aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp')
-rw-r--r--contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp3257
1 files changed, 3257 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp b/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp
new file mode 100644
index 000000000000..930b132533cd
--- /dev/null
+++ b/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp
@@ -0,0 +1,3257 @@
+//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This program is a utility that works like binutils "objdump", that is, it
+// dumps out a plethora of information about an object file depending on the
+// flags.
+//
+// The flags and output of this program should be near identical to those of
+// binutils objdump.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-objdump.h"
+#include "COFFDump.h"
+#include "ELFDump.h"
+#include "MachODump.h"
+#include "ObjdumpOptID.h"
+#include "OffloadDump.h"
+#include "SourcePrinter.h"
+#include "WasmDump.h"
+#include "XCOFFDump.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/DebugInfo/DWARF/DWARFContext.h"
+#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
+#include "llvm/DebugInfo/Symbolize/Symbolize.h"
+#include "llvm/Debuginfod/BuildIDFetcher.h"
+#include "llvm/Debuginfod/Debuginfod.h"
+#include "llvm/Debuginfod/HTTPClient.h"
+#include "llvm/Demangle/Demangle.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCDisassembler/MCDisassembler.h"
+#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCInstrAnalysis.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/MC/TargetRegistry.h"
+#include "llvm/Object/Archive.h"
+#include "llvm/Object/BuildID.h"
+#include "llvm/Object/COFF.h"
+#include "llvm/Object/COFFImportFile.h"
+#include "llvm/Object/ELFObjectFile.h"
+#include "llvm/Object/ELFTypes.h"
+#include "llvm/Object/FaultMapParser.h"
+#include "llvm/Object/MachO.h"
+#include "llvm/Object/MachOUniversal.h"
+#include "llvm/Object/ObjectFile.h"
+#include "llvm/Object/OffloadBinary.h"
+#include "llvm/Object/Wasm.h"
+#include "llvm/Option/Arg.h"
+#include "llvm/Option/ArgList.h"
+#include "llvm/Option/Option.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/Host.h"
+#include "llvm/Support/InitLLVM.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/StringSaver.h"
+#include "llvm/Support/TargetSelect.h"
+#include "llvm/Support/WithColor.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cctype>
+#include <cstring>
+#include <optional>
+#include <system_error>
+#include <unordered_map>
+#include <utility>
+
+using namespace llvm;
+using namespace llvm::object;
+using namespace llvm::objdump;
+using namespace llvm::opt;
+
+namespace {
+
+class CommonOptTable : public opt::GenericOptTable {
+public:
+ CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
+ const char *Description)
+ : opt::GenericOptTable(OptionInfos), Usage(Usage),
+ Description(Description) {
+ setGroupedShortOptions(true);
+ }
+
+ void printHelp(StringRef Argv0, bool ShowHidden = false) const {
+ Argv0 = sys::path::filename(Argv0);
+ opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
+ Description, ShowHidden, ShowHidden);
+ // TODO Replace this with OptTable API once it adds extrahelp support.
+ outs() << "\nPass @FILE as argument to read options from FILE.\n";
+ }
+
+private:
+ const char *Usage;
+ const char *Description;
+};
+
+// ObjdumpOptID is in ObjdumpOptID.h
+namespace objdump_opt {
+#define PREFIX(NAME, VALUE) \
+ static constexpr StringLiteral NAME##_init[] = VALUE; \
+ static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
+ std::size(NAME##_init) - 1);
+#include "ObjdumpOpts.inc"
+#undef PREFIX
+
+static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
+#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
+ HELPTEXT, METAVAR, VALUES) \
+ {PREFIX, NAME, HELPTEXT, \
+ METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \
+ PARAM, FLAGS, OBJDUMP_##GROUP, \
+ OBJDUMP_##ALIAS, ALIASARGS, VALUES},
+#include "ObjdumpOpts.inc"
+#undef OPTION
+};
+} // namespace objdump_opt
+
+class ObjdumpOptTable : public CommonOptTable {
+public:
+ ObjdumpOptTable()
+ : CommonOptTable(objdump_opt::ObjdumpInfoTable,
+ " [options] <input object files>",
+ "llvm object file dumper") {}
+};
+
+enum OtoolOptID {
+ OTOOL_INVALID = 0, // This is not an option ID.
+#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
+ HELPTEXT, METAVAR, VALUES) \
+ OTOOL_##ID,
+#include "OtoolOpts.inc"
+#undef OPTION
+};
+
+namespace otool {
+#define PREFIX(NAME, VALUE) \
+ static constexpr StringLiteral NAME##_init[] = VALUE; \
+ static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
+ std::size(NAME##_init) - 1);
+#include "OtoolOpts.inc"
+#undef PREFIX
+
+static constexpr opt::OptTable::Info OtoolInfoTable[] = {
+#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
+ HELPTEXT, METAVAR, VALUES) \
+ {PREFIX, NAME, HELPTEXT, \
+ METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \
+ PARAM, FLAGS, OTOOL_##GROUP, \
+ OTOOL_##ALIAS, ALIASARGS, VALUES},
+#include "OtoolOpts.inc"
+#undef OPTION
+};
+} // namespace otool
+
+class OtoolOptTable : public CommonOptTable {
+public:
+ OtoolOptTable()
+ : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
+ "Mach-O object file displaying tool") {}
+};
+
+} // namespace
+
+#define DEBUG_TYPE "objdump"
+
+static uint64_t AdjustVMA;
+static bool AllHeaders;
+static std::string ArchName;
+bool objdump::ArchiveHeaders;
+bool objdump::Demangle;
+bool objdump::Disassemble;
+bool objdump::DisassembleAll;
+bool objdump::SymbolDescription;
+static std::vector<std::string> DisassembleSymbols;
+static bool DisassembleZeroes;
+static std::vector<std::string> DisassemblerOptions;
+DIDumpType objdump::DwarfDumpType;
+static bool DynamicRelocations;
+static bool FaultMapSection;
+static bool FileHeaders;
+bool objdump::SectionContents;
+static std::vector<std::string> InputFilenames;
+bool objdump::PrintLines;
+static bool MachOOpt;
+std::string objdump::MCPU;
+std::vector<std::string> objdump::MAttrs;
+bool objdump::ShowRawInsn;
+bool objdump::LeadingAddr;
+static bool Offloading;
+static bool RawClangAST;
+bool objdump::Relocations;
+bool objdump::PrintImmHex;
+bool objdump::PrivateHeaders;
+std::vector<std::string> objdump::FilterSections;
+bool objdump::SectionHeaders;
+static bool ShowAllSymbols;
+static bool ShowLMA;
+bool objdump::PrintSource;
+
+static uint64_t StartAddress;
+static bool HasStartAddressFlag;
+static uint64_t StopAddress = UINT64_MAX;
+static bool HasStopAddressFlag;
+
+bool objdump::SymbolTable;
+static bool SymbolizeOperands;
+static bool DynamicSymbolTable;
+std::string objdump::TripleName;
+bool objdump::UnwindInfo;
+static bool Wide;
+std::string objdump::Prefix;
+uint32_t objdump::PrefixStrip;
+
+DebugVarsFormat objdump::DbgVariables = DVDisabled;
+
+int objdump::DbgIndent = 52;
+
+static StringSet<> DisasmSymbolSet;
+StringSet<> objdump::FoundSectionSet;
+static StringRef ToolName;
+
+std::unique_ptr<BuildIDFetcher> BIDFetcher;
+ExitOnError ExitOnErr;
+
+namespace {
+struct FilterResult {
+ // True if the section should not be skipped.
+ bool Keep;
+
+ // True if the index counter should be incremented, even if the section should
+ // be skipped. For example, sections may be skipped if they are not included
+ // in the --section flag, but we still want those to count toward the section
+ // count.
+ bool IncrementIndex;
+};
+} // namespace
+
+static FilterResult checkSectionFilter(object::SectionRef S) {
+ if (FilterSections.empty())
+ return {/*Keep=*/true, /*IncrementIndex=*/true};
+
+ Expected<StringRef> SecNameOrErr = S.getName();
+ if (!SecNameOrErr) {
+ consumeError(SecNameOrErr.takeError());
+ return {/*Keep=*/false, /*IncrementIndex=*/false};
+ }
+ StringRef SecName = *SecNameOrErr;
+
+ // StringSet does not allow empty key so avoid adding sections with
+ // no name (such as the section with index 0) here.
+ if (!SecName.empty())
+ FoundSectionSet.insert(SecName);
+
+ // Only show the section if it's in the FilterSections list, but always
+ // increment so the indexing is stable.
+ return {/*Keep=*/is_contained(FilterSections, SecName),
+ /*IncrementIndex=*/true};
+}
+
+SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
+ uint64_t *Idx) {
+ // Start at UINT64_MAX so that the first index returned after an increment is
+ // zero (after the unsigned wrap).
+ if (Idx)
+ *Idx = UINT64_MAX;
+ return SectionFilter(
+ [Idx](object::SectionRef S) {
+ FilterResult Result = checkSectionFilter(S);
+ if (Idx != nullptr && Result.IncrementIndex)
+ *Idx += 1;
+ return Result.Keep;
+ },
+ O);
+}
+
+std::string objdump::getFileNameForError(const object::Archive::Child &C,
+ unsigned Index) {
+ Expected<StringRef> NameOrErr = C.getName();
+ if (NameOrErr)
+ return std::string(NameOrErr.get());
+ // If we have an error getting the name then we print the index of the archive
+ // member. Since we are already in an error state, we just ignore this error.
+ consumeError(NameOrErr.takeError());
+ return "<file index: " + std::to_string(Index) + ">";
+}
+
+void objdump::reportWarning(const Twine &Message, StringRef File) {
+ // Output order between errs() and outs() matters especially for archive
+ // files where the output is per member object.
+ outs().flush();
+ WithColor::warning(errs(), ToolName)
+ << "'" << File << "': " << Message << "\n";
+}
+
+[[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
+ outs().flush();
+ WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
+ exit(1);
+}
+
+[[noreturn]] void objdump::reportError(Error E, StringRef FileName,
+ StringRef ArchiveName,
+ StringRef ArchitectureName) {
+ assert(E);
+ outs().flush();
+ WithColor::error(errs(), ToolName);
+ if (ArchiveName != "")
+ errs() << ArchiveName << "(" << FileName << ")";
+ else
+ errs() << "'" << FileName << "'";
+ if (!ArchitectureName.empty())
+ errs() << " (for architecture " << ArchitectureName << ")";
+ errs() << ": ";
+ logAllUnhandledErrors(std::move(E), errs());
+ exit(1);
+}
+
+static void reportCmdLineWarning(const Twine &Message) {
+ WithColor::warning(errs(), ToolName) << Message << "\n";
+}
+
+[[noreturn]] static void reportCmdLineError(const Twine &Message) {
+ WithColor::error(errs(), ToolName) << Message << "\n";
+ exit(1);
+}
+
+static void warnOnNoMatchForSections() {
+ SetVector<StringRef> MissingSections;
+ for (StringRef S : FilterSections) {
+ if (FoundSectionSet.count(S))
+ return;
+ // User may specify a unnamed section. Don't warn for it.
+ if (!S.empty())
+ MissingSections.insert(S);
+ }
+
+ // Warn only if no section in FilterSections is matched.
+ for (StringRef S : MissingSections)
+ reportCmdLineWarning("section '" + S +
+ "' mentioned in a -j/--section option, but not "
+ "found in any input file");
+}
+
+static const Target *getTarget(const ObjectFile *Obj) {
+ // Figure out the target triple.
+ Triple TheTriple("unknown-unknown-unknown");
+ if (TripleName.empty()) {
+ TheTriple = Obj->makeTriple();
+ } else {
+ TheTriple.setTriple(Triple::normalize(TripleName));
+ auto Arch = Obj->getArch();
+ if (Arch == Triple::arm || Arch == Triple::armeb)
+ Obj->setARMSubArch(TheTriple);
+ }
+
+ // Get the target specific parser.
+ std::string Error;
+ const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
+ Error);
+ if (!TheTarget)
+ reportError(Obj->getFileName(), "can't find target: " + Error);
+
+ // Update the triple name and return the found target.
+ TripleName = TheTriple.getTriple();
+ return TheTarget;
+}
+
+bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
+ return A.getOffset() < B.getOffset();
+}
+
+static Error getRelocationValueString(const RelocationRef &Rel,
+ SmallVectorImpl<char> &Result) {
+ const ObjectFile *Obj = Rel.getObject();
+ if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
+ return getELFRelocationValueString(ELF, Rel, Result);
+ if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
+ return getCOFFRelocationValueString(COFF, Rel, Result);
+ if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
+ return getWasmRelocationValueString(Wasm, Rel, Result);
+ if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
+ return getMachORelocationValueString(MachO, Rel, Result);
+ if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
+ return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
+ llvm_unreachable("unknown object file format");
+}
+
+/// Indicates whether this relocation should hidden when listing
+/// relocations, usually because it is the trailing part of a multipart
+/// relocation that will be printed as part of the leading relocation.
