aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp3563
1 files changed, 3563 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp b/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
new file mode 100644
index 000000000000..f9a9dd237b6c
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -0,0 +1,3563 @@
+//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the library calls simplifier. It does not implement
+// any pass, but can't be used by other passes to do simplifications.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/Transforms/Utils/SizeOpts.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+static cl::opt<bool>
+ EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
+ cl::init(false),
+ cl::desc("Enable unsafe double to float "
+ "shrinking for math lib calls"));
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+static bool ignoreCallingConv(LibFunc Func) {
+ return Func == LibFunc_abs || Func == LibFunc_labs ||
+ Func == LibFunc_llabs || Func == LibFunc_strlen;
+}
+
+static bool isCallingConvCCompatible(CallInst *CI) {
+ switch(CI->getCallingConv()) {
+ default:
+ return false;
+ case llvm::CallingConv::C:
+ return true;
+ case llvm::CallingConv::ARM_APCS:
+ case llvm::CallingConv::ARM_AAPCS:
+ case llvm::CallingConv::ARM_AAPCS_VFP: {
+
+ // The iOS ABI diverges from the standard in some cases, so for now don't
+ // try to simplify those calls.
+ if (Triple(CI->getModule()->getTargetTriple()).isiOS())
+ return false;
+
+ auto *FuncTy = CI->getFunctionType();
+
+ if (!FuncTy->getReturnType()->isPointerTy() &&
+ !FuncTy->getReturnType()->isIntegerTy() &&
+ !FuncTy->getReturnType()->isVoidTy())
+ return false;
+
+ for (auto Param : FuncTy->params()) {
+ if (!Param->isPointerTy() && !Param->isIntegerTy())
+ return false;
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Return true if it is only used in equality comparisons with With.
+static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
+ for (User *U : V->users()) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
+ if (IC->isEquality() && IC->getOperand(1) == With)
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+static bool callHasFloatingPointArgument(const CallInst *CI) {
+ return any_of(CI->operands(), [](const Use &OI) {
+ return OI->getType()->isFloatingPointTy();
+ });
+}
+
+static bool callHasFP128Argument(const CallInst *CI) {
+ return any_of(CI->operands(), [](const Use &OI) {
+ return OI->getType()->isFP128Ty();
+ });
+}
+
+static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
+ if (Base < 2 || Base > 36)
+ // handle special zero base
+ if (Base != 0)
+ return nullptr;
+
+ char *End;
+ std::string nptr = Str.str();
+ errno = 0;
+ long long int Result = strtoll(nptr.c_str(), &End, Base);
+ if (errno)
+ return nullptr;
+
+ // if we assume all possible target locales are ASCII supersets,
+ // then if strtoll successfully parses a number on the host,
+ // it will also successfully parse the same way on the target
+ if (*End != '\0')
+ return nullptr;
+
+ if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
+ return nullptr;
+
+ return ConstantInt::get(CI->getType(), Result);
+}
+
+static bool isOnlyUsedInComparisonWithZero(Value *V) {
+ for (User *U : V->users()) {
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
+ if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+ if (C->isNullValue())
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
+ const DataLayout &DL) {
+ if (!isOnlyUsedInComparisonWithZero(CI))
+ return false;
+
+ if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
+ return false;
+
+ if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
+ return false;
+
+ return true;
+}
+
+static void annotateDereferenceableBytes(CallInst *CI,
+ ArrayRef<unsigned> ArgNos,
+ uint64_t DereferenceableBytes) {
+ const Function *F = CI->getCaller();
+ if (!F)
+ return;
+ for (unsigned ArgNo : ArgNos) {
+ uint64_t DerefBytes = DereferenceableBytes;
+ unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
+ if (!llvm::NullPointerIsDefined(F, AS) ||
+ CI->paramHasAttr(ArgNo, Attribute::NonNull))
+ DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
+ ArgNo + AttributeList::FirstArgIndex),
+ DereferenceableBytes);
+
+ if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
+ DerefBytes) {
+ CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
+ if (!llvm::NullPointerIsDefined(F, AS) ||
+ CI->paramHasAttr(ArgNo, Attribute::NonNull))
+ CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
+ CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
+ CI->getContext(), DerefBytes));
+ }
+ }
+}
+
+static void annotateNonNullBasedOnAccess(CallInst *CI,
+ ArrayRef<unsigned> ArgNos) {
+ Function *F = CI->getCaller();
+ if (!F)
+ return;
+
+ for (unsigned ArgNo : ArgNos) {
+ if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
+ continue;
+ unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
+ if (llvm::NullPointerIsDefined(F, AS))
+ continue;
+
+ CI->addParamAttr(ArgNo, Attribute::NonNull);
+ annotateDereferenceableBytes(CI, ArgNo, 1);
+ }
+}
+
+static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
+ Value *Size, const DataLayout &DL) {
+ if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
+ annotateNonNullBasedOnAccess(CI, ArgNos);
+ annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
+ } else if (isKnownNonZero(Size, DL)) {
+ annotateNonNullBasedOnAccess(CI, ArgNos);
+ const APInt *X, *Y;
+ uint64_t DerefMin = 1;
+ if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
+ DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
+ annotateDereferenceableBytes(CI, ArgNos, DerefMin);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// String and Memory Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
+ // Extract some information from the instruction
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ annotateNonNullBasedOnAccess(CI, {0, 1});
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len)
+ annotateDereferenceableBytes(CI, 1, Len);
+ else
+ return nullptr;
+ --Len; // Unbias length.
+
+ // Handle the simple, do-nothing case: strcat(x, "") -> x
+ if (Len == 0)
+ return Dst;
+
+ return emitStrLenMemCpy(Src, Dst, Len, B);
+}
+
+Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
+ IRBuilderBase &B) {
+ // We need to find the end of the destination string. That's where the
+ // memory is to be moved to. We just generate a call to strlen.
+ Value *DstLen = emitStrLen(Dst, B, DL, TLI);
+ if (!DstLen)
+ return nullptr;
+
+ // Now that we have the destination's length, we must index into the
+ // destination's pointer to get the actual memcpy destination (end of
+ // the string .. we're concatenating).
+ Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
+
+ // We have enough information to now generate the memcpy call to do the
+ // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
+ B.CreateMemCpy(
+ CpyDst, Align(1), Src, Align(1),
+ ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
+ return Dst;
+}
+
+Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
+ // Extract some information from the instruction.
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ Value *Size = CI->getArgOperand(2);
+ uint64_t Len;
+ annotateNonNullBasedOnAccess(CI, 0);
+ if (isKnownNonZero(Size, DL))
+ annotateNonNullBasedOnAccess(CI, 1);
+
+ // We don't do anything if length is not constant.
+ ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
+ if (LengthArg) {
+ Len = LengthArg->getZExtValue();
+ // strncat(x, c, 0) -> x
+ if (!Len)
+ return Dst;
+ } else {
+ return nullptr;
+ }
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen) {
+ annotateDereferenceableBytes(CI, 1, SrcLen);
+ --SrcLen; // Unbias length.
+ } else {
+ return nullptr;
+ }
+
+ // strncat(x, "", c) -> x
+ if (SrcLen == 0)
+ return Dst;
+
+ // We don't optimize this case.
+ if (Len < SrcLen)
+ return nullptr;
+
+ // strncat(x, s, c) -> strcat(x, s)
+ // s is constant so the strcat can be optimized further.
+ return emitStrLenMemCpy(Src, Dst, SrcLen, B);
+}
+
+Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ Value *SrcStr = CI->getArgOperand(0);
+ annotateNonNullBasedOnAccess(CI, 0);
+
+ // If the second operand is non-constant, see if we can compute the length
+ // of the input string and turn this into memchr.
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ if (!CharC) {
+ uint64_t Len = GetStringLength(SrcStr);
+ if (Len)
+ annotateDereferenceableBytes(CI, 0, Len);
+ else
+ return nullptr;
+ if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
+ return nullptr;
+
+ return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
+ B, DL, TLI);
+ }
+
+ // Otherwise, the character is a constant, see if the first argument is
+ // a string literal. If so, we can constant fold.
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
+ if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
+ return nullptr;
+ }
+
+ // Compute the offset, make sure to handle the case when we're searching for
+ // zero (a weird way to spell strlen).
+ size_t I = (0xFF & CharC->getSExtValue()) == 0
+ ? Str.size()
+ : Str.find(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. strchr returns null.
+ return Constant::getNullValue(CI->getType());
+
+ // strchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
+}
+
+Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
+ Value *SrcStr = CI->getArgOperand(0);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ annotateNonNullBasedOnAccess(CI, 0);
+
+ // Cannot fold anything if we're not looking for a constant.
+ if (!CharC)
+ return nullptr;
+
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str)) {
+ // strrchr(s, 0) -> strchr(s, 0)
+ if (CharC->isZero())
+ return emitStrChr(SrcStr, '\0', B, TLI);
+ return nullptr;
+ }
+
+ // Compute the offset.
+ size_t I = (0xFF & CharC->getSExtValue()) == 0
+ ? Str.size()
+ : Str.rfind(CharC->getSExtValue());
+ if (I == StringRef::npos) // Didn't find the char. Return null.
+ return Constant::getNullValue(CI->getType());
+
+ // strrchr(s+n,c) -> gep(s+n+i,c)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
+}
+
+Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
+ Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
+ if (Str1P == Str2P) // strcmp(x,x) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strcmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2)
+ return ConstantInt::get(CI->getType(), Str1.compare(Str2));
+
+ if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
+ return B.CreateNeg(B.CreateZExt(
+ B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
+ return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
+ CI->getType());
+
+ // strcmp(P, "x") -> memcmp(P, "x", 2)
+ uint64_t Len1 = GetStringLength(Str1P);
+ if (Len1)
+ annotateDereferenceableBytes(CI, 0, Len1);
+ uint64_t Len2 = GetStringLength(Str2P);
+ if (Len2)
+ annotateDereferenceableBytes(CI, 1, Len2);
+
+ if (Len1 && Len2) {
+ return emitMemCmp(Str1P, Str2P,
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
+ std::min(Len1, Len2)),
+ B, DL, TLI);
+ }
+
+ // strcmp to memcmp
+ if (!HasStr1 && HasStr2) {
+ if (canTransformToMemCmp(CI, Str1P, Len2, DL))
+ return emitMemCmp(
+ Str1P, Str2P,
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
+ TLI);
+ } else if (HasStr1 && !HasStr2) {
+ if (canTransformToMemCmp(CI, Str2P, Len1, DL))
+ return emitMemCmp(
+ Str1P, Str2P,
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
+ TLI);
+ }
+
+ annotateNonNullBasedOnAccess(CI, {0, 1});
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
+ Value *Str1P = CI->getArgOperand(0);
+ Value *Str2P = CI->getArgOperand(1);
+ Value *Size = CI->getArgOperand(2);
+ if (Str1P == Str2P) // strncmp(x,x,n) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ if (isKnownNonZero(Size, DL))
+ annotateNonNullBasedOnAccess(CI, {0, 1});
+ // Get the length argument if it is constant.
