (!isOnlyUsedInComparisonWithZero(CI)) + return false; + + if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) + return false; + + if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) + return false; + + return true; +} + +static void annotateDereferenceableBytes(CallInst *CI, + ArrayRef<unsigned> ArgNos, + uint64_t DereferenceableBytes) { + const Function *F = CI->getCaller(); + if (!F) + return; + for (unsigned ArgNo : ArgNos) { + uint64_t DerefBytes = DereferenceableBytes; + unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); + if (!llvm::NullPointerIsDefined(F, AS) || + CI->paramHasAttr(ArgNo, Attribute::NonNull)) + DerefBytes = std::max(CI->getDereferenceableOrNullBytes( + ArgNo + AttributeList::FirstArgIndex), + DereferenceableBytes); + + if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) < + DerefBytes) { + CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); + if (!llvm::NullPointerIsDefined(F, AS) || + CI->paramHasAttr(ArgNo, Attribute::NonNull)) + CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); + CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( + CI->getContext(), DerefBytes)); + } + } +} + +static void annotateNonNullBasedOnAccess(CallInst *CI, + ArrayRef<unsigned> ArgNos) { + Function *F = CI->getCaller(); + if (!F) + return; + + for (unsigned ArgNo : ArgNos) { + if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) + continue; + unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); + if (llvm::NullPointerIsDefined(F, AS)) + continue; + + CI->addParamAttr(ArgNo, Attribute::NonNull); + annotateDereferenceableBytes(CI, ArgNo, 1); + } +} + +static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, + Value *Size, const DataLayout &DL) { + if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { + annotateNonNullBasedOnAccess(CI, ArgNos); + annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); + } else if (isKnownNonZero(Size, DL)) { + annotateNonNullBasedOnAccess(CI, ArgNos); + const APInt *X, *Y; + uint64_t DerefMin = 1; + if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { + DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); + annotateDereferenceableBytes(CI, ArgNos, DerefMin); + } + } +} + +//===----------------------------------------------------------------------===// +// String and Memory Library Call Optimizations +//===----------------------------------------------------------------------===// + +Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { + // Extract some information from the instruction + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + annotateNonNullBasedOnAccess(CI, {0, 1}); + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len) + annotateDereferenceableBytes(CI, 1, Len); + else + return nullptr; + --Len; // Unbias length. + + // Handle the simple, do-nothing case: strcat(x, "") -> x + if (Len == 0) + return Dst; + + return emitStrLenMemCpy(Src, Dst, Len, B); +} + +Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, + IRBuilderBase &B) { + // We need to find the end of the destination string. That's where the + // memory is to be moved to. We just generate a call to strlen. + Value *DstLen = emitStrLen(Dst, B, DL, TLI); + if (!DstLen) + return nullptr; + + // Now that we have the destination's length, we must index into the + // destination's pointer to get the actual memcpy destination (end of + // the string .. we're concatenating). + Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); + + // We have enough information to now generate the memcpy call to do the + // concatenation for us. Make a memcpy to copy the nul byte with align = 1. + B.CreateMemCpy( + CpyDst, Align(1), Src, Align(1), + ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); + return Dst; +} + +Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { + // Extract some information from the instruction. + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + Value *Size = CI->getArgOperand(2); + uint64_t Len; + annotateNonNullBasedOnAccess(CI, 0); + if (isKnownNonZero(Size, DL)) + annotateNonNullBasedOnAccess(CI, 1); + + // We don't do anything if length is not constant. + ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); + if (LengthArg) { + Len = LengthArg->getZExtValue(); + // strncat(x, c, 0) -> x + if (!Len) + return Dst; + } else { + return nullptr; + } + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen) { + annotateDereferenceableBytes(CI, 1, SrcLen); + --SrcLen; // Unbias length. + } else { + return nullptr; + } + + // strncat(x, "", c) -> x + if (SrcLen == 0) + return Dst; + + // We don't optimize this case. + if (Len < SrcLen) + return nullptr; + + // strncat(x, s, c) -> strcat(x, s) + // s is constant so the strcat can be optimized further. + return emitStrLenMemCpy(Src, Dst, SrcLen, B); +} + +Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + Value *SrcStr = CI->getArgOperand(0); + annotateNonNullBasedOnAccess(CI, 0); + + // If the second operand is non-constant, see if we can compute the length + // of the input string and turn this into memchr. + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + if (!CharC) { + uint64_t Len = GetStringLength(SrcStr); + if (Len) + annotateDereferenceableBytes(CI, 0, Len); + else + return nullptr; + if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. + return nullptr; + + return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. + ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), + B, DL, TLI); + } + + // Otherwise, the character is a constant, see if the first argument is + // a string literal. If so, we can constant fold. + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) + if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) + return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); + return nullptr; + } + + // Compute the offset, make sure to handle the case when we're searching for + // zero (a weird way to spell strlen). + size_t I = (0xFF & CharC->getSExtValue()) == 0 + ? Str.size() + : Str.find(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. strchr returns null. + return Constant::getNullValue(CI->getType()); + + // strchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); +} + +Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { + Value *SrcStr = CI->getArgOperand(0); + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + annotateNonNullBasedOnAccess(CI, 0); + + // Cannot fold anything if we're not looking for a constant. + if (!CharC) + return nullptr; + + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str)) { + // strrchr(s, 0) -> strchr(s, 0) + if (CharC->isZero()) + return emitStrChr(SrcStr, '\0', B, TLI); + return nullptr; + } + + // Compute the offset. + size_t I = (0xFF & CharC->getSExtValue()) == 0 + ? Str.size() + : Str.rfind(CharC->getSExtValue()); + if (I == StringRef::npos) // Didn't find the char. Return null. + return Constant::getNullValue(CI->getType()); + + // strrchr(s+n,c) -> gep(s+n+i,c) + return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); +} + +Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { + Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); + if (Str1P == Str2P) // strcmp(x,x) -> 0 + return ConstantInt::get(CI->getType(), 0); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strcmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) + return ConstantInt::get(CI->getType(), Str1.compare(Str2)); + + if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x + return B.CreateNeg(B.CreateZExt( + B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); + + if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x + return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), + CI->getType()); + + // strcmp(P, "x") -> memcmp(P, "x", 2) + uint64_t Len1 = GetStringLength(Str1P); + if (Len1) + annotateDereferenceableBytes(CI, 0, Len1); + uint64_t Len2 = GetStringLength(Str2P); + if (Len2) + annotateDereferenceableBytes(CI, 1, Len2); + + if (Len1 && Len2) { + return emitMemCmp(Str1P, Str2P, + ConstantInt::get(DL.getIntPtrType(CI->getContext()), + std::min(Len1, Len2)), + B, DL, TLI); + } + + // strcmp to memcmp + if (!HasStr1 && HasStr2) { + if (canTransformToMemCmp(CI, Str1P, Len2, DL)) + return emitMemCmp( + Str1P, Str2P, + ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, + TLI); + } else if (HasStr1 && !HasStr2) { + if (canTransformToMemCmp(CI, Str2P, Len1, DL)) + return emitMemCmp( + Str1P, Str2P, + ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, + TLI); + } + + annotateNonNullBasedOnAccess(CI, {0, 1}); + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { + Value *Str1P = CI->getArgOperand(0); + Value *Str2P = CI->getArgOperand(1); + Value *Size = CI->getArgOperand(2); + if (Str1P == Str2P) // strncmp(x,x,n) -> 0 + return ConstantInt::get(CI->getType(), 0); + + if (isKnownNonZero(Size, DL)) + annotateNonNullBasedOnAccess(CI, {0, 1}); + // Get the length argument if it is constant. + uint64_t Length; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) + Length = LengthArg->getZExtValue(); + else + return nullptr; + + if (Length == 0) // strncmp(x,y,0) -> 0 + return ConstantInt::get(CI->getType(), 0); + + if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) + return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); + + StringRef Str1, Str2; + bool HasStr1 = getConstantStringInfo(Str1P, Str1); + bool HasStr2 = getConstantStringInfo(Str2P, Str2); + + // strncmp(x, y) -> cnst (if both x and y are constant strings) + if (HasStr1 && HasStr2) { + StringRef SubStr1 = Str1.substr(0, Length); + StringRef SubStr2 = Str2.substr(0, Length); + return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); + } + + if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x + return B.CreateNeg(B.CreateZExt( + B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); + + if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x + return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), + CI->getType()); + + uint64_t Len1 = GetStringLength(Str1P); + if (Len1) + annotateDereferenceableBytes(CI, 0, Len1); + uint64_t Len2 = GetStringLength(Str2P); + if (Len2) + annotateDereferenceableBytes(CI, 1, Len2); + + // strncmp to memcmp + if (!HasStr1 && HasStr2) { + Len2 = std::min(Len2, Length); + if (canTransformToMemCmp(CI, Str1P, Len2, DL)) + return emitMemCmp( + Str1P, Str2P, + ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, + TLI); + } else if (HasStr1 && !HasStr2) { + Len1 = std::min(Len1, Length); + if (canTransformToMemCmp(CI, Str2P, Len1, DL)) + return emitMemCmp( + Str1P, Str2P, + ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, + TLI); + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { + Value *Src = CI->getArgOperand(0); + ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen && Size) { + annotateDereferenceableBytes(CI, 0, SrcLen); + if (SrcLen <= Size->getZExtValue() + 1) + return emitStrDup(Src, B, TLI); + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) // strcpy(x,x) -> x + return Src; + + annotateNonNullBasedOnAccess(CI, {0, 1}); + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len) + annotateDereferenceableBytes(CI, 1, Len); + else + return nullptr; + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + CallInst *NewCI = + B.CreateMemCpy(Dst, Align(1), Src, Align(1), + ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return Dst; +} + +Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); + if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) + Value *StrLen = emitStrLen(Src, B, DL, TLI); + return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; + } + + // See if we can get the length of the input string. + uint64_t Len = GetStringLength(Src); + if (Len) + annotateDereferenceableBytes(CI, 1, Len); + else + return nullptr; + + Type *PT = Callee->getFunctionType()->getParamType(0); + Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); + Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, + ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); + + // We have enough information to now generate the memcpy call to do the + // copy for us. Make a memcpy to copy the nul byte with align = 1. + CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return DstEnd; +} + +Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + Value *Size = CI->getArgOperand(2); + annotateNonNullBasedOnAccess(CI, 0); + if (isKnownNonZero(Size, DL)) + annotateNonNullBasedOnAccess(CI, 1); + + uint64_t Len; + if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) + Len = LengthArg->getZExtValue(); + else + return nullptr; + + // strncpy(x, y, 0) -> x + if (Len == 0) + return Dst; + + // See if we can get the length of the input string. + uint64_t SrcLen = GetStringLength(Src); + if (SrcLen) { + annotateDereferenceableBytes(CI, 1, SrcLen); + --SrcLen; // Unbias length. + } else { + return nullptr; + } + + if (SrcLen == 0) { + // strncpy(x, "", y) -> memset(align 1 x, '\0', y) + CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1)); + AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0)); + NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( + CI->getContext(), 0, ArgAttrs)); + return