+static bool getHidden(RelocationRef RelRef) {
+ auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
+ if (!MachO)
+ return false;
+
+ unsigned Arch = MachO->getArch();
+ DataRefImpl Rel = RelRef.getRawDataRefImpl();
+ uint64_t Type = MachO->getRelocationType(Rel);
+
+ // On arches that use the generic relocations, GENERIC_RELOC_PAIR
+ // is always hidden.
+ if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
+ return Type == MachO::GENERIC_RELOC_PAIR;
+
+ if (Arch == Triple::x86_64) {
+ // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
+ // an X86_64_RELOC_SUBTRACTOR.
+ if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
+ DataRefImpl RelPrev = Rel;
+ RelPrev.d.a--;
+ uint64_t PrevType = MachO->getRelocationType(RelPrev);
+ if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+namespace {
+
+/// Get the column at which we want to start printing the instruction
+/// disassembly, taking into account anything which appears to the left of it.
+unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
+ return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
+}
+
+static bool isAArch64Elf(const ObjectFile &Obj) {
+ const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
+ return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
+}
+
+static bool isArmElf(const ObjectFile &Obj) {
+ const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
+ return Elf && Elf->getEMachine() == ELF::EM_ARM;
+}
+
+static bool isCSKYElf(const ObjectFile &Obj) {
+ const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
+ return Elf && Elf->getEMachine() == ELF::EM_CSKY;
+}
+
+static bool hasMappingSymbols(const ObjectFile &Obj) {
+ return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
+}
+
+static bool isMappingSymbol(const SymbolInfoTy &Sym) {
+ return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
+ Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
+}
+
+static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
+ const RelocationRef &Rel, uint64_t Address,
+ bool Is64Bits) {
+ StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": ";
+ SmallString<16> Name;
+ SmallString<32> Val;
+ Rel.getTypeName(Name);
+ if (Error E = getRelocationValueString(Rel, Val))
+ reportError(std::move(E), FileName);
+ OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
+ if (LeadingAddr)
+ OS << format(Fmt.data(), Address);
+ OS << Name << "\t" << Val;
+}
+
+static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
+ raw_ostream &OS) {
+ // The output of printInst starts with a tab. Print some spaces so that
+ // the tab has 1 column and advances to the target tab stop.
+ unsigned TabStop = getInstStartColumn(STI);
+ unsigned Column = OS.tell() - Start;
+ OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
+}
+
+class PrettyPrinter {
+public:
+ virtual ~PrettyPrinter() = default;
+ virtual void
+ printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
+ object::SectionedAddress Address, formatted_raw_ostream &OS,
+ StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
+ StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
+ LiveVariablePrinter &LVP) {
+ if (SP && (PrintSource || PrintLines))
+ SP->printSourceLine(OS, Address, ObjectFilename, LVP);
+ LVP.printBetweenInsts(OS, false);
+
+ size_t Start = OS.tell();
+ if (LeadingAddr)
+ OS << format("%8" PRIx64 ":", Address.Address);
+ if (ShowRawInsn) {
+ OS << ' ';
+ dumpBytes(Bytes, OS);
+ }
+
+ AlignToInstStartColumn(Start, STI, OS);
+
+ if (MI) {
+ // See MCInstPrinter::printInst. On targets where a PC relative immediate
+ // is relative to the next instruction and the length of a MCInst is
+ // difficult to measure (x86), this is the address of the next
+ // instruction.
+ uint64_t Addr =
+ Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
+ IP.printInst(MI, Addr, "", STI, OS);
+ } else
+ OS << "\t<unknown>";
+ }
+};
+PrettyPrinter PrettyPrinterInst;
+
+class HexagonPrettyPrinter : public PrettyPrinter {
+public:
+ void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
+ formatted_raw_ostream &OS) {
+ uint32_t opcode =
+ (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
+ if (LeadingAddr)
+ OS << format("%8" PRIx64 ":", Address);
+ if (ShowRawInsn) {
+ OS << "\t";
+ dumpBytes(Bytes.slice(0, 4), OS);
+ OS << format("\t%08" PRIx32, opcode);
+ }
+ }
+ void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
+ object::SectionedAddress Address, formatted_raw_ostream &OS,
+ StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
+ StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
+ LiveVariablePrinter &LVP) override {
+ if (SP && (PrintSource || PrintLines))
+ SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
+ if (!MI) {
+ printLead(Bytes, Address.Address, OS);
+ OS << " <unknown>";
+ return;
+ }
+ std::string Buffer;
+ {
+ raw_string_ostream TempStream(Buffer);
+ IP.printInst(MI, Address.Address, "", STI, TempStream);
+ }
+ StringRef Contents(Buffer);
+ // Split off bundle attributes
+ auto PacketBundle = Contents.rsplit('\n');
+ // Split off first instruction from the rest
+ auto HeadTail = PacketBundle.first.split('\n');
+ auto Preamble = " { ";
+ auto Separator = "";
+
+ // Hexagon's packets require relocations to be inline rather than
+ // clustered at the end of the packet.
+ std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
+ std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
+ auto PrintReloc = [&]() -> void {
+ while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
+ if (RelCur->getOffset() == Address.Address) {
+ printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
+ return;
+ }
+ ++RelCur;
+ }
+ };
+
+ while (!HeadTail.first.empty()) {
+ OS << Separator;
+ Separator = "\n";
+ if (SP && (PrintSource || PrintLines))
+ SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
+ printLead(Bytes, Address.Address, OS);
+ OS << Preamble;
+ Preamble = " ";
+ StringRef Inst;
+ auto Duplex = HeadTail.first.split('\v');
+ if (!Duplex.second.empty()) {
+ OS << Duplex.first;
+ OS << "; ";
+ Inst = Duplex.second;
+ }
+ else
+ Inst = HeadTail.first;
+ OS << Inst;
+ HeadTail = HeadTail.second.split('\n');
+ if (HeadTail.first.empty())
+ OS << " } " << PacketBundle.second;
+ PrintReloc();
+ Bytes = Bytes.slice(4);
+ Address.Address += 4;
+ }
+ }
+};
+HexagonPrettyPrinter HexagonPrettyPrinterInst;
+
+class AMDGCNPrettyPrinter : public PrettyPrinter {
+public:
+ void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
+ object::SectionedAddress Address, formatted_raw_ostream &OS,
+ StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
+ StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
+ LiveVariablePrinter &LVP) override {
+ if (SP && (PrintSource || PrintLines))
+ SP->printSourceLine(OS, Address, ObjectFilename, LVP);
+
+ if (MI) {
+ SmallString<40> InstStr;
+ raw_svector_ostream IS(InstStr);
+
+ IP.printInst(MI, Address.Address, "", STI, IS);
+
+ OS << left_justify(IS.str(), 60);
+ } else {
+ // an unrecognized encoding - this is probably data so represent it
+ // using the .long directive, or .byte directive if fewer than 4 bytes
+ // remaining
+ if (Bytes.size() >= 4) {
+ OS << format("\t.long 0x%08" PRIx32 " ",
+ support::endian::read32<support::little>(Bytes.data()));
+ OS.indent(42);
+ } else {
+ OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
+ for (unsigned int i = 1; i < Bytes.size(); i++)
+ OS << format(", 0x%02" PRIx8, Bytes[i]);
+ OS.indent(55 - (6 * Bytes.size()));
+ }
+ }
+
+ OS << format("// %012" PRIX64 ":", Address.Address);
+ if (Bytes.size() >= 4) {
+ // D should be casted to uint32_t here as it is passed by format to
+ // snprintf as vararg.
+ for (uint32_t D :
+ ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
+ Bytes.size() / 4))
+ OS << format(" %08" PRIX32, D);
+ } else {
+ for (unsigned char B : Bytes)
+ OS << format(" %02" PRIX8, B);
+ }
+
+ if (!Annot.empty())
+ OS << " // " << Annot;
+ }
+};
+AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
+
+class BPFPrettyPrinter : public PrettyPrinter {
+public:
+ void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
+ object::SectionedAddress Address, formatted_raw_ostream &OS,
+ StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
+ StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
+ LiveVariablePrinter &LVP) override {
+ if (SP && (PrintSource || PrintLines))
+ SP->printSourceLine(OS, Address, ObjectFilename, LVP);
+ if (LeadingAddr)
+ OS << format("%8" PRId64 ":", Address.Address / 8);
+ if (ShowRawInsn) {
+ OS << "\t";
+ dumpBytes(Bytes, OS);
+ }
+ if (MI)
+ IP.printInst(MI, Address.Address, "", STI, OS);
+ else
+ OS << "\t<unknown>";
+ }
+};
+BPFPrettyPrinter BPFPrettyPrinterInst;
+
+class ARMPrettyPrinter : public PrettyPrinter {
+public:
+ void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
+ object::SectionedAddress Address, formatted_raw_ostream &OS,
+ StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
+ StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
+ LiveVariablePrinter &LVP) override {
+ if (SP && (PrintSource || PrintLines))
+ SP->printSourceLine(OS, Address, ObjectFilename, LVP);
+ LVP.printBetweenInsts(OS, false);
+
+ size_t Start = OS.tell();
+ if (LeadingAddr)
+ OS << format("%8" PRIx64 ":", Address.Address);
+ if (ShowRawInsn) {
+ size_t Pos = 0, End = Bytes.size();
+ if (STI.checkFeatures("+thumb-mode")) {
+ for (; Pos + 2 <= End; Pos += 2)
+ OS << ' '
+ << format_hex_no_prefix(
+ llvm::support::endian::read<uint16_t>(
+ Bytes.data() + Pos, InstructionEndianness),
+ 4);
+ } else {
+ for (; Pos + 4 <= End; Pos += 4)
+ OS << ' '
+ << format_hex_no_prefix(
+ llvm::support::endian::read<uint32_t>(
+ Bytes.data() + Pos, InstructionEndianness),
+ 8);
+ }
+ if (Pos < End) {
+ OS << ' ';
+ dumpBytes(Bytes.slice(Pos), OS);
+ }
+ }
+
+ AlignToInstStartColumn(Start, STI, OS);
+
+ if (MI) {
+ IP.printInst(MI, Address.Address, "", STI, OS);
+ } else
+ OS << "\t<unknown>";
+ }
+
+ void setInstructionEndianness(llvm::support::endianness Endianness) {
+ InstructionEndianness = Endianness;
+ }
+
+private:
+ llvm::support::endianness InstructionEndianness = llvm::support::little;
+};
+ARMPrettyPrinter ARMPrettyPrinterInst;
+
+class AArch64PrettyPrinter : public PrettyPrinter {
+public:
+ void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
+ object::SectionedAddress Address, formatted_raw_ostream &OS,
+ StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
+ StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
+ LiveVariablePrinter &LVP) override {
+ if (SP && (PrintSource || PrintLines))
+ SP->printSourceLine(OS, Address, ObjectFilename, LVP);
+ LVP.printBetweenInsts(OS, false);
+
+ size_t Start = OS.tell();
+ if (LeadingAddr)
+ OS << format("%8" PRIx64 ":", Address.Address);
+ if (ShowRawInsn) {
+ size_t Pos = 0, End = Bytes.size();
+ for (; Pos + 4 <= End; Pos += 4)
+ OS << ' '
+ << format_hex_no_prefix(
+ llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
+ llvm::support::little),
+ 8);
+ if (Pos < End) {
+ OS << ' ';
+ dumpBytes(Bytes.slice(Pos), OS);
+ }
+ }
+
+ AlignToInstStartColumn(Start, STI, OS);
+
+ if (MI) {
+ IP.printInst(MI, Address.Address, "", STI, OS);
+ } else
+ OS << "\t<unknown>";
+ }
+};
+AArch64PrettyPrinter AArch64PrettyPrinterInst;
+
+PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
+ switch(Triple.getArch()) {
+ default:
+ return PrettyPrinterInst;
+ case Triple::hexagon:
+ return HexagonPrettyPrinterInst;
+ case Triple::amdgcn:
+ return AMDGCNPrettyPrinterInst;
+ case Triple::bpfel:
+ case Triple::bpfeb:
+ return BPFPrettyPrinterInst;
+ case Triple::arm:
+ case Triple::armeb:
+ case Triple::thumb:
+ case Triple::thumbeb:
+ return ARMPrettyPrinterInst;
+ case Triple::aarch64:
+ case Triple::aarch64_be:
+ case Triple::aarch64_32:
+ return AArch64PrettyPrinterInst;
+ }
+}
+}
+
+static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
+ assert(Obj.isELF());
+ if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
+ return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
+ Obj.getFileName())
+ ->getType();
+ if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
+ return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
+ Obj.getFileName())
+ ->getType();
+ if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
+ return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
+ Obj.getFileName())
+ ->getType();
+ if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
+ return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
+ Obj.getFileName())
+ ->getType();
+ llvm_unreachable("Unsupported binary format");
+}
+
+template <class ELFT>
+static void
+addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
+ std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
+ for (auto Symbol : Obj.getDynamicSymbolIterators()) {
+ uint8_t SymbolType = Symbol.getELFType();
+ if (SymbolType == ELF::STT_SECTION)
+ continue;
+
+ uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
+ // ELFSymbolRef::getAddress() returns size instead of value for common
+ // symbols which is not desirable for disassembly output. Overriding.