+ uint64_t Length;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
+ Length = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ if (Length == 0) // strncmp(x,y,0) -> 0
+ return ConstantInt::get(CI->getType(), 0);
+
+ if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
+ return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
+
+ StringRef Str1, Str2;
+ bool HasStr1 = getConstantStringInfo(Str1P, Str1);
+ bool HasStr2 = getConstantStringInfo(Str2P, Str2);
+
+ // strncmp(x, y) -> cnst (if both x and y are constant strings)
+ if (HasStr1 && HasStr2) {
+ StringRef SubStr1 = Str1.substr(0, Length);
+ StringRef SubStr2 = Str2.substr(0, Length);
+ return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
+ }
+
+ if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
+ return B.CreateNeg(B.CreateZExt(
+ B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
+
+ if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
+ return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
+ CI->getType());
+
+ uint64_t Len1 = GetStringLength(Str1P);
+ if (Len1)
+ annotateDereferenceableBytes(CI, 0, Len1);
+ uint64_t Len2 = GetStringLength(Str2P);
+ if (Len2)
+ annotateDereferenceableBytes(CI, 1, Len2);
+
+ // strncmp to memcmp
+ if (!HasStr1 && HasStr2) {
+ Len2 = std::min(Len2, Length);
+ if (canTransformToMemCmp(CI, Str1P, Len2, DL))
+ return emitMemCmp(
+ Str1P, Str2P,
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
+ TLI);
+ } else if (HasStr1 && !HasStr2) {
+ Len1 = std::min(Len1, Length);
+ if (canTransformToMemCmp(CI, Str2P, Len1, DL))
+ return emitMemCmp(
+ Str1P, Str2P,
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
+ TLI);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
+ Value *Src = CI->getArgOperand(0);
+ ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen && Size) {
+ annotateDereferenceableBytes(CI, 0, SrcLen);
+ if (SrcLen <= Size->getZExtValue() + 1)
+ return emitStrDup(Src, B, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) // strcpy(x,x) -> x
+ return Src;
+
+ annotateNonNullBasedOnAccess(CI, {0, 1});
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len)
+ annotateDereferenceableBytes(CI, 1, Len);
+ else
+ return nullptr;
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ CallInst *NewCI =
+ B.CreateMemCpy(Dst, Align(1), Src, Align(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return Dst;
+}
+
+Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
+ if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
+ Value *StrLen = emitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
+ }
+
+ // See if we can get the length of the input string.
+ uint64_t Len = GetStringLength(Src);
+ if (Len)
+ annotateDereferenceableBytes(CI, 1, Len);
+ else
+ return nullptr;
+
+ Type *PT = Callee->getFunctionType()->getParamType(0);
+ Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
+ Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
+ ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
+
+ // We have enough information to now generate the memcpy call to do the
+ // copy for us. Make a memcpy to copy the nul byte with align = 1.
+ CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return DstEnd;
+}
+
+Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ Value *Size = CI->getArgOperand(2);
+ annotateNonNullBasedOnAccess(CI, 0);
+ if (isKnownNonZero(Size, DL))
+ annotateNonNullBasedOnAccess(CI, 1);
+
+ uint64_t Len;
+ if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
+ Len = LengthArg->getZExtValue();
+ else
+ return nullptr;
+
+ // strncpy(x, y, 0) -> x
+ if (Len == 0)
+ return Dst;
+
+ // See if we can get the length of the input string.
+ uint64_t SrcLen = GetStringLength(Src);
+ if (SrcLen) {
+ annotateDereferenceableBytes(CI, 1, SrcLen);
+ --SrcLen; // Unbias length.
+ } else {
+ return nullptr;
+ }
+
+ if (SrcLen == 0) {
+ // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
+ CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1));
+ AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
+ NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
+ CI->getContext(), 0, ArgAttrs));
+ return Dst;
+ }
+
+ // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4)
+ if (Len > SrcLen + 1) {
+ if (Len <= 128) {
+ StringRef Str;
+ if (!getConstantStringInfo(Src, Str))
+ return nullptr;
+ std::string SrcStr = Str.str();
+ SrcStr.resize(Len, '\0');
+ Src = B.CreateGlobalString(SrcStr, "str");
+ } else {
+ return nullptr;
+ }
+ }
+
+ Type *PT = Callee->getFunctionType()->getParamType(0);
+ // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
+ CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
+ ConstantInt::get(DL.getIntPtrType(PT), Len));
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return Dst;
+}
+
+Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
+ unsigned CharSize) {
+ Value *Src = CI->getArgOperand(0);
+
+ // Constant folding: strlen("xyz") -> 3
+ if (uint64_t Len = GetStringLength(Src, CharSize))
+ return ConstantInt::get(CI->getType(), Len - 1);
+
+ // If s is a constant pointer pointing to a string literal, we can fold
+ // strlen(s + x) to strlen(s) - x, when x is known to be in the range
+ // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
+ // We only try to simplify strlen when the pointer s points to an array
+ // of i8. Otherwise, we would need to scale the offset x before doing the
+ // subtraction. This will make the optimization more complex, and it's not
+ // very useful because calling strlen for a pointer of other types is
+ // very uncommon.
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
+ if (!isGEPBasedOnPointerToString(GEP, CharSize))
+ return nullptr;
+
+ ConstantDataArraySlice Slice;
+ if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
+ uint64_t NullTermIdx;
+ if (Slice.Array == nullptr) {
+ NullTermIdx = 0;
+ } else {
+ NullTermIdx = ~((uint64_t)0);
+ for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
+ if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
+ NullTermIdx = I;
+ break;
+ }
+ }
+ // If the string does not have '\0', leave it to strlen to compute
+ // its length.
+ if (NullTermIdx == ~((uint64_t)0))
+ return nullptr;
+ }
+
+ Value *Offset = GEP->getOperand(2);
+ KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
+ Known.Zero.flipAllBits();
+ uint64_t ArrSize =
+ cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
+
+ // KnownZero's bits are flipped, so zeros in KnownZero now represent
+ // bits known to be zeros in Offset, and ones in KnowZero represent
+ // bits unknown in Offset. Therefore, Offset is known to be in range
+ // [0, NullTermIdx] when the flipped KnownZero is non-negative and
+ // unsigned-less-than NullTermIdx.
+ //
+ // If Offset is not provably in the range [0, NullTermIdx], we can still
+ // optimize if we can prove that the program has undefined behavior when
+ // Offset is outside that range. That is the case when GEP->getOperand(0)
+ // is a pointer to an object whose memory extent is NullTermIdx+1.
+ if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
+ (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
+ NullTermIdx == ArrSize - 1)) {
+ Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
+ return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
+ Offset);
+ }
+ }
+ }
+
+ // strlen(x?"foo":"bars") --> x ? 3 : 4
+ if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
+ uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
+ uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
+ if (LenTrue && LenFalse) {
+ ORE.emit([&]() {
+ return OptimizationRemark("instcombine", "simplify-libcalls", CI)
+ << "folded strlen(select) to select of constants";
+ });
+ return B.CreateSelect(SI->getCondition(),
+ ConstantInt::get(CI->getType(), LenTrue - 1),
+ ConstantInt::get(CI->getType(), LenFalse - 1));
+ }
+ }
+
+ // strlen(x) != 0 --> *x != 0
+ // strlen(x) == 0 --> *x == 0
+ if (isOnlyUsedInZeroEqualityComparison(CI))
+ return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
+ CI->getType());
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
+ if (Value *V = optimizeStringLength(CI, B, 8))
+ return V;
+ annotateNonNullBasedOnAccess(CI, 0);
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
+ Module &M = *CI->getModule();
+ unsigned WCharSize = TLI->getWCharSize(M) * 8;
+ // We cannot perform this optimization without wchar_size metadata.
+ if (WCharSize == 0)
+ return nullptr;
+
+ return optimizeStringLength(CI, B, WCharSize);
+}
+
+Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strpbrk(s, "") -> nullptr
+ // strpbrk("", s) -> nullptr
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t I = S1.find_first_of(S2);
+ if (I == StringRef::npos) // No match.
+ return Constant::getNullValue(CI->getType());
+
+ return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
+ "strpbrk");
+ }
+
+ // strpbrk(s, "a") -> strchr(s, 'a')
+ if (HasS2 && S2.size() == 1)
+ return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
+ Value *EndPtr = CI->getArgOperand(1);
+ if (isa<ConstantPointerNull>(EndPtr)) {
+ // With a null EndPtr, this function won't capture the main argument.
+ // It would be readonly too, except that it still may write to errno.
+ CI->addParamAttr(0, Attribute::NoCapture);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strspn(s, "") -> 0
+ // strspn("", s) -> 0
+ if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_not_of(S2);
+ if (Pos == StringRef::npos)
+ Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
+ StringRef S1, S2;
+ bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
+ bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
+
+ // strcspn("", s) -> 0
+ if (HasS1 && S1.empty())
+ return Constant::getNullValue(CI->getType());
+
+ // Constant folding.
+ if (HasS1 && HasS2) {
+ size_t Pos = S1.find_first_of(S2);
+ if (Pos == StringRef::npos)
+ Pos = S1.size();
+ return ConstantInt::get(CI->getType(), Pos);
+ }
+
+ // strcspn(s, "") -> strlen(s)
+ if (HasS2 && S2.empty())
+ return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
+ // fold strstr(x, x) -> x.
+ if (CI->getArgOperand(0) == CI->getArgOperand(1))
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
+ if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
+ Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
+ if (!StrLen)
+ return nullptr;
+ Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
+ StrLen, B, DL, TLI);
+ if (!StrNCmp)
+ return nullptr;
+ for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
+ ICmpInst *Old = cast<ICmpInst>(*UI++);
+ Value *Cmp =
+ B.CreateICmp(Old->getPredicate(), StrNCmp,
+ ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
+ replaceAllUsesWith(Old, Cmp);
+ }
+ return CI;
+ }
+
+ // See if either input string is a constant string.
+ StringRef SearchStr, ToFindStr;
+ bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
+ bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
+
+ // fold strstr(x, "") -> x.
+ if (HasStr2 && ToFindStr.empty())
+ return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
+
+ // If both strings are known, constant fold it.
+ if (HasStr1 && HasStr2) {
+ size_t Offset = SearchStr.find(ToFindStr);
+
+ if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
+ return Constant::getNullValue(CI->getType());
+
+ // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
+ Value *Result = castToCStr(CI->getArgOperand(0), B);
+ Result =
+ B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
+ return B.CreateBitCast(Result, CI->getType());
+ }
+
+ // fold strstr(x, "y") -> strchr(x, 'y').
+ if (HasStr2 && ToFindStr.size() == 1) {
+ Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
+ return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
+ }
+
+ annotateNonNullBasedOnAccess(CI, {0, 1});
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
+ if (isKnownNonZero(CI->getOperand(2), DL))
+ annotateNonNullBasedOnAccess(CI, 0);
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
+ Value *SrcStr = CI->getArgOperand(0);
+ Value *Size = CI->getArgOperand(2);
+ annotateNonNullAndDereferenceable(CI, 0, Size, DL);
+ ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
+
+ // memchr(x, y, 0) -> null
+ if (LenC) {
+ if (LenC->isZero())
+ return Constant::getNullValue(CI->getType());
+ } else {
+ // From now on we need at least constant length and string.
+ return nullptr;
+ }
+
+ StringRef Str;
+ if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
+ return nullptr;
+
+ // Truncate the string to LenC. If Str is smaller than LenC we will still only
+ // scan the string, as reading past the end of it is undefined and we can just
+ // return null if we don't find the char.
+ Str = Str.substr(0, LenC->getZExtValue());
+
+ // If the char is variable but the input str and length are not we can turn
+ // this memchr call into a simple bit field test. Of course this only works
+ // when the return value is only checked against null.
+ //
+ // It would be really nice to reuse switch lowering here but we can't change
+ // the CFG at this point.
+ //
+ // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
+ // != 0
+ // after bounds check.
+ if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
+ unsigned char Max =
+ *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
+ reinterpret_cast<const unsigned char *>(Str.end()));
+
+ // Make sure the bit field we're about to create fits in a register on the
+ // target.
+ // FIXME: On a 64 bit architecture this prevents us from using the
+ // interesting range of alpha ascii chars. We could do better by emitting
+ // two bitfields or shifting the range by 64 if no lower chars are used.
+ if (!DL.fitsInLegalInteger(Max + 1))
+ return nullptr;
+
+ // For the bit field use a power-of-2 type with at least 8 bits to avoid
+ // creating unnecessary illegal types.
+ unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
+
+ // Now build the bit field.
+ APInt Bitfield(Width, 0);
+ for (char C : Str)
+ Bitfield.setBit((unsigned char)C);
+ Value *BitfieldC = B.getInt(Bitfield);
+
+ // Adjust width of "C" to the bitfield width, then mask off the high bits.
+ Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
+ C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
+
+ // First check that the bit field access is within bounds.
+ Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
+ "memchr.bounds");
+
+ // Create code that checks if the given bit is set in the field.
+ Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
+ Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
+
+ // Finally merge both checks and cast to pointer type. The inttoptr
+ // implicitly zexts the i1 to intptr type.
