diff options
Diffstat (limited to 'contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp | 3257 |
1 files changed, 3257 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp b/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp new file mode 100644 index 000000000000..930b132533cd --- /dev/null +++ b/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp @@ -0,0 +1,3257 @@ +//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This program is a utility that works like binutils "objdump", that is, it +// dumps out a plethora of information about an object file depending on the +// flags. +// +// The flags and output of this program should be near identical to those of +// binutils objdump. +// +//===----------------------------------------------------------------------===// + +#include "llvm-objdump.h" +#include "COFFDump.h" +#include "ELFDump.h" +#include "MachODump.h" +#include "ObjdumpOptID.h" +#include "OffloadDump.h" +#include "SourcePrinter.h" +#include "WasmDump.h" +#include "XCOFFDump.h" +#include "llvm/ADT/IndexedMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/DebugInfo/DWARF/DWARFContext.h" +#include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" +#include "llvm/DebugInfo/Symbolize/Symbolize.h" +#include "llvm/Debuginfod/BuildIDFetcher.h" +#include "llvm/Debuginfod/Debuginfod.h" +#include "llvm/Debuginfod/HTTPClient.h" +#include "llvm/Demangle/Demangle.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDisassembler/MCDisassembler.h" +#include "llvm/MC/MCDisassembler/MCRelocationInfo.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstPrinter.h" +#include "llvm/MC/MCInstrAnalysis.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/MC/MCObjectFileInfo.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/MC/MCTargetOptions.h" +#include "llvm/MC/TargetRegistry.h" +#include "llvm/Object/Archive.h" +#include "llvm/Object/BuildID.h" +#include "llvm/Object/COFF.h" +#include "llvm/Object/COFFImportFile.h" +#include "llvm/Object/ELFObjectFile.h" +#include "llvm/Object/ELFTypes.h" +#include "llvm/Object/FaultMapParser.h" +#include "llvm/Object/MachO.h" +#include "llvm/Object/MachOUniversal.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Object/OffloadBinary.h" +#include "llvm/Object/Wasm.h" +#include "llvm/Option/Arg.h" +#include "llvm/Option/ArgList.h" +#include "llvm/Option/Option.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Errc.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/FormatVariadic.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/Host.h" +#include "llvm/Support/InitLLVM.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/StringSaver.h" +#include "llvm/Support/TargetSelect.h" +#include "llvm/Support/WithColor.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cctype> +#include <cstring> +#include <optional> +#include <system_error> +#include <unordered_map> +#include <utility> + +using namespace llvm; +using namespace llvm::object; +using namespace llvm::objdump; +using namespace llvm::opt; + +namespace { + +class CommonOptTable : public opt::GenericOptTable { +public: + CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, + const char *Description) + : opt::GenericOptTable(OptionInfos), Usage(Usage), + Description(Description) { + setGroupedShortOptions(true); + } + + void printHelp(StringRef Argv0, bool ShowHidden = false) const { + Argv0 = sys::path::filename(Argv0); + opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), + Description, ShowHidden, ShowHidden); + // TODO Replace this with OptTable API once it adds extrahelp support. + outs() << "\nPass @FILE as argument to read options from FILE.\n"; + } + +private: + const char *Usage; + const char *Description; +}; + +// ObjdumpOptID is in ObjdumpOptID.h +namespace objdump_opt { +#define PREFIX(NAME, VALUE) \ + static constexpr StringLiteral NAME##_init[] = VALUE; \ + static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ + std::size(NAME##_init) - 1); +#include "ObjdumpOpts.inc" +#undef PREFIX + +static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { +#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ + HELPTEXT, METAVAR, VALUES) \ + {PREFIX, NAME, HELPTEXT, \ + METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ + PARAM, FLAGS, OBJDUMP_##GROUP, \ + OBJDUMP_##ALIAS, ALIASARGS, VALUES}, +#include "ObjdumpOpts.inc" +#undef OPTION +}; +} // namespace objdump_opt + +class ObjdumpOptTable : public CommonOptTable { +public: + ObjdumpOptTable() + : CommonOptTable(objdump_opt::ObjdumpInfoTable, + " [options] <input object files>", + "llvm object file dumper") {} +}; + +enum OtoolOptID { + OTOOL_INVALID = 0, // This is not an option ID. +#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ + HELPTEXT, METAVAR, VALUES) \ + OTOOL_##ID, +#include "OtoolOpts.inc" +#undef OPTION +}; + +namespace otool { +#define PREFIX(NAME, VALUE) \ + static constexpr StringLiteral NAME##_init[] = VALUE; \ + static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ + std::size(NAME##_init) - 1); +#include "OtoolOpts.inc" +#undef PREFIX + +static constexpr opt::OptTable::Info OtoolInfoTable[] = { +#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ + HELPTEXT, METAVAR, VALUES) \ + {PREFIX, NAME, HELPTEXT, \ + METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ + PARAM, FLAGS, OTOOL_##GROUP, \ + OTOOL_##ALIAS, ALIASARGS, VALUES}, +#include "OtoolOpts.inc" +#undef OPTION +}; +} // namespace otool + +class OtoolOptTable : public CommonOptTable { +public: + OtoolOptTable() + : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", + "Mach-O object file displaying tool") {} +}; + +} // namespace + +#define DEBUG_TYPE "objdump" + +static uint64_t AdjustVMA; +static bool AllHeaders; +static std::string ArchName; +bool objdump::ArchiveHeaders; +bool objdump::Demangle; +bool objdump::Disassemble; +bool objdump::DisassembleAll; +bool objdump::SymbolDescription; +static std::vector<std::string> DisassembleSymbols; +static bool DisassembleZeroes; +static std::vector<std::string> DisassemblerOptions; +DIDumpType objdump::DwarfDumpType; +static bool DynamicRelocations; +static bool FaultMapSection; +static bool FileHeaders; +bool objdump::SectionContents; +static std::vector<std::string> InputFilenames; +bool objdump::PrintLines; +static bool MachOOpt; +std::string objdump::MCPU; +std::vector<std::string> objdump::MAttrs; +bool objdump::ShowRawInsn; +bool objdump::LeadingAddr; +static bool Offloading; +static bool RawClangAST; +bool objdump::Relocations; +bool objdump::PrintImmHex; +bool objdump::PrivateHeaders; +std::vector<std::string> objdump::FilterSections; +bool objdump::SectionHeaders; +static bool ShowAllSymbols; +static bool ShowLMA; +bool objdump::PrintSource; + +static uint64_t StartAddress; +static bool HasStartAddressFlag; +static uint64_t StopAddress = UINT64_MAX; +static bool HasStopAddressFlag; + +bool objdump::SymbolTable; +static bool SymbolizeOperands; +static bool DynamicSymbolTable; +std::string objdump::TripleName; +bool objdump::UnwindInfo; +static bool Wide; +std::string objdump::Prefix; +uint32_t objdump::PrefixStrip; + +DebugVarsFormat objdump::DbgVariables = DVDisabled; + +int objdump::DbgIndent = 52; + +static StringSet<> DisasmSymbolSet; +StringSet<> objdump::FoundSectionSet; +static StringRef ToolName; + +std::unique_ptr<BuildIDFetcher> BIDFetcher; +ExitOnError ExitOnErr; + +namespace { +struct FilterResult { + // True if the section should not be skipped. + bool Keep; + + // True if the index counter should be incremented, even if the section should + // be skipped. For example, sections may be skipped if they are not included + // in the --section flag, but we still want those to count toward the section + // count. + bool IncrementIndex; +}; +} // namespace + +static FilterResult checkSectionFilter(object::SectionRef S) { + if (FilterSections.empty()) + return {/*Keep=*/true, /*IncrementIndex=*/true}; + + Expected<StringRef> SecNameOrErr = S.getName(); + if (!SecNameOrErr) { + consumeError(SecNameOrErr.takeError()); + return {/*Keep=*/false, /*IncrementIndex=*/false}; + } + StringRef SecName = *SecNameOrErr; + + // StringSet does not allow empty key so avoid adding sections with + // no name (such as the section with index 0) here. + if (!SecName.empty()) + FoundSectionSet.insert(SecName); + + // Only show the section if it's in the FilterSections list, but always + // increment so the indexing is stable. + return {/*Keep=*/is_contained(FilterSections, SecName), + /*IncrementIndex=*/true}; +} + +SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, + uint64_t *Idx) { + // Start at UINT64_MAX so that the first index returned after an increment is + // zero (after the unsigned wrap). + if (Idx) + *Idx = UINT64_MAX; + return SectionFilter( + [Idx](object::SectionRef S) { + FilterResult Result = checkSectionFilter(S); + if (Idx != nullptr && Result.IncrementIndex) + *Idx += 1; + return Result.Keep; + }, + O); +} + +std::string objdump::getFileNameForError(const object::Archive::Child &C, + unsigned Index) { + Expected<StringRef> NameOrErr = C.getName(); + if (NameOrErr) + return std::string(NameOrErr.get()); + // If we have an error getting the name then we print the index of the archive + // member. Since we are already in an error state, we just ignore this error. + consumeError(NameOrErr.takeError()); + return "<file index: " + std::to_string(Index) + ">"; +} + +void objdump::reportWarning(const Twine &Message, StringRef File) { + // Output order between errs() and outs() matters especially for archive + // files where the output is per member object. + outs().flush(); + WithColor::warning(errs(), ToolName) + << "'" << File << "': " << Message << "\n"; +} + +[[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { + outs().flush(); + WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; + exit(1); +} + +[[noreturn]] void objdump::reportError(Error E, StringRef FileName, + StringRef ArchiveName, + StringRef ArchitectureName) { + assert(E); + outs().flush(); + WithColor::error(errs(), ToolName); + if (ArchiveName != "") + errs() << ArchiveName << "(" << FileName << ")"; + else + errs() << "'" << FileName << "'"; + if (!ArchitectureName.empty()) + errs() << " (for