Dst; + } + + // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) + if (Len > SrcLen + 1) { + if (Len <= 128) { + StringRef Str; + if (!getConstantStringInfo(Src, Str)) + return nullptr; + std::string SrcStr = Str.str(); + SrcStr.resize(Len, '\0'); + Src = B.CreateGlobalString(SrcStr, "str"); + } else { + return nullptr; + } + } + + Type *PT = Callee->getFunctionType()->getParamType(0); + // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] + CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), + ConstantInt::get(DL.getIntPtrType(PT), Len)); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return Dst; +} + +Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, + unsigned CharSize) { + Value *Src = CI->getArgOperand(0); + + // Constant folding: strlen("xyz") -> 3 + if (uint64_t Len = GetStringLength(Src, CharSize)) + return ConstantInt::get(CI->getType(), Len - 1); + + // If s is a constant pointer pointing to a string literal, we can fold + // strlen(s + x) to strlen(s) - x, when x is known to be in the range + // [0, strlen(s)] or the string has a single null terminator '\0' at the end. + // We only try to simplify strlen when the pointer s points to an array + // of i8. Otherwise, we would need to scale the offset x before doing the + // subtraction. This will make the optimization more complex, and it's not + // very useful because calling strlen for a pointer of other types is + // very uncommon. + if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { + if (!isGEPBasedOnPointerToString(GEP, CharSize)) + return nullptr; + + ConstantDataArraySlice Slice; + if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { + uint64_t NullTermIdx; + if (Slice.Array == nullptr) { + NullTermIdx = 0; + } else { + NullTermIdx = ~((uint64_t)0); + for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { + if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { + NullTermIdx = I; + break; + } + } + // If the string does not have '\0', leave it to strlen to compute + // its length. + if (NullTermIdx == ~((uint64_t)0)) + return nullptr; + } + + Value *Offset = GEP->getOperand(2); + KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); + Known.Zero.flipAllBits(); + uint64_t ArrSize = + cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); + + // KnownZero's bits are flipped, so zeros in KnownZero now represent + // bits known to be zeros in Offset, and ones in KnowZero represent + // bits unknown in Offset. Therefore, Offset is known to be in range + // [0, NullTermIdx] when the flipped KnownZero is non-negative and + // unsigned-less-than NullTermIdx. + // + // If Offset is not provably in the range [0, NullTermIdx], we can still + // optimize if we can prove that the program has undefined behavior when + // Offset is outside that range. That is the case when GEP->getOperand(0) + // is a pointer to an object whose memory extent is NullTermIdx+1. + if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || + (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && + NullTermIdx == ArrSize - 1)) { + Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); + return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), + Offset); + } + } + } + + // strlen(x?"foo":"bars") --> x ? 3 : 4 + if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { + uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); + uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); + if (LenTrue && LenFalse) { + ORE.emit([&]() { + return OptimizationRemark("instcombine", "simplify-libcalls", CI) + << "folded strlen(select) to select of constants"; + }); + return B.CreateSelect(SI->getCondition(), + ConstantInt::get(CI->getType(), LenTrue - 1), + ConstantInt::get(CI->getType(), LenFalse - 1)); + } + } + + // strlen(x) != 0 --> *x != 0 + // strlen(x) == 0 --> *x == 0 + if (isOnlyUsedInZeroEqualityComparison(CI)) + return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), + CI->getType()); + + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { + if (Value *V = optimizeStringLength(CI, B, 8)) + return V; + annotateNonNullBasedOnAccess(CI, 0); + return nullptr; +} + +Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { + Module &M = *CI->getModule(); + unsigned WCharSize = TLI->getWCharSize(M) * 8; + // We cannot perform this optimization without wchar_size metadata. + if (WCharSize == 0) + return nullptr; + + return optimizeStringLength(CI, B, WCharSize); +} + +Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strpbrk(s, "") -> nullptr + // strpbrk("", s) -> nullptr + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t I = S1.find_first_of(S2); + if (I == StringRef::npos) // No match. + return Constant::getNullValue(CI->getType()); + + return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), + "strpbrk"); + } + + // strpbrk(s, "a") -> strchr(s, 'a') + if (HasS2 && S2.size() == 1) + return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); + + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { + Value *EndPtr = CI->getArgOperand(1); + if (isa<ConstantPointerNull>(EndPtr)) { + // With a null EndPtr, this function won't capture the main argument. + // It would be readonly too, except that it still may write to errno. + CI->addParamAttr(0, Attribute::NoCapture); + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strspn(s, "") -> 0 + // strspn("", s) -> 0 + if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_not_of(S2); + if (Pos == StringRef::npos) + Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { + StringRef S1, S2; + bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); + bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); + + // strcspn("", s) -> 0 + if (HasS1 && S1.empty()) + return Constant::getNullValue(CI->getType()); + + // Constant folding. + if (HasS1 && HasS2) { + size_t Pos = S1.find_first_of(S2); + if (Pos == StringRef::npos) + Pos = S1.size(); + return ConstantInt::get(CI->getType(), Pos); + } + + // strcspn(s, "") -> strlen(s) + if (HasS2 && S2.empty()) + return emitStrLen(CI->getArgOperand(0), B, DL, TLI); + + return nullptr; +} + +Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { + // fold strstr(x, x) -> x. + if (CI->getArgOperand(0) == CI->getArgOperand(1)) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 + if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { + Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); + if (!StrLen) + return nullptr; + Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), + StrLen, B, DL, TLI); + if (!StrNCmp) + return nullptr; + for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { + ICmpInst *Old = cast<ICmpInst>(*UI++); + Value *Cmp = + B.CreateICmp(Old->getPredicate(), StrNCmp, + ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); + replaceAllUsesWith(Old, Cmp); + } + return CI; + } + + // See if either input string is a constant string. + StringRef SearchStr, ToFindStr; + bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); + bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); + + // fold strstr(x, "") -> x. + if (HasStr2 && ToFindStr.empty()) + return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); + + // If both strings are known, constant fold it. + if (HasStr1 && HasStr2) { + size_t Offset = SearchStr.find(ToFindStr); + + if (Offset == StringRef::npos) // strstr("foo", "bar") -> null + return Constant::getNullValue(CI->getType()); + + // strstr("abcd", "bc") -> gep((char*)"abcd", 1) + Value *Result = castToCStr(CI->getArgOperand(0), B); + Result = + B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); + return B.CreateBitCast(Result, CI->getType()); + } + + // fold strstr(x, "y") -> strchr(x, 'y'). + if (HasStr2 && ToFindStr.size() == 1) { + Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); + return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; + } + + annotateNonNullBasedOnAccess(CI, {0, 1}); + return nullptr; +} + +Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { + if (isKnownNonZero(CI->getOperand(2), DL)) + annotateNonNullBasedOnAccess(CI, 0); + return nullptr; +} + +Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { + Value *SrcStr = CI->getArgOperand(0); + Value *Size = CI->getArgOperand(2); + annotateNonNullAndDereferenceable(CI, 0, Size, DL); + ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + ConstantInt *LenC = dyn_cast<ConstantInt>(Size); + + // memchr(x, y, 0) -> null + if (LenC) { + if (LenC->isZero()) + return Constant::getNullValue(CI->getType()); + } else { + // From now on we need at least constant length and string. + return nullptr; + } + + StringRef Str; + if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) + return nullptr; + + // Truncate the string to LenC. If Str is smaller than LenC we will still only + // scan the string, as reading past the end of it is undefined and we can just + // return null if we don't find the char. + Str = Str.substr(0, LenC->getZExtValue()); + + // If the char is variable but the input str and length are not we can turn + // this memchr call into a simple bit field test. Of course this only works + // when the return value is only checked against null. + // + // It would be really nice to reuse switch lowering here but we can't change + // the CFG at this point. + // + // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) + // != 0 + // after bounds check. + if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { + unsigned char Max = + *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), + reinterpret_cast<const unsigned char *>(Str.end())); + + // Make sure the bit field we're about to create fits in a register on the + // target. + // FIXME: On a 64 bit architecture this prevents us from using the + // interesting range of alpha ascii chars. We could do better by emitting + // two bitfields or shifting the range by 64 if no lower chars are used. + if (!DL.fitsInLegalInteger(Max + 1)) + return nullptr; + + // For the bit field use a power-of-2 type with at least 8 bits to avoid + // creating unnecessary illegal types. + unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); + + // Now build the bit field. + APInt Bitfield(Width, 0); + for (char C : Str) + Bitfield.setBit((unsigned char)C); + Value *BitfieldC = B.getInt(Bitfield); + + // Adjust width of "C" to the bitfield width, then mask off the high bits. + Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); + C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); + + // First check that the bit field access is within bounds. + Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), + "memchr.bounds"); + + // Create code that checks if the given bit is set in the field. + Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); + Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); + + // Finally merge both checks and cast to pointer type. The inttoptr + // implicitly zexts the i1 to intptr type. + return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); + } + + // Check if all arguments are constants. If so, we can constant fold. + if (!CharC) + return nullptr; + + // Compute the offset. + size_t I = Str.find(CharC->getSExtValue() & 0xFF); + if (I == StringRef::npos) // Didn't find the char. memchr returns null. + return Constant::getNullValue(CI->getType()); + + // memchr(s+n,c,l) -> gep(s+n+i,c) + return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); +} + +static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, + uint64_t Len, IRBuilderBase &B, + const DataLayout &DL) { + if (Len == 0) // memcmp(s1,s2,0) -> 0 + return Constant::getNullValue(CI->getType()); + + // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS + if (Len == 1) { + Value *LHSV = + B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), + CI->getType(), "lhsv"); + Value *RHSV = + B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), + CI->getType(), "rhsv"); + return B.CreateSub(LHSV, RHSV, "chardiff"); + } + + // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 + // TODO: The case where both inputs are constants does not need to be limited + // to legal integers or equality comparison. See block below this. + if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { + IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); + unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); + + // First, see if we can fold either argument to a constant. + Value *LHSV = nullptr; + if (auto *LHSC = dyn_cast<Constant>(LHS)) { + LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); + LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); + } + Value *RHSV = nullptr; + if (auto *RHSC = dyn_cast<Constant>(RHS)) { + RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); + RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); + } + + // Don't generate unaligned loads. If either source is constant data, + // alignment doesn't matter for that source because there is no load. + if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && + (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { + if (!LHSV) { + Type *LHSPtrTy = + IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); + LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); + } + if (!RHSV) { + Type *RHSPtrTy = + IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); + RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); + } + return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); + } + } + + // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). + // TODO: This is limited to i8 arrays. + StringRef LHSStr, RHSStr; + if (getConstantStringInfo(LHS, LHSStr) && + getConstantStringInfo(RHS, RHSStr)) { + // Make sure we're not reading out-of-bounds memory. + if (Len > LHSStr.size() || Len > RHSStr.size()) + return nullptr; + // Fold the memcmp and normalize the result. This way we get consistent + // results across multiple platforms. + uint64_t Ret = 0; + int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); + if (Cmp < 0) + Ret = -1; + else if (Cmp > 0) + Ret = 1; + return ConstantInt::get(CI->getType(), Ret); + } + + return nullptr; +} + +// Most simplifications for memcmp also apply to bcmp. +Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, + IRBuilderBase &B) { + Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); + Value *Size = CI->getArgOperand(2); + + if (LHS == RHS) // memcmp(s,s,x) -> 0 + return Constant::getNullValue(CI->getType()); + + annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); + // Handle constant lengths. + ConstantInt *LenC = dyn_cast<ConstantInt>(Size); + if (!LenC) + return nullptr; + + // memcmp(d,s,0) -> 0 + if (LenC->getZExtValue() == 0) + return Constant::getNullValue(CI->getType()); + + if (Value *Res = + optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) + return Res; + return nullptr; +} + +Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { + if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) + return V; + + // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 + // bcmp can be more efficient than memcmp because it only has to know that + // there is a difference, not how different one is to the other. + if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { + Value *LHS = CI->getArgOperand(0); + Value *RHS = CI->getArgOperand(1); + Value *Size = CI->getArgOperand(2); + return emitBCmp(LHS, RHS, Size, B, DL, TLI); + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { + return optimizeMemCmpBCmpCommon(CI, B); +} + +Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { + Value *Size = CI->getArgOperand(2); + annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); + if (isa<IntrinsicInst>(CI)) + return nullptr; + + // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) + CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), + CI->getArgOperand(1), Align(1), Size); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return CI->getArgOperand(0); +} + +Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { + Value *Dst = CI->getArgOperand(0); + Value *Src = CI->getArgOperand(1); + ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); + ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); + StringRef SrcStr; + if (CI->use_empty() && Dst == Src) + return Dst; + // memccpy(d, s, c, 0) -> nullptr + if (N) { + if (N->isNullValue()) + return Constant::getNullValue(CI->getType()); + if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, + /*TrimAtNul=*/false) || + !StopChar) + return nullptr; + } else { + return nullptr; + } + + // Wrap arg 'c' of type int to char + size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); + if (Pos == StringRef::npos) { + if (N->getZExtValue() <= SrcStr.size()) { + B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); + return Constant::getNullValue(CI->getType()); + } + return nullptr; + } + + Value *NewN = + ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); + // memccpy -> llvm.memcpy + B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); + return Pos + 1 <= N->getZExtValue() + ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) + : Constant::getNullValue(CI->getType()); +} + +Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { + Value *Dst = CI->getArgOperand(0); + Value *N = CI->getArgOperand(2); + // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n + CallInst *NewCI = + B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); + // Propagate attributes, but memcpy has no return value, so make sure that + // any return attributes are compliant. + // TODO: Attach return value attributes to the 1st operand to preserve them? + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); +} + +Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { + Value *Size = CI->getArgOperand(2); + annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); + if (isa<IntrinsicInst>(CI)) + return nullptr; + + // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) + CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), + CI->getArgOperand(1), Align(1), Size); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return CI->getArgOperand(0); +} + +/// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). +Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) { + // This has to be a memset of zeros (bzero). + auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); + if (!FillValue || FillValue->getZExtValue() != 0) + return nullptr; + + // TODO: We should handle the case where the malloc has more than one use. + // This is necessary to optimize common patterns such as when the result of + // the malloc is checked against null or when a memset intrinsic is used in + // place of a memset library call. + auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); + if (!Malloc || !Malloc->hasOneUse()) + return nullptr; + + // Is the inner call really malloc()? + Function *InnerCallee = Malloc->getCalledFunction(); + if (!InnerCallee) + return nullptr; + + LibFunc Func; + if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || + Func != LibFunc_malloc) + return nullptr; + + // The memset must cover the same number of bytes that are malloc'd. + if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) + return nullptr; + + // Replace the malloc with a calloc. We need the data layout to know what the + // actual size of a 'size_t' parameter is. + B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); + const DataLayout &DL = Malloc->getModule()->getDataLayout(); + IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); + if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), + Malloc->getArgOperand(0), + Malloc->getAttributes(), B, *TLI)) { + substituteInParent(Malloc, Calloc); + return Calloc; + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { + Value *Size = CI->getArgOperand(2); + annotateNonNullAndDereferenceable(CI, 0, Size, DL); + if (isa<IntrinsicInst>(CI)) + return nullptr; + + if (auto *Calloc = foldMallocMemset(CI, B)) + return Calloc; + + // memset(p, v, n) -> llvm.memset(align 1 p, v, n) + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); + CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return CI->getArgOperand(0); +} + +Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { + if (isa<ConstantPointerNull>(CI->getArgOperand(0))) + return emitMalloc(CI->getArgOperand(1), B, DL, TLI); + + return nullptr; +} + +//===----------------------------------------------------------------------===// +// Math Library Optimizations +//===----------------------------------------------------------------------===// + +// Replace a libcall \p CI with a call to intrinsic \p IID +static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, + Intrinsic::ID IID) { + // Propagate fast-math flags from the existing call to the new call. + IRBuilderBase::FastMathFlagGuard Guard(B); + B.setFastMathFlags(CI->getFastMathFlags()); + + Module *M = CI->getModule(); + Value *V = CI->getArgOperand(0); + Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); + CallInst *NewCall = B.CreateCall(F, V); + NewCall->takeName(CI); + return NewCall; +} + +/// Return a variant of Val with float type. +/// Currently this works in two cases: If Val is an FPExtension of a float +/// value to something bigger, simply return the operand. +/// If Val is a ConstantFP but can be converted to a float ConstantFP without +/// loss of precision do so. +static Value *valueHasFloatPrecision(Value *Val) { + if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { + Value *Op = Cast->getOperand(0); + if (Op->getType()->isFloatTy()) + return Op; + } + if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { + APFloat F = Const->getValueAPF(); + bool losesInfo; + (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, + &losesInfo); + if (!losesInfo) + return ConstantFP::get(Const->getContext(), F); + } + return nullptr; +} + +/// Shrink double -> float functions. +static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, + bool isBinary, bool isPrecise = false) { + Function *CalleeFn = CI->getCalledFunction(); + if (!CI->getType()->isDoubleTy() || !CalleeFn) + return nullptr; + + // If not all the uses of the function are converted to float, then bail out. + // This matters if the precision of the result is more important than the + // precision of the arguments. + if (isPrecise) + for (User *U : CI->users()) { + FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); + if (!Cast || !Cast->getType()->isFloatTy()) + return nullptr; + } + + // If this is something like 'g((double) float)', convert to 'gf(float)'. + Value *V[2]; + V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); + V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; + if (!V[0] || (isBinary && !V[1])) + return nullptr; + + // If call isn't an intrinsic, check that it isn't within a function with the + // same name as the float version of this call, otherwise the result is an + // infinite loop. For example, from MinGW-w64: + // + // float expf(float val) { return (float) exp((double) val); } + StringRef CalleeName = CalleeFn->getName(); + bool IsIntrinsic = CalleeFn->isIntrinsic(); + if (!IsIntrinsic) { + StringRef CallerName = CI->getFunction()->getName(); + if (!CallerName.empty() && CallerName.back() == 'f' && + CallerName.size() == (CalleeName.size() + 1) && + CallerName.startswith(CalleeName)) + return nullptr; + } + + // Propagate the math semantics from the current function to the new function. + IRBuilderBase::FastMathFlagGuard Guard(B); + B.setFastMathFlags(CI->getFastMathFlags()); + + // g((double) float) -> (double) gf(float) + Value *R; + if (IsIntrinsic) { + Module *M = CI->getModule(); + Intrinsic::ID IID = CalleeFn->getIntrinsicID(); + Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); + R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); + } else { + AttributeList CalleeAttrs = CalleeFn->getAttributes(); + R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) + : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); + } + return B.CreateFPExt(R, B.getDoubleTy()); +} + +/// Shrink double -> float for unary functions. +static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, + bool isPrecise = false) { + return optimizeDoubleFP(CI, B, false, isPrecise); +} + +/// Shrink double -> float for binary functions. +static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, + bool isPrecise = false) { + return optimizeDoubleFP(CI, B, true, isPrecise); +} + +// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) +Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { + if (!CI->isFast()) + return nullptr; + + // Propagate fast-math flags from the existing call to new instructions. + IRBuilderBase::FastMathFlagGuard Guard(B); + B.setFastMathFlags(CI->getFastMathFlags()); + + Value *Real, *Imag; + if (CI->getNumArgOperands() == 1) { + Value *Op = CI->getArgOperand(0); + assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); + Real = B.CreateExtractValue(Op, 0, "real"); + Imag = B.CreateExtractValue(Op, 1, "imag"); + } else { + assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); + Real = CI->getArgOperand(0); + Imag = CI->getArgOperand(1); + } + + Value *RealReal = B.CreateFMul(Real, Real); + Value *ImagImag = B.CreateFMul(Imag, Imag); + + Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, + CI->getType()); + return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); +} + +static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, + IRBuilderBase &B) { + if (!isa<FPMathOperator>(Call)) + return nullptr; + + IRBuilderBase::FastMathFlagGuard Guard(B); + B.setFastMathFlags(Call->getFastMathFlags()); + + // TODO: Can this be shared to also handle LLVM intrinsics? + Value *X; + switch (Func) { + case LibFunc_sin: + case LibFunc_sinf: + case LibFunc_sinl: + case LibFunc_tan: + case LibFunc_tanf: + case LibFunc_tanl: + // sin(-X) --> -sin(X) + // tan(-X) --> -tan(X) + if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) + return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); + break; + case LibFunc_cos: + case LibFunc_cosf: + case LibFunc_cosl: + // cos(-X) --> cos(X) + if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) + return B.CreateCall(Call->getCalledFunction(), X, "cos"); + break; + default: + break; + } + return nullptr; +} + +static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { + // Multiplications