+ return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
+ }
+
+ // Check if all arguments are constants. If so, we can constant fold.
+ if (!CharC)
+ return nullptr;
+
+ // Compute the offset.
+ size_t I = Str.find(CharC->getSExtValue() & 0xFF);
+ if (I == StringRef::npos) // Didn't find the char. memchr returns null.
+ return Constant::getNullValue(CI->getType());
+
+ // memchr(s+n,c,l) -> gep(s+n+i,c)
+ return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
+}
+
+static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
+ uint64_t Len, IRBuilderBase &B,
+ const DataLayout &DL) {
+ if (Len == 0) // memcmp(s1,s2,0) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
+ if (Len == 1) {
+ Value *LHSV =
+ B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
+ CI->getType(), "lhsv");
+ Value *RHSV =
+ B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
+ CI->getType(), "rhsv");
+ return B.CreateSub(LHSV, RHSV, "chardiff");
+ }
+
+ // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
+ // TODO: The case where both inputs are constants does not need to be limited
+ // to legal integers or equality comparison. See block below this.
+ if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
+ IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
+ unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
+
+ // First, see if we can fold either argument to a constant.
+ Value *LHSV = nullptr;
+ if (auto *LHSC = dyn_cast<Constant>(LHS)) {
+ LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
+ LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
+ }
+ Value *RHSV = nullptr;
+ if (auto *RHSC = dyn_cast<Constant>(RHS)) {
+ RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
+ RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
+ }
+
+ // Don't generate unaligned loads. If either source is constant data,
+ // alignment doesn't matter for that source because there is no load.
+ if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
+ (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
+ if (!LHSV) {
+ Type *LHSPtrTy =
+ IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
+ LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
+ }
+ if (!RHSV) {
+ Type *RHSPtrTy =
+ IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
+ RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
+ }
+ return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
+ }
+ }
+
+ // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
+ // TODO: This is limited to i8 arrays.
+ StringRef LHSStr, RHSStr;
+ if (getConstantStringInfo(LHS, LHSStr) &&
+ getConstantStringInfo(RHS, RHSStr)) {
+ // Make sure we're not reading out-of-bounds memory.
+ if (Len > LHSStr.size() || Len > RHSStr.size())
+ return nullptr;
+ // Fold the memcmp and normalize the result. This way we get consistent
+ // results across multiple platforms.
+ uint64_t Ret = 0;
+ int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
+ if (Cmp < 0)
+ Ret = -1;
+ else if (Cmp > 0)
+ Ret = 1;
+ return ConstantInt::get(CI->getType(), Ret);
+ }
+
+ return nullptr;
+}
+
+// Most simplifications for memcmp also apply to bcmp.
+Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
+ IRBuilderBase &B) {
+ Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
+ Value *Size = CI->getArgOperand(2);
+
+ if (LHS == RHS) // memcmp(s,s,x) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
+ // Handle constant lengths.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
+ if (!LenC)
+ return nullptr;
+
+ // memcmp(d,s,0) -> 0
+ if (LenC->getZExtValue() == 0)
+ return Constant::getNullValue(CI->getType());
+
+ if (Value *Res =
+ optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
+ return Res;
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
+ if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
+ return V;
+
+ // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
+ // bcmp can be more efficient than memcmp because it only has to know that
+ // there is a difference, not how different one is to the other.
+ if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
+ Value *LHS = CI->getArgOperand(0);
+ Value *RHS = CI->getArgOperand(1);
+ Value *Size = CI->getArgOperand(2);
+ return emitBCmp(LHS, RHS, Size, B, DL, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
+ return optimizeMemCmpBCmpCommon(CI, B);
+}
+
+Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
+ Value *Size = CI->getArgOperand(2);
+ annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
+ if (isa<IntrinsicInst>(CI))
+ return nullptr;
+
+ // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
+ CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
+ CI->getArgOperand(1), Align(1), Size);
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return CI->getArgOperand(0);
+}
+
+Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
+ Value *Dst = CI->getArgOperand(0);
+ Value *Src = CI->getArgOperand(1);
+ ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
+ StringRef SrcStr;
+ if (CI->use_empty() && Dst == Src)
+ return Dst;
+ // memccpy(d, s, c, 0) -> nullptr
+ if (N) {
+ if (N->isNullValue())
+ return Constant::getNullValue(CI->getType());
+ if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
+ /*TrimAtNul=*/false) ||
+ !StopChar)
+ return nullptr;
+ } else {
+ return nullptr;
+ }
+
+ // Wrap arg 'c' of type int to char
+ size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
+ if (Pos == StringRef::npos) {
+ if (N->getZExtValue() <= SrcStr.size()) {
+ B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
+ return Constant::getNullValue(CI->getType());
+ }
+ return nullptr;
+ }
+
+ Value *NewN =
+ ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
+ // memccpy -> llvm.memcpy
+ B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
+ return Pos + 1 <= N->getZExtValue()
+ ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
+ : Constant::getNullValue(CI->getType());
+}
+
+Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
+ Value *Dst = CI->getArgOperand(0);
+ Value *N = CI->getArgOperand(2);
+ // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
+ CallInst *NewCI =
+ B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
+ // Propagate attributes, but memcpy has no return value, so make sure that
+ // any return attributes are compliant.
+ // TODO: Attach return value attributes to the 1st operand to preserve them?
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
+}
+
+Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
+ Value *Size = CI->getArgOperand(2);
+ annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
+ if (isa<IntrinsicInst>(CI))
+ return nullptr;
+
+ // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
+ CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
+ CI->getArgOperand(1), Align(1), Size);
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return CI->getArgOperand(0);
+}
+
+/// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
+Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
+ // This has to be a memset of zeros (bzero).
+ auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
+ if (!FillValue || FillValue->getZExtValue() != 0)
+ return nullptr;
+
+ // TODO: We should handle the case where the malloc has more than one use.
+ // This is necessary to optimize common patterns such as when the result of
+ // the malloc is checked against null or when a memset intrinsic is used in
+ // place of a memset library call.
+ auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
+ if (!Malloc || !Malloc->hasOneUse())
+ return nullptr;
+
+ // Is the inner call really malloc()?
+ Function *InnerCallee = Malloc->getCalledFunction();
+ if (!InnerCallee)
+ return nullptr;
+
+ LibFunc Func;
+ if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
+ Func != LibFunc_malloc)
+ return nullptr;
+
+ // The memset must cover the same number of bytes that are malloc'd.
+ if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
+ return nullptr;
+
+ // Replace the malloc with a calloc. We need the data layout to know what the
+ // actual size of a 'size_t' parameter is.
+ B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
+ const DataLayout &DL = Malloc->getModule()->getDataLayout();
+ IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
+ if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
+ Malloc->getArgOperand(0),
+ Malloc->getAttributes(), B, *TLI)) {
+ substituteInParent(Malloc, Calloc);
+ return Calloc;
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
+ Value *Size = CI->getArgOperand(2);
+ annotateNonNullAndDereferenceable(CI, 0, Size, DL);
+ if (isa<IntrinsicInst>(CI))
+ return nullptr;
+
+ if (auto *Calloc = foldMallocMemset(CI, B))
+ return Calloc;
+
+ // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return CI->getArgOperand(0);
+}
+
+Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
+ if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
+ return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
+
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+// Replace a libcall \p CI with a call to intrinsic \p IID
+static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
+ Intrinsic::ID IID) {
+ // Propagate fast-math flags from the existing call to the new call.
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
+
+ Module *M = CI->getModule();
+ Value *V = CI->getArgOperand(0);
+ Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
+ CallInst *NewCall = B.CreateCall(F, V);
+ NewCall->takeName(CI);
+ return NewCall;
+}
+
+/// Return a variant of Val with float type.
+/// Currently this works in two cases: If Val is an FPExtension of a float
+/// value to something bigger, simply return the operand.
+/// If Val is a ConstantFP but can be converted to a float ConstantFP without
+/// loss of precision do so.
+static Value *valueHasFloatPrecision(Value *Val) {
+ if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
+ Value *Op = Cast->getOperand(0);
+ if (Op->getType()->isFloatTy())
+ return Op;
+ }
+ if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
+ APFloat F = Const->getValueAPF();
+ bool losesInfo;
+ (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
+ &losesInfo);
+ if (!losesInfo)
+ return ConstantFP::get(Const->getContext(), F);
+ }
+ return nullptr;
+}
+
+/// Shrink double -> float functions.
+static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
+ bool isBinary, bool isPrecise = false) {
+ Function *CalleeFn = CI->getCalledFunction();
+ if (!CI->getType()->isDoubleTy() || !CalleeFn)
+ return nullptr;
+
+ // If not all the uses of the function are converted to float, then bail out.
+ // This matters if the precision of the result is more important than the
+ // precision of the arguments.
+ if (isPrecise)
+ for (User *U : CI->users()) {
+ FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
+ if (!Cast || !Cast->getType()->isFloatTy())
+ return nullptr;
+ }
+
+ // If this is something like 'g((double) float)', convert to 'gf(float)'.
+ Value *V[2];
+ V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
+ V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
+ if (!V[0] || (isBinary && !V[1]))
+ return nullptr;
+
+ // If call isn't an intrinsic, check that it isn't within a function with the
+ // same name as the float version of this call, otherwise the result is an
+ // infinite loop. For example, from MinGW-w64:
+ //
+ // float expf(float val) { return (float) exp((double) val); }
+ StringRef CalleeName = CalleeFn->getName();
+ bool IsIntrinsic = CalleeFn->isIntrinsic();
+ if (!IsIntrinsic) {
+ StringRef CallerName = CI->getFunction()->getName();
+ if (!CallerName.empty() && CallerName.back() == 'f' &&
+ CallerName.size() == (CalleeName.size() + 1) &&
+ CallerName.startswith(CalleeName))
+ return nullptr;
+ }
+
+ // Propagate the math semantics from the current function to the new function.
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
+
+ // g((double) float) -> (double) gf(float)
+ Value *R;
+ if (IsIntrinsic) {
+ Module *M = CI->getModule();
+ Intrinsic::ID IID = CalleeFn->getIntrinsicID();
+ Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
+ R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
+ } else {
+ AttributeList CalleeAttrs = CalleeFn->getAttributes();
+ R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
+ : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
+ }
+ return B.CreateFPExt(R, B.getDoubleTy());
+}
+
+/// Shrink double -> float for unary functions.
+static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
+ bool isPrecise = false) {
+ return optimizeDoubleFP(CI, B, false, isPrecise);
+}
+
+/// Shrink double -> float for binary functions.
+static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
+ bool isPrecise = false) {
+ return optimizeDoubleFP(CI, B, true, isPrecise);
+}
+
+// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
+Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
+ if (!CI->isFast())
+ return nullptr;
+
+ // Propagate fast-math flags from the existing call to new instructions.
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(CI->getFastMathFlags());
+
+ Value *Real, *Imag;
+ if (CI->getNumArgOperands() == 1) {
+ Value *Op = CI->getArgOperand(0);
+ assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
+ Real = B.CreateExtractValue(Op, 0, "real");
+ Imag = B.CreateExtractValue(Op, 1, "imag");
+ } else {
+ assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
+ Real = CI->getArgOperand(0);
+ Imag = CI->getArgOperand(1);
+ }
+
+ Value *RealReal = B.CreateFMul(Real, Real);
+ Value *ImagImag = B.CreateFMul(Imag, Imag);
+
+ Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
+ CI->getType());
+ return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
+}
+
+static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
+ IRBuilderBase &B) {
+ if (!isa<FPMathOperator>(Call))
+ return nullptr;
+
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(Call->getFastMathFlags());
+
+ // TODO: Can this be shared to also handle LLVM intrinsics?
+ Value *X;
+ switch (Func) {
+ case LibFunc_sin:
+ case LibFunc_sinf:
+ case LibFunc_sinl:
+ case LibFunc_tan:
+ case LibFunc_tanf:
+ case LibFunc_tanl:
+ // sin(-X) --> -sin(X)
+ // tan(-X) --> -tan(X)
+ if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
+ return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
+ break;
+ case LibFunc_cos:
+ case LibFunc_cosf:
+ case LibFunc_cosl:
+ // cos(-X) --> cos(X)
+ if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
+ return B.CreateCall(Call->getCalledFunction(), X, "cos");
+ break;
+ default:
+ break;
+ }
+ return nullptr;
+}
+
+static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
+ // Multiplications calculated using Addition Chains.
+ // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
+
+ assert(Exp != 0 && "Incorrect exponent 0 not handled");
+
+ if (InnerChain[Exp])
+ return InnerChain[Exp];
+
+ static const unsigned AddChain[33][2] = {
+ {0, 0}, // Unused.
+ {0, 0}, // Unused (base case = pow1).
+ {1, 1}, // Unused (pre-computed).
+ {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4},
+ {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7},
+ {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10},
+ {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
+ {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
+ };
+
+ InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
+ getPow(InnerChain, AddChain[Exp][1], B));
+ return InnerChain[Exp];
+}
+
+// Return a properly extended 32-bit integer if the operation is an itofp.
+static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) {
+ if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
+ Value *Op = cast<Instruction>(I2F)->getOperand(0);
+ // Make sure that the exponent fits inside an int32_t,
+ // thus avoiding any range issues that FP has not.
+ unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
+ if (BitWidth < 32 ||
+ (BitWidth == 32 && isa<SIToFPInst>(I2F)))
+ return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
+ : B.CreateZExt(Op, B.getInt32Ty());
+ }
+
+ return nullptr;
+}
+
+/// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
+/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
+/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
+Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
+ Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
+ AttributeList Attrs; // Attributes are only meaningful on the original call
+ Module *Mod = Pow->getModule();
+ Type *Ty = Pow->getType();
+ bool Ignored;
+
+ // Evaluate special cases related to a nested function as the base.
+
+ // pow(exp(x), y) -> exp(x * y)
+ // pow(exp2(x), y) -> exp2(x * y)
+ // If exp{,2}() is used only once, it is better to fold two transcendental
+ // math functions into one. If used again, exp{,2}() would still have to be
+ // called with the original argument, then keep both original transcendental
+ // functions. However, this transformation is only safe with fully relaxed
+ // math semantics, since, besides rounding differences, it changes overflow
+ // and underflow behavior quite dramatically. For example:
+ // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
+ // Whereas:
+ // exp(1000 * 0.001) = exp(1)
+ // TODO: Loosen the requirement for fully relaxed math semantics.
+ // TODO: Handle exp10() when more targets have it available.
+ CallInst *BaseFn = dyn_cast<CallInst>(Base);
+ if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
+ LibFunc LibFn;
+
+ Function *CalleeFn = BaseFn->getCalledFunction();
+ if (CalleeFn &&
+ TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
+ StringRef ExpName;
+ Intrinsic::ID ID;
+ Value *ExpFn;
+ LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
+
+ switch (LibFn) {
+ default:
+ return nullptr;
+ case LibFunc_expf: case LibFunc_exp: case LibFunc_expl:
+ ExpName = TLI->getName(LibFunc_exp);
+ ID = Intrinsic::exp;
+ LibFnFloat = LibFunc_expf;
+ LibFnDouble = LibFunc_exp;
+ LibFnLongDouble = LibFunc_expl;
+ break;
+ case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
+ ExpName = TLI->getName(LibFunc_exp2);
+ ID = Intrinsic::exp2;
+ LibFnFloat = LibFunc_exp2f;
+ LibFnDouble = LibFunc_exp2;
+ LibFnLongDouble = LibFunc_exp2l;
+ break;
+ }
+
+ // Create new exp{,2}() with the product as its argument.
+ Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
+ ExpFn = BaseFn->doesNotAccessMemory()
+ ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
+ FMul, ExpName)
+ : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
+ LibFnLongDouble, B,
+ BaseFn->getAttributes());
+
+ // Since the new exp{,2}() is different from the original one, dead code
+ // elimination cannot be trusted to remove it, since it may have side
+ // effects (e.g., errno). When the only consumer for the original
+ // exp{,2}() is pow(), then it has to be explicitly erased.
+ substituteInParent(BaseFn, ExpFn);
+ return ExpFn;
+ }
+ }
+
+ // Evaluate special cases related to a constant base.
+
+ const APFloat *BaseF;
+ if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
+ return nullptr;
+
+ // pow(2.0, itofp(x)) -> ldexp(1.0, x)
+ if (match(Base, m_SpecificFP(2.0)) &&
+ (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
+ hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
+ if (Value *ExpoI = getIntToFPVal(Expo, B))
+ return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
+ LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
+ B, Attrs);
+ }
+
+ // pow(2.0 ** n, x) -> exp2(n * x)
+ if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
+ APFloat BaseR = APFloat(1.0);
+ BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
+ BaseR = BaseR / *BaseF;
+ bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
+ const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
+ APSInt NI(64, false);
+ if ((IsInteger || IsReciprocal) &&
+ NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
+ APFloat::opOK &&
+ NI > 1 && NI.isPowerOf2()) {
+ double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
+ Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
+ if (Pow->doesNotAccessMemory())
+ return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
+ FMul, "exp2");
+ else
+ return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
+ LibFunc_exp2l, B, Attrs);
+ }
+ }
+
+ // pow(10.0, x) -> exp10(x)
+ // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
+ if (match(Base, m_SpecificFP(10.0)) &&
+ hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
+ return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
+ LibFunc_exp10l, B, Attrs);
+
+ // pow(x, y) -> exp2(log2(x) * y)
+ if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
+ !BaseF->isNegative()) {
+ // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
+ // Luckily optimizePow has already handled the x == 1 case.
+ assert(!match(Base, m_FPOne()) &&
+ "pow(1.0, y) should have been simplified earlier!");
+
+ Value *Log = nullptr;
+ if (Ty->isFloatTy())
+ Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
+ else if (Ty->isDoubleTy())
+ Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
+
+ if (Log) {
+ Value *FMul = B.CreateFMul(Log, Expo, "mul");
+ if (Pow->doesNotAccessMemory())
+ return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
+ FMul, "exp2");
+ else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
+ return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
+ LibFunc_exp2l, B, Attrs);
+ }
+ }
+
+ return nullptr;
+}
+
+static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
+ Module *M, IRBuilderBase &B,
+ const TargetLibraryInfo *TLI) {
+ // If errno is never set, then use the intrinsic for sqrt().
+ if (NoErrno) {
+ Function *SqrtFn =
+ Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
+ return B.CreateCall(SqrtFn, V, "sqrt");
+ }
+
+ // Otherwise, use the libcall for sqrt().
+ if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
+ // TODO: We also should check that the target can in fact lower the sqrt()
+ // libcall. We currently have no way to ask this question, so we ask if
+ // the target has a sqrt() libcall, which is not exactly the same.
+ return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
+ LibFunc_sqrtl, B, Attrs);
+
+ return nullptr;
+}
+
+/// Use square root in place of pow(x, +/-0.5).
+Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
+ Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
+ AttributeList Attrs; // Attributes are only meaningful on the original call
+ Module *Mod = Pow->getModule();
+ Type *Ty = Pow->getType();
+
+ const APFloat *ExpoF;
+ if (!match(Expo, m_APFloat(ExpoF)) ||
+ (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
+ return nullptr;
+
+ // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
+ // so that requires fast-math-flags (afn or reassoc).
+ if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
+ return nullptr;
+
+ // If we have a pow() library call (accesses memory) and we can't guarantee
+ // that the base is not an infinity, give up:
+ // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
+ // errno), but sqrt(-Inf) is required by various standards to set errno.
+ if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
+ !isKnownNeverInfinity(Base, TLI))
+ return nullptr;
+
+ Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
+ if (!Sqrt)
+ return nullptr;
+
+ // Handle signed zero base by expanding to fabs(sqrt(x)).
+ if (!Pow->hasNoSignedZeros()) {
+ Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
+ Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
+ }
+
+ // Handle non finite base by expanding to
+ // (x == -infinity ? +infinity : sqrt(x)).
+ if (!Pow->hasNoInfs()) {
+ Value *PosInf = ConstantFP::getInfinity(Ty),
+ *NegInf = ConstantFP::getInfinity(Ty, true);
+ Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
+ Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
+ }
+
+ // If the exponent is negative, then get the reciprocal.
+ if (ExpoF->isNegative())
+ Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
+
+ return Sqrt;
+}
+
+static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
+ IRBuilderBase &B) {
+ Value *Args[] = {Base, Expo};
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
+ return B.CreateCall(F, Args);
+}
+
+Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
+ Value *Base = Pow->getArgOperand(0);
+ Value *Expo = Pow->getArgOperand(1);
+ Function *Callee = Pow->getCalledFunction();
+ StringRef Name = Callee->getName();
+ Type *Ty = Pow->getType();
+ Module *M = Pow->getModule();
+ Value *Shrunk = nullptr;
+ bool AllowApprox = Pow->hasApproxFunc();
+ bool Ignored;
+
+ // Propagate the math semantics from the call to any created instructions.
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(Pow->getFastMathFlags());
+
+ // Shrink pow() to powf() if the arguments are single precision,
+ // unless the result is expected to be double precision.
+ if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
+ hasFloatVersion(Name))
+ Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
+
+ // Evaluate special cases related to the base.
+
+ // pow(1.0, x) -> 1.0
+ if (match(Base, m_FPOne()))
+ return Base;
+
+ if (Value *Exp = replacePowWithExp(Pow, B))
+ return Exp;
+
+ // Evaluate special cases related to the exponent.
+
+ // pow(x, -1.0) -> 1.0 / x
+ if (match(Expo, m_SpecificFP(-1.0)))
+ return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
+
+ // pow(x, +/-0.0) -> 1.0
+ if (match(Expo, m_AnyZeroFP()))
+ return ConstantFP::get(Ty, 1.0);
+
+ // pow(x, 1.0) -> x
+ if (match(Expo, m_FPOne()))
+ return Base;
+
+ // pow(x, 2.0) -> x * x
+ if (match(Expo, m_SpecificFP(2.0)))
+ return B.CreateFMul(Base, Base, "square");
+
+ if (Value *Sqrt = replacePowWithSqrt(Pow, B))
+ return Sqrt;
+
+ // pow(x, n) -> x * x * x * ...
+ const APFloat *ExpoF;
+ if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
+ !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
+ // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
+ // If the exponent is an integer+0.5 we generate a call to sqrt and an
+ // additional fmul.
+ // TODO: This whole transformation should be backend specific (e.g. some
+ // backends might prefer libcalls or the limit for the exponent might
+ // be different) and it should also consider optimizing for size.
+ APFloat LimF(ExpoF->getSemantics(), 33),
+ ExpoA(abs(*ExpoF));
+ if (ExpoA < LimF) {
+ // This transformation applies to integer or integer+0.5 exponents only.
+ // For integer+0.5, we create a sqrt(Base) call.
+ Value *Sqrt = nullptr;
+ if (!ExpoA.isInteger()) {
+ APFloat Expo2 = ExpoA;
+ // To check if ExpoA is an integer + 0.5, we add it to itself. If there
+ // is no floating point exception and the result is an integer, then
+ // ExpoA == integer + 0.5
+ if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
+ return nullptr;
+
+ if (!Expo2.isInteger())
+ return nullptr;
+
+ Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
+ Pow->doesNotAccessMemory(), M, B, TLI);
+ if (!Sqrt)
+ return nullptr;
+ }
+
+ // We will memoize intermediate products of the Addition Chain.
+ Value *InnerChain[33] = {nullptr};
+ InnerChain[1] = Base;
+ InnerChain[2] = B.CreateFMul(Base, Base, "square");
+
+ // We cannot readily convert a non-double type (like float) to a double.
+ // So we first convert it to something which could be converted to double.
+ ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
+ Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
+
+ // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
+ if (Sqrt)
+ FMul = B.CreateFMul(FMul, Sqrt);
+
+ // If the exponent is negative, then get the reciprocal.