architecture " << ArchitectureName << ")"; + errs() << ": "; + logAllUnhandledErrors(std::move(E), errs()); + exit(1); +} + +static void reportCmdLineWarning(const Twine &Message) { + WithColor::warning(errs(), ToolName) << Message << "\n"; +} + +[[noreturn]] static void reportCmdLineError(const Twine &Message) { + WithColor::error(errs(), ToolName) << Message << "\n"; + exit(1); +} + +static void warnOnNoMatchForSections() { + SetVector<StringRef> MissingSections; + for (StringRef S : FilterSections) { + if (FoundSectionSet.count(S)) + return; + // User may specify a unnamed section. Don't warn for it. + if (!S.empty()) + MissingSections.insert(S); + } + + // Warn only if no section in FilterSections is matched. + for (StringRef S : MissingSections) + reportCmdLineWarning("section '" + S + + "' mentioned in a -j/--section option, but not " + "found in any input file"); +} + +static const Target *getTarget(const ObjectFile *Obj) { + // Figure out the target triple. + Triple TheTriple("unknown-unknown-unknown"); + if (TripleName.empty()) { + TheTriple = Obj->makeTriple(); + } else { + TheTriple.setTriple(Triple::normalize(TripleName)); + auto Arch = Obj->getArch(); + if (Arch == Triple::arm || Arch == Triple::armeb) + Obj->setARMSubArch(TheTriple); + } + + // Get the target specific parser. + std::string Error; + const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, + Error); + if (!TheTarget) + reportError(Obj->getFileName(), "can't find target: " + Error); + + // Update the triple name and return the found target. + TripleName = TheTriple.getTriple(); + return TheTarget; +} + +bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { + return A.getOffset() < B.getOffset(); +} + +static Error getRelocationValueString(const RelocationRef &Rel, + SmallVectorImpl<char> &Result) { + const ObjectFile *Obj = Rel.getObject(); + if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) + return getELFRelocationValueString(ELF, Rel, Result); + if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) + return getCOFFRelocationValueString(COFF, Rel, Result); + if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) + return getWasmRelocationValueString(Wasm, Rel, Result); + if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) + return getMachORelocationValueString(MachO, Rel, Result); + if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) + return getXCOFFRelocationValueString(*XCOFF, Rel, Result); + llvm_unreachable("unknown object file format"); +} + +/// Indicates whether this relocation should hidden when listing +/// relocations, usually because it is the trailing part of a multipart +/// relocation that will be printed as part of the leading relocation. +static bool getHidden(RelocationRef RelRef) { + auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); + if (!MachO) + return false; + + unsigned Arch = MachO->getArch(); + DataRefImpl Rel = RelRef.getRawDataRefImpl(); + uint64_t Type = MachO->getRelocationType(Rel); + + // On arches that use the generic relocations, GENERIC_RELOC_PAIR + // is always hidden. + if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) + return Type == MachO::GENERIC_RELOC_PAIR; + + if (Arch == Triple::x86_64) { + // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows + // an X86_64_RELOC_SUBTRACTOR. + if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { + DataRefImpl RelPrev = Rel; + RelPrev.d.a--; + uint64_t PrevType = MachO->getRelocationType(RelPrev); + if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) + return true; + } + } + + return false; +} + +namespace { + +/// Get the column at which we want to start printing the instruction +/// disassembly, taking into account anything which appears to the left of it. +unsigned getInstStartColumn(const MCSubtargetInfo &STI) { + return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; +} + +static bool isAArch64Elf(const ObjectFile &Obj) { + const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); + return Elf && Elf->getEMachine() == ELF::EM_AARCH64; +} + +static bool isArmElf(const ObjectFile &Obj) { + const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); + return Elf && Elf->getEMachine() == ELF::EM_ARM; +} + +static bool isCSKYElf(const ObjectFile &Obj) { + const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); + return Elf && Elf->getEMachine() == ELF::EM_CSKY; +} + +static bool hasMappingSymbols(const ObjectFile &Obj) { + return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; +} + +static bool isMappingSymbol(const SymbolInfoTy &Sym) { + return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") || + Sym.Name.startswith("$a") || Sym.Name.startswith("$t"); +} + +static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, + const RelocationRef &Rel, uint64_t Address, + bool Is64Bits) { + StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; + SmallString<16> Name; + SmallString<32> Val; + Rel.getTypeName(Name); + if (Error E = getRelocationValueString(Rel, Val)) + reportError(std::move(E), FileName); + OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); + if (LeadingAddr) + OS << format(Fmt.data(), Address); + OS << Name << "\t" << Val; +} + +static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, + raw_ostream &OS) { + // The output of printInst starts with a tab. Print some spaces so that + // the tab has 1 column and advances to the target tab stop. + unsigned TabStop = getInstStartColumn(STI); + unsigned Column = OS.tell() - Start; + OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); +} + +class PrettyPrinter { +public: + virtual ~PrettyPrinter() = default; + virtual void + printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, + object::SectionedAddress Address, formatted_raw_ostream &OS, + StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, + StringRef ObjectFilename, std::vector<RelocationRef> *Rels, + LiveVariablePrinter &LVP) { + if (SP && (PrintSource || PrintLines)) + SP->printSourceLine(OS, Address, ObjectFilename, LVP); + LVP.printBetweenInsts(OS, false); + + size_t Start = OS.tell(); + if (LeadingAddr) + OS << format("%8" PRIx64 ":", Address.Address); + if (ShowRawInsn) { + OS << ' '; + dumpBytes(Bytes, OS); + } + + AlignToInstStartColumn(Start, STI, OS); + + if (MI) { + // See MCInstPrinter::printInst. On targets where a PC relative immediate + // is relative to the next instruction and the length of a MCInst is + // difficult to measure (x86), this is the address of the next + // instruction. + uint64_t Addr = + Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); + IP.printInst(MI, Addr, "", STI, OS); + } else + OS << "\t<unknown>"; + } +}; +PrettyPrinter PrettyPrinterInst; + +class HexagonPrettyPrinter : public PrettyPrinter { +public: + void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, + formatted_raw_ostream &OS) { + uint32_t opcode = + (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; + if (LeadingAddr) + OS << format("%8" PRIx64 ":", Address); + if (ShowRawInsn) { + OS << "\t"; + dumpBytes(Bytes.slice(0, 4), OS); + OS << format("\t%08" PRIx32, opcode); + } + } + void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, + object::SectionedAddress Address, formatted_raw_ostream &OS, + StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, + StringRef ObjectFilename, std::vector<RelocationRef> *Rels, + LiveVariablePrinter &LVP) override { + if (SP && (PrintSource || PrintLines)) + SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); + if (!MI) { + printLead(Bytes, Address.Address, OS); + OS << " <unknown>"; + return; + } + std::string Buffer; + { + raw_string_ostream TempStream(Buffer); + IP.printInst(MI, Address.Address, "", STI, TempStream); + } + StringRef Contents(Buffer); + // Split off bundle attributes + auto PacketBundle = Contents.rsplit('\n'); + // Split off first instruction from the rest + auto HeadTail = PacketBundle.first.split('\n'); + auto Preamble = " { "; + auto Separator = ""; + + // Hexagon's packets require relocations to be inline rather than + // clustered at the end of the packet. + std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); + std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); + auto PrintReloc = [&]() -> void { + while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { + if (RelCur->getOffset() == Address.Address) { + printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); + return; + } + ++RelCur; + } + }; + + while (!HeadTail.first.empty()) { + OS << Separator; + Separator = "\n"; + if (SP && (PrintSource || PrintLines)) + SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); + printLead(Bytes, Address.Address, OS); + OS << Preamble; + Preamble = " "; + StringRef Inst; + auto Duplex = HeadTail.first.split('\v'); + if (!Duplex.second.empty()) { + OS << Duplex.first; + OS << "; "; + Inst = Duplex.second; + } + else + Inst = HeadTail.first; + OS << Inst; + HeadTail = HeadTail.second.split('\n'); + if (HeadTail.first.empty()) + OS << " } " << PacketBundle.second; + PrintReloc(); + Bytes = Bytes.slice(4); + Address.Address += 4; + } + } +}; +HexagonPrettyPrinter HexagonPrettyPrinterInst; + +class AMDGCNPrettyPrinter : public PrettyPrinter { +public: + void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, + object::SectionedAddress Address, formatted_raw_ostream &OS, + StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, + StringRef ObjectFilename, std::vector<RelocationRef> *Rels, + LiveVariablePrinter &LVP) override { + if (SP && (PrintSource || PrintLines)) + SP->printSourceLine(OS, Address, ObjectFilename, LVP); + + if (MI) { + SmallString<40> InstStr; + raw_svector_ostream IS(InstStr); + + IP.printInst(MI, Address.Address, "", STI, IS); + + OS << left_justify(IS.str(), 60); + } else { + // an unrecognized encoding - this is probably data so represent it + // using the .long directive, or .byte directive if fewer than 4 bytes + // remaining + if (Bytes.size() >= 4) { + OS << format("\t.long 0x%08" PRIx32 " ", + support::endian::read32<support::little>(Bytes.data())); + OS.indent(42); + } else { + OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); + for (unsigned int i = 1; i < Bytes.size(); i++) + OS << format(", 0x%02" PRIx8, Bytes[i]); + OS.indent(55 - (6 * Bytes.size())); + } + } + + OS << format("// %012" PRIX64 ":", Address.Address); + if (Bytes.size() >= 4) { + // D should be casted to uint32_t here as it is passed by format to + // snprintf as vararg. + for (uint32_t D : + ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), + Bytes.size() / 4)) + OS << format(" %08" PRIX32, D); + } else { + for (unsigned char B : Bytes) + OS << format(" %02" PRIX8, B); + } + + if (!Annot.empty()) + OS << " // " << Annot; + } +}; +AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; + +class BPFPrettyPrinter : public PrettyPrinter { +public: + void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, + object::SectionedAddress Address, formatted_raw_ostream &OS, + StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, + StringRef ObjectFilename, std::vector<RelocationRef> *Rels, + LiveVariablePrinter &LVP) override { + if (SP && (PrintSource || PrintLines)) + SP->printSourceLine(OS, Address, ObjectFilename, LVP); + if (LeadingAddr) + OS << format("%8" PRId64 ":", Address.Address / 8); + if (ShowRawInsn) { + OS << "\t"; + dumpBytes(Bytes, OS); + } + if (MI) + IP.printInst(MI, Address.Address, "", STI, OS); + else + OS << "\t<unknown>"; + } +}; +BPFPrettyPrinter BPFPrettyPrinterInst; + +class ARMPrettyPrinter : public PrettyPrinter { +public: + void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, + object::SectionedAddress Address, formatted_raw_ostream &OS, + StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, + StringRef ObjectFilename, std::vector<RelocationRef> *Rels, + LiveVariablePrinter &LVP) override { + if (SP && (PrintSource || PrintLines)) + SP->printSourceLine(OS, Address, ObjectFilename, LVP); + LVP.printBetweenInsts(OS, false); + + size_t Start = OS.tell(); + if (LeadingAddr) + OS << format("%8" PRIx64 ":", Address.Address); + if (ShowRawInsn) { + size_t Pos = 0, End = Bytes.size(); + if (STI.checkFeatures("+thumb-mode")) { + for (; Pos + 2 <= End; Pos += 2) + OS << ' ' + << format_hex_no_prefix( + llvm::support::endian::read<uint16_t>( + Bytes.data() + Pos, InstructionEndianness), + 4); + } else { + for (; Pos + 4 <= End; Pos += 4) + OS << ' ' + << format_hex_no_prefix( + llvm::support::endian::read<uint32_t>( + Bytes.data() + Pos, InstructionEndianness), + 8); + } + if (Pos < End) { + OS << ' '; + dumpBytes(Bytes.slice(Pos), OS); + } + } + + AlignToInstStartColumn(Start, STI, OS); + + if (MI) { + IP.printInst(MI, Address.Address, "", STI, OS); + } else + OS << "\t<unknown>"; + } + + void setInstructionEndianness(llvm::support::endianness Endianness) { + InstructionEndianness = Endianness; + } + +private: + llvm::support::endianness InstructionEndianness = llvm::support::little; +}; +ARMPrettyPrinter ARMPrettyPrinterInst; + +class AArch64PrettyPrinter : public PrettyPrinter { +public: + void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, + object::SectionedAddress Address, formatted_raw_ostream &OS, + StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, + StringRef ObjectFilename, std::vector<RelocationRef> *Rels, + LiveVariablePrinter &LVP) override { + if (SP && (PrintSource || PrintLines)) + SP->printSourceLine(OS, Address, ObjectFilename, LVP); + LVP.printBetweenInsts(OS, false); + + size_t Start = OS.tell(); + if (LeadingAddr) + OS << format("%8" PRIx64 ":", Address.Address); + if (ShowRawInsn) { + size_t Pos = 0, End = Bytes.size(); + for (; Pos + 4 <= End; Pos += 4) + OS << ' ' + << format_hex_no_prefix( + llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, + llvm::support::little), + 8); + if (Pos < End) { + OS << ' '; + dumpBytes(Bytes.slice(Pos), OS); + } + } + + AlignToInstStartColumn(Start, STI, OS); + + if (MI) { + IP.printInst(MI, Address.Address, "", STI, OS); + } else + OS << "\t<unknown>"; + } +}; +AArch64PrettyPrinter AArch64PrettyPrinterInst; + +PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { + switch(Triple.getArch()) { + default: + return PrettyPrinterInst; + case Triple::hexagon: + return HexagonPrettyPrinterInst; + case Triple::amdgcn: + return AMDGCNPrettyPrinterInst; + case Triple::bpfel: + case Triple::bpfeb: + return BPFPrettyPrinterInst; + case Triple::arm: + case Triple::armeb: + case Triple::thumb: + case Triple::thumbeb: + return ARMPrettyPrinterInst; + case Triple::aarch64: + case Triple::aarch64_be: + case Triple::aarch64_32: + return AArch64PrettyPrinterInst; + } +} +} + +static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { + assert(Obj.isELF()); + if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) + return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), + Obj.getFileName()) + ->getType(); + if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) + return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), + Obj.getFileName()) + ->getType(); + if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) + return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), + Obj.getFileName()) + ->getType(); + if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) + return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), + Obj.getFileName()) + ->getType(); + llvm_unreachable("Unsupported binary format"); +} + +template <class ELFT> +static void +addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, + std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { + for (auto Symbol : Obj.getDynamicSymbolIterators()) { + uint8_t SymbolType = Symbol.getELFType(); + if (SymbolType == ELF::STT_SECTION) + continue; + + uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); + // ELFSymbolRef::getAddress() returns size instead of value for common + // symbols which is not desirable for disassembly output. Overriding. + if (SymbolType == ELF::STT_COMMON) + Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), + Obj.getFileName()) + ->st_value; + + StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); + if (Name.empty()) + continue; + + section_iterator SecI = + unwrapOrError(Symbol.getSection(), Obj.getFileName()); + if (SecI == Obj.section_end()) + continue; + + AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); + } +} + +static void +addDynamicElfSymbols(const ELFObjectFileBase &Obj, + std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { + if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) + addDynamicElfSymbols(*Elf32LEObj, AllSymbols); + else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) + addDynamicElfSymbols(*Elf64LEObj, AllSymbols); + else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) + addDynamicElfSymbols(*Elf32BEObj, AllSymbols); + else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) + addDynamicElfSymbols(*Elf64BEObj, AllSymbols); + else + llvm_unreachable("Unsupported binary format"); +} + +static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { + for (auto SecI : Obj.sections()) { + const WasmSection &Section = Obj.getWasmSection(SecI); + if (Section.Type == wasm::WASM_SEC_CODE) + return SecI; + } + return std::nullopt; +} + +static void +addMissingWasmCodeSymbols(const WasmObjectFile &Obj, + std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { + std::optional<SectionRef> Section = getWasmCodeSection(Obj); + if (!Section) + return; + SectionSymbolsTy &Symbols = AllSymbols[*Section]; + + std::set<uint64_t> SymbolAddresses; + for (const auto &Sym : Symbols) + SymbolAddresses.insert(Sym.Addr); + + for (const wasm::WasmFunction &Function : Obj.functions()) { + uint64_t Address = Function.CodeSectionOffset; + // Only add fallback symbols for functions not already present in the symbol + // table. + if (SymbolAddresses.count(Address)) + continue; + // This function has no symbol, so it should have no SymbolName. + assert(Function.SymbolName.empty()); + // We use DebugName for the name, though it may be empty if there is no + // "name" custom section, or that section is missing a name for this + // function. + StringRef Name = Function.DebugName; + Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); + } +} + +static void addPltEntries(const ObjectFile &Obj, + std::map<SectionRef, SectionSymbolsTy> &AllSymbols, + StringSaver &Saver) { + std::optional<SectionRef> Plt; + for (const SectionRef &Section : Obj.sections()) { + Expected<StringRef> SecNameOrErr = Section.getName(); + if (!SecNameOrErr) { + consumeError(SecNameOrErr.takeError()); + continue; + } + if (*SecNameOrErr == ".plt") + Plt = Section; + } + if (!Plt) + return; + if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) { + for (auto PltEntry : ElfObj->getPltAddresses()) { + if (PltEntry.first) { + SymbolRef Symbol(*PltEntry.first, ElfObj); + uint8_t SymbolType = getElfSymbolType(Obj, Symbol); + if (Expected<StringRef> NameOrErr = Symbol.getName()) { + if (!NameOrErr->empty()) + AllSymbols[*Plt].emplace_back( + PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), + SymbolType); + continue; + } else { + // The warning has been reported in disassembleObject(). + consumeError(NameOrErr.takeError()); + } + } + reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + + " references an invalid symbol", + Obj.getFileName()); + } + } +} + +// Normally the disassembly output will skip blocks of zeroes. This function +// returns the number of zero bytes that can be skipped when dumping the +// disassembly of the instructions in Buf. +static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { + // Find the number of leading zeroes. + size_t N = 0; + while (N < Buf.size() && !Buf[N]) + ++N; + + // We may want to skip blocks of zero bytes, but unless we see + // at least 8 of them in a row. + if (N < 8) + return 0; + + // We skip zeroes in multiples of 4 because do not want to truncate an + // instruction if it starts with a zero byte. + return N & ~0x3; +} + +// Returns a map from sections to their relocations. +static std::map<SectionRef, std::vector<RelocationRef>> +getRelocsMap(object::ObjectFile const &Obj) { + std::map<SectionRef, std::vector<RelocationRef>> Ret; + uint64_t I = (uint64_t)-1; + for (SectionRef Sec : Obj.sections()) { + ++I; + Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); + if (!RelocatedOrErr) + reportError(Obj.getFileName(), + "section (" + Twine(I) + + "): failed