+ if (SymbolType == ELF::STT_COMMON)
+ Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
+ Obj.getFileName())
+ ->st_value;
+
+ StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
+ if (Name.empty())
+ continue;
+
+ section_iterator SecI =
+ unwrapOrError(Symbol.getSection(), Obj.getFileName());
+ if (SecI == Obj.section_end())
+ continue;
+
+ AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
+ }
+}
+
+static void
+addDynamicElfSymbols(const ELFObjectFileBase &Obj,
+ std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
+ if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
+ addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
+ else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
+ addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
+ else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
+ addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
+ else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
+ addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
+ else
+ llvm_unreachable("Unsupported binary format");
+}
+
+static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
+ for (auto SecI : Obj.sections()) {
+ const WasmSection &Section = Obj.getWasmSection(SecI);
+ if (Section.Type == wasm::WASM_SEC_CODE)
+ return SecI;
+ }
+ return std::nullopt;
+}
+
+static void
+addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
+ std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
+ std::optional<SectionRef> Section = getWasmCodeSection(Obj);
+ if (!Section)
+ return;
+ SectionSymbolsTy &Symbols = AllSymbols[*Section];
+
+ std::set<uint64_t> SymbolAddresses;
+ for (const auto &Sym : Symbols)
+ SymbolAddresses.insert(Sym.Addr);
+
+ for (const wasm::WasmFunction &Function : Obj.functions()) {
+ uint64_t Address = Function.CodeSectionOffset;
+ // Only add fallback symbols for functions not already present in the symbol
+ // table.
+ if (SymbolAddresses.count(Address))
+ continue;
+ // This function has no symbol, so it should have no SymbolName.
+ assert(Function.SymbolName.empty());
+ // We use DebugName for the name, though it may be empty if there is no
+ // "name" custom section, or that section is missing a name for this
+ // function.
+ StringRef Name = Function.DebugName;
+ Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
+ }
+}
+
+static void addPltEntries(const ObjectFile &Obj,
+ std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
+ StringSaver &Saver) {
+ std::optional<SectionRef> Plt;
+ for (const SectionRef &Section : Obj.sections()) {
+ Expected<StringRef> SecNameOrErr = Section.getName();
+ if (!SecNameOrErr) {
+ consumeError(SecNameOrErr.takeError());
+ continue;
+ }
+ if (*SecNameOrErr == ".plt")
+ Plt = Section;
+ }
+ if (!Plt)
+ return;
+ if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
+ for (auto PltEntry : ElfObj->getPltAddresses()) {
+ if (PltEntry.first) {
+ SymbolRef Symbol(*PltEntry.first, ElfObj);
+ uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
+ if (Expected<StringRef> NameOrErr = Symbol.getName()) {
+ if (!NameOrErr->empty())
+ AllSymbols[*Plt].emplace_back(
+ PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
+ SymbolType);
+ continue;
+ } else {
+ // The warning has been reported in disassembleObject().
+ consumeError(NameOrErr.takeError());
+ }
+ }
+ reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
+ " references an invalid symbol",
+ Obj.getFileName());
+ }
+ }
+}
+
+// Normally the disassembly output will skip blocks of zeroes. This function
+// returns the number of zero bytes that can be skipped when dumping the
+// disassembly of the instructions in Buf.
+static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
+ // Find the number of leading zeroes.
+ size_t N = 0;
+ while (N < Buf.size() && !Buf[N])
+ ++N;
+
+ // We may want to skip blocks of zero bytes, but unless we see
+ // at least 8 of them in a row.
+ if (N < 8)
+ return 0;
+
+ // We skip zeroes in multiples of 4 because do not want to truncate an
+ // instruction if it starts with a zero byte.
+ return N & ~0x3;
+}
+
+// Returns a map from sections to their relocations.
+static std::map<SectionRef, std::vector<RelocationRef>>
+getRelocsMap(object::ObjectFile const &Obj) {
+ std::map<SectionRef, std::vector<RelocationRef>> Ret;
+ uint64_t I = (uint64_t)-1;
+ for (SectionRef Sec : Obj.sections()) {
+ ++I;
+ Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
+ if (!RelocatedOrErr)
+ reportError(Obj.getFileName(),
+ "section (" + Twine(I) +
+ "): failed to get a relocated section: " +
+ toString(RelocatedOrErr.takeError()));
+
+ section_iterator Relocated = *RelocatedOrErr;
+ if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
+ continue;
+ std::vector<RelocationRef> &V = Ret[*Relocated];
+ append_range(V, Sec.relocations());
+ // Sort relocations by address.
+ llvm::stable_sort(V, isRelocAddressLess);
+ }
+ return Ret;
+}
+
+// Used for --adjust-vma to check if address should be adjusted by the
+// specified value for a given section.
+// For ELF we do not adjust non-allocatable sections like debug ones,
+// because they are not loadable.
+// TODO: implement for other file formats.
+static bool shouldAdjustVA(const SectionRef &Section) {
+ const ObjectFile *Obj = Section.getObject();
+ if (Obj->isELF())
+ return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
+ return false;
+}
+
+
+typedef std::pair<uint64_t, char> MappingSymbolPair;
+static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
+ uint64_t Address) {
+ auto It =
+ partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
+ return Val.first <= Address;
+ });
+ // Return zero for any address before the first mapping symbol; this means
+ // we should use the default disassembly mode, depending on the target.
+ if (It == MappingSymbols.begin())
+ return '\x00';
+ return (It - 1)->second;
+}
+
+static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
+ uint64_t End, const ObjectFile &Obj,
+ ArrayRef<uint8_t> Bytes,
+ ArrayRef<MappingSymbolPair> MappingSymbols,
+ const MCSubtargetInfo &STI, raw_ostream &OS) {
+ support::endianness Endian =
+ Obj.isLittleEndian() ? support::little : support::big;
+ size_t Start = OS.tell();
+ OS << format("%8" PRIx64 ": ", SectionAddr + Index);
+ if (Index + 4 <= End) {
+ dumpBytes(Bytes.slice(Index, 4), OS);
+ AlignToInstStartColumn(Start, STI, OS);
+ OS << "\t.word\t"
+ << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
+ 10);
+ return 4;
+ }
+ if (Index + 2 <= End) {
+ dumpBytes(Bytes.slice(Index, 2), OS);
+ AlignToInstStartColumn(Start, STI, OS);
+ OS << "\t.short\t"
+ << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
+ return 2;
+ }
+ dumpBytes(Bytes.slice(Index, 1), OS);
+ AlignToInstStartColumn(Start, STI, OS);
+ OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
+ return 1;
+}
+
+static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
+ ArrayRef<uint8_t> Bytes) {
+ // print out data up to 8 bytes at a time in hex and ascii
+ uint8_t AsciiData[9] = {'\0'};
+ uint8_t Byte;
+ int NumBytes = 0;
+
+ for (; Index < End; ++Index) {
+ if (NumBytes == 0)
+ outs() << format("%8" PRIx64 ":", SectionAddr + Index);
+ Byte = Bytes.slice(Index)[0];
+ outs() << format(" %02x", Byte);
+ AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
+
+ uint8_t IndentOffset = 0;
+ NumBytes++;
+ if (Index == End - 1 || NumBytes > 8) {
+ // Indent the space for less than 8 bytes data.
+ // 2 spaces for byte and one for space between bytes
+ IndentOffset = 3 * (8 - NumBytes);
+ for (int Excess = NumBytes; Excess < 8; Excess++)
+ AsciiData[Excess] = '\0';
+ NumBytes = 8;
+ }
+ if (NumBytes == 8) {
+ AsciiData[8] = '\0';
+ outs() << std::string(IndentOffset, ' ') << " ";
+ outs() << reinterpret_cast<char *>(AsciiData);
+ outs() << '\n';
+ NumBytes = 0;
+ }
+ }
+}
+
+SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
+ const SymbolRef &Symbol) {
+ const StringRef FileName = Obj.getFileName();
+ const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
+ const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
+
+ if (Obj.isXCOFF() && SymbolDescription) {
+ const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
+ DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
+
+ const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
+ std::optional<XCOFF::StorageMappingClass> Smc =
+ getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
+ return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
+ isLabel(XCOFFObj, Symbol));
+ } else if (Obj.isXCOFF()) {
+ const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
+ return SymbolInfoTy(Addr, Name, SymType, true);
+ } else
+ return SymbolInfoTy(Addr, Name,
+ Obj.isELF() ? getElfSymbolType(Obj, Symbol)
+ : (uint8_t)ELF::STT_NOTYPE);
+}
+
+static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
+ const uint64_t Addr, StringRef &Name,
+ uint8_t Type) {
+ if (Obj.isXCOFF() && SymbolDescription)
+ return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false);
+ else
+ return SymbolInfoTy(Addr, Name, Type);
+}
+
+static void
+collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
+ uint64_t SectionAddr, uint64_t Start, uint64_t End,
+ std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
+ if (AddrToBBAddrMap.empty())
+ return;
+ Labels.clear();
+ uint64_t StartAddress = SectionAddr + Start;
+ uint64_t EndAddress = SectionAddr + End;
+ auto Iter = AddrToBBAddrMap.find(StartAddress);
+ if (Iter == AddrToBBAddrMap.end())
+ return;
+ for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
+ uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
+ if (BBAddress >= EndAddress)
+ continue;
+ Labels[BBAddress].push_back(("BB" + Twine(I)).str());
+ }
+}
+
+static void collectLocalBranchTargets(
+ ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
+ MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
+ uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
+ // So far only supports PowerPC and X86.
+ if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
+ return;
+
+ Labels.clear();
+ unsigned LabelCount = 0;
+ Start += SectionAddr;
+ End += SectionAddr;
+ uint64_t Index = Start;
+ while (Index < End) {
+ // Disassemble a real instruction and record function-local branch labels.
+ MCInst Inst;
+ uint64_t Size;
+ ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
+ bool Disassembled =
+ DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
+ if (Size == 0)
+ Size = std::min<uint64_t>(ThisBytes.size(),
+ DisAsm->suggestBytesToSkip(ThisBytes, Index));
+
+ if (Disassembled && MIA) {
+ uint64_t Target;
+ bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
+ // On PowerPC, if the address of a branch is the same as the target, it
+ // means that it's a function call. Do not mark the label for this case.
+ if (TargetKnown && (Target >= Start && Target < End) &&
+ !Labels.count(Target) &&
+ !(STI->getTargetTriple().isPPC() && Target == Index))
+ Labels[Target] = ("L" + Twine(LabelCount++)).str();
+ }
+ Index += Size;
+ }
+}
+
+// Create an MCSymbolizer for the target and add it to the MCDisassembler.
+// This is currently only used on AMDGPU, and assumes the format of the
+// void * argument passed to AMDGPU's createMCSymbolizer.
+static void addSymbolizer(
+ MCContext &Ctx, const Target *Target, StringRef TripleName,
+ MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
+ SectionSymbolsTy &Symbols,
+ std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
+
+ std::unique_ptr<MCRelocationInfo> RelInfo(
+ Target->createMCRelocationInfo(TripleName, Ctx));
+ if (!RelInfo)
+ return;
+ std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
+ TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
+ MCSymbolizer *SymbolizerPtr = &*Symbolizer;
+ DisAsm->setSymbolizer(std::move(Symbolizer));
+
+ if (!SymbolizeOperands)
+ return;
+
+ // Synthesize labels referenced by branch instructions by
+ // disassembling, discarding the output, and collecting the referenced
+ // addresses from the symbolizer.
+ for (size_t Index = 0; Index != Bytes.size();) {
+ MCInst Inst;
+ uint64_t Size;
+ ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
+ const uint64_t ThisAddr = SectionAddr + Index;
+ DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
+ if (Size == 0)
+ Size = std::min<uint64_t>(ThisBytes.size(),
+ DisAsm->suggestBytesToSkip(ThisBytes, Index));
+ Index += Size;
+ }
+ ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
+ // Copy and sort to remove duplicates.
+ std::vector<uint64_t> LabelAddrs;
+ LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
+ LabelAddrsRef.end());
+ llvm::sort(LabelAddrs);
+ LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
+ LabelAddrs.begin());
+ // Add the labels.
+ for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
+ auto Name = std::make_unique<std::string>();
+ *Name = (Twine("L") + Twine(LabelNum)).str();
+ SynthesizedLabelNames.push_back(std::move(Name));
+ Symbols.push_back(SymbolInfoTy(
+ LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
+ }
+ llvm::stable_sort(Symbols);
+ // Recreate the symbolizer with the new symbols list.
+ RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
+ Symbolizer.reset(Target->createMCSymbolizer(
+ TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
+ DisAsm->setSymbolizer(std::move(Symbolizer));
+}
+
+static StringRef getSegmentName(const MachOObjectFile *MachO,
+ const SectionRef &Section) {
+ if (MachO) {
+ DataRefImpl DR = Section.getRawDataRefImpl();
+ StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
+ return SegmentName;
+ }
+ return "";
+}
+
+static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
+ const MCAsmInfo &MAI,
+ const MCSubtargetInfo &STI,
+ StringRef Comments,
+ LiveVariablePrinter &LVP) {
+ do {
+ if (!Comments.empty()) {
+ // Emit a line of comments.