+ if (ExpoF->isNegative())
+ FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
+
+ return FMul;
+ }
+
+ APSInt IntExpo(32, /*isUnsigned=*/false);
+ // powf(x, n) -> powi(x, n) if n is a constant signed integer value
+ if (ExpoF->isInteger() &&
+ ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
+ APFloat::opOK) {
+ return createPowWithIntegerExponent(
+ Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
+ }
+ }
+
+ // powf(x, itofp(y)) -> powi(x, y)
+ if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
+ if (Value *ExpoI = getIntToFPVal(Expo, B))
+ return createPowWithIntegerExponent(Base, ExpoI, M, B);
+ }
+
+ return Shrunk;
+}
+
+Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ AttributeList Attrs; // Attributes are only meaningful on the original call
+ StringRef Name = Callee->getName();
+ Value *Ret = nullptr;
+ if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
+ hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ Type *Ty = CI->getType();
+ Value *Op = CI->getArgOperand(0);
+
+ // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
+ // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
+ if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
+ hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
+ if (Value *Exp = getIntToFPVal(Op, B))
+ return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
+ LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
+ B, Attrs);
+ }
+
+ return Ret;
+}
+
+Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
+ // If we can shrink the call to a float function rather than a double
+ // function, do that first.
+ Function *Callee = CI->getCalledFunction();
+ StringRef Name = Callee->getName();
+ if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
+ if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
+ return Ret;
+
+ // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
+ // the intrinsics for improved optimization (for example, vectorization).
+ // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
+ // From the C standard draft WG14/N1256:
+ // "Ideally, fmax would be sensitive to the sign of zero, for example
+ // fmax(-0.0, +0.0) would return +0; however, implementation in software
+ // might be impractical."
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ FastMathFlags FMF = CI->getFastMathFlags();
+ FMF.setNoSignedZeros();
+ B.setFastMathFlags(FMF);
+
+ Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
+ : Intrinsic::maxnum;
+ Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
+ return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
+}
+
+Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
+ Function *LogFn = Log->getCalledFunction();
+ AttributeList Attrs; // Attributes are only meaningful on the original call
+ StringRef LogNm = LogFn->getName();
+ Intrinsic::ID LogID = LogFn->getIntrinsicID();
+ Module *Mod = Log->getModule();
+ Type *Ty = Log->getType();
+ Value *Ret = nullptr;
+
+ if (UnsafeFPShrink && hasFloatVersion(LogNm))
+ Ret = optimizeUnaryDoubleFP(Log, B, true);
+
+ // The earlier call must also be 'fast' in order to do these transforms.
+ CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
+ if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
+ return Ret;
+
+ LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
+
+ // This is only applicable to log(), log2(), log10().
+ if (TLI->getLibFunc(LogNm, LogLb))
+ switch (LogLb) {
+ case LibFunc_logf:
+ LogID = Intrinsic::log;
+ ExpLb = LibFunc_expf;
+ Exp2Lb = LibFunc_exp2f;
+ Exp10Lb = LibFunc_exp10f;
+ PowLb = LibFunc_powf;
+ break;
+ case LibFunc_log:
+ LogID = Intrinsic::log;
+ ExpLb = LibFunc_exp;
+ Exp2Lb = LibFunc_exp2;
+ Exp10Lb = LibFunc_exp10;
+ PowLb = LibFunc_pow;
+ break;
+ case LibFunc_logl:
+ LogID = Intrinsic::log;
+ ExpLb = LibFunc_expl;
+ Exp2Lb = LibFunc_exp2l;
+ Exp10Lb = LibFunc_exp10l;
+ PowLb = LibFunc_powl;
+ break;
+ case LibFunc_log2f:
+ LogID = Intrinsic::log2;
+ ExpLb = LibFunc_expf;
+ Exp2Lb = LibFunc_exp2f;
+ Exp10Lb = LibFunc_exp10f;
+ PowLb = LibFunc_powf;
+ break;
+ case LibFunc_log2:
+ LogID = Intrinsic::log2;
+ ExpLb = LibFunc_exp;
+ Exp2Lb = LibFunc_exp2;
+ Exp10Lb = LibFunc_exp10;
+ PowLb = LibFunc_pow;
+ break;
+ case LibFunc_log2l:
+ LogID = Intrinsic::log2;
+ ExpLb = LibFunc_expl;
+ Exp2Lb = LibFunc_exp2l;
+ Exp10Lb = LibFunc_exp10l;
+ PowLb = LibFunc_powl;
+ break;
+ case LibFunc_log10f:
+ LogID = Intrinsic::log10;
+ ExpLb = LibFunc_expf;
+ Exp2Lb = LibFunc_exp2f;
+ Exp10Lb = LibFunc_exp10f;
+ PowLb = LibFunc_powf;
+ break;
+ case LibFunc_log10:
+ LogID = Intrinsic::log10;
+ ExpLb = LibFunc_exp;
+ Exp2Lb = LibFunc_exp2;
+ Exp10Lb = LibFunc_exp10;
+ PowLb = LibFunc_pow;
+ break;
+ case LibFunc_log10l:
+ LogID = Intrinsic::log10;
+ ExpLb = LibFunc_expl;
+ Exp2Lb = LibFunc_exp2l;
+ Exp10Lb = LibFunc_exp10l;
+ PowLb = LibFunc_powl;
+ break;
+ default:
+ return Ret;
+ }
+ else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
+ LogID == Intrinsic::log10) {
+ if (Ty->getScalarType()->isFloatTy()) {
+ ExpLb = LibFunc_expf;
+ Exp2Lb = LibFunc_exp2f;
+ Exp10Lb = LibFunc_exp10f;
+ PowLb = LibFunc_powf;
+ } else if (Ty->getScalarType()->isDoubleTy()) {
+ ExpLb = LibFunc_exp;
+ Exp2Lb = LibFunc_exp2;
+ Exp10Lb = LibFunc_exp10;
+ PowLb = LibFunc_pow;
+ } else
+ return Ret;
+ } else
+ return Ret;
+
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(FastMathFlags::getFast());
+
+ Intrinsic::ID ArgID = Arg->getIntrinsicID();
+ LibFunc ArgLb = NotLibFunc;
+ TLI->getLibFunc(*Arg, ArgLb);
+
+ // log(pow(x,y)) -> y*log(x)
+ if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
+ Value *LogX =
+ Log->doesNotAccessMemory()
+ ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
+ Arg->getOperand(0), "log")
+ : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
+ Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
+ // Since pow() may have side effects, e.g. errno,
+ // dead code elimination may not be trusted to remove it.
+ substituteInParent(Arg, MulY);
+ return MulY;
+ }
+
+ // log(exp{,2,10}(y)) -> y*log({e,2,10})
+ // TODO: There is no exp10() intrinsic yet.
+ if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
+ ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
+ Constant *Eul;
+ if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
+ // FIXME: Add more precise value of e for long double.
+ Eul = ConstantFP::get(Log->getType(), numbers::e);
+ else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
+ Eul = ConstantFP::get(Log->getType(), 2.0);
+ else
+ Eul = ConstantFP::get(Log->getType(), 10.0);
+ Value *LogE = Log->doesNotAccessMemory()
+ ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
+ Eul, "log")
+ : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
+ Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
+ // Since exp() may have side effects, e.g. errno,
+ // dead code elimination may not be trusted to remove it.
+ substituteInParent(Arg, MulY);
+ return MulY;
+ }
+
+ return Ret;
+}
+
+Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ // TODO: Once we have a way (other than checking for the existince of the
+ // libcall) to tell whether our target can lower @llvm.sqrt, relax the
+ // condition below.
+ if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
+ Callee->getIntrinsicID() == Intrinsic::sqrt))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ if (!CI->isFast())
+ return Ret;
+
+ Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
+ if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
+ return Ret;
+
+ // We're looking for a repeated factor in a multiplication tree,
+ // so we can do this fold: sqrt(x * x) -> fabs(x);
+ // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+ Value *RepeatOp = nullptr;
+ Value *OtherOp = nullptr;
+ if (Op0 == Op1) {
+ // Simple match: the operands of the multiply are identical.
+ RepeatOp = Op0;
+ } else {
+ // Look for a more complicated pattern: one of the operands is itself
+ // a multiply, so search for a common factor in that multiply.
+ // Note: We don't bother looking any deeper than this first level or for
+ // variations of this pattern because instcombine's visitFMUL and/or the
+ // reassociation pass should give us this form.
+ Value *OtherMul0, *OtherMul1;
+ if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
+ // Pattern: sqrt((x * y) * z)
+ if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
+ // Matched: sqrt((x * x) * z)
+ RepeatOp = OtherMul0;
+ OtherOp = Op1;
+ }
+ }
+ }
+ if (!RepeatOp)
+ return Ret;
+
+ // Fast math flags for any created instructions should match the sqrt
+ // and multiply.
+ IRBuilderBase::FastMathFlagGuard Guard(B);
+ B.setFastMathFlags(I->getFastMathFlags());
+
+ // If we found a repeated factor, hoist it out of the square root and
+ // replace it with the fabs of that factor.
+ Module *M = Callee->getParent();
+ Type *ArgType = I->getType();
+ Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
+ Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
+ if (OtherOp) {
+ // If we found a non-repeated factor, we still need to get its square
+ // root. We then multiply that by the value that was simplified out
+ // of the square root calculation.
+ Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
+ Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
+ return B.CreateFMul(FabsCall, SqrtCall);
+ }
+ return FabsCall;
+}
+
+// TODO: Generalize to handle any trig function and its inverse.
+Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ Value *Ret = nullptr;
+ StringRef Name = Callee->getName();
+ if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
+ Ret = optimizeUnaryDoubleFP(CI, B, true);
+
+ Value *Op1 = CI->getArgOperand(0);
+ auto *OpC = dyn_cast<CallInst>(Op1);
+ if (!OpC)
+ return Ret;
+
+ // Both calls must be 'fast' in order to remove them.
+ if (!CI->isFast() || !OpC->isFast())
+ return Ret;
+
+ // tan(atan(x)) -> x
+ // tanf(atanf(x)) -> x
+ // tanl(atanl(x)) -> x
+ LibFunc Func;
+ Function *F = OpC->getCalledFunction();
+ if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
+ ((Func == LibFunc_atan && Callee->getName() == "tan") ||
+ (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
+ (Func == LibFunc_atanl && Callee->getName() == "tanl")))
+ Ret = OpC->getArgOperand(0);
+ return Ret;
+}
+
+static bool isTrigLibCall(CallInst *CI) {
+ // We can only hope to do anything useful if we can ignore things like errno
+ // and floating-point exceptions.
+ // We already checked the prototype.
+ return CI->hasFnAttr(Attribute::NoUnwind) &&
+ CI->hasFnAttr(Attribute::ReadNone);
+}
+
+static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
+ bool UseFloat, Value *&Sin, Value *&Cos,
+ Value *&SinCos) {
+ Type *ArgTy = Arg->getType();
+ Type *ResTy;
+ StringRef Name;
+
+ Triple T(OrigCallee->getParent()->getTargetTriple());
+ if (UseFloat) {
+ Name = "__sincospif_stret";
+
+ assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
+ // x86_64 can't use {float, float} since that would be returned in both
+ // xmm0 and xmm1, which isn't what a real struct would do.
+ ResTy = T.getArch() == Triple::x86_64
+ ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
+ : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
+ } else {
+ Name = "__sincospi_stret";
+ ResTy = StructType::get(ArgTy, ArgTy);
+ }
+
+ Module *M = OrigCallee->getParent();
+ FunctionCallee Callee =
+ M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
+
+ if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
+ // If the argument is an instruction, it must dominate all uses so put our
+ // sincos call there.
+ B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
+ } else {
+ // Otherwise (e.g. for a constant) the beginning of the function is as
+ // good a place as any.
+ BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
+ B.SetInsertPoint(&EntryBB, EntryBB.begin());
+ }
+
+ SinCos = B.CreateCall(Callee, Arg, "sincospi");
+
+ if (SinCos->getType()->isStructTy()) {
+ Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
+ Cos = B.CreateExtractValue(SinCos, 1, "cospi");
+ } else {
+ Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
+ "sinpi");
+ Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
+ "cospi");
+ }
+}
+
+Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
+ // Make sure the prototype is as expected, otherwise the rest of the
+ // function is probably invalid and likely to abort.