calculated using Addition Chains. + // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html + + assert(Exp != 0 && "Incorrect exponent 0 not handled"); + + if (InnerChain[Exp]) + return InnerChain[Exp]; + + static const unsigned AddChain[33][2] = { + {0, 0}, // Unused. + {0, 0}, // Unused (base case = pow1). + {1, 1}, // Unused (pre-computed). + {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, + {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, + {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, + {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, + {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, + }; + + InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), + getPow(InnerChain, AddChain[Exp][1], B)); + return InnerChain[Exp]; +} + +// Return a properly extended 32-bit integer if the operation is an itofp. +static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) { + if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { + Value *Op = cast<Instruction>(I2F)->getOperand(0); + // Make sure that the exponent fits inside an int32_t, + // thus avoiding any range issues that FP has not. + unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); + if (BitWidth < 32 || + (BitWidth == 32 && isa<SIToFPInst>(I2F))) + return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty()) + : B.CreateZExt(Op, B.getInt32Ty()); + } + + return nullptr; +} + +/// Use exp{,2}(x * y) for pow(exp{,2}(x), y); +/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); +/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). +Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { + Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); + AttributeList Attrs; // Attributes are only meaningful on the original call + Module *Mod = Pow->getModule(); + Type *Ty = Pow->getType(); + bool Ignored; + + // Evaluate special cases related to a nested function as the base. + + // pow(exp(x), y) -> exp(x * y) + // pow(exp2(x), y) -> exp2(x * y) + // If exp{,2}() is used only once, it is better to fold two transcendental + // math functions into one. If used again, exp{,2}() would still have to be + // called with the original argument, then keep both original transcendental + // functions. However, this transformation is only safe with fully relaxed + // math semantics, since, besides rounding differences, it changes overflow + // and underflow behavior quite dramatically. For example: + // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf + // Whereas: + // exp(1000 * 0.001) = exp(1) + // TODO: Loosen the requirement for fully relaxed math semantics. + // TODO: Handle exp10() when more targets have it available. + CallInst *BaseFn = dyn_cast<CallInst>(Base); + if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { + LibFunc LibFn; + + Function *CalleeFn = BaseFn->getCalledFunction(); + if (CalleeFn && + TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { + StringRef ExpName; + Intrinsic::ID ID; + Value *ExpFn; + LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; + + switch (LibFn) { + default: + return nullptr; + case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: + ExpName = TLI->getName(LibFunc_exp); + ID = Intrinsic::exp; + LibFnFloat = LibFunc_expf; + LibFnDouble = LibFunc_exp; + LibFnLongDouble = LibFunc_expl; + break; + case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: + ExpName = TLI->getName(LibFunc_exp2); + ID = Intrinsic::exp2; + LibFnFloat = LibFunc_exp2f; + LibFnDouble = LibFunc_exp2; + LibFnLongDouble = LibFunc_exp2l; + break; + } + + // Create new exp{,2}() with the product as its argument. + Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); + ExpFn = BaseFn->doesNotAccessMemory() + ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), + FMul, ExpName) + : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, + LibFnLongDouble, B, + BaseFn->getAttributes()); + + // Since the new exp{,2}() is different from the original one, dead code + // elimination cannot be trusted to remove it, since it may have side + // effects (e.g., errno). When the only consumer for the original + // exp{,2}() is pow(), then it has to be explicitly erased. + substituteInParent(BaseFn, ExpFn); + return ExpFn; + } + } + + // Evaluate special cases related to a constant base. + + const APFloat *BaseF; + if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) + return nullptr; + + // pow(2.0, itofp(x)) -> ldexp(1.0, x) + if (match(Base, m_SpecificFP(2.0)) && + (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && + hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { + if (Value *ExpoI = getIntToFPVal(Expo, B)) + return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, + LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, + B, Attrs); + } + + // pow(2.0 ** n, x) -> exp2(n * x) + if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { + APFloat BaseR = APFloat(1.0); + BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); + BaseR = BaseR / *BaseF; + bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); + const APFloat *NF = IsReciprocal ? &BaseR : BaseF; + APSInt NI(64, false); + if ((IsInteger || IsReciprocal) && + NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == + APFloat::opOK && + NI > 1 && NI.isPowerOf2()) { + double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); + Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); + if (Pow->doesNotAccessMemory()) + return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), + FMul, "exp2"); + else + return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, + LibFunc_exp2l, B, Attrs); + } + } + + // pow(10.0, x) -> exp10(x) + // TODO: There is no exp10() intrinsic yet, but some day there shall be one. + if (match(Base, m_SpecificFP(10.0)) && + hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) + return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, + LibFunc_exp10l, B, Attrs); + + // pow(x, y) -> exp2(log2(x) * y) + if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && + !BaseF->isNegative()) { + // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. + // Luckily optimizePow has already handled the x == 1 case. + assert(!match(Base, m_FPOne()) && + "pow(1.0, y) should have been simplified earlier!"); + + Value *Log = nullptr; + if (Ty->isFloatTy()) + Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); + else if (Ty->isDoubleTy()) + Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); + + if (Log) { + Value *FMul = B.CreateFMul(Log, Expo, "mul"); + if (Pow->doesNotAccessMemory()) + return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), + FMul, "exp2"); + else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) + return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, + LibFunc_exp2l, B, Attrs); + } + } + + return nullptr; +} + +static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, + Module *M, IRBuilderBase &B, + const TargetLibraryInfo *TLI) { + // If errno is never set, then use the intrinsic for sqrt(). + if (NoErrno) { + Function *SqrtFn = + Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); + return B.CreateCall(SqrtFn, V, "sqrt"); + } + + // Otherwise, use the libcall for sqrt(). + if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) + // TODO: We also should check that the target can in fact lower the sqrt() + // libcall. We currently have no way to ask this question, so we ask if + // the target has a sqrt() libcall, which is not exactly the same. + return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, + LibFunc_sqrtl, B, Attrs); + + return nullptr; +} + +/// Use square root in place of pow(x, +/-0.5). +Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { + Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); + AttributeList Attrs; // Attributes are only meaningful on the original call + Module *Mod = Pow->getModule(); + Type *Ty = Pow->getType(); + + const APFloat *ExpoF; + if (!match(Expo, m_APFloat(ExpoF)) || + (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) + return nullptr; + + // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, + // so that requires fast-math-flags (afn or reassoc). + if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) + return nullptr; + + // If we have a pow() library call (accesses memory) and we can't guarantee + // that the base is not an infinity, give up: + // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting + // errno), but sqrt(-Inf) is required by various standards to set errno. + if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && + !isKnownNeverInfinity(Base, TLI)) + return nullptr; + + Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); + if (!Sqrt) + return nullptr; + + // Handle signed zero base by expanding to fabs(sqrt(x)). + if (!Pow->hasNoSignedZeros()) { + Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); + Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); + } + + // Handle non finite base by expanding to + // (x == -infinity ? +infinity : sqrt(x)). + if (!Pow->hasNoInfs()) { + Value *PosInf = ConstantFP::getInfinity(Ty), + *NegInf = ConstantFP::getInfinity(Ty, true); + Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); + Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); + } + + // If the exponent is negative, then get the reciprocal. + if (ExpoF->isNegative()) + Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); + + return Sqrt; +} + +static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, + IRBuilderBase &B) { + Value *Args[] = {Base, Expo}; + Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType()); + return B.CreateCall(F, Args); +} + +Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { + Value *Base = Pow->getArgOperand(0); + Value *Expo = Pow->getArgOperand(1); + Function *Callee = Pow->getCalledFunction(); + StringRef Name = Callee->getName(); + Type *Ty = Pow->getType(); + Module *M = Pow->getModule(); + Value *Shrunk = nullptr; + bool AllowApprox = Pow->hasApproxFunc(); + bool Ignored; + + // Propagate the math semantics from the call to any created instructions. + IRBuilderBase::FastMathFlagGuard Guard(B); + B.setFastMathFlags(Pow->getFastMathFlags()); + + // Shrink pow() to powf() if the arguments are single precision, + // unless the result is expected to be double precision. + if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && + hasFloatVersion(Name)) + Shrunk = optimizeBinaryDoubleFP(Pow, B, true); + + // Evaluate special cases related to the base. + + // pow(1.0, x) -> 1.0 + if (match(Base, m_FPOne())) + return Base; + + if (Value *Exp = replacePowWithExp(Pow, B)) + return Exp; + + // Evaluate special cases related to the exponent. + + // pow(x, -1.0) -> 1.0 / x + if (match(Expo, m_SpecificFP(-1.0))) + return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); + + // pow(x, +/-0.0) -> 1.0 + if (match(Expo, m_AnyZeroFP())) + return ConstantFP::get(Ty, 1.0); + + // pow(x, 1.0) -> x + if (match(Expo, m_FPOne())) + return Base; + + // pow(x, 2.0) -> x * x + if (match(Expo, m_SpecificFP(2.0))) + return B.CreateFMul(Base, Base, "square"); + + if (Value *Sqrt = replacePowWithSqrt(Pow, B)) + return Sqrt; + + // pow(x, n) -> x * x * x * ... + const APFloat *ExpoF; + if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && + !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { + // We limit to a max of 7 multiplications, thus the maximum exponent is 32. + // If the exponent is an integer+0.5 we generate a call to sqrt and an + // additional fmul. + // TODO: This whole transformation should be backend specific (e.g. some + // backends might prefer libcalls or the limit for the exponent might + // be different) and it should also consider optimizing for size. + APFloat LimF(ExpoF->getSemantics(), 33), + ExpoA(abs(*ExpoF)); + if (ExpoA < LimF) { + // This transformation applies to integer or integer+0.5 exponents only. + // For integer+0.5, we create a sqrt(Base) call. + Value *Sqrt = nullptr; + if (!ExpoA.isInteger()) { + APFloat Expo2 = ExpoA; + // To check if ExpoA is an integer + 0.5, we add it to itself. If there + // is no floating point exception and the result is an integer, then + // ExpoA == integer + 0.5 + if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) + return nullptr; + + if (!Expo2.isInteger()) + return nullptr; + + Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), + Pow->doesNotAccessMemory(), M, B, TLI); + if (!Sqrt) + return nullptr; + } + + // We will memoize intermediate products of the Addition Chain. + Value *InnerChain[33] = {nullptr}; + InnerChain[1] = Base; + InnerChain[2] = B.CreateFMul(Base, Base, "square"); + + // We cannot readily convert a non-double type (like float) to a double. + // So we first convert it to something which could be converted to double. + ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); + Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); + + // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). + if (Sqrt) + FMul = B.CreateFMul(FMul, Sqrt); + + // If the exponent is negative, then get the reciprocal. + if (ExpoF->isNegative()) + FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); + + return FMul; + } + + APSInt IntExpo(32, /*isUnsigned=*/false); + // powf(x, n) -> powi(x, n) if n is a constant signed integer value + if (ExpoF->isInteger() && + ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == + APFloat::opOK) { + return createPowWithIntegerExponent( + Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B); + } + } + + // powf(x, itofp(y)) -> powi(x, y) + if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { + if (Value *ExpoI = getIntToFPVal(Expo, B)) + return createPowWithIntegerExponent(Base, ExpoI, M, B); + } + + return Shrunk; +} + +Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + AttributeList Attrs; // Attributes are only meaningful on the original call + StringRef Name = Callee->getName(); + Value *Ret = nullptr; + if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && + hasFloatVersion(Name)) + Ret = optimizeUnaryDoubleFP(CI, B, true); + + Type *Ty = CI->getType(); + Value *Op = CI->getArgOperand(0); + + // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 + // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 + if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && + hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { + if (Value *Exp = getIntToFPVal(Op, B)) + return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, + LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, + B, Attrs); + } + + return Ret; +} + +Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { + // If we can shrink the call to a float function rather than a double + // function, do that first. + Function *Callee = CI->getCalledFunction(); + StringRef Name = Callee->getName(); + if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) + if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) + return Ret; + + // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to + // the intrinsics for improved optimization (for example, vectorization). + // No-signed-zeros is implied by the definitions of fmax/fmin themselves. + // From the C standard draft WG14/N1256: + // "Ideally, fmax would be sensitive to the sign of zero, for example + // fmax(-0.0, +0.0) would return +0; however, implementation in software + // might be impractical." + IRBuilderBase::FastMathFlagGuard Guard(B); + FastMathFlags FMF = CI->getFastMathFlags(); + FMF.setNoSignedZeros(); + B.setFastMathFlags(FMF); + + Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum + : Intrinsic::maxnum; + Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); + return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); +} + +Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { + Function *LogFn = Log->getCalledFunction(); + AttributeList Attrs; // Attributes are only meaningful on the original call + StringRef LogNm = LogFn->getName(); + Intrinsic::ID LogID = LogFn->getIntrinsicID(); + Module *Mod = Log->getModule(); + Type *Ty = Log->getType(); + Value *Ret = nullptr; + + if (UnsafeFPShrink && hasFloatVersion(LogNm)) + Ret = optimizeUnaryDoubleFP(Log, B, true); + + // The earlier call must also be 'fast' in order to do these transforms. + CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); + if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) + return Ret; + + LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; + + // This is only applicable to log(), log2(), log10(). + if (TLI->getLibFunc(LogNm, LogLb)) + switch (LogLb) { + case LibFunc_logf: + LogID = Intrinsic::log; + ExpLb = LibFunc_expf; + Exp2Lb = LibFunc_exp2f; + Exp10Lb = LibFunc_exp10f; + PowLb = LibFunc_powf; + break; + case LibFunc_log: + LogID = Intrinsic::log; + ExpLb = LibFunc_exp; + Exp2Lb = LibFunc_exp2; + Exp10Lb = LibFunc_exp10; + PowLb = LibFunc_pow; + break; + case LibFunc_logl: + LogID = Intrinsic::log; + ExpLb = LibFunc_expl; + Exp2Lb = LibFunc_exp2l; + Exp10Lb = LibFunc_exp10l; + PowLb = LibFunc_powl; + break; + case LibFunc_log2f: + LogID = Intrinsic::log2; + ExpLb = LibFunc_expf; + Exp2Lb = LibFunc_exp2f; + Exp10Lb = LibFunc_exp10f; + PowLb = LibFunc_powf; + break; + case LibFunc_log2: + LogID = Intrinsic::log2; + ExpLb = LibFunc_exp; + Exp2Lb = LibFunc_exp2; + Exp10Lb = LibFunc_exp10; + PowLb = LibFunc_pow; + break; + case LibFunc_log2l: + LogID = Intrinsic::log2; + ExpLb = LibFunc_expl; + Exp2Lb = LibFunc_exp2l; + Exp10Lb = LibFunc_exp10l; + PowLb = LibFunc_powl; + break; + case LibFunc_log10f: + LogID = Intrinsic::log10; + ExpLb = LibFunc_expf; + Exp2Lb = LibFunc_exp2f; + Exp10Lb = LibFunc_exp10f; + PowLb = LibFunc_powf; + break; + case LibFunc_log10: + LogID = Intrinsic::log10; + ExpLb = LibFunc_exp; + Exp2Lb = LibFunc_exp2; + Exp10Lb = LibFunc_exp10; + PowLb = LibFunc_pow; + break; + case LibFunc_log10l: + LogID = Intrinsic::log10; + ExpLb = LibFunc_expl; + Exp2Lb = LibFunc_exp2l; + Exp10Lb = LibFunc_exp10l; + PowLb = LibFunc_powl; + break; + default: + return Ret; + } + else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || + LogID == Intrinsic::log10) { + if (Ty->getScalarType()->isFloatTy()) { + ExpLb = LibFunc_expf; + Exp2Lb = LibFunc_exp2f; + Exp10Lb = LibFunc_exp10f; + PowLb = LibFunc_powf; + } else if (Ty->getScalarType()->isDoubleTy()) { + ExpLb = LibFunc_exp; + Exp2Lb = LibFunc_exp2; + Exp10Lb = LibFunc_exp10; + PowLb = LibFunc_pow; + } else + return Ret; + } else + return Ret; + + IRBuilderBase::FastMathFlagGuard Guard(B); + B.setFastMathFlags(FastMathFlags::getFast()); + + Intrinsic::ID ArgID = Arg->getIntrinsicID(); + LibFunc ArgLb = NotLibFunc; + TLI->getLibFunc(*Arg, ArgLb); + + // log(pow(x,y)) -> y*log(x) + if (ArgLb == PowLb || ArgID == Intrinsic::pow) { + Value *LogX = + Log->doesNotAccessMemory() + ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), + Arg->getOperand(0), "log") + : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); + Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); + // Since pow() may have side effects, e.g. errno, + // dead code elimination may not be trusted to remove it. + substituteInParent(Arg, MulY); + return MulY; + } + + // log(exp{,2,10}(y)) -> y*log({e,2,10}) + // TODO: There is no exp10() intrinsic yet. + if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || + ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { + Constant *Eul; + if (ArgLb == ExpLb || ArgID == Intrinsic::exp) + // FIXME: Add more precise value of e for long double. + Eul = ConstantFP::get(Log->getType(), numbers::e); + else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) + Eul = ConstantFP::get(Log->getType(), 2.0); + else + Eul = ConstantFP::get(Log->getType(), 10.0); + Value *LogE = Log->doesNotAccessMemory() + ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), + Eul, "log") + : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); + Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); + // Since exp() may have side effects, e.g. errno, + // dead code elimination may not be trusted to remove it. + substituteInParent(Arg, MulY); + return MulY; + } + + return Ret; +} + +Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + Value *Ret = nullptr; + // TODO: Once we have a way (other than checking for the existince of the + // libcall) to tell whether our target can lower @llvm.sqrt, relax the + // condition below. + if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || + Callee->getIntrinsicID() == Intrinsic::sqrt)) + Ret = optimizeUnaryDoubleFP(CI, B, true); + + if (!CI->isFast()) + return Ret; + + Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); + if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) + return Ret; + + // We're looking for a repeated factor in a multiplication tree, + // so we can do this fold: sqrt(x * x) -> fabs(x); + // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). + Value *Op0 = I->getOperand(0); + Value *Op1 = I->getOperand(1); + Value *RepeatOp = nullptr; + Value *OtherOp = nullptr; + if (Op0 == Op1) { + // Simple match: the operands of the multiply are identical. + RepeatOp = Op0; + } else { + // Look for a more complicated pattern: one of the operands is itself + // a multiply, so search for a common factor in that multiply. + // Note: We don't bother looking any deeper than this first level or for + // variations of this pattern because instcombine's visitFMUL and/or the + // reassociation pass should give us this form. + Value *OtherMul0, *OtherMul1; + if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { + // Pattern: sqrt((x * y) * z) + if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { + // Matched: sqrt((x * x) * z) + RepeatOp = OtherMul0; + OtherOp = Op1; + } + } + } + if (!RepeatOp) + return Ret; + + // Fast math flags for any created instructions should match the sqrt + // and multiply. + IRBuilderBase::FastMathFlagGuard Guard(B); + B.setFastMathFlags(I->getFastMathFlags()); + + // If we found a repeated factor, hoist it out of the square root and + // replace it with the fabs of that factor. + Module *M = Callee->getParent(); + Type *ArgType = I->getType(); + Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); + Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); + if (OtherOp) { + // If we found a non-repeated factor, we still need to get its square + // root. We then multiply that by the value that was simplified out + // of the square root calculation. + Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); + Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); + return B.CreateFMul(FabsCall, SqrtCall); + } + return FabsCall; +} + +// TODO: Generalize to handle any trig function and its inverse. +Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + Value *Ret = nullptr; + StringRef Name = Callee->getName(); + if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) + Ret = optimizeUnaryDoubleFP(CI, B, true); + + Value *Op1 = CI->getArgOperand(0); + auto *OpC = dyn_cast<CallInst>(Op1); + if (!OpC) + return Ret; + + // Both calls must be 'fast' in order to remove them. + if (!CI->isFast() || !OpC->isFast()) + return Ret; + + // tan(atan(x)) -> x + // tanf(atanf(x)) -> x + // tanl(atanl(x)) -> x + LibFunc Func; + Function *F = OpC->getCalledFunction(); + if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && + ((Func == LibFunc_atan && Callee->getName() == "tan") || + (Func == LibFunc_atanf && Callee->getName() == "tanf") || + (Func == LibFunc_atanl && Callee->getName() == "tanl"))) + Ret = OpC->getArgOperand(0); + return Ret; +} + +static bool isTrigLibCall(CallInst *CI) { + // We can only hope to do anything useful if we can ignore things like errno + // and floating-point exceptions. + // We already checked the prototype. + return CI->hasFnAttr(Attribute::NoUnwind) && + CI->hasFnAttr(Attribute::ReadNone); +} + +static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, + bool UseFloat, Value *&Sin, Value *&Cos, + Value *&SinCos) { + Type *ArgTy = Arg->getType(); + Type *ResTy; + StringRef Name; + + Triple T(OrigCallee->getParent()->getTargetTriple()); + if (UseFloat) { + Name = "__sincospif_stret"; + + assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); + // x86_64 can't use {float, float} since that would be returned in both + // xmm0 and xmm1, which isn't what a real struct would do. + ResTy = T.getArch() == Triple::x86_64 + ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) + : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); + } else { + Name = "__sincospi_stret"; + ResTy = StructType::get(ArgTy, ArgTy); + } + + Module *M = OrigCallee->getParent(); + FunctionCallee Callee = + M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); + + if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { + // If the argument is an instruction, it must dominate all uses so put our + // sincos call there. + B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); + } else { + // Otherwise (e.g. for a constant) the beginning of the function is as + // good a place as any. + BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); + B.SetInsertPoint(&EntryBB, EntryBB.begin()); + } + + SinCos = B.CreateCall(Callee, Arg, "sincospi"); + + if (SinCos->getType()->isStructTy()) { + Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); + Cos = B.CreateExtractValue(SinCos, 1, "cospi"); + } else { + Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), + "sinpi"); + Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), + "cospi"); + } +} + +Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { + // Make sure the prototype is as expected, otherwise the rest of the + // function is probably invalid and likely to abort. + if (!isTrigLibCall(CI)) + return nullptr; + + Value *Arg = CI->getArgOperand(0); + SmallVector<CallInst *, 1> SinCalls; + SmallVector<CallInst *, 1> CosCalls; + SmallVector<CallInst *, 1> SinCosCalls; + + bool IsFloat = Arg->getType()->isFloatTy(); + + // Look for all compatible sinpi, cospi and sincospi calls with the same + // argument. If there are enough (in some sense) we can make the + // substitution. + Function *F = CI->getFunction(); + for (User *U : Arg->users()) + classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); + + // It's only worthwhile if both sinpi and cospi are actually used. + if (SinCalls.empty() || CosCalls.empty()) + return