+ StringRef Comment;
+ std::tie(Comment, Comments) = Comments.split('\n');
+ // MAI.getCommentColumn() assumes that instructions are printed at the
+ // position of 8, while getInstStartColumn() returns the actual position.
+ unsigned CommentColumn =
+ MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
+ FOS.PadToColumn(CommentColumn);
+ FOS << MAI.getCommentString() << ' ' << Comment;
+ }
+ LVP.printAfterInst(FOS);
+ FOS << '\n';
+ } while (!Comments.empty());
+ FOS.flush();
+}
+
+static void createFakeELFSections(ObjectFile &Obj) {
+ assert(Obj.isELF());
+ if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
+ Elf32LEObj->createFakeSections();
+ else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
+ Elf64LEObj->createFakeSections();
+ else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
+ Elf32BEObj->createFakeSections();
+ else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
+ Elf64BEObj->createFakeSections();
+ else
+ llvm_unreachable("Unsupported binary format");
+}
+
+// Tries to fetch a more complete version of the given object file using its
+// Build ID. Returns std::nullopt if nothing was found.
+static std::optional<OwningBinary<Binary>>
+fetchBinaryByBuildID(const ObjectFile &Obj) {
+ std::optional<object::BuildIDRef> BuildID = getBuildID(&Obj);
+ if (!BuildID)
+ return std::nullopt;
+ std::optional<std::string> Path = BIDFetcher->fetch(*BuildID);
+ if (!Path)
+ return std::nullopt;
+ Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
+ if (!DebugBinary) {
+ reportWarning(toString(DebugBinary.takeError()), *Path);
+ return std::nullopt;
+ }
+ return std::move(*DebugBinary);
+}
+
+static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
+ const ObjectFile &DbgObj, MCContext &Ctx,
+ MCDisassembler *PrimaryDisAsm,
+ MCDisassembler *SecondaryDisAsm,
+ const MCInstrAnalysis *MIA, MCInstPrinter *IP,
+ const MCSubtargetInfo *PrimarySTI,
+ const MCSubtargetInfo *SecondarySTI,
+ PrettyPrinter &PIP, SourcePrinter &SP,
+ bool InlineRelocs) {
+ const MCSubtargetInfo *STI = PrimarySTI;
+ MCDisassembler *DisAsm = PrimaryDisAsm;
+ bool PrimaryIsThumb = false;
+ if (isArmElf(Obj))
+ PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
+
+ std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
+ if (InlineRelocs)
+ RelocMap = getRelocsMap(Obj);
+ bool Is64Bits = Obj.getBytesInAddress() > 4;
+
+ // Create a mapping from virtual address to symbol name. This is used to
+ // pretty print the symbols while disassembling.
+ std::map<SectionRef, SectionSymbolsTy> AllSymbols;
+ SectionSymbolsTy AbsoluteSymbols;
+ const StringRef FileName = Obj.getFileName();
+ const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
+ for (const SymbolRef &Symbol : Obj.symbols()) {
+ Expected<StringRef> NameOrErr = Symbol.getName();
+ if (!NameOrErr) {
+ reportWarning(toString(NameOrErr.takeError()), FileName);
+ continue;
+ }
+ if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
+ continue;
+
+ if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
+ continue;
+
+ if (MachO) {
+ // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
+ // symbols that support MachO header introspection. They do not bind to
+ // code locations and are irrelevant for disassembly.
+ if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
+ continue;
+ // Don't ask a Mach-O STAB symbol for its section unless you know that
+ // STAB symbol's section field refers to a valid section index. Otherwise
+ // the symbol may error trying to load a section that does not exist.
+ DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
+ uint8_t NType = (MachO->is64Bit() ?
+ MachO->getSymbol64TableEntry(SymDRI).n_type:
+ MachO->getSymbolTableEntry(SymDRI).n_type);
+ if (NType & MachO::N_STAB)
+ continue;
+ }
+
+ section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
+ if (SecI != Obj.section_end())
+ AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
+ else
+ AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
+ }
+
+ if (AllSymbols.empty() && Obj.isELF())
+ addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
+
+ if (Obj.isWasm())
+ addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
+
+ if (Obj.isELF() && Obj.sections().empty())
+ createFakeELFSections(Obj);
+
+ BumpPtrAllocator A;
+ StringSaver Saver(A);
+ addPltEntries(Obj, AllSymbols, Saver);
+
+ // Create a mapping from virtual address to section. An empty section can
+ // cause more than one section at the same address. Sort such sections to be
+ // before same-addressed non-empty sections so that symbol lookups prefer the
+ // non-empty section.
+ std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
+ for (SectionRef Sec : Obj.sections())
+ SectionAddresses.emplace_back(Sec.getAddress(), Sec);
+ llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
+ if (LHS.first != RHS.first)
+ return LHS.first < RHS.first;
+ return LHS.second.getSize() < RHS.second.getSize();
+ });
+
+ // Linked executables (.exe and .dll files) typically don't include a real
+ // symbol table but they might contain an export table.
+ if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
+ for (const auto &ExportEntry : COFFObj->export_directories()) {
+ StringRef Name;
+ if (Error E = ExportEntry.getSymbolName(Name))
+ reportError(std::move(E), Obj.getFileName());
+ if (Name.empty())
+ continue;
+
+ uint32_t RVA;
+ if (Error E = ExportEntry.getExportRVA(RVA))
+ reportError(std::move(E), Obj.getFileName());
+
+ uint64_t VA = COFFObj->getImageBase() + RVA;
+ auto Sec = partition_point(
+ SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
+ return O.first <= VA;
+ });
+ if (Sec != SectionAddresses.begin()) {
+ --Sec;
+ AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
+ } else
+ AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
+ }
+ }
+
+ // Sort all the symbols, this allows us to use a simple binary search to find
+ // Multiple symbols can have the same address. Use a stable sort to stabilize
+ // the output.
+ StringSet<> FoundDisasmSymbolSet;
+ for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
+ llvm::stable_sort(SecSyms.second);
+ llvm::stable_sort(AbsoluteSymbols);
+
+ std::unique_ptr<DWARFContext> DICtx;
+ LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
+
+ if (DbgVariables != DVDisabled) {
+ DICtx = DWARFContext::create(DbgObj);
+ for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
+ LVP.addCompileUnit(CU->getUnitDIE(false));
+ }
+
+ LLVM_DEBUG(LVP.dump());
+
+ std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
+ auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
+ std::nullopt) {
+ AddrToBBAddrMap.clear();
+ if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
+ auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
+ if (!BBAddrMapsOrErr)
+ reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
+ for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
+ AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
+ std::move(FunctionBBAddrMap));
+ }
+ };
+
+ // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
+ // single mapping, since they don't have any conflicts.
+ if (SymbolizeOperands && !Obj.isRelocatableObject())
+ ReadBBAddrMap();
+
+ for (const SectionRef &Section : ToolSectionFilter(Obj)) {
+ if (FilterSections.empty() && !DisassembleAll &&
+ (!Section.isText() || Section.isVirtual()))
+ continue;
+
+ uint64_t SectionAddr = Section.getAddress();
+ uint64_t SectSize = Section.getSize();
+ if (!SectSize)
+ continue;
+
+ // For relocatable object files, read the LLVM_BB_ADDR_MAP section
+ // corresponding to this section, if present.
+ if (SymbolizeOperands && Obj.isRelocatableObject())
+ ReadBBAddrMap(Section.getIndex());
+
+ // Get the list of all the symbols in this section.
+ SectionSymbolsTy &Symbols = AllSymbols[Section];
+ std::vector<MappingSymbolPair> MappingSymbols;
+ if (hasMappingSymbols(Obj)) {
+ for (const auto &Symb : Symbols) {
+ uint64_t Address = Symb.Addr;
+ StringRef Name = Symb.Name;
+ if (Name.startswith("$d"))
+ MappingSymbols.emplace_back(Address - SectionAddr, 'd');
+ if (Name.startswith("$x"))
+ MappingSymbols.emplace_back(Address - SectionAddr, 'x');
+ if (Name.startswith("$a"))
+ MappingSymbols.emplace_back(Address - SectionAddr, 'a');
+ if (Name.startswith("$t"))
+ MappingSymbols.emplace_back(Address - SectionAddr, 't');
+ }
+ }
+
+ llvm::sort(MappingSymbols);
+
+ ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
+ unwrapOrError(Section.getContents(), Obj.getFileName()));
+
+ std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
+ if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
+ // AMDGPU disassembler uses symbolizer for printing labels
+ addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
+ Symbols, SynthesizedLabelNames);
+ }
+
+ StringRef SegmentName = getSegmentName(MachO, Section);
+ StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
+ // If the section has no symbol at the start, just insert a dummy one.
+ if (Symbols.empty() || Symbols[0].Addr != 0) {
+ Symbols.insert(Symbols.begin(),
+ createDummySymbolInfo(Obj, SectionAddr, SectionName,
+ Section.isText() ? ELF::STT_FUNC
+ : ELF::STT_OBJECT));
+ }
+
+ SmallString<40> Comments;
+ raw_svector_ostream CommentStream(Comments);
+
+ uint64_t VMAAdjustment = 0;
+ if (shouldAdjustVA(Section))
+ VMAAdjustment = AdjustVMA;
+
+ // In executable and shared objects, r_offset holds a virtual address.
+ // Subtract SectionAddr from the r_offset field of a relocation to get
+ // the section offset.
+ uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
+ uint64_t Size;
+ uint64_t Index;
+ bool PrintedSection = false;
+ std::vector<RelocationRef> Rels = RelocMap[Section];
+ std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
+ std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
+
+ // Loop over each chunk of code between two points where at least
+ // one symbol is defined.
+ for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
+ // Advance SI past all the symbols starting at the same address,
+ // and make an ArrayRef of them.
+ unsigned FirstSI = SI;
+ uint64_t Start = Symbols[SI].Addr;
+ ArrayRef<SymbolInfoTy> SymbolsHere;
+ while (SI != SE && Symbols[SI].Addr == Start)
+ ++SI;
+ SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
+
+ // Get the demangled names of all those symbols. We end up with a vector
+ // of StringRef that holds the names we're going to use, and a vector of
+ // std::string that stores the new strings returned by demangle(), if
+ // any. If we don't call demangle() then that vector can stay empty.
+ std::vector<StringRef> SymNamesHere;
+ std::vector<std::string> DemangledSymNamesHere;
+ if (Demangle) {
+ // Fetch the demangled names and store them locally.
+ for (const SymbolInfoTy &Symbol : SymbolsHere)
+ DemangledSymNamesHere.push_back(demangle(Symbol.Name.str()));
+ // Now we've finished modifying that vector, it's safe to make
+ // a vector of StringRefs pointing into it.
+ SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
+ DemangledSymNamesHere.end());
+ } else {
+ for (const SymbolInfoTy &Symbol : SymbolsHere)
+ SymNamesHere.push_back(Symbol.Name);
+ }
+
+ // Distinguish ELF data from code symbols, which will be used later on to
+ // decide whether to 'disassemble' this chunk as a data declaration via
+ // dumpELFData(), or whether to treat it as code.
+ //
+ // If data _and_ code symbols are defined at the same address, the code
+ // takes priority, on the grounds that disassembling code is our main
+ // purpose here, and it would be a worse failure to _not_ interpret
+ // something that _was_ meaningful as code than vice versa.
+ //
+ // Any ELF symbol type that is not clearly data will be regarded as code.
+ // In particular, one of the uses of STT_NOTYPE is for branch targets
+ // inside functions, for which STT_FUNC would be inaccurate.
+ //
+ // So here, we spot whether there's any non-data symbol present at all,
+ // and only set the DisassembleAsData flag if there isn't. Also, we use
+ // this distinction to inform the decision of which symbol to print at
+ // the head of the section, so that if we're printing code, we print a
+ // code-related symbol name to go with it.
+ bool DisassembleAsData = false;
+ size_t DisplaySymIndex = SymbolsHere.size() - 1;
+ if (Obj.isELF() && !DisassembleAll && Section.isText()) {
+ DisassembleAsData = true; // unless we find a code symbol below
+
+ for (size_t i = 0; i < SymbolsHere.size(); ++i) {
+ uint8_t SymTy = SymbolsHere[i].Type;
+ if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
+ DisassembleAsData = false;
+ DisplaySymIndex = i;
+ }
+ }
+ }
+
+ // Decide which symbol(s) from this collection we're going to print.
+ std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
+ // If the user has given the --disassemble-symbols option, then we must
+ // display every symbol in that set, and no others.
+ if (!DisasmSymbolSet.empty()) {
+ bool FoundAny = false;
+ for (size_t i = 0; i < SymbolsHere.size(); ++i) {
+ if (DisasmSymbolSet.count(SymNamesHere[i])) {
+ SymsToPrint[i] = true;
+ FoundAny = true;
+ }
+ }
+
+ // And if none of the symbols here is one that the user asked for, skip
+ // disassembling this entire chunk of code.