+ if (!isTrigLibCall(CI))
+ return nullptr;
+
+ Value *Arg = CI->getArgOperand(0);
+ SmallVector<CallInst *, 1> SinCalls;
+ SmallVector<CallInst *, 1> CosCalls;
+ SmallVector<CallInst *, 1> SinCosCalls;
+
+ bool IsFloat = Arg->getType()->isFloatTy();
+
+ // Look for all compatible sinpi, cospi and sincospi calls with the same
+ // argument. If there are enough (in some sense) we can make the
+ // substitution.
+ Function *F = CI->getFunction();
+ for (User *U : Arg->users())
+ classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
+
+ // It's only worthwhile if both sinpi and cospi are actually used.
+ if (SinCalls.empty() || CosCalls.empty())
+ return nullptr;
+
+ Value *Sin, *Cos, *SinCos;
+ insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
+
+ auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
+ Value *Res) {
+ for (CallInst *C : Calls)
+ replaceAllUsesWith(C, Res);
+ };
+
+ replaceTrigInsts(SinCalls, Sin);
+ replaceTrigInsts(CosCalls, Cos);
+ replaceTrigInsts(SinCosCalls, SinCos);
+
+ return nullptr;
+}
+
+void LibCallSimplifier::classifyArgUse(
+ Value *Val, Function *F, bool IsFloat,
+ SmallVectorImpl<CallInst *> &SinCalls,
+ SmallVectorImpl<CallInst *> &CosCalls,
+ SmallVectorImpl<CallInst *> &SinCosCalls) {
+ CallInst *CI = dyn_cast<CallInst>(Val);
+
+ if (!CI || CI->use_empty())
+ return;
+
+ // Don't consider calls in other functions.
+ if (CI->getFunction() != F)
+ return;
+
+ Function *Callee = CI->getCalledFunction();
+ LibFunc Func;
+ if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
+ !isTrigLibCall(CI))
+ return;
+
+ if (IsFloat) {
+ if (Func == LibFunc_sinpif)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc_cospif)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc_sincospif_stret)
+ SinCosCalls.push_back(CI);
+ } else {
+ if (Func == LibFunc_sinpi)
+ SinCalls.push_back(CI);
+ else if (Func == LibFunc_cospi)
+ CosCalls.push_back(CI);
+ else if (Func == LibFunc_sincospi_stret)
+ SinCosCalls.push_back(CI);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Integer Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
+ // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+ Value *Op = CI->getArgOperand(0);
+ Type *ArgType = Op->getType();
+ Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
+ Intrinsic::cttz, ArgType);
+ Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
+ V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
+ V = B.CreateIntCast(V, B.getInt32Ty(), false);
+
+ Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
+ return B.CreateSelect(Cond, V, B.getInt32(0));
+}
+
+Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
+ // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
+ Value *Op = CI->getArgOperand(0);
+ Type *ArgType = Op->getType();
+ Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
+ Intrinsic::ctlz, ArgType);
+ Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
+ V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
+ V);
+ return B.CreateIntCast(V, CI->getType(), false);
+}
+
+Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
+ // abs(x) -> x <s 0 ? -x : x
+ // The negation has 'nsw' because abs of INT_MIN is undefined.
+ Value *X = CI->getArgOperand(0);
+ Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
+ Value *NegX = B.CreateNSWNeg(X, "neg");
+ return B.CreateSelect(IsNeg, NegX, X);
+}
+
+Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
+ // isdigit(c) -> (c-'0') <u 10
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
+ Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
+ return B.CreateZExt(Op, CI->getType());
+}
+
+Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
+ // isascii(c) -> c <u 128
+ Value *Op = CI->getArgOperand(0);
+ Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
+ return B.CreateZExt(Op, CI->getType());
+}
+
+Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
+ // toascii(c) -> c & 0x7f
+ return B.CreateAnd(CI->getArgOperand(0),
+ ConstantInt::get(CI->getType(), 0x7F));
+}
+
+Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return nullptr;
+
+ return convertStrToNumber(CI, Str, 10);
+}
+
+Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ return nullptr;
+
+ if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
+ return nullptr;
+
+ if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
+ return convertStrToNumber(CI, Str, CInt->getSExtValue());
+ }
+
+ return nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Formatting and IO Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
+
+Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
+ int StreamArg) {
+ Function *Callee = CI->getCalledFunction();
+ // Error reporting calls should be cold, mark them as such.
+ // This applies even to non-builtin calls: it is only a hint and applies to
+ // functions that the frontend might not understand as builtins.
+
+ // This heuristic was suggested in:
+ // Improving Static Branch Prediction in a Compiler
+ // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
+ // Proceedings of PACT'98, Oct. 1998, IEEE
+ if (!CI->hasFnAttr(Attribute::Cold) &&
+ isReportingError(Callee, CI, StreamArg)) {
+ CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
+ }
+
+ return nullptr;
+}
+
+static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
+ if (!Callee || !Callee->isDeclaration())
+ return false;
+
+ if (StreamArg < 0)
+ return true;
+
+ // These functions might be considered cold, but only if their stream
+ // argument is stderr.
+
+ if (StreamArg >= (int)CI->getNumArgOperands())
+ return false;
+ LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
+ if (!LI)
+ return false;
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
+ if (!GV || !GV->isDeclaration())
+ return false;
+ return GV->getName() == "stderr";
+}
+
+Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
+ return nullptr;
+
+ // Empty format string -> noop.
+ if (FormatStr.empty()) // Tolerate printf's declared void.
+ return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
+
+ // Do not do any of the following transformations if the printf return value
+ // is used, in general the printf return value is not compatible with either
+ // putchar() or puts().
+ if (!CI->use_empty())
+ return nullptr;
+
+ // printf("x") -> putchar('x'), even for "%" and "%%".
+ if (FormatStr.size() == 1 || FormatStr == "%%")
+ return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
+
+ // printf("%s", "a") --> putchar('a')
+ if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
+ StringRef ChrStr;
+ if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
+ return nullptr;
+ if (ChrStr.size() != 1)
+ return nullptr;
+ return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
+ }
+
+ // printf("foo\n") --> puts("foo")
+ if (FormatStr[FormatStr.size() - 1] == '\n' &&
+ FormatStr.find('%') == StringRef::npos) { // No format characters.
+ // Create a string literal with no \n on it. We expect the constant merge
+ // pass to be run after this pass, to merge duplicate strings.
+ FormatStr = FormatStr.drop_back();
+ Value *GV = B.CreateGlobalString(FormatStr, "str");
+ return emitPutS(GV, B, TLI);
+ }
+
+ // Optimize specific format strings.
+ // printf("%c", chr) --> putchar(chr)
+ if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isIntegerTy())
+ return emitPutChar(CI->getArgOperand(1), B, TLI);
+
+ // printf("%s\n", str) --> puts(str)
+ if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
+ CI->getArgOperand(1)->getType()->isPointerTy())
+ return emitPutS(CI->getArgOperand(1), B, TLI);
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
+
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (Value *V = optimizePrintFString(CI, B)) {
+ return V;
+ }
+
+ // printf(format, ...) -> iprintf(format, ...) if no floating point
+ // arguments.
+ if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ FunctionCallee IPrintFFn =
+ M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(IPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
+ // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
+ // arguments.
+ if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ auto SmallPrintFFn =
+ M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
+ FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SmallPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
+ annotateNonNullBasedOnAccess(CI, 0);
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
+ IRBuilderBase &B) {
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
+
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 2) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ if (FormatStr.find('%') != StringRef::npos)
+ return nullptr; // we found a format specifier, bail out.
+
+ // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
+ B.CreateMemCpy(
+ CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
+ FormatStr.size() + 1)); // Copy the null byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return nullptr;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy())
+ return nullptr;
+ Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
+ Value *Ptr = castToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
+ }
+
+ if (FormatStr[1] == 's') {
+ // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
+ // strlen(str)+1)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy())
+ return nullptr;
+
+ if (CI->use_empty())
+ // sprintf(dest, "%s", str) -> strcpy(dest, str)
+ return emitStrCpy(CI->getArgOperand(0), CI->getArgOperand(2), B, TLI);
+
+ uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
+ if (SrcLen) {
+ B.CreateMemCpy(
+ CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
+ // Returns total number of characters written without null-character.
+ return ConstantInt::get(CI->getType(), SrcLen - 1);
+ } else if (Value *V = emitStpCpy(CI->getArgOperand(0), CI->getArgOperand(2),
+ B, TLI)) {
+ // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
+ Value *PtrDiff = B.CreatePtrDiff(V, CI->getArgOperand(0));
+ return B.CreateIntCast(PtrDiff, CI->getType(), false);
+ }
+
+ bool OptForSize = CI->getFunction()->hasOptSize() ||
+ llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
+ PGSOQueryType::IRPass);
+ if (OptForSize)
+ return nullptr;
+
+ Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
+ if (!Len)
+ return nullptr;
+ Value *IncLen =
+ B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
+ B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
+ Align(1), IncLen);
+
+ // The sprintf result is the unincremented number of bytes in the string.
+ return B.CreateIntCast(Len, CI->getType(), false);
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (Value *V = optimizeSPrintFString(CI, B)) {
+ return V;
+ }
+
+ // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
+ // point arguments.
+ if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ FunctionCallee SIPrintFFn =
+ M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
+ // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
+ // floating point arguments.
+ if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ auto SmallSPrintFFn =
+ M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
+ FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SmallSPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
+ annotateNonNullBasedOnAccess(CI, {0, 1});
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
+ IRBuilderBase &B) {
+ // Check for size
+ ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ if (!Size)
+ return nullptr;
+
+ uint64_t N = Size->getZExtValue();
+ // Check for a fixed format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
+ return nullptr;
+
+ // If we just have a format string (nothing else crazy) transform it.
+ if (CI->getNumArgOperands() == 3) {
+ // Make sure there's no % in the constant array. We could try to handle
+ // %% -> % in the future if we cared.
+ if (FormatStr.find('%') != StringRef::npos)
+ return nullptr; // we found a format specifier, bail out.
+
+ if (N == 0)
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ else if (N < FormatStr.size() + 1)
+ return nullptr;
+
+ // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
+ // strlen(fmt)+1)
+ B.CreateMemCpy(
+ CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()),
+ FormatStr.size() + 1)); // Copy the null byte.
+ return ConstantInt::get(CI->getType(), FormatStr.size());
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
+ CI->getNumArgOperands() == 4) {
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ if (N == 0)
+ return ConstantInt::get(CI->getType(), 1);
+ else if (N == 1)
+ return nullptr;
+
+ // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
+ if (!CI->getArgOperand(3)->getType()->isIntegerTy())
+ return nullptr;
+ Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
+ Value *Ptr = castToCStr(CI->getArgOperand(0), B);
+ B.CreateStore(V, Ptr);
+ Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
+ B.CreateStore(B.getInt8(0), Ptr);
+
+ return ConstantInt::get(CI->getType(), 1);
+ }
+
+ if (FormatStr[1] == 's') {
+ // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
+ StringRef Str;
+ if (!getConstantStringInfo(CI->getArgOperand(3), Str))
+ return nullptr;
+
+ if (N == 0)
+ return ConstantInt::get(CI->getType(), Str.size());
+ else if (N < Str.size() + 1)
+ return nullptr;
+
+ B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
+ Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
+
+ // The snprintf result is the unincremented number of bytes in the string.
+ return ConstantInt::get(CI->getType(), Str.size());
+ }
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
+ if (Value *V = optimizeSnPrintFString(CI, B)) {
+ return V;
+ }
+
+ if (isKnownNonZero(CI->getOperand(1), DL))
+ annotateNonNullBasedOnAccess(CI, 0);
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
+ IRBuilderBase &B) {
+ optimizeErrorReporting(CI, B, 0);
+
+ // All the optimizations depend on the format string.
+ StringRef FormatStr;
+ if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
+ return nullptr;
+
+ // Do not do any of the following transformations if the fprintf return
+ // value is used, in general the fprintf return value is not compatible
+ // with fwrite(), fputc() or fputs().
+ if (!CI->use_empty())
+ return nullptr;
+
+ // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+ if (CI->getNumArgOperands() == 2) {
+ // Could handle %% -> % if we cared.