nullptr; + + Value *Sin, *Cos, *SinCos; + insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); + + auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, + Value *Res) { + for (CallInst *C : Calls) + replaceAllUsesWith(C, Res); + }; + + replaceTrigInsts(SinCalls, Sin); + replaceTrigInsts(CosCalls, Cos); + replaceTrigInsts(SinCosCalls, SinCos); + + return nullptr; +} + +void LibCallSimplifier::classifyArgUse( + Value *Val, Function *F, bool IsFloat, + SmallVectorImpl<CallInst *> &SinCalls, + SmallVectorImpl<CallInst *> &CosCalls, + SmallVectorImpl<CallInst *> &SinCosCalls) { + CallInst *CI = dyn_cast<CallInst>(Val); + + if (!CI || CI->use_empty()) + return; + + // Don't consider calls in other functions. + if (CI->getFunction() != F) + return; + + Function *Callee = CI->getCalledFunction(); + LibFunc Func; + if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || + !isTrigLibCall(CI)) + return; + + if (IsFloat) { + if (Func == LibFunc_sinpif) + SinCalls.push_back(CI); + else if (Func == LibFunc_cospif) + CosCalls.push_back(CI); + else if (Func == LibFunc_sincospif_stret) + SinCosCalls.push_back(CI); + } else { + if (Func == LibFunc_sinpi) + SinCalls.push_back(CI); + else if (Func == LibFunc_cospi) + CosCalls.push_back(CI); + else if (Func == LibFunc_sincospi_stret) + SinCosCalls.push_back(CI); + } +} + +//===----------------------------------------------------------------------===// +// Integer Library Call Optimizations +//===----------------------------------------------------------------------===// + +Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { + // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 + Value *Op = CI->getArgOperand(0); + Type *ArgType = Op->getType(); + Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), + Intrinsic::cttz, ArgType); + Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); + V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); + V = B.CreateIntCast(V, B.getInt32Ty(), false); + + Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); + return B.CreateSelect(Cond, V, B.getInt32(0)); +} + +Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { + // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) + Value *Op = CI->getArgOperand(0); + Type *ArgType = Op->getType(); + Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), + Intrinsic::ctlz, ArgType); + Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); + V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), + V); + return B.CreateIntCast(V, CI->getType(), false); +} + +Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { + // abs(x) -> x <s 0 ? -x : x + // The negation has 'nsw' because abs of INT_MIN is undefined. + Value *X = CI->getArgOperand(0); + Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); + Value *NegX = B.CreateNSWNeg(X, "neg"); + return B.CreateSelect(IsNeg, NegX, X); +} + +Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { + // isdigit(c) -> (c-'0') <u 10 + Value *Op = CI->getArgOperand(0); + Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); + Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); + return B.CreateZExt(Op, CI->getType()); +} + +Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { + // isascii(c) -> c <u 128 + Value *Op = CI->getArgOperand(0); + Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); + return B.CreateZExt(Op, CI->getType()); +} + +Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { + // toascii(c) -> c & 0x7f + return B.CreateAnd(CI->getArgOperand(0), + ConstantInt::get(CI->getType(), 0x7F)); +} + +Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { + StringRef Str; + if (!getConstantStringInfo(CI->getArgOperand(0), Str)) + return nullptr; + + return convertStrToNumber(CI, Str, 10); +} + +Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { + StringRef Str; + if (!getConstantStringInfo(CI->getArgOperand(0), Str)) + return nullptr; + + if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) + return nullptr; + + if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { + return convertStrToNumber(CI, Str, CInt->getSExtValue()); + } + + return nullptr; +} + +//===----------------------------------------------------------------------===// +// Formatting and IO Library Call Optimizations +//===----------------------------------------------------------------------===// + +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); + +Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, + int StreamArg) { + Function *Callee = CI->getCalledFunction(); + // Error reporting calls should be cold, mark them as such. + // This applies even to non-builtin calls: it is only a hint and applies to + // functions that the frontend might not understand as builtins. + + // This heuristic was suggested in: + // Improving Static Branch Prediction in a Compiler + // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu + // Proceedings of PACT'98, Oct. 1998, IEEE + if (!CI->hasFnAttr(Attribute::Cold) && + isReportingError(Callee, CI, StreamArg)) { + CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); + } + + return nullptr; +} + +static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { + if (!Callee || !Callee->isDeclaration()) + return false; + + if (StreamArg < 0) + return true; + + // These functions might be considered cold, but only if their stream + // argument is stderr. + + if (StreamArg >= (int)CI->getNumArgOperands()) + return false; + LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); + if (!LI) + return false; + GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); + if (!GV || !GV->isDeclaration()) + return false; + return GV->getName() == "stderr"; +} + +Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) + return nullptr; + + // Empty format string -> noop. + if (FormatStr.empty()) // Tolerate printf's declared void. + return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); + + // Do not do any of the following transformations if the printf return value + // is used, in general the printf return value is not compatible with either + // putchar() or puts(). + if (!CI->use_empty()) + return nullptr; + + // printf("x") -> putchar('x'), even for "%" and "%%". + if (FormatStr.size() == 1 || FormatStr == "%%") + return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); + + // printf("%s", "a") --> putchar('a') + if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { + StringRef ChrStr; + if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) + return nullptr; + if (ChrStr.size() != 1) + return nullptr; + return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); + } + + // printf("foo\n") --> puts("foo") + if (FormatStr[FormatStr.size() - 1] == '\n' && + FormatStr.find('%') == StringRef::npos) { // No format characters. + // Create a string literal with no \n on it. We expect the constant merge + // pass to be run after this pass, to merge duplicate strings. + FormatStr = FormatStr.drop_back(); + Value *GV = B.CreateGlobalString(FormatStr, "str"); + return emitPutS(GV, B, TLI); + } + + // Optimize specific format strings. + // printf("%c", chr) --> putchar(chr) + if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isIntegerTy()) + return emitPutChar(CI->getArgOperand(1), B, TLI); + + // printf("%s\n", str) --> puts(str) + if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && + CI->getArgOperand(1)->getType()->isPointerTy()) + return emitPutS(CI->getArgOperand(1), B, TLI); + return nullptr; +} + +Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { + + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (Value *V = optimizePrintFString(CI, B)) { + return V; + } + + // printf(format, ...) -> iprintf(format, ...) if no floating point + // arguments. + if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + FunctionCallee IPrintFFn = + M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(IPrintFFn); + B.Insert(New); + return New; + } + + // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point + // arguments. + if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + auto SmallPrintFFn = + M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), + FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(SmallPrintFFn); + B.Insert(New); + return New; + } + + annotateNonNullBasedOnAccess(CI, 0); + return nullptr; +} + +Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, + IRBuilderBase &B) { + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return nullptr; + + // If we just have a format string (nothing else crazy) transform it. + if (CI->getNumArgOperands() == 2) { + // Make sure there's no % in the constant array. We could try to handle + // %% -> % in the future if we cared. + if (FormatStr.find('%') != StringRef::npos) + return nullptr; // we found a format specifier, bail out. + + // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) + B.CreateMemCpy( + CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1), + ConstantInt::get(DL.getIntPtrType(CI->getContext()), + FormatStr.size() + 1)); // Copy the null byte. + return ConstantInt::get(CI->getType(), FormatStr.size()); + } + + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) + return nullptr; + + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) + return nullptr; + Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); + Value *Ptr = castToCStr(CI->getArgOperand(0), B); + B.CreateStore(V, Ptr); + Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); + B.CreateStore(B.getInt8(0), Ptr); + + return ConstantInt::get(CI->getType(), 1); + } + + if (FormatStr[1] == 's') { + // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, + // strlen(str)+1) + if (!CI->getArgOperand(2)->getType()->isPointerTy()) + return nullptr; + + if (CI->use_empty()) + // sprintf(dest, "%s", str) -> strcpy(dest, str) + return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI); + + uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); + if (SrcLen) { + B.CreateMemCpy( + CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), + ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); + // Returns total number of characters written without null-character. + return ConstantInt::get(CI->getType(), SrcLen - 1); + } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2), + B, TLI)) { + // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest + Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0)); + return B.CreateIntCast(PtrDiff, CI->getType(), false); + } + + bool OptForSize = CI->getFunction()->hasOptSize() || + llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, + PGSOQueryType::IRPass); + if (OptForSize) + return nullptr; + + Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); + if (!Len) + return nullptr; + Value *IncLen = + B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); + B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2), + Align(1), IncLen); + + // The sprintf result is the unincremented number of bytes in the string. + return B.CreateIntCast(Len, CI->getType(), false); + } + return nullptr; +} + +Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (Value *V = optimizeSPrintFString(CI, B)) { + return V; + } + + // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating + // point arguments. + if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + FunctionCallee SIPrintFFn = + M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(SIPrintFFn); + B.Insert(New); + return New; + } + + // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit + // floating point arguments. + if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + auto SmallSPrintFFn = + M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), + FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(SmallSPrintFFn); + B.Insert(New); + return New; + } + + annotateNonNullBasedOnAccess(CI, {0, 1}); + return nullptr; +} + +Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, + IRBuilderBase &B) { + // Check for size + ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + if (!Size) + return nullptr; + + uint64_t N = Size->getZExtValue(); + // Check for a fixed format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) + return nullptr; + + // If we just have a format string (nothing else crazy) transform it. + if (CI->getNumArgOperands() == 3) { + // Make sure there's no % in the constant array. We could try to handle + // %% -> % in the future if we cared. + if (FormatStr.find('%') != StringRef::npos) + return nullptr; // we found a format specifier, bail out. + + if (N == 0) + return ConstantInt::get(CI->getType(), FormatStr.size()); + else if (N < FormatStr.size() + 1) + return nullptr; + + // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, + // strlen(fmt)+1) + B.CreateMemCpy( + CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), + ConstantInt::get(DL.getIntPtrType(CI->getContext()), + FormatStr.size() + 1)); // Copy the null byte. + return ConstantInt::get(CI->getType(), FormatStr.size()); + } + + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() == 2 && FormatStr[0] == '%' && + CI->getNumArgOperands() == 4) { + + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + if (N == 0) + return