+ if (!FoundAny)
+ continue;
+ } else {
+ // Otherwise, print whichever symbol at this location is last in the
+ // Symbols array, because that array is pre-sorted in a way intended to
+ // correlate with priority of which symbol to display.
+ SymsToPrint[DisplaySymIndex] = true;
+ }
+
+ // Now that we know we're disassembling this section, override the choice
+ // of which symbols to display by printing _all_ of them at this address
+ // if the user asked for all symbols.
+ //
+ // That way, '--show-all-symbols --disassemble-symbol=foo' will print
+ // only the chunk of code headed by 'foo', but also show any other
+ // symbols defined at that address, such as aliases for 'foo', or the ARM
+ // mapping symbol preceding its code.
+ if (ShowAllSymbols) {
+ for (size_t i = 0; i < SymbolsHere.size(); ++i)
+ SymsToPrint[i] = true;
+ }
+
+ if (Start < SectionAddr || StopAddress <= Start)
+ continue;
+
+ for (size_t i = 0; i < SymbolsHere.size(); ++i)
+ FoundDisasmSymbolSet.insert(SymNamesHere[i]);
+
+ // The end is the section end, the beginning of the next symbol, or
+ // --stop-address.
+ uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
+ if (SI < SE)
+ End = std::min(End, Symbols[SI].Addr);
+ if (Start >= End || End <= StartAddress)
+ continue;
+ Start -= SectionAddr;
+ End -= SectionAddr;
+
+ if (!PrintedSection) {
+ PrintedSection = true;
+ outs() << "\nDisassembly of section ";
+ if (!SegmentName.empty())
+ outs() << SegmentName << ",";
+ outs() << SectionName << ":\n";
+ }
+
+ outs() << '\n';
+
+ for (size_t i = 0; i < SymbolsHere.size(); ++i) {
+ if (!SymsToPrint[i])
+ continue;
+
+ const SymbolInfoTy &Symbol = SymbolsHere[i];
+ const StringRef SymbolName = SymNamesHere[i];
+
+ if (LeadingAddr)
+ outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
+ SectionAddr + Start + VMAAdjustment);
+ if (Obj.isXCOFF() && SymbolDescription) {
+ outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
+ } else
+ outs() << '<' << SymbolName << ">:\n";
+ }
+
+ // Don't print raw contents of a virtual section. A virtual section
+ // doesn't have any contents in the file.
+ if (Section.isVirtual()) {
+ outs() << "...\n";
+ continue;
+ }
+
+ // See if any of the symbols defined at this location triggers target-
+ // specific disassembly behavior, e.g. of special descriptors or function
+ // prelude information.
+ //
+ // We stop this loop at the first symbol that triggers some kind of
+ // interesting behavior (if any), on the assumption that if two symbols
+ // defined at the same address trigger two conflicting symbol handlers,
+ // the object file is probably confused anyway, and it would make even
+ // less sense to present the output of _both_ handlers, because that
+ // would describe the same data twice.
+ for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
+ SymbolInfoTy Symbol = SymbolsHere[SHI];
+
+ auto Status =
+ DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
+ SectionAddr + Start, CommentStream);
+
+ if (!Status) {
+ // If onSymbolStart returns std::nullopt, that means it didn't trigger
+ // any interesting handling for this symbol. Try the other symbols
+ // defined at this address.
+ continue;
+ }
+
+ if (*Status == MCDisassembler::Fail) {
+ // If onSymbolStart returns Fail, that means it identified some kind
+ // of special data at this address, but wasn't able to disassemble it
+ // meaningfully. So we fall back to disassembling the failed region
+ // as bytes, assuming that the target detected the failure before
+ // printing anything.
+ //
+ // Return values Success or SoftFail (i.e no 'real' failure) are
+ // expected to mean that the target has emitted its own output.
+ //
+ // Either way, 'Size' will have been set to the amount of data
+ // covered by whatever prologue the target identified. So we advance
+ // our own position to beyond that. Sometimes that will be the entire
+ // distance to the next symbol, and sometimes it will be just a
+ // prologue and we should start disassembling instructions from where
+ // it left off.
+ outs() << "// Error in decoding " << SymNamesHere[SHI]
+ << " : Decoding failed region as bytes.\n";
+ for (uint64_t I = 0; I < Size; ++I) {
+ outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
+ << "\n";
+ }
+ }
+ Start += Size;
+ break;
+ }
+
+ Index = Start;
+ if (SectionAddr < StartAddress)
+ Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
+
+ if (DisassembleAsData) {
+ dumpELFData(SectionAddr, Index, End, Bytes);
+ Index = End;
+ continue;
+ }
+
+ bool DumpARMELFData = false;
+ formatted_raw_ostream FOS(outs());
+
+ std::unordered_map<uint64_t, std::string> AllLabels;
+ std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
+ if (SymbolizeOperands) {
+ collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
+ SectionAddr, Index, End, AllLabels);
+ collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
+ BBAddrMapLabels);
+ }
+
+ while (Index < End) {
+ // ARM and AArch64 ELF binaries can interleave data and text in the
+ // same section. We rely on the markers introduced to understand what
+ // we need to dump. If the data marker is within a function, it is
+ // denoted as a word/short etc.
+ if (!MappingSymbols.empty()) {
+ char Kind = getMappingSymbolKind(MappingSymbols, Index);
+ DumpARMELFData = Kind == 'd';
+ if (SecondarySTI) {
+ if (Kind == 'a') {
+ STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
+ DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
+ } else if (Kind == 't') {
+ STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
+ DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
+ }
+ }
+ }
+
+ if (DumpARMELFData) {
+ Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
+ MappingSymbols, *STI, FOS);
+ } else {
+ // When -z or --disassemble-zeroes are given we always dissasemble
+ // them. Otherwise we might want to skip zero bytes we see.
+ if (!DisassembleZeroes) {
+ uint64_t MaxOffset = End - Index;
+ // For --reloc: print zero blocks patched by relocations, so that
+ // relocations can be shown in the dump.
+ if (RelCur != RelEnd)
+ MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
+ MaxOffset);
+
+ if (size_t N =
+ countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
+ FOS << "\t\t..." << '\n';
+ Index += N;
+ continue;
+ }
+ }
+
+ // Print local label if there's any.
+ auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
+ if (Iter1 != BBAddrMapLabels.end()) {
+ for (StringRef Label : Iter1->second)
+ FOS << "<" << Label << ">:\n";
+ } else {
+ auto Iter2 = AllLabels.find(SectionAddr + Index);
+ if (Iter2 != AllLabels.end())
+ FOS << "<" << Iter2->second << ">:\n";
+ }
+
+ // Disassemble a real instruction or a data when disassemble all is
+ // provided
+ MCInst Inst;
+ ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
+ uint64_t ThisAddr = SectionAddr + Index;
+ bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
+ ThisAddr, CommentStream);
+ if (Size == 0)
+ Size = std::min<uint64_t>(
+ ThisBytes.size(),
+ DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
+
+ LVP.update({Index, Section.getIndex()},
+ {Index + Size, Section.getIndex()}, Index + Size != End);
+
+ IP->setCommentStream(CommentStream);
+
+ PIP.printInst(
+ *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
+ {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
+ "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
+
+ IP->setCommentStream(llvm::nulls());
+
+ // If disassembly has failed, avoid analysing invalid/incomplete
+ // instruction information. Otherwise, try to resolve the target
+ // address (jump target or memory operand address) and print it on the
+ // right of the instruction.
+ if (Disassembled && MIA) {
+ // Branch targets are printed just after the instructions.
+ llvm::raw_ostream *TargetOS = &FOS;
+ uint64_t Target;
+ bool PrintTarget =
+ MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
+ if (!PrintTarget)
+ if (std::optional<uint64_t> MaybeTarget =
+ MIA->evaluateMemoryOperandAddress(
+ Inst, STI, SectionAddr + Index, Size)) {
+ Target = *MaybeTarget;
+ PrintTarget = true;
+ // Do not print real address when symbolizing.
+ if (!SymbolizeOperands) {
+ // Memory operand addresses are printed as comments.
+ TargetOS = &CommentStream;
+ *TargetOS << "0x" << Twine::utohexstr(Target);
+ }
+ }
+ if (PrintTarget) {
+ // In a relocatable object, the target's section must reside in
+ // the same section as the call instruction or it is accessed
+ // through a relocation.
+ //
+ // In a non-relocatable object, the target may be in any section.
+ // In that case, locate the section(s) containing the target
+ // address and find the symbol in one of those, if possible.
+ //
+ // N.B. We don't walk the relocations in the relocatable case yet.
+ std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
+ if (!Obj.isRelocatableObject()) {
+ auto It = llvm::partition_point(
+ SectionAddresses,
+ [=](const std::pair<uint64_t, SectionRef> &O) {
+ return O.first <= Target;
+ });
+ uint64_t TargetSecAddr = 0;
+ while (It != SectionAddresses.begin()) {
+ --It;
+ if (TargetSecAddr == 0)
+ TargetSecAddr = It->first;
+ if (It->first != TargetSecAddr)
+ break;
+ TargetSectionSymbols.push_back(&AllSymbols[It->second]);
+ }
+ } else {
+ TargetSectionSymbols.push_back(&Symbols);
+ }
+ TargetSectionSymbols.push_back(&AbsoluteSymbols);
+
+ // Find the last symbol in the first candidate section whose
+ // offset is less than or equal to the target. If there are no
+ // such symbols, try in the next section and so on, before finally
+ // using the nearest preceding absolute symbol (if any), if there
+ // are no other valid symbols.
+ const SymbolInfoTy *TargetSym = nullptr;
+ for (const SectionSymbolsTy *TargetSymbols :
+ TargetSectionSymbols) {
+ auto It = llvm::partition_point(
+ *TargetSymbols,
+ [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
+ while (It != TargetSymbols->begin()) {
+ --It;
+ // Skip mapping symbols to avoid possible ambiguity as they
+ // do not allow uniquely identifying the target address.
+ if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
+ TargetSym = &*It;
+ break;
+ }
+ }
+ if (TargetSym)
+ break;
+ }
+
+ // Print the labels corresponding to the target if there's any.
+ bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
+ bool LabelAvailable = AllLabels.count(Target);
+ if (TargetSym != nullptr) {
+ uint64_t TargetAddress = TargetSym->Addr;
+ uint64_t Disp = Target - TargetAddress;
+ std::string TargetName = TargetSym->Name.str();
+ if (Demangle)
+ TargetName = demangle(TargetName);
+
+ *TargetOS << " <";
+ if (!Disp) {
+ // Always Print the binary symbol precisely corresponding to
+ // the target address.
+ *TargetOS << TargetName;
+ } else if (BBAddrMapLabelAvailable) {
+ *TargetOS << BBAddrMapLabels[Target].front();
+ } else if (LabelAvailable) {
+ *TargetOS << AllLabels[Target];
+ } else {
+ // Always Print the binary symbol plus an offset if there's no
+ // local label corresponding to the target address.
+ *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
+ }
+ *TargetOS << ">";
+ } else if (BBAddrMapLabelAvailable) {
+ *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
+ } else if (LabelAvailable) {
+ *TargetOS << " <" << AllLabels[Target] << ">";
+ }
+ // By convention, each record in the comment stream should be
+ // terminated.
+ if (TargetOS == &CommentStream)
+ *TargetOS << "\n";
+ }
+ }
+ }
+
+ assert(Ctx.getAsmInfo());
+ emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
+ CommentStream.str(), LVP);
+ Comments.clear();
+
+ // Hexagon does this in pretty printer
+ if (Obj.getArch() != Triple::hexagon) {
+ // Print relocation for instruction and data.
+ while (RelCur != RelEnd) {
+ uint64_t Offset = RelCur->getOffset() - RelAdjustment;
+ // If this relocation is hidden, skip it.
+ if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
+ ++RelCur;
+ continue;
+ }
+
+ // Stop when RelCur's offset is past the disassembled
+ // instruction/data. Note that it's possible the disassembled data
+ // is not the complete data: we might see the relocation printed in
+ // the middle of the data, but this matches the binutils objdump
+ // output.
+ if (Offset >= Index + Size)
+ break;
+
+ // When --adjust-vma is used, update the address printed.
+ if (RelCur->getSymbol() != Obj.symbol_end()) {
+ Expected<section_iterator> SymSI =
+ RelCur->getSymbol()->getSection();
+ if (SymSI && *SymSI != Obj.section_end() &&
+ shouldAdjustVA(**SymSI))
+ Offset += AdjustVMA;
+ }
+
+ printRelocation(FOS, Obj.getFileName(), *RelCur,
+ SectionAddr + Offset, Is64Bits);
+ LVP.printAfterOtherLine(FOS, true);
+ ++RelCur;
+ }
+ }
+
+ Index += Size;
+ }
+ }
+ }
+ StringSet<> MissingDisasmSymbolSet =
+ set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
+ for (StringRef Sym : MissingDisasmSymbolSet.keys())
+ reportWarning("failed to disassemble missing symbol " + Sym, FileName);
+}
+
+static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
+ // If information useful for showing the disassembly is missing, try to find a
+ // more complete binary and disassemble that instead.