+ if (FormatStr.find('%') != StringRef::npos)
+ return nullptr; // We found a format specifier.
+
+ return emitFWrite(
+ CI->getArgOperand(1),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
+ CI->getArgOperand(0), B, DL, TLI);
+ }
+
+ // The remaining optimizations require the format string to be "%s" or "%c"
+ // and have an extra operand.
+ if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
+ CI->getNumArgOperands() < 3)
+ return nullptr;
+
+ // Decode the second character of the format string.
+ if (FormatStr[1] == 'c') {
+ // fprintf(F, "%c", chr) --> fputc(chr, F)
+ if (!CI->getArgOperand(2)->getType()->isIntegerTy())
+ return nullptr;
+ return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
+ }
+
+ if (FormatStr[1] == 's') {
+ // fprintf(F, "%s", str) --> fputs(str, F)
+ if (!CI->getArgOperand(2)->getType()->isPointerTy())
+ return nullptr;
+ return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
+ Function *Callee = CI->getCalledFunction();
+ FunctionType *FT = Callee->getFunctionType();
+ if (Value *V = optimizeFPrintFString(CI, B)) {
+ return V;
+ }
+
+ // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
+ // floating point arguments.
+ if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ FunctionCallee FIPrintFFn =
+ M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(FIPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
+ // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
+ // 128-bit floating point arguments.
+ if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ auto SmallFPrintFFn =
+ M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
+ FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SmallFPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
+ optimizeErrorReporting(CI, B, 3);
+
+ // Get the element size and count.
+ ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
+ ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
+ if (SizeC && CountC) {
+ uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
+
+ // If this is writing zero records, remove the call (it's a noop).
+ if (Bytes == 0)
+ return ConstantInt::get(CI->getType(), 0);
+
+ // If this is writing one byte, turn it into fputc.
+ // This optimisation is only valid, if the return value is unused.
+ if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
+ Value *Char = B.CreateLoad(B.getInt8Ty(),
+ castToCStr(CI->getArgOperand(0), B), "char");
+ Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
+ return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
+ }
+ }
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
+ optimizeErrorReporting(CI, B, 1);
+
+ // Don't rewrite fputs to fwrite when optimising for size because fwrite
+ // requires more arguments and thus extra MOVs are required.
+ bool OptForSize = CI->getFunction()->hasOptSize() ||
+ llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
+ PGSOQueryType::IRPass);
+ if (OptForSize)
+ return nullptr;
+
+ // We can't optimize if return value is used.
+ if (!CI->use_empty())
+ return nullptr;
+
+ // fputs(s,F) --> fwrite(s,strlen(s),1,F)
+ uint64_t Len = GetStringLength(CI->getArgOperand(0));
+ if (!Len)
+ return nullptr;
+
+ // Known to have no uses (see above).
+ return emitFWrite(
+ CI->getArgOperand(0),
+ ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
+ CI->getArgOperand(1), B, DL, TLI);
+}
+
+Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
+ annotateNonNullBasedOnAccess(CI, 0);
+ if (!CI->use_empty())
+ return nullptr;
+
+ // Check for a constant string.
+ // puts("") -> putchar('\n')
+ StringRef Str;
+ if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
+ return emitPutChar(B.getInt32('\n'), B, TLI);
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
+ // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
+ return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
+ Align(1), CI->getArgOperand(2));
+}
+
+bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
+ LibFunc Func;
+ SmallString<20> FloatFuncName = FuncName;
+ FloatFuncName += 'f';
+ if (TLI->getLibFunc(FloatFuncName, Func))
+ return TLI->has(Func);
+ return false;
+}
+
+Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
+ IRBuilderBase &Builder) {
+ LibFunc Func;
+ Function *Callee = CI->getCalledFunction();
+ // Check for string/memory library functions.
+ if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
+ // Make sure we never change the calling convention.
+ assert((ignoreCallingConv(Func) ||
+ isCallingConvCCompatible(CI)) &&
+ "Optimizing string/memory libcall would change the calling convention");
+ switch (Func) {
+ case LibFunc_strcat:
+ return optimizeStrCat(CI, Builder);
+ case LibFunc_strncat:
+ return optimizeStrNCat(CI, Builder);
+ case LibFunc_strchr:
+ return optimizeStrChr(CI, Builder);
+ case LibFunc_strrchr:
+ return optimizeStrRChr(CI, Builder);
+ case LibFunc_strcmp:
+ return optimizeStrCmp(CI, Builder);
+ case LibFunc_strncmp:
+ return optimizeStrNCmp(CI, Builder);
+ case LibFunc_strcpy:
+ return optimizeStrCpy(CI, Builder);
+ case LibFunc_stpcpy:
+ return optimizeStpCpy(CI, Builder);
+ case LibFunc_strncpy:
+ return optimizeStrNCpy(CI, Builder);
+ case LibFunc_strlen:
+ return optimizeStrLen(CI, Builder);
+ case LibFunc_strpbrk:
+ return optimizeStrPBrk(CI, Builder);
+ case LibFunc_strndup:
+ return optimizeStrNDup(CI, Builder);
+ case LibFunc_strtol:
+ case LibFunc_strtod:
+ case LibFunc_strtof:
+ case LibFunc_strtoul:
+ case LibFunc_strtoll:
+ case LibFunc_strtold:
+ case LibFunc_strtoull:
+ return optimizeStrTo(CI, Builder);
+ case LibFunc_strspn:
+ return optimizeStrSpn(CI, Builder);
+ case LibFunc_strcspn:
+ return optimizeStrCSpn(CI, Builder);
+ case LibFunc_strstr:
+ return optimizeStrStr(CI, Builder);
+ case LibFunc_memchr:
+ return optimizeMemChr(CI, Builder);
+ case LibFunc_memrchr:
+ return optimizeMemRChr(CI, Builder);
+ case LibFunc_bcmp:
+ return optimizeBCmp(CI, Builder);
+ case LibFunc_memcmp:
+ return optimizeMemCmp(CI, Builder);
+ case LibFunc_memcpy:
+ return optimizeMemCpy(CI, Builder);
+ case LibFunc_memccpy:
+ return optimizeMemCCpy(CI, Builder);
+ case LibFunc_mempcpy:
+ return optimizeMemPCpy(CI, Builder);
+ case LibFunc_memmove:
+ return optimizeMemMove(CI, Builder);
+ case LibFunc_memset:
+ return optimizeMemSet(CI, Builder);
+ case LibFunc_realloc:
+ return optimizeRealloc(CI, Builder);
+ case LibFunc_wcslen:
+ return optimizeWcslen(CI, Builder);
+ case LibFunc_bcopy:
+ return optimizeBCopy(CI, Builder);
+ default:
+ break;
+ }
+ }
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
+ LibFunc Func,
+ IRBuilderBase &Builder) {
+ // Don't optimize calls that require strict floating point semantics.
+ if (CI->isStrictFP())
+ return nullptr;
+
+ if (Value *V = optimizeTrigReflections(CI, Func, Builder))
+ return V;
+
+ switch (Func) {
+ case LibFunc_sinpif:
+ case LibFunc_sinpi:
+ case LibFunc_cospif:
+ case LibFunc_cospi:
+ return optimizeSinCosPi(CI, Builder);
+ case LibFunc_powf:
+ case LibFunc_pow:
+ case LibFunc_powl:
+ return optimizePow(CI, Builder);
+ case LibFunc_exp2l:
+ case LibFunc_exp2:
+ case LibFunc_exp2f:
+ return optimizeExp2(CI, Builder);
+ case LibFunc_fabsf:
+ case LibFunc_fabs:
+ case LibFunc_fabsl:
+ return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
+ case LibFunc_sqrtf:
+ case LibFunc_sqrt:
+ case LibFunc_sqrtl:
+ return optimizeSqrt(CI, Builder);
+ case LibFunc_logf:
+ case LibFunc_log:
+ case LibFunc_logl:
+ case LibFunc_log10f:
+ case LibFunc_log10:
+ case LibFunc_log10l:
+ case LibFunc_log1pf:
+ case LibFunc_log1p:
+ case LibFunc_log1pl:
+ case LibFunc_log2f:
+ case LibFunc_log2:
+ case LibFunc_log2l:
+ case LibFunc_logbf:
+ case LibFunc_logb:
+ case LibFunc_logbl:
+ return optimizeLog(CI, Builder);
+ case LibFunc_tan:
+ case LibFunc_tanf:
+ case LibFunc_tanl:
+ return optimizeTan(CI, Builder);
+ case LibFunc_ceil:
+ return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
+ case LibFunc_floor:
+ return replaceUnaryCall(CI, Builder, Intrinsic::floor);
+ case LibFunc_round:
+ return replaceUnaryCall(CI, Builder, Intrinsic::round);
+ case LibFunc_roundeven:
+ return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
+ case LibFunc_nearbyint:
+ return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
+ case LibFunc_rint:
+ return replaceUnaryCall(CI, Builder, Intrinsic::rint);
+ case LibFunc_trunc:
+ return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
+ case LibFunc_acos:
+ case LibFunc_acosh:
+ case LibFunc_asin:
+ case LibFunc_asinh:
+ case LibFunc_atan:
+ case LibFunc_atanh:
+ case LibFunc_cbrt:
+ case LibFunc_cosh:
+ case LibFunc_exp:
+ case LibFunc_exp10:
+ case LibFunc_expm1:
+ case LibFunc_cos:
+ case LibFunc_sin:
+ case LibFunc_sinh:
+ case LibFunc_tanh:
+ if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
+ return optimizeUnaryDoubleFP(CI, Builder, true);
+ return nullptr;
+ case LibFunc_copysign:
+ if (hasFloatVersion(CI->getCalledFunction()->getName()))
+ return optimizeBinaryDoubleFP(CI, Builder);
+ return nullptr;
+ case LibFunc_fminf:
+ case LibFunc_fmin:
+ case LibFunc_fminl:
+ case LibFunc_fmaxf:
+ case LibFunc_fmax:
+ case LibFunc_fmaxl:
+ return optimizeFMinFMax(CI, Builder);
+ case LibFunc_cabs:
+ case LibFunc_cabsf:
+ case LibFunc_cabsl:
+ return optimizeCAbs(CI, Builder);
+ default:
+ return nullptr;
+ }
+}
+
+Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
+ // TODO: Split out the code below that operates on FP calls so that
+ // we can all non-FP calls with the StrictFP attribute to be
+ // optimized.
+ if (CI->isNoBuiltin())
+ return nullptr;
+
+ LibFunc Func;
+ Function *Callee = CI->getCalledFunction();
+ bool isCallingConvC = isCallingConvCCompatible(CI);
+
+ SmallVector<OperandBundleDef, 2> OpBundles;
+ CI->getOperandBundlesAsDefs(OpBundles);
+
+ IRBuilderBase::OperandBundlesGuard Guard(Builder);
+ Builder.setDefaultOperandBundles(OpBundles);
+
+ // Command-line parameter overrides instruction attribute.
+ // This can't be moved to optimizeFloatingPointLibCall() because it may be
+ // used by the intrinsic optimizations.
+ if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
+ UnsafeFPShrink = EnableUnsafeFPShrink;
+ else if (isa<FPMathOperator>(CI) && CI->isFast())
+ UnsafeFPShrink = true;
+
+ // First, check for intrinsics.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ if (!isCallingConvC)
+ return nullptr;
+ // The FP intrinsics have corresponding constrained versions so we don't
+ // need to check for the StrictFP attribute here.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::pow:
+ return optimizePow(CI, Builder);
+ case Intrinsic::exp2:
+ return optimizeExp2(CI, Builder);
+ case Intrinsic::log:
+ case Intrinsic::log2:
+ case Intrinsic::log10:
+ return optimizeLog(CI, Builder);
+ case Intrinsic::sqrt:
+ return optimizeSqrt(CI, Builder);
+ // TODO: Use foldMallocMemset() with memset intrinsic.