ConstantInt::get(CI->getType(), 1); + else if (N == 1) + return nullptr; + + // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 + if (!CI->getArgOperand(3)->getType()->isIntegerTy()) + return nullptr; + Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); + Value *Ptr = castToCStr(CI->getArgOperand(0), B); + B.CreateStore(V, Ptr); + Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); + B.CreateStore(B.getInt8(0), Ptr); + + return ConstantInt::get(CI->getType(), 1); + } + + if (FormatStr[1] == 's') { + // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) + StringRef Str; + if (!getConstantStringInfo(CI->getArgOperand(3), Str)) + return nullptr; + + if (N == 0) + return ConstantInt::get(CI->getType(), Str.size()); + else if (N < Str.size() + 1) + return nullptr; + + B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), + Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); + + // The snprintf result is the unincremented number of bytes in the string. + return ConstantInt::get(CI->getType(), Str.size()); + } + } + return nullptr; +} + +Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { + if (Value *V = optimizeSnPrintFString(CI, B)) { + return V; + } + + if (isKnownNonZero(CI->getOperand(1), DL)) + annotateNonNullBasedOnAccess(CI, 0); + return nullptr; +} + +Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, + IRBuilderBase &B) { + optimizeErrorReporting(CI, B, 0); + + // All the optimizations depend on the format string. + StringRef FormatStr; + if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) + return nullptr; + + // Do not do any of the following transformations if the fprintf return + // value is used, in general the fprintf return value is not compatible + // with fwrite(), fputc() or fputs(). + if (!CI->use_empty()) + return nullptr; + + // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) + if (CI->getNumArgOperands() == 2) { + // Could handle %% -> % if we cared. + if (FormatStr.find('%') != StringRef::npos) + return nullptr; // We found a format specifier. + + return emitFWrite( + CI->getArgOperand(1), + ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), + CI->getArgOperand(0), B, DL, TLI); + } + + // The remaining optimizations require the format string to be "%s" or "%c" + // and have an extra operand. + if (FormatStr.size() != 2 || FormatStr[0] != '%' || + CI->getNumArgOperands() < 3) + return nullptr; + + // Decode the second character of the format string. + if (FormatStr[1] == 'c') { + // fprintf(F, "%c", chr) --> fputc(chr, F) + if (!CI->getArgOperand(2)->getType()->isIntegerTy()) + return nullptr; + return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); + } + + if (FormatStr[1] == 's') { + // fprintf(F, "%s", str) --> fputs(str, F) + if (!CI->getArgOperand(2)->getType()->isPointerTy()) + return nullptr; + return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); + } + return nullptr; +} + +Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { + Function *Callee = CI->getCalledFunction(); + FunctionType *FT = Callee->getFunctionType(); + if (Value *V = optimizeFPrintFString(CI, B)) { + return V; + } + + // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no + // floating point arguments. + if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + FunctionCallee FIPrintFFn = + M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(FIPrintFFn); + B.Insert(New); + return New; + } + + // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no + // 128-bit floating point arguments. + if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { + Module *M = B.GetInsertBlock()->getParent()->getParent(); + auto SmallFPrintFFn = + M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), + FT, Callee->getAttributes()); + CallInst *New = cast<CallInst>(CI->clone()); + New->setCalledFunction(SmallFPrintFFn); + B.Insert(New); + return New; + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { + optimizeErrorReporting(CI, B, 3); + + // Get the element size and count. + ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); + ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); + if (SizeC && CountC) { + uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); + + // If this is writing zero records, remove the call (it's a noop). + if (Bytes == 0) + return ConstantInt::get(CI->getType(), 0); + + // If this is writing one byte, turn it into fputc. + // This optimisation is only valid, if the return value is unused. + if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) + Value *Char = B.CreateLoad(B.getInt8Ty(), + castToCStr(CI->getArgOperand(0), B), "char"); + Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); + return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; + } + } + + return nullptr; +} + +Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { + optimizeErrorReporting(CI, B, 1); + + // Don't rewrite fputs to fwrite when optimising for size because fwrite + // requires more arguments and thus extra MOVs are required. + bool OptForSize = CI->getFunction()->hasOptSize() || + llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, + PGSOQueryType::IRPass); + if (OptForSize) + return nullptr; + + // We can't optimize if return value is used. + if (!CI->use_empty()) + return nullptr; + + // fputs(s,F) --> fwrite(s,strlen(s),1,F) + uint64_t Len = GetStringLength(CI->getArgOperand(0)); + if (!Len) + return nullptr; + + // Known to have no uses (see above). + return emitFWrite( + CI->getArgOperand(0), + ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), + CI->getArgOperand(1), B, DL, TLI); +} + +Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { + annotateNonNullBasedOnAccess(CI, 0); + if (!CI->use_empty()) + return nullptr; + + // Check for a constant string. + // puts("") -> putchar('\n') + StringRef Str; + if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) + return emitPutChar(B.getInt32('\n'), B, TLI); + + return nullptr; +} + +Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { + // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) + return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), + Align(1), CI->getArgOperand(2)); +} + +bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { + LibFunc Func; + SmallString<20> FloatFuncName = FuncName; + FloatFuncName += 'f'; + if (TLI->getLibFunc(FloatFuncName, Func)) + return TLI->has(Func); + return false; +} + +Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, + IRBuilderBase &Builder) { + LibFunc Func; + Function *Callee = CI->getCalledFunction(); + // Check for string/memory library functions. + if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { + // Make sure we never change the calling convention. + assert((ignoreCallingConv(Func) || + isCallingConvCCompatible(CI)) && + "Optimizing string/memory libcall would change the calling convention"); + switch (Func) { + case LibFunc_strcat: + return optimizeStrCat(CI, Builder); + case LibFunc_strncat: + return optimizeStrNCat(CI, Builder); + case LibFunc_strchr: + return optimizeStrChr(CI, Builder); + case LibFunc_strrchr: + return optimizeStrRChr(CI, Builder); + case LibFunc_strcmp: + return optimizeStrCmp(CI, Builder); + case LibFunc_strncmp: + return optimizeStrNCmp(CI, Builder); + case LibFunc_strcpy: + return optimizeStrCpy(CI, Builder); + case LibFunc_stpcpy: + return optimizeStpCpy(CI, Builder); + case LibFunc_strncpy: + return optimizeStrNCpy(CI, Builder); + case LibFunc_strlen: + return optimizeStrLen(CI, Builder); + case LibFunc_strpbrk: + return optimizeStrPBrk(CI, Builder); + case LibFunc_strndup: + return optimizeStrNDup(CI, Builder); + case LibFunc_strtol: + case LibFunc_strtod: + case LibFunc_strtof: + case LibFunc_strtoul: + case LibFunc_strtoll: + case LibFunc_strtold: + case LibFunc_strtoull: + return optimizeStrTo(CI, Builder); + case LibFunc_strspn: + return optimizeStrSpn(CI, Builder); + case LibFunc_strcspn: + return optimizeStrCSpn(CI, Builder); + case LibFunc_strstr: + return optimizeStrStr(CI, Builder); + case LibFunc_memchr: + return optimizeMemChr(CI, Builder); + case LibFunc_memrchr: + return optimizeMemRChr(CI, Builder); + case LibFunc_bcmp: + return optimizeBCmp(CI, Builder); + case LibFunc_memcmp: + return optimizeMemCmp(CI, Builder); + case LibFunc_memcpy: + return optimizeMemCpy(CI, Builder); + case LibFunc_memccpy: + return optimizeMemCCpy(CI, Builder); + case LibFunc_mempcpy: + return optimizeMemPCpy(CI, Builder); + case LibFunc_memmove: + return optimizeMemMove(CI, Builder); + case LibFunc_memset: + return optimizeMemSet(CI, Builder); + case LibFunc_realloc: + return optimizeRealloc(CI, Builder); + case LibFunc_wcslen: + return optimizeWcslen(CI, Builder); + case LibFunc_bcopy: + return optimizeBCopy(CI, Builder); + default: + break; + } + } + return nullptr; +} + +Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, + LibFunc Func, + IRBuilderBase &Builder) { + // Don't optimize calls that require strict floating point semantics. + if (CI->isStrictFP()) + return nullptr; + + if (Value *V = optimizeTrigReflections(CI, Func, Builder)) + return V; + + switch (Func) { + case LibFunc_sinpif: + case LibFunc_sinpi: + case LibFunc_cospif: + case LibFunc_cospi: + return optimizeSinCosPi(CI, Builder); + case LibFunc_powf: + case LibFunc_pow: + case LibFunc_powl: + return optimizePow(CI, Builder); + case LibFunc_exp2l: + case LibFunc_exp2: + case LibFunc_exp2f: + return optimizeExp2(CI, Builder); + case LibFunc_fabsf: + case LibFunc_fabs: + case LibFunc_fabsl: + return replaceUnaryCall(CI, Builder, Intrinsic::fabs); + case LibFunc_sqrtf: + case LibFunc_sqrt: + case LibFunc_sqrtl: + return optimizeSqrt(CI, Builder); + case LibFunc_logf: + case LibFunc_log: + case LibFunc_logl: + case LibFunc_log10f: + case LibFunc_log10: + case LibFunc_log10l: + case LibFunc_log1pf: + case LibFunc_log1p: + case LibFunc_log1pl: + case LibFunc_log2f: + case LibFunc_log2: + case LibFunc_log2l: + case LibFunc_logbf: + case LibFunc_logb: + case LibFunc_logbl: + return optimizeLog(CI, Builder); + case LibFunc_tan: + case LibFunc_tanf: + case LibFunc_tanl: + return optimizeTan(CI, Builder); + case LibFunc_ceil: + return replaceUnaryCall(CI, Builder, Intrinsic::ceil); + case LibFunc_floor: + return replaceUnaryCall(CI, Builder, Intrinsic::floor); + case LibFunc_round: + return replaceUnaryCall(CI, Builder, Intrinsic::round); + case LibFunc_roundeven: + return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); + case LibFunc_nearbyint: + return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); + case LibFunc_rint: + return replaceUnaryCall(CI, Builder, Intrinsic::rint); + case LibFunc_trunc: + return replaceUnaryCall(CI, Builder, Intrinsic::trunc); + case LibFunc_acos: + case LibFunc_acosh: + case LibFunc_asin: + case LibFunc_asinh: + case LibFunc_atan: + case LibFunc_atanh: + case LibFunc_cbrt: + case LibFunc_cosh: + case LibFunc_exp: + case LibFunc_exp10: + case LibFunc_expm1: + case LibFunc_cos: + case LibFunc_sin: + case LibFunc_sinh: + case LibFunc_tanh: + if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) + return optimizeUnaryDoubleFP(CI, Builder, true); + return nullptr; + case LibFunc_copysign: + if (hasFloatVersion(CI->getCalledFunction()->getName())) + return optimizeBinaryDoubleFP(CI, Builder); + return nullptr; + case LibFunc_fminf: + case LibFunc_fmin: + case LibFunc_fminl: + case LibFunc_fmaxf: + case LibFunc_fmax: + case LibFunc_fmaxl: + return optimizeFMinFMax(CI, Builder); + case LibFunc_cabs: + case LibFunc_cabsf: + case LibFunc_cabsl: + return optimizeCAbs(CI, Builder); + default: + return nullptr; + } +} + +Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { + // TODO: Split out the code below that operates on FP calls so that + // we can all non-FP calls with the StrictFP attribute to be + // optimized. + if (CI->isNoBuiltin()) + return nullptr; + + LibFunc Func; + Function *Callee = CI->getCalledFunction(); + bool isCallingConvC = isCallingConvCCompatible(CI); + + SmallVector<OperandBundleDef, 2> OpBundles; + CI->getOperandBundlesAsDefs(OpBundles); + + IRBuilderBase::OperandBundlesGuard Guard(Builder); + Builder.setDefaultOperandBundles(OpBundles); + + // Command-line parameter overrides instruction attribute. + // This can't be moved to optimizeFloatingPointLibCall() because it may be + // used by the intrinsic optimizations. + if (EnableUnsafeFPShrink.getNumOccurrences() > 0) + UnsafeFPShrink = EnableUnsafeFPShrink; + else if (isa<FPMathOperator>(CI) && CI->isFast()) + UnsafeFPShrink = true; + + // First, check for intrinsics. + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { + if (!isCallingConvC) + return nullptr; + // The FP intrinsics have corresponding constrained versions so we don't + // need to check for the StrictFP attribute here. + switch (II->getIntrinsicID()) { + case Intrinsic::pow: + return optimizePow(CI, Builder); + case Intrinsic::exp2: + return optimizeExp2(CI, Builder); + case Intrinsic::log: + case Intrinsic::log2: + case Intrinsic::log10: + return optimizeLog(CI, Builder); + case Intrinsic::sqrt: + return optimizeSqrt(CI, Builder); + // TODO: Use foldMallocMemset() with memset intrinsic. + case Intrinsic::memset: + return optimizeMemSet(CI, Builder); + case Intrinsic::memcpy: + return optimizeMemCpy(CI, Builder); + case Intrinsic::memmove: + return optimizeMemMove(CI, Builder); + default: + return nullptr; + } + } + + // Also try to simplify calls to fortified library functions. + if (Value *SimplifiedFortifiedCI = + FortifiedSimplifier.optimizeCall(CI, Builder)) { + // Try to further simplify the result. + CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); + if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { + // Ensure that SimplifiedCI's uses are complete, since some calls have + // their uses analyzed. + replaceAllUsesWith(CI, SimplifiedCI); + + // Set insertion point to SimplifiedCI to guarantee we reach all uses + // we might replace later on. + IRBuilderBase::InsertPointGuard Guard(Builder); + Builder.SetInsertPoint(SimplifiedCI); + if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { + // If we were able to further simplify, remove the now redundant call. + substituteInParent(SimplifiedCI, V); + return V; + } + } + return SimplifiedFortifiedCI; + } + + // Then check for known library functions. + if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { + // We never change the calling convention. + if (!ignoreCallingConv(Func) && !isCallingConvC) + return nullptr; + if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) + return V; + if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) + return V; + switch (Func) { + case LibFunc_ffs: + case LibFunc_ffsl: + case LibFunc_ffsll: + return optimizeFFS(CI, Builder); + case LibFunc_fls: + case LibFunc_flsl: + case LibFunc_flsll: + return optimizeFls(CI, Builder); + case LibFunc_abs: + case LibFunc_labs: + case LibFunc_llabs: + return optimizeAbs(CI, Builder); + case LibFunc_isdigit: + return optimizeIsDigit(CI, Builder); + case LibFunc_isascii: + return optimizeIsAscii(CI, Builder); + case LibFunc_toascii: + return optimizeToAscii(CI, Builder); + case LibFunc_atoi: + case LibFunc_atol: + case LibFunc_atoll: + return optimizeAtoi(CI, Builder); + case LibFunc_strtol: + case LibFunc_strtoll: + return optimizeStrtol(CI, Builder); + case LibFunc_printf: + return optimizePrintF(CI, Builder); + case LibFunc_sprintf: + return optimizeSPrintF(CI, Builder); + case LibFunc_snprintf: + return optimizeSnPrintF(CI, Builder); + case LibFunc_fprintf: + return optimizeFPrintF(CI, Builder); + case LibFunc_fwrite: + return optimizeFWrite(CI, Builder); + case LibFunc_fputs: + return optimizeFPuts(CI, Builder); + case LibFunc_puts: + return optimizePuts(CI, Builder); + case LibFunc_perror: + return optimizeErrorReporting(CI, Builder); + case LibFunc_vfprintf: + case LibFunc_fiprintf: + return optimizeErrorReporting(CI, Builder, 0); + default: + return nullptr; + } + } + return nullptr; +} + +LibCallSimplifier::LibCallSimplifier( + const DataLayout &DL, const TargetLibraryInfo *TLI, + OptimizationRemarkEmitter &ORE, + BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, + function_ref<void(Instruction *, Value *)> Replacer, + function_ref<void(Instruction *)> Eraser) + : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), + UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} + +void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { + // Indirect through the replacer used in this instance. + Replacer(I, With); +} + +void LibCallSimplifier::eraseFromParent(Instruction *I) { + Eraser(I); +} + +// TODO: +// Additional cases that we need to add to this file: +// +// cbrt: +// * cbrt(expN(X)) -> expN(x/3) +// * cbrt(sqrt(x)) -> pow(x,1/6) +// * cbrt(cbrt(x)) -> pow(x,1/9) +// +// exp, expf, expl: +// * exp(log(x)) -> x +// +// log, logf, logl: +// * log(exp(x)) -> x +// * log(exp(y)) -> y*log(e) +// * log(exp10(y)) -> y*log(10) +// * log(sqrt(x)) -> 0.5*log(x) +// +// pow, powf, powl: +// * pow(sqrt(x),y) -> pow(x,y*0.5) +// * pow(pow(x,y),z)-> pow(x,y*z) +// +// signbit: +// * signbit(cnst) -> cnst' +// * signbit(nncst) -> 0 (if pstv is a non-negative constant) +// +// sqrt, sqrtf, sqrtl: +// * sqrt(expN(x)) -> expN(x*0.5) +// * sqrt(Nroot(x)) -> pow(x,1/(2*N)) +// * sqrt(pow(x,y)) -> pow(|x|,y*0.5) +// + +//===----------------------------------------------------------------------===// +// Fortified Library Call Optimizations +//===----------------------------------------------------------------------===// + +bool +FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, + unsigned ObjSizeOp, + Optional<unsigned> SizeOp, + Optional<unsigned> StrOp, + Optional<unsigned> FlagOp) { + // If this function takes a flag argument, the implementation may use it to + // perform extra checks. Don't fold into the non-checking variant. + if (FlagOp) { + ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); + if (!Flag || !Flag->isZero()) + return false; + } + + if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) + return true; + + if (ConstantInt *ObjSizeCI = + dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { + if (ObjSizeCI->isMinusOne()) + return true; + // If the object size wasn't -1 (unknown), bail out if we were asked to. + if (OnlyLowerUnknownSize) + return false; + if (StrOp) { + uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); + // If the length is 0 we don't know how long it is and so we can't + // remove the check. + if (Len) + annotateDereferenceableBytes(CI, *StrOp, Len); + else + return false; + return ObjSizeCI->getZExtValue() >= Len; + } + + if (SizeOp) { + if (ConstantInt *SizeCI = + dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) + return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); + } + } + return false; +} + +Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 3, 2)) { + CallInst *NewCI = + B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), + Align(1), CI->getArgOperand(2)); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return CI->getArgOperand(0); + } + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 3, 2)) { + CallInst *NewCI = + B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), + Align(1), CI->getArgOperand(2)); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return CI->getArgOperand(0); + } + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, + IRBuilderBase &B) { + // TODO: Try foldMallocMemset() here. + + if (isFortifiedCallFoldable(CI, 3, 2)) { + Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); + CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, + CI->getArgOperand(2), Align(1)); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes(AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return CI->getArgOperand(0); + } + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, + IRBuilderBase &B) { + const DataLayout &DL = CI->getModule()->getDataLayout(); + if (isFortifiedCallFoldable(CI, 3, 2)) + if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, DL, TLI)) { + CallInst *NewCI = cast<CallInst>(Call); + NewCI->setAttributes(CI->getAttributes()); + NewCI->removeAttributes( + AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCI->getType())); + return NewCI; + } + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, + IRBuilderBase &B, + LibFunc Func) { + const DataLayout &DL = CI->getModule()->getDataLayout(); + Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), + *ObjSize = CI->getArgOperand(2); + + // __stpcpy_chk(x,x,...) -> x+strlen(x) + if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { + Value *StrLen = emitStrLen(Src, B, DL, TLI); + return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; + } + + // If a) we don't have any length information, or b) we know this will + // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our + // st[rp]cpy_chk call which may fail at runtime if the size is too long. + // TODO: It might be nice to get a maximum length out of the possible + // string lengths for varying. + if (isFortifiedCallFoldable(CI, 2, None, 1)) { + if (Func == LibFunc_strcpy_chk) + return emitStrCpy(Dst, Src, B, TLI); + else + return emitStpCpy(Dst, Src, B, TLI); + } + + if (OnlyLowerUnknownSize) + return nullptr; + + // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. + uint64_t Len = GetStringLength(Src); + if (Len) + annotateDereferenceableBytes(CI, 1, Len); + else + return nullptr; + + Type *SizeTTy = DL.getIntPtrType(CI->getContext()); + Value *LenV = ConstantInt::get(SizeTTy, Len); + Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); + // If the function was an __stpcpy_chk, and we were able to fold it into + // a __memcpy_chk, we still need to return the correct end pointer. + if (Ret && Func == LibFunc_stpcpy_chk) + return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); + return Ret; +} + +Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 1, None, 0)) + return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), + TLI); + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, + IRBuilderBase &B, + LibFunc Func) { + if (isFortifiedCallFoldable(CI, 3, 2)) { + if (Func == LibFunc_strncpy_chk) + return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, TLI); + else + return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, TLI); + } + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 4, 3)) + return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { + SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); + return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(4), VariadicArgs, B, TLI); + } + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { + SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); + return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, + B, TLI); + } + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 2)) + return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 3)) + return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, TLI); + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 3)) + return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, TLI); + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 3)) + return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(2), B, TLI); + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) + return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), + CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, + IRBuilderBase &B) { + if (isFortifiedCallFoldable(CI, 2, None, None, 1)) + return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), + CI->getArgOperand(4), B, TLI); + + return nullptr; +} + +Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, + IRBuilderBase &Builder) { + // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. + // Some clang users checked for _chk libcall availability using: + // __has_builtin(__builtin___memcpy_chk) + // When compiling with -fno-builtin, this is always true. + // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we + // end up with fortified libcalls, which isn't acceptable in a freestanding + // environment which only provides their non-fortified counterparts. + // + // Until we change clang and/or teach external users to check for availability + // differently, disregard the "nobuiltin" attribute and TLI::has. + // + // PR23093. + + LibFunc Func; + Function *Callee = CI->getCalledFunction(); + bool isCallingConvC = isCallingConvCCompatible(CI); + + SmallVector<OperandBundleDef, 2> OpBundles; + CI->getOperandBundlesAsDefs(OpBundles); + + IRBuilderBase::OperandBundlesGuard Guard(Builder); + Builder.setDefaultOperandBundles(OpBundles); + + // First, check that this is a known library functions and that the prototype + // is correct. + if (!TLI->getLibFunc(*Callee, Func)) + return nullptr; + + // We never change the calling convention. + if (!ignoreCallingConv(Func) && !isCallingConvC) + return nullptr; + + switch (Func) { + case LibFunc_memcpy_chk: + return optimizeMemCpyChk(CI, Builder); + case LibFunc_mempcpy_chk: + return optimizeMemPCpyChk(CI, Builder); + case LibFunc_memmove_chk: + return optimizeMemMoveChk(CI, Builder); + case LibFunc_memset_chk: + return optimizeMemSetChk(CI, Builder); + case LibFunc_stpcpy_chk: + case LibFunc_strcpy_chk: + return optimizeStrpCpyChk(CI, Builder, Func); + case LibFunc_strlen_chk: + return optimizeStrLenChk(CI, Builder); + case LibFunc_stpncpy_chk: + case LibFunc_strncpy_chk: + return optimizeStrpNCpyChk(CI, Builder, Func); + case LibFunc_memccpy_chk: + return optimizeMemCCpyChk(CI, Builder); + case LibFunc_snprintf_chk: + return optimizeSNPrintfChk(CI, Builder); + case LibFunc_sprintf_chk: + return optimizeSPrintfChk(CI, Builder); + case LibFunc_strcat_chk: + return optimizeStrCatChk(CI, Builder); + case LibFunc_strlcat_chk: + return optimizeStrLCat(CI, Builder); + case LibFunc_strncat_chk: + return optimizeStrNCatChk(CI, Builder); + case LibFunc_strlcpy_chk: + return optimizeStrLCpyChk(CI, Builder); + case LibFunc_vsnprintf_chk: + return optimizeVSNPrintfChk(CI, Builder); + case LibFunc_vsprintf_chk: + return optimizeVSPrintfChk(CI, Builder); + default: + break; + } + return nullptr; +} + +FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( + const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) + : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} |