+ OwningBinary<Binary> FetchedBinary;
+ if (Obj->symbols().empty()) {
+ if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
+ fetchBinaryByBuildID(*Obj)) {
+ if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
+ if (!O->symbols().empty() ||
+ (!O->sections().empty() && Obj->sections().empty())) {
+ FetchedBinary = std::move(*FetchedBinaryOpt);
+ Obj = O;
+ }
+ }
+ }
+ }
+
+ const Target *TheTarget = getTarget(Obj);
+
+ // Package up features to be passed to target/subtarget
+ Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
+ if (!FeaturesValue)
+ reportError(FeaturesValue.takeError(), Obj->getFileName());
+ SubtargetFeatures Features = *FeaturesValue;
+ if (!MAttrs.empty()) {
+ for (unsigned I = 0; I != MAttrs.size(); ++I)
+ Features.AddFeature(MAttrs[I]);
+ } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
+ Features.AddFeature("+all");
+ }
+
+ std::unique_ptr<const MCRegisterInfo> MRI(
+ TheTarget->createMCRegInfo(TripleName));
+ if (!MRI)
+ reportError(Obj->getFileName(),
+ "no register info for target " + TripleName);
+
+ // Set up disassembler.
+ MCTargetOptions MCOptions;
+ std::unique_ptr<const MCAsmInfo> AsmInfo(
+ TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
+ if (!AsmInfo)
+ reportError(Obj->getFileName(),
+ "no assembly info for target " + TripleName);
+
+ if (MCPU.empty())
+ MCPU = Obj->tryGetCPUName().value_or("").str();
+
+ if (isArmElf(*Obj)) {
+ // When disassembling big-endian Arm ELF, the instruction endianness is
+ // determined in a complex way. In relocatable objects, AAELF32 mandates
+ // that instruction endianness matches the ELF file endianness; in
+ // executable images, that's true unless the file header has the EF_ARM_BE8
+ // flag, in which case instructions are little-endian regardless of data
+ // endianness.
+ //
+ // We must set the big-endian-instructions SubtargetFeature to make the
+ // disassembler read the instructions the right way round, and also tell
+ // our own prettyprinter to retrieve the encodings the same way to print in
+ // hex.
+ const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
+
+ if (Elf32BE && (Elf32BE->isRelocatableObject() ||
+ !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
+ Features.AddFeature("+big-endian-instructions");
+ ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
+ } else {
+ ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
+ }
+ }
+
+ std::unique_ptr<const MCSubtargetInfo> STI(
+ TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
+ if (!STI)
+ reportError(Obj->getFileName(),
+ "no subtarget info for target " + TripleName);
+ std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
+ if (!MII)
+ reportError(Obj->getFileName(),
+ "no instruction info for target " + TripleName);
+ MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
+ // FIXME: for now initialize MCObjectFileInfo with default values
+ std::unique_ptr<MCObjectFileInfo> MOFI(
+ TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
+ Ctx.setObjectFileInfo(MOFI.get());
+
+ std::unique_ptr<MCDisassembler> DisAsm(
+ TheTarget->createMCDisassembler(*STI, Ctx));
+ if (!DisAsm)
+ reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
+
+ // If we have an ARM object file, we need a second disassembler, because
+ // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
+ // We use mapping symbols to switch between the two assemblers, where
+ // appropriate.
+ std::unique_ptr<MCDisassembler> SecondaryDisAsm;
+ std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
+ if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
+ if (STI->checkFeatures("+thumb-mode"))
+ Features.AddFeature("-thumb-mode");
+ else
+ Features.AddFeature("+thumb-mode");
+ SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
+ Features.getString()));
+ SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
+ }
+
+ std::unique_ptr<const MCInstrAnalysis> MIA(
+ TheTarget->createMCInstrAnalysis(MII.get()));
+
+ int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
+ std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
+ Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
+ if (!IP)
+ reportError(Obj->getFileName(),
+ "no instruction printer for target " + TripleName);
+ IP->setPrintImmHex(PrintImmHex);
+ IP->setPrintBranchImmAsAddress(true);
+ IP->setSymbolizeOperands(SymbolizeOperands);
+ IP->setMCInstrAnalysis(MIA.get());
+
+ PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
+
+ const ObjectFile *DbgObj = Obj;
+ if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
+ if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
+ fetchBinaryByBuildID(*Obj)) {
+ if (auto *FetchedObj =
+ dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
+ if (FetchedObj->hasDebugInfo()) {
+ FetchedBinary = std::move(*DebugBinaryOpt);
+ DbgObj = FetchedObj;
+ }
+ }
+ }
+ }
+
+ std::unique_ptr<object::Binary> DSYMBinary;
+ std::unique_ptr<MemoryBuffer> DSYMBuf;
+ if (!DbgObj->hasDebugInfo()) {
+ if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
+ DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
+ DSYMBinary, DSYMBuf);
+ if (!DbgObj)
+ return;
+ }
+ }
+
+ SourcePrinter SP(DbgObj, TheTarget->getName());
+
+ for (StringRef Opt : DisassemblerOptions)
+ if (!IP->applyTargetSpecificCLOption(Opt))
+ reportError(Obj->getFileName(),
+ "Unrecognized disassembler option: " + Opt);
+
+ disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(),
+ SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(),
+ SecondarySTI.get(), PIP, SP, InlineRelocs);
+}
+
+void objdump::printRelocations(const ObjectFile *Obj) {
+ StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
+ "%08" PRIx64;
+
+ // Build a mapping from relocation target to a vector of relocation
+ // sections. Usually, there is an only one relocation section for
+ // each relocated section.
+ MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
+ uint64_t Ndx;
+ for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
+ if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
+ continue;
+ if (Section.relocation_begin() == Section.relocation_end())
+ continue;
+ Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
+ if (!SecOrErr)
+ reportError(Obj->getFileName(),
+ "section (" + Twine(Ndx) +
+ "): unable to get a relocation target: " +
+ toString(SecOrErr.takeError()));
+ SecToRelSec[**SecOrErr].push_back(Section);
+ }
+
+ for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
+ StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
+ outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
+ uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
+ uint32_t TypePadding = 24;
+ outs() << left_justify("OFFSET", OffsetPadding) << " "
+ << left_justify("TYPE", TypePadding) << " "
+ << "VALUE\n";
+
+ for (SectionRef Section : P.second) {
+ for (const RelocationRef &Reloc : Section.relocations()) {
+ uint64_t Address = Reloc.getOffset();
+ SmallString<32> RelocName;
+ SmallString<32> ValueStr;
+ if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
+ continue;
+ Reloc.getTypeName(RelocName);
+ if (Error E = getRelocationValueString(Reloc, ValueStr))
+ reportError(std::move(E), Obj->getFileName());
+
+ outs() << format(Fmt.data(), Address) << " "
+ << left_justify(RelocName, TypePadding) << " " << ValueStr
+ << "\n";
+ }
+ }
+ }
+}
+
+void objdump::printDynamicRelocations(const ObjectFile *Obj) {
+ // For the moment, this option is for ELF only
+ if (!Obj->isELF())
+ return;
+
+ const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
+ if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
+ return Sec.getType() == ELF::SHT_DYNAMIC;
+ })) {
+ reportError(Obj->getFileName(), "not a dynamic object");
+ return;
+ }
+
+ std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
+ if (DynRelSec.empty())
+ return;
+
+ outs() << "\nDYNAMIC RELOCATION RECORDS\n";
+ const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
+ const uint32_t TypePadding = 24;
+ outs() << left_justify("OFFSET", OffsetPadding) << ' '
+ << left_justify("TYPE", TypePadding) << " VALUE\n";
+
+ StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
+ for (const SectionRef &Section : DynRelSec)
+ for (const RelocationRef &Reloc : Section.relocations()) {
+ uint64_t Address = Reloc.getOffset();
+ SmallString<32> RelocName;
+ SmallString<32> ValueStr;
+ Reloc.getTypeName(RelocName);
+ if (Error E = getRelocationValueString(Reloc, ValueStr))
+ reportError(std::move(E), Obj->getFileName());
+ outs() << format(Fmt.data(), Address) << ' '
+ << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
+ }
+}
+
+// Returns true if we need to show LMA column when dumping section headers. We
+// show it only when the platform is ELF and either we have at least one section
+// whose VMA and LMA are different and/or when --show-lma flag is used.
+static bool shouldDisplayLMA(const ObjectFile &Obj) {
+ if (!Obj.isELF())
+ return false;
+ for (const SectionRef &S : ToolSectionFilter(Obj))
+ if (S.getAddress() != getELFSectionLMA(S))
+ return true;
+ return ShowLMA;
+}
+
+static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
+ // Default column width for names is 13 even if no names are that long.
+ size_t MaxWidth = 13;
+ for (const SectionRef &Section : ToolSectionFilter(Obj)) {
+ StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
+ MaxWidth = std::max(MaxWidth, Name.size());
+ }
+ return MaxWidth;
+}
+
+void objdump::printSectionHeaders(ObjectFile &Obj) {
+ if (Obj.isELF() && Obj.sections().empty())
+ createFakeELFSections(Obj);
+
+ size_t NameWidth = getMaxSectionNameWidth(Obj);
+ size_t AddressWidth = 2 * Obj.getBytesInAddress();
+ bool HasLMAColumn = shouldDisplayLMA(Obj);
+ outs() << "\nSections:\n";
+ if (HasLMAColumn)
+ outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
+ << left_justify("VMA", AddressWidth) << " "
+ << left_justify("LMA", AddressWidth) << " Type\n";
+ else
+ outs() << "Idx " << left_justify("Name", NameWidth) << " Size "
+ << left_justify("VMA", AddressWidth) << " Type\n";
+
+ uint64_t Idx;
+ for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
+ StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
+ uint64_t VMA = Section.getAddress();
+ if (shouldAdjustVA(Section))
+ VMA += AdjustVMA;
+
+ uint64_t Size = Section.getSize();
+
+ std::string Type = Section.isText() ? "TEXT" : "";
+ if (Section.isData())
+ Type += Type.empty() ? "DATA" : ", DATA";
+ if (Section.isBSS())
+ Type += Type.empty() ? "BSS" : ", BSS";
+ if (Section.isDebugSection())
+ Type += Type.empty() ? "DEBUG" : ", DEBUG";
+
+ if (HasLMAColumn)
+ outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
+ Name.str().c_str(), Size)
+ << format_hex_no_prefix(VMA, AddressWidth) << " "
+ << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
+ << " " << Type << "\n";
+ else
+ outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
+ Name.str().c_str(), Size)
+ << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
+ }
+}
+
+void objdump::printSectionContents(const ObjectFile *Obj) {
+ const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
+
+ for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
+ StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
+ uint64_t BaseAddr = Section.getAddress();
+ uint64_t Size = Section.getSize();
+ if (!Size)
+ continue;
+
+ outs() << "Contents of section ";
+ StringRef SegmentName = getSegmentName(MachO, Section);
+ if (!SegmentName.empty())
+ outs() << SegmentName << ",";
+ outs() << Name << ":\n";
+ if (Section.isBSS()) {
+ outs() << format("<skipping contents of bss section at [%04" PRIx64
+ ", %04" PRIx64 ")>\n",
+ BaseAddr, BaseAddr + Size);
+ continue;
+ }
+
+ StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
+
+ // Dump out the content as hex and printable ascii characters.
+ for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
+ outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
+ // Dump line of hex.
+ for (std::size_t I = 0; I < 16; ++I) {
+ if (I != 0 && I % 4 == 0)
+ outs() << ' ';
+ if (Addr + I < End)
+ outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
+ << hexdigit(Contents[Addr + I] & 0xF, true);
+ else
+ outs() << " ";
+ }
+ // Print ascii.
+ outs() << " ";
+ for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
+ if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
+ outs() << Contents[Addr + I];
+ else
+ outs() << ".";
+ }
+ outs() << "\n";
+ }
+ }
+}
+
+void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
+ StringRef ArchitectureName, bool DumpDynamic) {
+ if (O.isCOFF() && !DumpDynamic) {
+ outs() << "\nSYMBOL TABLE:\n";
+ printCOFFSymbolTable(cast<const COFFObjectFile>(O));
+ return;
+ }
+
+ const StringRef FileName = O.getFileName();
+
+ if (!DumpDynamic) {
+ outs() << "\nSYMBOL TABLE:\n";
+ for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
+ printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
+ DumpDynamic);
+ return;
+ }
+
+ outs() << "\nDYNAMIC SYMBOL TABLE:\n";
+ if (!O.isELF()) {
+ reportWarning(
+ "this operation is not currently supported for this file format",
+ FileName);
+ return;
+ }
+
+ const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
+ auto Symbols = ELF->getDynamicSymbolIterators();
+ Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
+ ELF->readDynsymVersions();
+ if (!SymbolVersionsOrErr) {
+ reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
+ SymbolVersionsOrErr = std::vector<VersionEntry>();
+ (void)!SymbolVersionsOrErr;
+ }
+ for (auto &Sym : Symbols)
+ printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
+ ArchitectureName, DumpDynamic);
+}
+
+void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
+ ArrayRef<VersionEntry> SymbolVersions,
+ StringRef FileName, StringRef ArchiveName,
+ StringRef ArchitectureName, bool DumpDynamic) {
+ const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
+ uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
+ ArchitectureName);
+ if ((Address < StartAddress) || (Address > StopAddress))
+ return;
+ SymbolRef::Type Type =
+ unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
+ uint32_t Flags =
+ unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
+
+ // Don't ask a Mach-O STAB symbol for its section unless you know that
+ // STAB symbol's section field refers to a valid section index. Otherwise
+ // the symbol may error trying to load a section that does not exist.