+ case Intrinsic::memset:
+ return optimizeMemSet(CI, Builder);
+ case Intrinsic::memcpy:
+ return optimizeMemCpy(CI, Builder);
+ case Intrinsic::memmove:
+ return optimizeMemMove(CI, Builder);
+ default:
+ return nullptr;
+ }
+ }
+
+ // Also try to simplify calls to fortified library functions.
+ if (Value *SimplifiedFortifiedCI =
+ FortifiedSimplifier.optimizeCall(CI, Builder)) {
+ // Try to further simplify the result.
+ CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
+ if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
+ // Ensure that SimplifiedCI's uses are complete, since some calls have
+ // their uses analyzed.
+ replaceAllUsesWith(CI, SimplifiedCI);
+
+ // Set insertion point to SimplifiedCI to guarantee we reach all uses
+ // we might replace later on.
+ IRBuilderBase::InsertPointGuard Guard(Builder);
+ Builder.SetInsertPoint(SimplifiedCI);
+ if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
+ // If we were able to further simplify, remove the now redundant call.
+ substituteInParent(SimplifiedCI, V);
+ return V;
+ }
+ }
+ return SimplifiedFortifiedCI;
+ }
+
+ // Then check for known library functions.
+ if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
+ // We never change the calling convention.
+ if (!ignoreCallingConv(Func) && !isCallingConvC)
+ return nullptr;
+ if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
+ return V;
+ if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
+ return V;
+ switch (Func) {
+ case LibFunc_ffs:
+ case LibFunc_ffsl:
+ case LibFunc_ffsll:
+ return optimizeFFS(CI, Builder);
+ case LibFunc_fls:
+ case LibFunc_flsl:
+ case LibFunc_flsll:
+ return optimizeFls(CI, Builder);
+ case LibFunc_abs:
+ case LibFunc_labs:
+ case LibFunc_llabs:
+ return optimizeAbs(CI, Builder);
+ case LibFunc_isdigit:
+ return optimizeIsDigit(CI, Builder);
+ case LibFunc_isascii:
+ return optimizeIsAscii(CI, Builder);
+ case LibFunc_toascii:
+ return optimizeToAscii(CI, Builder);
+ case LibFunc_atoi:
+ case LibFunc_atol:
+ case LibFunc_atoll:
+ return optimizeAtoi(CI, Builder);
+ case LibFunc_strtol:
+ case LibFunc_strtoll:
+ return optimizeStrtol(CI, Builder);
+ case LibFunc_printf:
+ return optimizePrintF(CI, Builder);
+ case LibFunc_sprintf:
+ return optimizeSPrintF(CI, Builder);
+ case LibFunc_snprintf:
+ return optimizeSnPrintF(CI, Builder);
+ case LibFunc_fprintf:
+ return optimizeFPrintF(CI, Builder);
+ case LibFunc_fwrite:
+ return optimizeFWrite(CI, Builder);
+ case LibFunc_fputs:
+ return optimizeFPuts(CI, Builder);
+ case LibFunc_puts:
+ return optimizePuts(CI, Builder);
+ case LibFunc_perror:
+ return optimizeErrorReporting(CI, Builder);
+ case LibFunc_vfprintf:
+ case LibFunc_fiprintf:
+ return optimizeErrorReporting(CI, Builder, 0);
+ default:
+ return nullptr;
+ }
+ }
+ return nullptr;
+}
+
+LibCallSimplifier::LibCallSimplifier(
+ const DataLayout &DL, const TargetLibraryInfo *TLI,
+ OptimizationRemarkEmitter &ORE,
+ BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
+ function_ref<void(Instruction *, Value *)> Replacer,
+ function_ref<void(Instruction *)> Eraser)
+ : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
+ UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
+
+void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
+ // Indirect through the replacer used in this instance.
+ Replacer(I, With);
+}
+
+void LibCallSimplifier::eraseFromParent(Instruction *I) {
+ Eraser(I);
+}
+
+// TODO:
+// Additional cases that we need to add to this file:
+//
+// cbrt:
+// * cbrt(expN(X)) -> expN(x/3)
+// * cbrt(sqrt(x)) -> pow(x,1/6)
+// * cbrt(cbrt(x)) -> pow(x,1/9)
+//
+// exp, expf, expl:
+// * exp(log(x)) -> x
+//
+// log, logf, logl:
+// * log(exp(x)) -> x
+// * log(exp(y)) -> y*log(e)
+// * log(exp10(y)) -> y*log(10)
+// * log(sqrt(x)) -> 0.5*log(x)
+//
+// pow, powf, powl:
+// * pow(sqrt(x),y) -> pow(x,y*0.5)
+// * pow(pow(x,y),z)-> pow(x,y*z)
+//
+// signbit:
+// * signbit(cnst) -> cnst'
+// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
+//
+// sqrt, sqrtf, sqrtl:
+// * sqrt(expN(x)) -> expN(x*0.5)
+// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
+// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
+//
+
+//===----------------------------------------------------------------------===//
+// Fortified Library Call Optimizations
+//===----------------------------------------------------------------------===//
+
+bool
+FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
+ unsigned ObjSizeOp,
+ Optional<unsigned> SizeOp,
+ Optional<unsigned> StrOp,
+ Optional<unsigned> FlagOp) {
+ // If this function takes a flag argument, the implementation may use it to
+ // perform extra checks. Don't fold into the non-checking variant.
+ if (FlagOp) {
+ ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
+ if (!Flag || !Flag->isZero())
+ return false;
+ }
+
+ if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
+ return true;
+
+ if (ConstantInt *ObjSizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
+ if (ObjSizeCI->isMinusOne())
+ return true;
+ // If the object size wasn't -1 (unknown), bail out if we were asked to.
+ if (OnlyLowerUnknownSize)
+ return false;
+ if (StrOp) {
+ uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
+ // If the length is 0 we don't know how long it is and so we can't
+ // remove the check.
+ if (Len)
+ annotateDereferenceableBytes(CI, *StrOp, Len);
+ else
+ return false;
+ return ObjSizeCI->getZExtValue() >= Len;
+ }
+
+ if (SizeOp) {
+ if (ConstantInt *SizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
+ return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
+ }
+ }
+ return false;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
+ CallInst *NewCI =
+ B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
+ Align(1), CI->getArgOperand(2));
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
+ CallInst *NewCI =
+ B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
+ Align(1), CI->getArgOperand(2));
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
+ IRBuilderBase &B) {
+ // TODO: Try foldMallocMemset() here.
+
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
+ Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
+ CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
+ CI->getArgOperand(2), Align(1));
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return CI->getArgOperand(0);
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
+ IRBuilderBase &B) {
+ const DataLayout &DL = CI->getModule()->getDataLayout();
+ if (isFortifiedCallFoldable(CI, 3, 2))
+ if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, DL, TLI)) {
+ CallInst *NewCI = cast<CallInst>(Call);
+ NewCI->setAttributes(CI->getAttributes());
+ NewCI->removeAttributes(
+ AttributeList::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NewCI->getType()));
+ return NewCI;
+ }
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
+ IRBuilderBase &B,
+ LibFunc Func) {
+ const DataLayout &DL = CI->getModule()->getDataLayout();
+ Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
+ *ObjSize = CI->getArgOperand(2);
+
+ // __stpcpy_chk(x,x,...) -> x+strlen(x)
+ if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
+ Value *StrLen = emitStrLen(Src, B, DL, TLI);
+ return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
+ }
+
+ // If a) we don't have any length information, or b) we know this will
+ // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
+ // st[rp]cpy_chk call which may fail at runtime if the size is too long.
+ // TODO: It might be nice to get a maximum length out of the possible
+ // string lengths for varying.
+ if (isFortifiedCallFoldable(CI, 2, None, 1)) {
+ if (Func == LibFunc_strcpy_chk)
+ return emitStrCpy(Dst, Src, B, TLI);
+ else
+ return emitStpCpy(Dst, Src, B, TLI);
+ }
+
+ if (OnlyLowerUnknownSize)
+ return nullptr;
+
+ // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
+ uint64_t Len = GetStringLength(Src);
+ if (Len)
+ annotateDereferenceableBytes(CI, 1, Len);
+ else
+ return nullptr;
+
+ Type *SizeTTy = DL.getIntPtrType(CI->getContext());
+ Value *LenV = ConstantInt::get(SizeTTy, Len);
+ Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
+ // If the function was an __stpcpy_chk, and we were able to fold it into
+ // a __memcpy_chk, we still need to return the correct end pointer.
+ if (Ret && Func == LibFunc_stpcpy_chk)
+ return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
+ return Ret;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 1, None, 0))
+ return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
+ TLI);
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
+ IRBuilderBase &B,
+ LibFunc Func) {
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
+ if (Func == LibFunc_strncpy_chk)
+ return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+ else
+ return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 4, 3))
+ return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
+ SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
+ return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(4), VariadicArgs, B, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
+ SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
+ return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
+ B, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 2))
+ return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 3))
+ return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 3))
+ return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 3))
+ return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
+ return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
+ IRBuilderBase &B) {
+ if (isFortifiedCallFoldable(CI, 2, None, None, 1))
+ return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
+ CI->getArgOperand(4), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
+ IRBuilderBase &Builder) {
+ // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
+ // Some clang users checked for _chk libcall availability using:
+ // __has_builtin(__builtin___memcpy_chk)
+ // When compiling with -fno-builtin, this is always true.
+ // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
+ // end up with fortified libcalls, which isn't acceptable in a freestanding
+ // environment which only provides their non-fortified counterparts.
+ //
+ // Until we change clang and/or teach external users to check for availability
+ // differently, disregard the "nobuiltin" attribute and TLI::has.
+ //
+ // PR23093.
+
+ LibFunc Func;
+ Function *Callee = CI->getCalledFunction();
+ bool isCallingConvC = isCallingConvCCompatible(CI);
+
+ SmallVector<OperandBundleDef, 2> OpBundles;
+ CI->getOperandBundlesAsDefs(OpBundles);
+
+ IRBuilderBase::OperandBundlesGuard Guard(Builder);
+ Builder.setDefaultOperandBundles(OpBundles);
+
+ // First, check that this is a known library functions and that the prototype
+ // is correct.
+ if (!TLI->getLibFunc(*Callee, Func))
+ return nullptr;
+
+ // We never change the calling convention.
+ if (!ignoreCallingConv(Func) && !isCallingConvC)
+ return nullptr;
+
+ switch (Func) {
+ case LibFunc_memcpy_chk:
+ return optimizeMemCpyChk(CI, Builder);
+ case LibFunc_mempcpy_chk:
+ return optimizeMemPCpyChk(CI, Builder);
+ case LibFunc_memmove_chk:
+ return optimizeMemMoveChk(CI, Builder);
+ case LibFunc_memset_chk:
+ return optimizeMemSetChk(CI, Builder);
+ case LibFunc_stpcpy_chk:
+ case LibFunc_strcpy_chk:
+ return optimizeStrpCpyChk(CI, Builder, Func);
+ case LibFunc_strlen_chk:
+ return optimizeStrLenChk(CI, Builder);
+ case LibFunc_stpncpy_chk:
+ case LibFunc_strncpy_chk:
+ return optimizeStrpNCpyChk(CI, Builder, Func);
+ case LibFunc_memccpy_chk:
+ return optimizeMemCCpyChk(CI, Builder);
+ case LibFunc_snprintf_chk:
+ return optimizeSNPrintfChk(CI, Builder);
+ case LibFunc_sprintf_chk:
+ return optimizeSPrintfChk(CI, Builder);
+ case LibFunc_strcat_chk:
+ return optimizeStrCatChk(CI, Builder);
+ case LibFunc_strlcat_chk:
+ return optimizeStrLCat(CI, Builder);
+ case LibFunc_strncat_chk:
+ return optimizeStrNCatChk(CI, Builder);
+ case LibFunc_strlcpy_chk:
+ return optimizeStrLCpyChk(CI, Builder);
+ case LibFunc_vsnprintf_chk:
+ return optimizeVSNPrintfChk(CI, Builder);
+ case LibFunc_vsprintf_chk:
+ return optimizeVSPrintfChk(CI, Builder);
+ default:
+ break;
+ }
+ return nullptr;
+}
+
+FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
+ const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
+ : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}