+ bool IsSTAB = false;
+ if (MachO) {
+ DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
+ uint8_t NType =
+ (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
+ : MachO->getSymbolTableEntry(SymDRI).n_type);
+ if (NType & MachO::N_STAB)
+ IsSTAB = true;
+ }
+ section_iterator Section = IsSTAB
+ ? O.section_end()
+ : unwrapOrError(Symbol.getSection(), FileName,
+ ArchiveName, ArchitectureName);
+
+ StringRef Name;
+ if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
+ if (Expected<StringRef> NameOrErr = Section->getName())
+ Name = *NameOrErr;
+ else
+ consumeError(NameOrErr.takeError());
+
+ } else {
+ Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
+ ArchitectureName);
+ }
+
+ bool Global = Flags & SymbolRef::SF_Global;
+ bool Weak = Flags & SymbolRef::SF_Weak;
+ bool Absolute = Flags & SymbolRef::SF_Absolute;
+ bool Common = Flags & SymbolRef::SF_Common;
+ bool Hidden = Flags & SymbolRef::SF_Hidden;
+
+ char GlobLoc = ' ';
+ if ((Section != O.section_end() || Absolute) && !Weak)
+ GlobLoc = Global ? 'g' : 'l';
+ char IFunc = ' ';
+ if (O.isELF()) {
+ if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
+ IFunc = 'i';
+ if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
+ GlobLoc = 'u';
+ }
+
+ char Debug = ' ';
+ if (DumpDynamic)
+ Debug = 'D';
+ else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
+ Debug = 'd';
+
+ char FileFunc = ' ';
+ if (Type == SymbolRef::ST_File)
+ FileFunc = 'f';
+ else if (Type == SymbolRef::ST_Function)
+ FileFunc = 'F';
+ else if (Type == SymbolRef::ST_Data)
+ FileFunc = 'O';
+
+ const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
+
+ outs() << format(Fmt, Address) << " "
+ << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
+ << (Weak ? 'w' : ' ') // Weak?
+ << ' ' // Constructor. Not supported yet.
+ << ' ' // Warning. Not supported yet.
+ << IFunc // Indirect reference to another symbol.
+ << Debug // Debugging (d) or dynamic (D) symbol.
+ << FileFunc // Name of function (F), file (f) or object (O).
+ << ' ';
+ if (Absolute) {
+ outs() << "*ABS*";
+ } else if (Common) {
+ outs() << "*COM*";
+ } else if (Section == O.section_end()) {
+ if (O.isXCOFF()) {
+ XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
+ Symbol.getRawDataRefImpl());
+ if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
+ outs() << "*DEBUG*";
+ else
+ outs() << "*UND*";
+ } else
+ outs() << "*UND*";
+ } else {
+ StringRef SegmentName = getSegmentName(MachO, *Section);
+ if (!SegmentName.empty())
+ outs() << SegmentName << ",";
+ StringRef SectionName = unwrapOrError(Section->getName(), FileName);
+ outs() << SectionName;
+ if (O.isXCOFF()) {
+ std::optional<SymbolRef> SymRef =
+ getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
+ if (SymRef) {
+
+ Expected<StringRef> NameOrErr = SymRef->getName();
+
+ if (NameOrErr) {
+ outs() << " (csect:";
+ std::string SymName(NameOrErr.get());
+
+ if (Demangle)
+ SymName = demangle(SymName);
+
+ if (SymbolDescription)
+ SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
+ SymName);
+
+ outs() << ' ' << SymName;
+ outs() << ") ";
+ } else
+ reportWarning(toString(NameOrErr.takeError()), FileName);
+ }
+ }
+ }
+
+ if (Common)
+ outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
+ else if (O.isXCOFF())
+ outs() << '\t'
+ << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
+ Symbol.getRawDataRefImpl()));
+ else if (O.isELF())
+ outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
+
+ if (O.isELF()) {
+ if (!SymbolVersions.empty()) {
+ const VersionEntry &Ver =
+ SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
+ std::string Str;
+ if (!Ver.Name.empty())
+ Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
+ outs() << ' ' << left_justify(Str, 12);
+ }
+
+ uint8_t Other = ELFSymbolRef(Symbol).getOther();
+ switch (Other) {
+ case ELF::STV_DEFAULT:
+ break;
+ case ELF::STV_INTERNAL:
+ outs() << " .internal";
+ break;
+ case ELF::STV_HIDDEN:
+ outs() << " .hidden";
+ break;
+ case ELF::STV_PROTECTED:
+ outs() << " .protected";
+ break;
+ default:
+ outs() << format(" 0x%02x", Other);
+ break;
+ }
+ } else if (Hidden) {
+ outs() << " .hidden";
+ }
+
+ std::string SymName(Name);
+ if (Demangle)
+ SymName = demangle(SymName);
+
+ if (O.isXCOFF() && SymbolDescription)
+ SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
+
+ outs() << ' ' << SymName << '\n';
+}
+
+static void printUnwindInfo(const ObjectFile *O) {
+ outs() << "Unwind info:\n\n";
+
+ if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
+ printCOFFUnwindInfo(Coff);
+ else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
+ printMachOUnwindInfo(MachO);
+ else
+ // TODO: Extract DWARF dump tool to objdump.
+ WithColor::error(errs(), ToolName)
+ << "This operation is only currently supported "
+ "for COFF and MachO object files.\n";
+}
+
+/// Dump the raw contents of the __clangast section so the output can be piped
+/// into llvm-bcanalyzer.
+static void printRawClangAST(const ObjectFile *Obj) {
+ if (outs().is_displayed()) {
+ WithColor::error(errs(), ToolName)
+ << "The -raw-clang-ast option will dump the raw binary contents of "
+ "the clang ast section.\n"
+ "Please redirect the output to a file or another program such as "
+ "llvm-bcanalyzer.\n";
+ return;
+ }
+
+ StringRef ClangASTSectionName("__clangast");
+ if (Obj->isCOFF()) {
+ ClangASTSectionName = "clangast";
+ }
+
+ std::optional<object::SectionRef> ClangASTSection;
+ for (auto Sec : ToolSectionFilter(*Obj)) {
+ StringRef Name;
+ if (Expected<StringRef> NameOrErr = Sec.getName())
+ Name = *NameOrErr;
+ else
+ consumeError(NameOrErr.takeError());
+
+ if (Name == ClangASTSectionName) {
+ ClangASTSection = Sec;
+ break;
+ }
+ }
+ if (!ClangASTSection)
+ return;
+
+ StringRef ClangASTContents =
+ unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
+ outs().write(ClangASTContents.data(), ClangASTContents.size());
+}
+
+static void printFaultMaps(const ObjectFile *Obj) {
+ StringRef FaultMapSectionName;
+
+ if (Obj->isELF()) {
+ FaultMapSectionName = ".llvm_faultmaps";
+ } else if (Obj->isMachO()) {
+ FaultMapSectionName = "__llvm_faultmaps";
+ } else {
+ WithColor::error(errs(), ToolName)
+ << "This operation is only currently supported "
+ "for ELF and Mach-O executable files.\n";
+ return;
+ }
+
+ std::optional<object::SectionRef> FaultMapSection;
+
+ for (auto Sec : ToolSectionFilter(*Obj)) {
+ StringRef Name;
+ if (Expected<StringRef> NameOrErr = Sec.getName())
+ Name = *NameOrErr;
+ else
+ consumeError(NameOrErr.takeError());
+
+ if (Name == FaultMapSectionName) {
+ FaultMapSection = Sec;
+ break;
+ }
+ }
+
+ outs() << "FaultMap table:\n";
+
+ if (!FaultMapSection) {
+ outs() << "<not found>\n";
+ return;
+ }
+
+ StringRef FaultMapContents =
+ unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
+ FaultMapParser FMP(FaultMapContents.bytes_begin(),
+ FaultMapContents.bytes_end());
+
+ outs() << FMP;
+}
+
+static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
+ if (O->isELF()) {
+ printELFFileHeader(O);
+ printELFDynamicSection(O);
+ printELFSymbolVersionInfo(O);
+ return;
+ }
+ if (O->isCOFF())
+ return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
+ if (O->isWasm())
+ return printWasmFileHeader(O);
+ if (O->isMachO()) {
+ printMachOFileHeader(O);
+ if (!OnlyFirst)
+ printMachOLoadCommands(O);
+ return;
+ }
+ reportError(O->getFileName(), "Invalid/Unsupported object file format");
+}
+
+static void printFileHeaders(const ObjectFile *O) {
+ if (!O->isELF() && !O->isCOFF())
+ reportError(O->getFileName(), "Invalid/Unsupported object file format");
+
+ Triple::ArchType AT = O->getArch();
+ outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
+ uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
+
+ StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
+ outs() << "start address: "
+ << "0x" << format(Fmt.data(), Address) << "\n";
+}
+
+static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
+ Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
+ if (!ModeOrErr) {
+ WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
+ consumeError(ModeOrErr.takeError());
+ return;
+ }
+ sys::fs::perms Mode = ModeOrErr.get();
+ outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
+ outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
+ outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
+ outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
+ outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
+ outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
+ outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
+ outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
+ outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
+
+ outs() << " ";
+
+ outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
+ unwrapOrError(C.getGID(), Filename),
+ unwrapOrError(C.getRawSize(), Filename));
+
+ StringRef RawLastModified = C.getRawLastModified();
+ unsigned Seconds;
+ if (RawLastModified.getAsInteger(10, Seconds))
+ outs() << "(date: \"" << RawLastModified
+ << "\" contains non-decimal chars) ";
+ else {
+ // Since ctime(3) returns a 26 character string of the form:
+ // "Sun Sep 16 01:03:52 1973\n\0"
+ // just print 24 characters.
+ time_t t = Seconds;
+ outs() << format("%.24s ", ctime(&t));
+ }
+
+ StringRef Name = "";
+ Expected<StringRef> NameOrErr = C.getName();
+ if (!NameOrErr) {
+ consumeError(NameOrErr.takeError());
+ Name = unwrapOrError(C.getRawName(), Filename);
+ } else {
+ Name = NameOrErr.get();
+ }
+ outs() << Name << "\n";
+}
+
+// For ELF only now.
+static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
+ if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
+ if (Elf->getEType() != ELF::ET_REL)
+ return true;
+ }
+ return false;
+}
+
+static void checkForInvalidStartStopAddress(ObjectFile *Obj,
+ uint64_t Start, uint64_t Stop) {
+ if (!shouldWarnForInvalidStartStopAddress(Obj))
+ return;
+
+ for (const SectionRef &Section : Obj->sections())
+ if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
+ uint64_t BaseAddr = Section.getAddress();
+ uint64_t Size = Section.getSize();
+ if ((Start < BaseAddr + Size) && Stop > BaseAddr)
+ return;
+ }
+
+ if (!HasStartAddressFlag)
+ reportWarning("no section has address less than 0x" +
+ Twine::utohexstr(Stop) + " specified by --stop-address",
+ Obj->getFileName());
+ else if (!HasStopAddressFlag)
+ reportWarning("no section has address greater than or equal to 0x" +
+ Twine::utohexstr(Start) + " specified by --start-address",
+ Obj->getFileName());
+ else
+ reportWarning("no section overlaps the range [0x" +
+ Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
+ ") specified by --start-address/--stop-address",
+ Obj->getFileName());
+}
+
+static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
+ const Archive::Child *C = nullptr) {
+ // Avoid other output when using a raw option.
+ if (!RawClangAST) {
+ outs() << '\n';
+ if (A)
+ outs() << A->getFileName() << "(" << O->getFileName() << ")";
+ else
+ outs() << O->getFileName();
+ outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
+ }
+
+ if (HasStartAddressFlag || HasStopAddressFlag)
+ checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
+
+ // Note: the order here matches GNU objdump for compatability.
+ StringRef ArchiveName = A ? A->getFileName() : "";
+ if (ArchiveHeaders && !MachOOpt && C)
+ printArchiveChild(ArchiveName, *C);
+ if (FileHeaders)
+ printFileHeaders(O);
+ if (PrivateHeaders || FirstPrivateHeader)
+ printPrivateFileHeaders(O, FirstPrivateHeader);
+ if (SectionHeaders)
+ printSectionHeaders(*O);
+ if (SymbolTable)
+ printSymbolTable(*O, ArchiveName);
+ if (DynamicSymbolTable)
+ printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
+ /*DumpDynamic=*/true);
+ if (DwarfDumpType != DIDT_Null) {
+ std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
+ // Dump the complete DWARF structure.
+ DIDumpOptions DumpOpts;
+ DumpOpts.DumpType = DwarfDumpType;
+ DICtx->dump(outs(), DumpOpts);
+ }
+ if (Relocations && !Disassemble)
+ printRelocations(O);
+ if (DynamicRelocations)
+ printDynamicRelocations(O);
+ if (SectionContents)
+ printSectionContents(O);
+ if (Disassemble)
+ disassembleObject(O, Relocations);
+ if (UnwindInfo)
+ printUnwindInfo(O);
+
+ // Mach-O specific options:
+ if (ExportsTrie)
+ printExportsTrie(O);
+ if (Rebase)
+ printRebaseTable(O);
+ if (Bind)
+ printBindTable(O);
+ if (LazyBind)
+ printLazyBindTable(O);
+ if (WeakBind)
+ printWeakBindTable(O);
+
+ // Other special sections:
+ if (RawClangAST)
+ printRawClangAST(O);
+ if (FaultMapSection)
+ printFaultMaps(O);
+ if (Offloading)
+ dumpOffloadBinary(*O);
+}
+
+static void dumpObject(const COFFImportFile *I, const Archive *A,
+ const Archive::Child *C = nullptr) {
+ StringRef ArchiveName = A ? A->getFileName() : "";
+
+ // Avoid other output when using a raw option.
+ if (!RawClangAST)
+ outs() << '\n'
+ << ArchiveName << "(" << I->getFileName() << ")"
+ << ":\tfile format COFF-import-file"
+ << "\n\n";
+
+ if (ArchiveHeaders && !MachOOpt && C)
+ printArchiveChild(ArchiveName, *C);
+ if (SymbolTable)
+ printCOFFSymbolTable(*I);
+}
+
+/// Dump each object file in \a a;
+static void dumpArchive(const Archive *A) {
+ Error Err = Error::success();
+ unsigned I = -1;
+ for (auto &C : A->children(Err)) {
+ ++I;
+ Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
+ if (!ChildOrErr) {
+ if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
+ reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
+ continue;
+ }
+ if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
+ dumpObject(O, A, &C);
+ else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
+ dumpObject(I, A, &C);
+ else
+ reportError(errorCodeToError(object_error::invalid_file_type),
+ A->getFileName());
+ }
+ if (Err)
+ reportError(std::move(Err), A->getFileName());
+}
+
+/// Open file and figure out how to dump it.
+static void dumpInput(StringRef file) {
+ // If we are using the Mach-O specific object file parser, then let it parse
+ // the file and process the command line options. So the -arch flags can
+ // be used to select specific slices, etc.
+ if (MachOOpt) {
+ parseInputMachO(file);
+ return;
+ }
+
+ // Attempt to open the binary.
+ OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
+ Binary &Binary = *OBinary.getBinary();
+
+ if (Archive *A = dyn_cast<Archive>(&Binary))
+ dumpArchive(A);
+ else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
+ dumpObject(O);
+ else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
+ parseInputMachO(UB);
+ else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
+ dumpOffloadSections(*OB);
+ else
+ reportError(errorCodeToError(object_error::invalid_file_type), file);
+}
+
+template <typename T>
+static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
+ T &Value) {
+ if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
+ StringRef V(A->getValue());
+ if (!llvm::to_integer(V, Value, 0)) {
+ reportCmdLineError(A->getSpelling() +
+ ": expected a non-negative integer, but got '" + V +
+ "'");
+ }
+ }
+}
+
+static object::BuildID parseBuildIDArg(const opt::Arg *A) {
+ StringRef V(A->getValue());
+ std::string Bytes;
+ if (!tryGetFromHex(V, Bytes))
+ reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
+ V + "'");
+ ArrayRef<uint8_t> BuildID(reinterpret_cast<const uint8_t *>(Bytes.data()),
+ Bytes.size());
+ return object::BuildID(BuildID.begin(), BuildID.end());
+}
+
+void objdump::invalidArgValue(const opt::Arg *A) {
+ reportCmdLineError("'" + StringRef(A->getValue()) +
+ "' is not a valid value for '" + A->getSpelling() + "'");
+}
+
+static std::vector<std::string>
+commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
+ std::vector<std::string> Values;
+ for (StringRef Value : InputArgs.getAllArgValues(ID)) {
+ llvm::SmallVector<StringRef, 2> SplitValues;
+ llvm::SplitString(Value, SplitValues, ",");
+ for (StringRef SplitValue : SplitValues)
+ Values.push_back(SplitValue.str());
+ }
+ return Values;
+}
+
+static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
+ MachOOpt = true;
+ FullLeadingAddr = true;
+ PrintImmHex = true;
+
+ ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
+ LinkOptHints = InputArgs.hasArg(OTOOL_C);
+ if (InputArgs.hasArg(OTOOL_d))
+ FilterSections.push_back("__DATA,__data");
+ DylibId = InputArgs.hasArg(OTOOL_D);
+ UniversalHeaders = InputArgs.hasArg(OTOOL_f);
+ DataInCode = InputArgs.hasArg(OTOOL_G);
+ FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
+ IndirectSymbols = InputArgs.hasArg(OTOOL_I);
+ ShowRawInsn = InputArgs.hasArg(OTOOL_j);
+ PrivateHeaders = InputArgs.hasArg(OTOOL_l);
+ DylibsUsed = InputArgs.hasArg(OTOOL_L);
+ MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
+ ObjcMetaData = InputArgs.hasArg(OTOOL_o);
+ DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
+ InfoPlist = InputArgs.hasArg(OTOOL_P);
+ Relocations = InputArgs.hasArg(OTOOL_r);
+ if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
+ auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
+ FilterSections.push_back(Filter);
+ }
+ if (InputArgs.hasArg(OTOOL_t))
+ FilterSections.push_back("__TEXT,__text");
+ Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
+ InputArgs.hasArg(OTOOL_o);
+ SymbolicOperands = InputArgs.hasArg(OTOOL_V);
+ if (InputArgs.hasArg(OTOOL_x))
+ FilterSections.push_back(",__text");
+ LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
+
+ ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
+ DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
+
+ InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
+ if (InputFilenames.empty())
+ reportCmdLineError("no input file");
+
+ for (const Arg *A : InputArgs) {
+ const Option &O = A->getOption();
+ if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
+ reportCmdLineWarning(O.getPrefixedName() +
+ " is obsolete and not implemented");
+ }
+ }
+}
+
+static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
+ parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
+ AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
+ ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
+ ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
+ Demangle = InputArgs.hasArg(OBJDUMP_demangle);
+ Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
+ DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
+ SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
+ DisassembleSymbols =
+ commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
+ DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
+ if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
+ DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
+ .Case("frames", DIDT_DebugFrame)
+ .Default(DIDT_Null);
+ if (DwarfDumpType == DIDT_Null)
+ invalidArgValue(A);
+ }
+ DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
+ FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
+ Offloading = InputArgs.hasArg(OBJDUMP_offloading);
+ FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
+ SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
+ PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
+ InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
+ MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
+ MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
+ MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
+ ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
+ LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
+ RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
+ Relocations = InputArgs.hasArg(OBJDUMP_reloc);
+ PrintImmHex =
+ InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
+ PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
+ FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
+ SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
+ ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
+ ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
+ PrintSource = InputArgs.hasArg(OBJDUMP_source);
+ parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
+ HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
+ parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
+ HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
+ SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
+ SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
+ DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
+ TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
+ UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
+ Wide = InputArgs.hasArg(OBJDUMP_wide);
+ Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
+ parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
+ if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
+ DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
+ .Case("ascii", DVASCII)
+ .Case("unicode", DVUnicode)
+ .Default(DVInvalid);
+ if (DbgVariables == DVInvalid)
+ invalidArgValue(A);
+ }
+ parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
+
+ parseMachOOptions(InputArgs);
+
+ // Parse -M (--disassembler-options) and deprecated
+ // --x86-asm-syntax={att,intel}.
+ //
+ // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
+ // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
+ // called too late. For now we have to use the internal cl::opt option.
+ const char *AsmSyntax = nullptr;
+ for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
+ OBJDUMP_x86_asm_syntax_att,
+ OBJDUMP_x86_asm_syntax_intel)) {
+ switch (A->getOption().getID()) {
+ case OBJDUMP_x86_asm_syntax_att:
+ AsmSyntax = "--x86-asm-syntax=att";
+ continue;
+ case OBJDUMP_x86_asm_syntax_intel:
+ AsmSyntax = "--x86-asm-syntax=intel";
+ continue;
+ }
+
+ SmallVector<StringRef, 2> Values;
+ llvm::SplitString(A->getValue(), Values, ",");
+ for (StringRef V : Values) {
+ if (V == "att")
+ AsmSyntax = "--x86-asm-syntax=att";
+ else if (V == "intel")
+ AsmSyntax = "--x86-asm-syntax=intel";
+ else
+ DisassemblerOptions.push_back(V.str());
+ }
+ }
+ if (AsmSyntax) {
+ const char *Argv[] = {"llvm-objdump", AsmSyntax};
+ llvm::cl::ParseCommandLineOptions(2, Argv);
+ }
+
+ // Look up any provided build IDs, then append them to the input filenames.
+ for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
+ object::BuildID BuildID = parseBuildIDArg(A);
+ std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
+ if (!Path) {
+ reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
+ A->getValue() + "'");
+ }
+ InputFilenames.push_back(std::move(*Path));
+ }
+
+ // objdump defaults to a.out if no filenames specified.
+ if (InputFilenames.empty())
+ InputFilenames.push_back("a.out");
+}
+
+int main(int argc, char **argv) {
+ using namespace llvm;
+ InitLLVM X(argc, argv);
+
+ ToolName = argv[0];
+ std::unique_ptr<CommonOptTable> T;
+ OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
+
+ StringRef Stem = sys::path::stem(ToolName);
+ auto Is = [=](StringRef Tool) {
+ // We need to recognize the following filenames:
+ //
+ // llvm-objdump -> objdump
+ // llvm-otool-10.exe -> otool
+ // powerpc64-unknown-freebsd13-objdump -> objdump
+ auto I = Stem.rfind_insensitive(Tool);
+ return I != StringRef::npos &&
+ (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
+ };
+ if (Is("otool")) {
+ T = std::make_unique<OtoolOptTable>();
+ Unknown = OTOOL_UNKNOWN;
+ HelpFlag = OTOOL_help;
+ HelpHiddenFlag = OTOOL_help_hidden;
+ VersionFlag = OTOOL_version;
+ } else {
+ T = std::make_unique<ObjdumpOptTable>();
+ Unknown = OBJDUMP_UNKNOWN;
+ HelpFlag = OBJDUMP_help;
+ HelpHiddenFlag = OBJDUMP_help_hidden;
+ VersionFlag = OBJDUMP_version;
+ }
+
+ BumpPtrAllocator A;
+ StringSaver Saver(A);
+ opt::InputArgList InputArgs =
+ T->parseArgs(argc, argv, Unknown, Saver,
+ [&](StringRef Msg) { reportCmdLineError(Msg); });
+
+ if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
+ T->printHelp(ToolName);
+ return 0;
+ }
+ if (InputArgs.hasArg(HelpHiddenFlag)) {
+ T->printHelp(ToolName, /*ShowHidden=*/true);
+ return 0;
+ }
+
+ // Initialize targets and assembly printers/parsers.
+ InitializeAllTargetInfos();
+ InitializeAllTargetMCs();
+ InitializeAllDisassemblers();
+
+ if (InputArgs.hasArg(VersionFlag)) {
+ cl::PrintVersionMessage();
+ if (!Is("otool")) {
+ outs() << '\n';
+ TargetRegistry::printRegisteredTargetsForVersion(outs());
+ }
+ return 0;
+ }
+
+ // Initialize debuginfod.
+ const bool ShouldUseDebuginfodByDefault =
+ InputArgs.hasArg(OBJDUMP_build_id) ||
+ (HTTPClient::isAvailable() &&
+ !ExitOnErr(getDefaultDebuginfodUrls()).empty());
+ std::vector<std::string> DebugFileDirectories =
+ InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
+ if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
+ ShouldUseDebuginfodByDefault)) {
+ HTTPClient::initialize();
+ BIDFetcher =
+ std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
+ } else {
+ BIDFetcher =
+ std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
+ }
+
+ if (Is("otool"))
+ parseOtoolOptions(InputArgs);
+ else
+ parseObjdumpOptions(InputArgs);
+
+ if (StartAddress >= StopAddress)
+ reportCmdLineError("start address should be less than stop address");
+
+ // Removes trailing separators from prefix.
+ while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
+ Prefix.pop_back();
+
+ if (AllHeaders)
+ ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
+ SectionHeaders = SymbolTable = true;
+
+ if (DisassembleAll || PrintSource || PrintLines ||
+ !DisassembleSymbols.empty())
+ Disassemble = true;
+
+ if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
+ !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
+ !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
+ !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
+ !(MachOOpt &&
+ (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
+ DylibsUsed || ExportsTrie || FirstPrivateHeader ||
+ FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
+ InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
+ Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
+ T->printHelp(ToolName);
+ return 2;
+ }
+
+ DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
+
+ llvm::for_each(InputFilenames, dumpInput);
+
+ warnOnNoMatchForSections();
+
+ return EXIT_SUCCESS;
+}