to get a relocated section: " + + toString(RelocatedOrErr.takeError())); + + section_iterator Relocated = *RelocatedOrErr; + if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) + continue; + std::vector<RelocationRef> &V = Ret[*Relocated]; + append_range(V, Sec.relocations()); + // Sort relocations by address. + llvm::stable_sort(V, isRelocAddressLess); + } + return Ret; +} + +// Used for --adjust-vma to check if address should be adjusted by the +// specified value for a given section. +// For ELF we do not adjust non-allocatable sections like debug ones, +// because they are not loadable. +// TODO: implement for other file formats. +static bool shouldAdjustVA(const SectionRef &Section) { + const ObjectFile *Obj = Section.getObject(); + if (Obj->isELF()) + return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; + return false; +} + + +typedef std::pair<uint64_t, char> MappingSymbolPair; +static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, + uint64_t Address) { + auto It = + partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { + return Val.first <= Address; + }); + // Return zero for any address before the first mapping symbol; this means + // we should use the default disassembly mode, depending on the target. + if (It == MappingSymbols.begin()) + return '\x00'; + return (It - 1)->second; +} + +static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, + uint64_t End, const ObjectFile &Obj, + ArrayRef<uint8_t> Bytes, + ArrayRef<MappingSymbolPair> MappingSymbols, + const MCSubtargetInfo &STI, raw_ostream &OS) { + support::endianness Endian = + Obj.isLittleEndian() ? support::little : support::big; + size_t Start = OS.tell(); + OS << format("%8" PRIx64 ": ", SectionAddr + Index); + if (Index + 4 <= End) { + dumpBytes(Bytes.slice(Index, 4), OS); + AlignToInstStartColumn(Start, STI, OS); + OS << "\t.word\t" + << format_hex(support::endian::read32(Bytes.data() + Index, Endian), + 10); + return 4; + } + if (Index + 2 <= End) { + dumpBytes(Bytes.slice(Index, 2), OS); + AlignToInstStartColumn(Start, STI, OS); + OS << "\t.short\t" + << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); + return 2; + } + dumpBytes(Bytes.slice(Index, 1), OS); + AlignToInstStartColumn(Start, STI, OS); + OS << "\t.byte\t" << format_hex(Bytes[Index], 4); + return 1; +} + +static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, + ArrayRef<uint8_t> Bytes) { + // print out data up to 8 bytes at a time in hex and ascii + uint8_t AsciiData[9] = {'\0'}; + uint8_t Byte; + int NumBytes = 0; + + for (; Index < End; ++Index) { + if (NumBytes == 0) + outs() << format("%8" PRIx64 ":", SectionAddr + Index); + Byte = Bytes.slice(Index)[0]; + outs() << format(" %02x", Byte); + AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; + + uint8_t IndentOffset = 0; + NumBytes++; + if (Index == End - 1 || NumBytes > 8) { + // Indent the space for less than 8 bytes data. + // 2 spaces for byte and one for space between bytes + IndentOffset = 3 * (8 - NumBytes); + for (int Excess = NumBytes; Excess < 8; Excess++) + AsciiData[Excess] = '\0'; + NumBytes = 8; + } + if (NumBytes == 8) { + AsciiData[8] = '\0'; + outs() << std::string(IndentOffset, ' ') << " "; + outs() << reinterpret_cast<char *>(AsciiData); + outs() << '\n'; + NumBytes = 0; + } + } +} + +SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, + const SymbolRef &Symbol) { + const StringRef FileName = Obj.getFileName(); + const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); + const StringRef Name = unwrapOrError(Symbol.getName(), FileName); + + if (Obj.isXCOFF() && SymbolDescription) { + const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); + DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); + + const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); + std::optional<XCOFF::StorageMappingClass> Smc = + getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); + return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, + isLabel(XCOFFObj, Symbol)); + } else if (Obj.isXCOFF()) { + const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); + return SymbolInfoTy(Addr, Name, SymType, true); + } else + return SymbolInfoTy(Addr, Name, + Obj.isELF() ? getElfSymbolType(Obj, Symbol) + : (uint8_t)ELF::STT_NOTYPE); +} + +static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, + const uint64_t Addr, StringRef &Name, + uint8_t Type) { + if (Obj.isXCOFF() && SymbolDescription) + return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false); + else + return SymbolInfoTy(Addr, Name, Type); +} + +static void +collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, + uint64_t SectionAddr, uint64_t Start, uint64_t End, + std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { + if (AddrToBBAddrMap.empty()) + return; + Labels.clear(); + uint64_t StartAddress = SectionAddr + Start; + uint64_t EndAddress = SectionAddr + End; + auto Iter = AddrToBBAddrMap.find(StartAddress); + if (Iter == AddrToBBAddrMap.end()) + return; + for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) { + uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr; + if (BBAddress >= EndAddress) + continue; + Labels[BBAddress].push_back(("BB" + Twine(I)).str()); + } +} + +static void collectLocalBranchTargets( + ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, + MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, + uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { + // So far only supports PowerPC and X86. + if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) + return; + + Labels.clear(); + unsigned LabelCount = 0; + Start += SectionAddr; + End += SectionAddr; + uint64_t Index = Start; + while (Index < End) { + // Disassemble a real instruction and record function-local branch labels. + MCInst Inst; + uint64_t Size; + ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); + bool Disassembled = + DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); + if (Size == 0) + Size = std::min<uint64_t>(ThisBytes.size(), + DisAsm->suggestBytesToSkip(ThisBytes, Index)); + + if (Disassembled && MIA) { + uint64_t Target; + bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); + // On PowerPC, if the address of a branch is the same as the target, it + // means that it's a function call. Do not mark the label for this case. + if (TargetKnown && (Target >= Start && Target < End) && + !Labels.count(Target) && + !(STI->getTargetTriple().isPPC() && Target == Index)) + Labels[Target] = ("L" + Twine(LabelCount++)).str(); + } + Index += Size; + } +} + +// Create an MCSymbolizer for the target and add it to the MCDisassembler. +// This is currently only used on AMDGPU, and assumes the format of the +// void * argument passed to AMDGPU's createMCSymbolizer. +static void addSymbolizer( + MCContext &Ctx, const Target *Target, StringRef TripleName, + MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, + SectionSymbolsTy &Symbols, + std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { + + std::unique_ptr<MCRelocationInfo> RelInfo( + Target->createMCRelocationInfo(TripleName, Ctx)); + if (!RelInfo) + return; + std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( + TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); + MCSymbolizer *SymbolizerPtr = &*Symbolizer; + DisAsm->setSymbolizer(std::move(Symbolizer)); + + if (!SymbolizeOperands) + return; + + // Synthesize labels referenced by branch instructions by + // disassembling, discarding the output, and collecting the referenced + // addresses from the symbolizer. + for (size_t Index = 0; Index != Bytes.size();) { + MCInst Inst; + uint64_t Size; + ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); + const uint64_t ThisAddr = SectionAddr + Index; + DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); + if (Size == 0) + Size = std::min<uint64_t>(ThisBytes.size(), + DisAsm->suggestBytesToSkip(ThisBytes, Index)); + Index += Size; + } + ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); + // Copy and sort to remove duplicates. + std::vector<uint64_t> LabelAddrs; + LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), + LabelAddrsRef.end()); + llvm::sort(LabelAddrs); + LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - + LabelAddrs.begin()); + // Add the labels. + for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { + auto Name = std::make_unique<std::string>(); + *Name = (Twine("L") + Twine(LabelNum)).str(); + SynthesizedLabelNames.push_back(std::move(Name)); + Symbols.push_back(SymbolInfoTy( + LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); + } + llvm::stable_sort(Symbols); + // Recreate the symbolizer with the new symbols list. + RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); + Symbolizer.reset(Target->createMCSymbolizer( + TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); + DisAsm->setSymbolizer(std::move(Symbolizer)); +} + +static StringRef getSegmentName(const MachOObjectFile *MachO, + const SectionRef &Section) { + if (MachO) { + DataRefImpl DR = Section.getRawDataRefImpl(); + StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); + return SegmentName; + } + return ""; +} + +static void emitPostInstructionInfo(formatted_raw_ostream &FOS, + const MCAsmInfo &MAI, + const MCSubtargetInfo &STI, + StringRef Comments, + LiveVariablePrinter &LVP) { + do { + if (!Comments.empty()) { + // Emit a line of comments. + StringRef Comment; + std::tie(Comment, Comments) = Comments.split('\n'); + // MAI.getCommentColumn() assumes that instructions are printed at the + // position of 8, while getInstStartColumn() returns the actual position. + unsigned CommentColumn = + MAI.getCommentColumn() - 8 + getInstStartColumn(STI); + FOS.PadToColumn(CommentColumn); + FOS << MAI.getCommentString() << ' ' << Comment; + } + LVP.printAfterInst(FOS); + FOS << '\n'; + } while (!Comments.empty()); + FOS.flush(); +} + +static void createFakeELFSections(ObjectFile &Obj) { + assert(Obj.isELF()); + if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) + Elf32LEObj->createFakeSections(); + else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) + Elf64LEObj->createFakeSections(); + else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) + Elf32BEObj->createFakeSections(); + else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) + Elf64BEObj->createFakeSections(); + else + llvm_unreachable("Unsupported binary format"); +} + +// Tries to fetch a more complete version of the given object file using its +// Build ID. Returns std::nullopt if nothing was found. +static std::optional<OwningBinary<Binary>> +fetchBinaryByBuildID(const ObjectFile &Obj) { + std::optional<object::BuildIDRef> BuildID = getBuildID(&Obj); + if (!BuildID) + return std::nullopt; + std::optional<std::string> Path = BIDFetcher->fetch(*BuildID); + if (!Path) + return std::nullopt; + Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); + if (!DebugBinary) { + reportWarning(toString(DebugBinary.takeError()), *Path); + return std::nullopt; + } + return std::move(*DebugBinary); +} + +static void disassembleObject(const Target *TheTarget, ObjectFile &Obj, + const ObjectFile &DbgObj, MCContext &Ctx, + MCDisassembler *PrimaryDisAsm, + MCDisassembler *SecondaryDisAsm, + const MCInstrAnalysis *MIA, MCInstPrinter *IP, + const MCSubtargetInfo *PrimarySTI, + const MCSubtargetInfo *SecondarySTI, + PrettyPrinter &PIP, SourcePrinter &SP, + bool InlineRelocs) { + const MCSubtargetInfo *STI = PrimarySTI; + MCDisassembler *DisAsm = PrimaryDisAsm; + bool PrimaryIsThumb = false; + if (isArmElf(Obj)) + PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); + + std::map<SectionRef, std::vector<RelocationRef>> RelocMap; + if (InlineRelocs) + RelocMap = getRelocsMap(Obj); + bool Is64Bits = Obj.getBytesInAddress() > 4; + + // Create a mapping from virtual address to symbol name. This is used to + // pretty print the symbols while disassembling. + std::map<SectionRef, SectionSymbolsTy> AllSymbols; + SectionSymbolsTy AbsoluteSymbols; + const StringRef FileName = Obj.getFileName(); + const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); + for (const SymbolRef &Symbol : Obj.symbols()) { + Expected<StringRef> NameOrErr = Symbol.getName(); + if (!NameOrErr) { + reportWarning(toString(NameOrErr.takeError()), FileName); + continue; + } + if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) + continue; + + if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) + continue; + + if (MachO) { + // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special + // symbols that support MachO header introspection. They do not bind to + // code locations and are irrelevant for disassembly. + if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) + continue; + // Don't ask a Mach-O STAB symbol for its section unless you know that + // STAB symbol's section field refers to a valid section index. Otherwise + // the symbol may error trying to load a section that does not exist. + DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); + uint8_t NType = (MachO->is64Bit() ? + MachO->getSymbol64TableEntry(SymDRI).n_type: + MachO->getSymbolTableEntry(SymDRI).n_type); + if (NType & MachO::N_STAB) + continue; + } + + section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); + if (SecI != Obj.section_end()) + AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); + else + AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); + } + + if (AllSymbols.empty() && Obj.isELF()) + addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); + + if (Obj.isWasm()) + addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); + + if (Obj.isELF() && Obj.sections().empty()) + createFakeELFSections(Obj); + + BumpPtrAllocator A; + StringSaver Saver(A); + addPltEntries(Obj, AllSymbols, Saver); + + // Create a mapping from virtual address to section. An empty section can + // cause more than one section at the same address. Sort such sections to be + // before same-addressed non-empty sections so that symbol lookups prefer the + // non-empty section. + std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; + for (SectionRef Sec : Obj.sections()) + SectionAddresses.emplace_back(Sec.getAddress(), Sec); + llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { + if (LHS.first != RHS.first) + return LHS.first < RHS.first; + return LHS.second.getSize() < RHS.second.getSize(); + }); + + // Linked executables (.exe and .dll files) typically don't include a real + // symbol table but they might contain an export table. + if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { + for (const auto &ExportEntry : COFFObj->export_directories()) { + StringRef Name; + if (Error E = ExportEntry.getSymbolName(Name)) + reportError(std::move(E), Obj.getFileName()); + if (Name.empty()) + continue; + + uint32_t RVA; + if (Error E = ExportEntry.getExportRVA(RVA)) + reportError(std::move(E), Obj.getFileName()); + + uint64_t VA = COFFObj->getImageBase() + RVA; + auto Sec = partition_point( + SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { + return O.first <= VA; + }); + if (Sec != SectionAddresses.begin()) { + --Sec; + AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); + } else + AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); + } + } + + // Sort all the symbols, this allows us to use a simple binary search to find + // Multiple symbols can have the same address. Use a stable sort to stabilize + // the output. + StringSet<> FoundDisasmSymbolSet; + for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) + llvm::stable_sort(SecSyms.second); + llvm::stable_sort(AbsoluteSymbols); + + std::unique_ptr<DWARFContext> DICtx; + LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); + + if (DbgVariables != DVDisabled) { + DICtx = DWARFContext::create(DbgObj); + for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) + LVP.addCompileUnit(CU->getUnitDIE(false)); + } + + LLVM_DEBUG(LVP.dump()); + + std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; + auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = + std::nullopt) { + AddrToBBAddrMap.clear(); + if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { + auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); + if (!BBAddrMapsOrErr) + reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); + for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) + AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, + std::move(FunctionBBAddrMap)); + } + }; + + // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a + // single mapping, since they don't have any conflicts. + if (SymbolizeOperands && !Obj.isRelocatableObject()) + ReadBBAddrMap(); + + for (const SectionRef &Section : ToolSectionFilter(Obj)) { + if (FilterSections.empty() && !DisassembleAll && + (!Section.isText() || Section.isVirtual())) + continue; + + uint64_t SectionAddr = Section.getAddress(); + uint64_t SectSize = Section.getSize(); + if (!SectSize) + continue; + + // For relocatable object files, read the LLVM_BB_ADDR_MAP section + // corresponding to this section, if present. + if (SymbolizeOperands && Obj.isRelocatableObject()) + ReadBBAddrMap(Section.getIndex()); + + // Get the list of all the symbols in this section. + SectionSymbolsTy &Symbols = AllSymbols[Section]; + std::vector<MappingSymbolPair> MappingSymbols; + if (hasMappingSymbols(Obj)) { + for (const auto &Symb : Symbols) { + uint64_t Address = Symb.Addr; + StringRef Name = Symb.Name; + if (Name.startswith("$d")) + MappingSymbols.emplace_back(Address - SectionAddr, 'd'); + if (Name.startswith("$x")) + MappingSymbols.emplace_back(Address - SectionAddr, 'x'); + if (Name.startswith("$a")) + MappingSymbols.emplace_back(Address - SectionAddr, 'a'); + if (Name.startswith("$t")) + MappingSymbols.emplace_back(Address - SectionAddr, 't'); + } + } + + llvm::sort(MappingSymbols); + + ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( + unwrapOrError(Section.getContents(), Obj.getFileName())); + + std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; + if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { + // AMDGPU disassembler uses symbolizer for printing labels + addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, + Symbols, SynthesizedLabelNames); + } + + StringRef SegmentName = getSegmentName(MachO, Section); + StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); + // If the section has no symbol at the start, just insert a dummy one. + if (Symbols.empty() || Symbols[0].Addr != 0) { + Symbols.insert(Symbols.begin(), + createDummySymbolInfo(Obj, SectionAddr, SectionName, + Section.isText() ? ELF::STT_FUNC + : ELF::STT_OBJECT)); + } + + SmallString<40> Comments; + raw_svector_ostream CommentStream(Comments); + + uint64_t VMAAdjustment = 0; + if (shouldAdjustVA(Section)) + VMAAdjustment = AdjustVMA; + + // In executable and shared objects, r_offset holds a virtual address. + // Subtract SectionAddr from the r_offset field of a relocation to get + // the section offset. + uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; + uint64_t Size; + uint64_t Index; + bool PrintedSection = false; + std::vector<RelocationRef> Rels = RelocMap[Section]; + std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); + std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); + + // Loop over each chunk of code between two points where at least + // one symbol is defined. + for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { + // Advance SI past all the symbols starting at the same address, + // and make an ArrayRef of them. + unsigned FirstSI = SI; + uint64_t Start = Symbols[SI].Addr; + ArrayRef<SymbolInfoTy> SymbolsHere; + while (SI != SE && Symbols[SI].Addr == Start) + ++SI; + SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); + + // Get the demangled names of all those symbols. We end up with a vector + // of StringRef that holds the names we're going to use, and a vector of + // std::string that stores the new strings returned by demangle(), if + // any. If we don't call demangle() then that vector can stay empty. + std::vector<StringRef> SymNamesHere; + std::vector<std::string> DemangledSymNamesHere; + if (Demangle) { + // Fetch the demangled names and store them locally. + for (const SymbolInfoTy &Symbol : SymbolsHere) + DemangledSymNamesHere.push_back(demangle(Symbol.Name.str())); + // Now we've finished modifying that vector, it's safe to make + // a vector of StringRefs pointing into it. + SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), + DemangledSymNamesHere.end()); + } else { + for (const SymbolInfoTy &Symbol : SymbolsHere) + SymNamesHere.push_back(Symbol.Name); + } + + // Distinguish ELF data from code symbols, which will be used later on to + // decide whether to 'disassemble' this chunk as a data declaration via + // dumpELFData(), or whether to treat it as code. + // + // If data _and_ code symbols are defined at the same address, the code + // takes priority, on the grounds that disassembling code is our main + // purpose here, and it would be a worse failure to _not_ interpret + // something that _was_ meaningful as code than vice versa. + // + // Any ELF symbol type that is not clearly data will be regarded as code. + // In particular, one of the uses of STT_NOTYPE is for branch targets + // inside functions, for which STT_FUNC would be inaccurate. + // + // So here, we spot whether there's any non-data symbol present at all, + // and only set the DisassembleAsData flag if there isn't. Also, we use + // this distinction to inform the decision of which symbol to print at + // the head of the section, so that if we're printing code, we print a + // code-related symbol name to go with it. + bool DisassembleAsData = false; + size_t DisplaySymIndex = SymbolsHere.size() - 1; + if (Obj.isELF() && !DisassembleAll && Section.isText()) { + DisassembleAsData = true; // unless we find a code symbol below + + for (size_t i = 0; i < SymbolsHere.size(); ++i) { + uint8_t SymTy = SymbolsHere[i].Type; + if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { + DisassembleAsData = false; + DisplaySymIndex = i; + } + } + } + + // Decide which symbol(s) from this collection we're going to print. + std::vector<bool> SymsToPrint(SymbolsHere.size(), false); + // If the user has given the --disassemble-symbols option, then we must + // display every symbol in that set, and no others. + if (!DisasmSymbolSet.empty()) { + bool FoundAny = false; + for (size_t i = 0; i < SymbolsHere.size(); ++i) { + if (DisasmSymbolSet.count(SymNamesHere[i])) { + SymsToPrint[i] = true; + FoundAny = true; + } + } + + // And if none of the symbols here is one that the user asked for, skip + // disassembling this entire chunk of code. + if (!FoundAny) + continue; + } else { + // Otherwise, print whichever symbol at this location is last in the + // Symbols array, because that array is pre-sorted in a way intended to + // correlate with priority of which symbol to display. + SymsToPrint[DisplaySymIndex] = true; + } + + // Now that we know we're disassembling this section, override the choice + // of which symbols to display by printing _all_ of them at this address + // if the user asked for all symbols. + // + // That way, '--show-all-symbols --disassemble-symbol=foo' will print + // only the chunk of code headed by 'foo', but also show any other + // symbols defined at that address, such as aliases for 'foo', or the ARM + // mapping symbol preceding its code. + if (ShowAllSymbols) { + for (size_t i = 0; i < SymbolsHere.size(); ++i) + SymsToPrint[i] = true; + } + + if (Start < SectionAddr || StopAddress <= Start) + continue; + + for (size_t i = 0; i < SymbolsHere.size(); ++i) + FoundDisasmSymbolSet.insert(SymNamesHere[i]); + + // The end is the section end, the beginning of the next symbol, or + // --stop-address. + uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); + if (SI < SE) + End = std::min(End, Symbols[SI].Addr); + if (Start >= End || End <= StartAddress) + continue; + Start -= SectionAddr; + End -= SectionAddr; + + if (!PrintedSection) { + PrintedSection = true; + outs() << "\nDisassembly of section "; + if (!SegmentName.empty()) + outs() << SegmentName << ","; + outs() << SectionName << ":\n"; + } + + outs() << '\n'; + + for (size_t i = 0; i < SymbolsHere.size(); ++i) { + if (!SymsToPrint[i]) + continue; + + const SymbolInfoTy &Symbol = SymbolsHere[i]; + const StringRef SymbolName = SymNamesHere[i]; + + if (LeadingAddr) + outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", + SectionAddr + Start + VMAAdjustment); + if (Obj.isXCOFF() && SymbolDescription) { + outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; + } else + outs() << '<' << SymbolName << ">:\n"; + } + + // Don't print raw contents of a virtual section. A virtual section + // doesn't have any contents in the file. + if (Section.isVirtual()) { + outs() << "...\n"; + continue; + } + + // See if any of the symbols defined at this location triggers target- + // specific disassembly behavior, e.g. of special descriptors or function + // prelude information. + // + // We stop this loop at the first symbol that triggers some kind of + // interesting behavior (if any), on the assumption that if two symbols + // defined at the same address trigger two conflicting symbol handlers, + // the object file is probably confused anyway, and it would make even + // less sense to present the output of _both_ handlers, because that + // would describe the same data twice. + for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { + SymbolInfoTy Symbol = SymbolsHere[SHI]; + + auto Status = + DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start), + SectionAddr + Start, CommentStream); + + if (!Status) { + // If onSymbolStart returns std::nullopt, that means it didn't trigger + // any interesting handling for this symbol. Try the other symbols + // defined at this address. + continue; + } + + if (*Status == MCDisassembler::Fail) { + // If onSymbolStart returns Fail, that means it identified some kind + // of special data at this address, but wasn't able to disassemble it + // meaningfully. So we fall back to disassembling the failed region + // as bytes, assuming that the target detected the failure before + // printing anything. + // + // Return values Success or SoftFail (i.e no 'real' failure) are + // expected to mean that the target has emitted its own output. + // + // Either way, 'Size' will have been set to the amount of data + // covered by whatever prologue the target identified. So we advance + // our own position to beyond that. Sometimes that will be the entire + // distance to the next symbol, and sometimes it will be just a + // prologue and we should start disassembling instructions from where + // it left off. + outs() << "// Error in decoding " << SymNamesHere[SHI] + << " : Decoding failed region as bytes.\n"; + for (uint64_t I = 0; I < Size; ++I) { + outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) + << "\n"; + } + } + Start += Size; + break; + } + + Index = Start; + if (SectionAddr < StartAddress) + Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); + + if (DisassembleAsData) { + dumpELFData(SectionAddr, Index, End, Bytes); + Index = End; + continue; + } + + bool DumpARMELFData = false; + formatted_raw_ostream FOS(outs()); + + std::unordered_map<uint64_t, std::string> AllLabels; + std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; + if (SymbolizeOperands) { + collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, + SectionAddr, Index, End, AllLabels); + collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, + BBAddrMapLabels); + } + + while (Index < End) { + // ARM and AArch64 ELF binaries can interleave data and text in the + // same section. We rely on the markers introduced to understand what + // we need to dump. If the data marker is within a function, it is + // denoted as a word/short etc. + if (!MappingSymbols.empty()) { + char Kind = getMappingSymbolKind(MappingSymbols, Index); + DumpARMELFData = Kind == 'd'; + if (SecondarySTI) { + if (Kind == 'a') { + STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; + DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; + } else if (Kind == 't') { + STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; + DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; + } + } + } + + if (DumpARMELFData) { + Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, + MappingSymbols, *STI, FOS); + } else { + // When -z or --disassemble-zeroes are given we always dissasemble + // them. Otherwise we might want to skip zero bytes we see. + if (!DisassembleZeroes) { + uint64_t MaxOffset = End - Index; + // For --reloc: print zero blocks patched by relocations, so that + // relocations can be shown in the dump. + if (RelCur != RelEnd) + MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, + MaxOffset); + + if (size_t N = + countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { + FOS << "\t\t..." << '\n'; + Index += N; + continue; + } + } + + // Print local label if there's any. + auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); + if (Iter1 != BBAddrMapLabels.end()) { + for (StringRef Label : Iter1->second) + FOS << "<" << Label << ">:\n"; + } else { + auto Iter2 = AllLabels.find(SectionAddr + Index); + if (Iter2 != AllLabels.end()) + FOS << "<" << Iter2->second << ">:\n"; + } + + // Disassemble a real instruction or a data when disassemble all is + // provided + MCInst Inst; + ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); + uint64_t ThisAddr = SectionAddr + Index; + bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes, + ThisAddr, CommentStream); + if (Size == 0) + Size = std::min<uint64_t>( + ThisBytes.size(), + DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); + + LVP.update({Index, Section.getIndex()}, + {Index + Size, Section.getIndex()}, Index + Size != End); + + IP->setCommentStream(CommentStream); + + PIP.printInst( + *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), + {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, + "", *STI, &SP, Obj.getFileName(), &Rels, LVP); + + IP->setCommentStream(llvm::nulls()); + + // If disassembly has failed, avoid analysing invalid/incomplete + // instruction information. Otherwise, try to resolve the target + // address (jump target or memory operand address) and print it on the + // right of the instruction. + if (Disassembled && MIA) { + // Branch targets are printed just after the instructions. + llvm::raw_ostream *TargetOS = &FOS; + uint64_t Target; + bool PrintTarget = + MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); + if (!PrintTarget) + if (std::optional<uint64_t> MaybeTarget = + MIA->evaluateMemoryOperandAddress( + Inst, STI, SectionAddr + Index, Size)) { + Target = *MaybeTarget; + PrintTarget = true; + // Do not print real address when symbolizing. + if (!SymbolizeOperands) { + // Memory operand addresses are printed as comments. + TargetOS = &CommentStream; + *TargetOS << "0x" << Twine::utohexstr(Target); + } + } + if (PrintTarget) { + // In a relocatable object, the target's section must reside in + // the same section as the call instruction or it is accessed + // through a relocation. + // + // In a non-relocatable object, the target may be in any section. + // In that case, locate the section(s) containing the target + // address and find the symbol in one of those, if possible. + // + // N.B. We don't walk the relocations in the relocatable case yet. + std::vector<const SectionSymbolsTy *> TargetSectionSymbols; + if (!Obj.isRelocatableObject()) { + auto It = llvm::partition_point( + SectionAddresses, + [=](const std::pair<uint64_t, SectionRef> &O) { + return O.first <= Target; + }); + uint64_t TargetSecAddr = 0; + while (It != SectionAddresses.begin()) { + --It; + if (TargetSecAddr == 0) + TargetSecAddr = It->first; + if (It->first != TargetSecAddr) + break; + TargetSectionSymbols.push_back(&AllSymbols[It->second]); + } + } else { + TargetSectionSymbols.push_back(&Symbols); + } + TargetSectionSymbols.push_back(&AbsoluteSymbols); + + // Find the last symbol in the first candidate section whose + // offset is less than or equal to the target. If there are no + // such symbols, try in the next section and so on, before finally + // using the nearest preceding absolute symbol (if any), if there + // are no other valid symbols. + const SymbolInfoTy *TargetSym = nullptr; + for (const SectionSymbolsTy *TargetSymbols : + TargetSectionSymbols) { + auto It = llvm::partition_point( + *TargetSymbols, + [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); + while (It != TargetSymbols->begin()) { + --It; + // Skip mapping symbols to avoid possible ambiguity as they + // do not allow uniquely identifying the target address. + if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) { + TargetSym = &*It; + break; + } + } + if (TargetSym) + break; + } + + // Print the labels corresponding to the target if there's any. + bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); + bool LabelAvailable = AllLabels.count(Target); + if (TargetSym != nullptr) { + uint64_t TargetAddress = TargetSym->Addr; + uint64_t Disp = Target - TargetAddress; + std::string TargetName = TargetSym->Name.str(); + if (Demangle) + TargetName = demangle(TargetName); + + *TargetOS << " <"; + if (!Disp) { + // Always Print the binary symbol precisely corresponding to + // the target address. + *TargetOS << TargetName; + } else if (BBAddrMapLabelAvailable) { + *TargetOS << BBAddrMapLabels[Target].front(); + } else if (LabelAvailable) { + *TargetOS << AllLabels[Target]; + } else { + // Always Print the binary symbol plus an offset if there's no + // local label corresponding to the target address. + *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); + } + *TargetOS << ">"; + } else if (BBAddrMapLabelAvailable) { + *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; + } else if (LabelAvailable) { + *TargetOS << " <" << AllLabels[Target] << ">"; + } + // By convention, each record in the comment stream should be + // terminated. + if (TargetOS == &CommentStream) + *TargetOS << "\n"; + } + } + } + + assert(Ctx.getAsmInfo()); + emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, + CommentStream.str(), LVP); + Comments.clear(); + + // Hexagon does this in pretty printer + if (Obj.getArch() != Triple::hexagon) { + // Print relocation for instruction and data. + while (RelCur != RelEnd) { + uint64_t Offset = RelCur->getOffset() - RelAdjustment; + // If this relocation is hidden, skip it. + if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { + ++RelCur; + continue; + } + + // Stop when RelCur's offset is past the disassembled + // instruction/data. Note that it's possible the disassembled data + // is not the complete data: we might see the relocation printed in + // the middle of the data, but this matches the binutils objdump + // output. + if (Offset >= Index + Size) + break; + + // When --adjust-vma is used, update the address printed. + if (RelCur->getSymbol() != Obj.symbol_end()) { + Expected<section_iterator> SymSI = + RelCur->getSymbol()->getSection(); + if (SymSI && *SymSI != Obj.section_end() && + shouldAdjustVA(**SymSI)) + Offset += AdjustVMA; + } + + printRelocation(FOS, Obj.getFileName(), *RelCur, + SectionAddr + Offset, Is64Bits); + LVP.printAfterOtherLine(FOS, true); + ++RelCur; + } + } + + Index += Size; + } + } + } + StringSet<> MissingDisasmSymbolSet = + set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); + for (StringRef Sym : MissingDisasmSymbolSet.keys()) + reportWarning("failed to disassemble missing symbol " + Sym, FileName); +} + +static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { + // If information useful for showing the disassembly is missing, try to find a + // more complete binary and disassemble that instead. + OwningBinary<Binary> FetchedBinary; + if (Obj->symbols().empty()) { + if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = + fetchBinaryByBuildID(*Obj)) { + if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { + if (!O->symbols().empty() || + (!O->sections().empty() && Obj->sections().empty())) { + FetchedBinary = std::move(*FetchedBinaryOpt); + Obj = O; + } + } + } + } + + const Target *TheTarget = getTarget(Obj); + + // Package up features to be passed to target/subtarget + Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); + if (!FeaturesValue) + reportError(FeaturesValue.takeError(), Obj->getFileName()); + SubtargetFeatures Features = *FeaturesValue; + if (!MAttrs.empty()) { + for (unsigned I = 0; I != MAttrs.size(); ++I) + Features.AddFeature(MAttrs[I]); + } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { + Features.AddFeature("+all"); + } + + std::unique_ptr<const MCRegisterInfo> MRI( + TheTarget->createMCRegInfo(TripleName)); + if (!MRI) + reportError(Obj->getFileName(), + "no register info for target " + TripleName); + + // Set up disassembler. + MCTargetOptions MCOptions; + std::unique_ptr<const MCAsmInfo> AsmInfo( + TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); + if (!AsmInfo) + reportError(Obj->getFileName(), + "no assembly info for target " + TripleName); + + if (MCPU.empty()) + MCPU = Obj->tryGetCPUName().value_or("").str(); + + if (isArmElf(*Obj)) { + // When disassembling big-endian Arm ELF, the instruction endianness is + // determined in a complex way. In relocatable objects, AAELF32 mandates + // that instruction endianness matches the ELF file endianness; in + // executable images, that's true unless the file header has the EF_ARM_BE8 + // flag, in which case instructions are little-endian regardless of data + // endianness. + // + // We must set the big-endian-instructions SubtargetFeature to make the + // disassembler read the instructions the right way round, and also tell + // our own prettyprinter to retrieve the encodings the same way to print in + // hex. + const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); + + if (Elf32BE && (Elf32BE->isRelocatableObject() || + !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { + Features.AddFeature("+big-endian-instructions"); + ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); + } else { + ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); + } + } + + std::unique_ptr<const MCSubtargetInfo> STI( + TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); + if (!STI) + reportError(Obj->getFileName(), + "no subtarget info for target " + TripleName); + std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); + if (!MII) + reportError(Obj->getFileName(), + "no instruction info for target " + TripleName); + MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); + // FIXME: for now initialize MCObjectFileInfo with default values + std::unique_ptr<MCObjectFileInfo> MOFI( + TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); + Ctx.setObjectFileInfo(MOFI.get()); + + std::unique_ptr<MCDisassembler> DisAsm( + TheTarget->createMCDisassembler(*STI, Ctx)); + if (!DisAsm) + reportError(Obj->getFileName(), "no disassembler for target " + TripleName); + + // If we have an ARM object file, we need a second disassembler, because + // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. + // We use mapping symbols to switch between the two assemblers, where + // appropriate. + std::unique_ptr<MCDisassembler> SecondaryDisAsm; + std::unique_ptr<const MCSubtargetInfo> SecondarySTI; + if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) { + if (STI->checkFeatures("+thumb-mode")) + Features.AddFeature("-thumb-mode"); + else + Features.AddFeature("+thumb-mode"); + SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, + Features.getString())); + SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); + } + + std::unique_ptr<const MCInstrAnalysis> MIA( + TheTarget->createMCInstrAnalysis(MII.get())); + + int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); + std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( + Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); + if (!IP) + reportError(Obj->getFileName(), + "no instruction printer for target " + TripleName); + IP->setPrintImmHex(PrintImmHex); + IP->setPrintBranchImmAsAddress(true); + IP->setSymbolizeOperands(SymbolizeOperands); + IP->setMCInstrAnalysis(MIA.get()); + + PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); + + const ObjectFile *DbgObj = Obj; + if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { + if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = + fetchBinaryByBuildID(*Obj)) { + if (auto *FetchedObj = + dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { + if (FetchedObj->hasDebugInfo()) { + FetchedBinary = std::move(*DebugBinaryOpt); + DbgObj = FetchedObj; + } + } + } + } + + std::unique_ptr<object::Binary> DSYMBinary; + std::unique_ptr<MemoryBuffer> DSYMBuf; + if (!DbgObj->hasDebugInfo()) { + if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { + DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), + DSYMBinary, DSYMBuf); + if (!DbgObj) + return; + } + } + + SourcePrinter SP(DbgObj, TheTarget->getName()); + + for (StringRef Opt : DisassemblerOptions) + if (!IP->applyTargetSpecificCLOption(Opt)) + reportError(Obj->getFileName(), + "Unrecognized disassembler option: " + Opt); + + disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(), + SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(), + SecondarySTI.get(), PIP, SP, InlineRelocs); +} + +void objdump::printRelocations(const ObjectFile *Obj) { + StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : + "%08" PRIx64; + + // Build a mapping from relocation target to a vector of relocation + // sections. Usually, there is an only one relocation section for + // each relocated section. + MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; + uint64_t Ndx; + for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { + if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) + continue; + if (Section.relocation_begin() == Section.relocation_end()) + continue; + Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); + if (!SecOrErr) + reportError(Obj->getFileName(), + "section (" + Twine(Ndx) + + "): unable to get a relocation target: " + + toString(SecOrErr.takeError())); + SecToRelSec[**SecOrErr].push_back(Section); + } + + for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { + StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); + outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; + uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); + uint32_t TypePadding = 24; + outs() << left_justify("OFFSET", OffsetPadding) << " " + << left_justify("TYPE", TypePadding) << " " + << "VALUE\n"; + + for (SectionRef Section : P.second) { + for (const RelocationRef &Reloc : Section.relocations()) { + uint64_t Address = Reloc.getOffset(); + SmallString<32> RelocName; + SmallString<32> ValueStr; + if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) + continue; + Reloc.getTypeName(RelocName); + if (Error E = getRelocationValueString(Reloc, ValueStr)) + reportError(std::move(E), Obj->getFileName()); + + outs() << format(Fmt.data(), Address) << " " + << left_justify(RelocName, TypePadding) << " " << ValueStr + << "\n"; + } + } + } +} + +void objdump::printDynamicRelocations(const ObjectFile *Obj) { + // For the moment, this option is for ELF only + if (!Obj->isELF()) + return; + + const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); + if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { + return Sec.getType() == ELF::SHT_DYNAMIC; + })) { + reportError(Obj->getFileName(), "not a dynamic object"); + return; + } + + std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); + if (DynRelSec.empty()) + return; + + outs() << "\nDYNAMIC RELOCATION RECORDS\n"; + const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); + const uint32_t TypePadding = 24; + outs() << left_justify("OFFSET", OffsetPadding) << ' ' + << left_justify("TYPE", TypePadding) << " VALUE\n"; + + StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; + for (const SectionRef &Section : DynRelSec) + for (const RelocationRef &Reloc : Section.relocations()) { + uint64_t Address = Reloc.getOffset(); + SmallString<32> RelocName; + SmallString<32> ValueStr; + Reloc.getTypeName(RelocName); + if (Error E = getRelocationValueString(Reloc, ValueStr)) + reportError(std::move(E), Obj->getFileName()); + outs() << format(Fmt.data(), Address) << ' ' + << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; + } +} + +// Returns true if we need to show LMA column when dumping section headers. We +// show it only when the platform is ELF and either we have at least one section +// whose VMA and LMA are different and/or when --show-lma flag is used. +static bool shouldDisplayLMA(const ObjectFile &Obj) { + if (!Obj.isELF()) + return false; + for (const SectionRef &S : ToolSectionFilter(Obj)) + if (S.getAddress() != getELFSectionLMA(S)) + return true; + return ShowLMA; +} + +static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { + // Default column width for names is 13 even if no names are that long. + size_t MaxWidth = 13; + for (const SectionRef &Section : ToolSectionFilter(Obj)) { + StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); + MaxWidth = std::max(MaxWidth, Name.size()); + } + return MaxWidth; +} + +void objdump::printSectionHeaders(ObjectFile &Obj) { + if (Obj.isELF() && Obj.sections().empty()) + createFakeELFSections(Obj); + + size_t NameWidth = getMaxSectionNameWidth(Obj); + size_t AddressWidth = 2 * Obj.getBytesInAddress(); + bool HasLMAColumn = shouldDisplayLMA(Obj); + outs() << "\nSections:\n"; + if (HasLMAColumn) + outs() << "Idx " << left_justify("Name", NameWidth) << " Size " + << left_justify("VMA", AddressWidth) << " " + << left_justify("LMA", AddressWidth) << " Type\n"; + else + outs() << "Idx " << left_justify("Name", NameWidth) << " Size " + << left_justify("VMA", AddressWidth) << " Type\n"; + + uint64_t Idx; + for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { + StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); + uint64_t VMA = Section.getAddress(); + if (shouldAdjustVA(Section)) + VMA += AdjustVMA; + + uint64_t Size = Section.getSize(); + + std::string Type = Section.isText() ? "TEXT" : ""; + if (Section.isData()) + Type += Type.empty() ? "DATA" : ", DATA"; + if (Section.isBSS()) + Type += Type.empty() ? "BSS" : ", BSS"; + if (Section.isDebugSection()) + Type += Type.empty() ? "DEBUG" : ", DEBUG"; + + if (HasLMAColumn) + outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, + Name.str().c_str(), Size) + << format_hex_no_prefix(VMA, AddressWidth) << " " + << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) + << " " << Type << "\n"; + else + outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, + Name.str().c_str(), Size) + << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; + } +} + +void objdump::printSectionContents(const ObjectFile *Obj) { + const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); + + for (const SectionRef &Section : ToolSectionFilter(*Obj)) { + StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); + uint64_t BaseAddr = Section.getAddress(); + uint64_t Size = Section.getSize(); + if (!Size) + continue; + + outs() << "Contents of section "; + StringRef SegmentName = getSegmentName(MachO, Section); + if (!SegmentName.empty()) + outs() << SegmentName << ","; + outs() << Name << ":\n"; + if (Section.isBSS()) { + outs() << format("<skipping contents of bss section at [%04" PRIx64 + ", %04" PRIx64 ")>\n", + BaseAddr, BaseAddr + Size); + continue; + } + + StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); + + // Dump out the content as hex and printable ascii characters. + for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { + outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); + // Dump line of hex. + for (std::size_t I = 0; I < 16; ++I) { + if (I != 0 && I % 4 == 0) + outs() << ' '; + if (Addr + I < End) + outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) + << hexdigit(Contents[Addr + I] & 0xF, true); + else + outs() << " "; + } + // Print ascii. + outs() << " "; + for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { + if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) + outs() << Contents[Addr + I]; + else + outs() << "."; + } + outs() << "\n"; + } + } +} + +void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName, + StringRef ArchitectureName, bool DumpDynamic) { + if (O.isCOFF() && !DumpDynamic) { + outs() << "\nSYMBOL TABLE:\n"; + printCOFFSymbolTable(cast<const COFFObjectFile>(O)); + return; + } + + const StringRef FileName = O.getFileName(); + + if (!DumpDynamic) { + outs() << "\nSYMBOL TABLE:\n"; + for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) + printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, + DumpDynamic); + return; + } + + outs() << "\nDYNAMIC SYMBOL TABLE:\n"; + if (!O.isELF()) { + reportWarning( + "this operation is not currently supported for this file format", + FileName); + return; + } + + const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); + auto Symbols = ELF->getDynamicSymbolIterators(); + Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = + ELF->readDynsymVersions(); + if (!SymbolVersionsOrErr) { + reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); + SymbolVersionsOrErr = std::vector<VersionEntry>(); + (void)!SymbolVersionsOrErr; + } + for (auto &Sym : Symbols) + printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, + ArchitectureName, DumpDynamic); +} + +void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol, + ArrayRef<VersionEntry> SymbolVersions, + StringRef FileName, StringRef ArchiveName, + StringRef ArchitectureName, bool DumpDynamic) { + const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); + uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, + ArchitectureName); + if ((Address < StartAddress) || (Address > StopAddress)) + return; + SymbolRef::Type Type = + unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); + uint32_t Flags = + unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); + + // Don't ask a Mach-O STAB symbol for its section unless you know that + // STAB symbol's section field refers to a valid section index. Otherwise + // the symbol may error trying to load a section that does not exist. + bool IsSTAB = false; + if (MachO) { + DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); + uint8_t NType = + (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type + : MachO->getSymbolTableEntry(SymDRI).n_type); + if (NType & MachO::N_STAB) + IsSTAB = true; + } + section_iterator Section = IsSTAB + ? O.section_end() + : unwrapOrError(Symbol.getSection(), FileName, + ArchiveName, ArchitectureName); + + StringRef Name; + if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { + if (Expected<StringRef> NameOrErr = Section->getName()) + Name = *NameOrErr; + else + consumeError(NameOrErr.takeError()); + + } else { + Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, + ArchitectureName); + } + + bool Global = Flags & SymbolRef::SF_Global; + bool Weak = Flags & SymbolRef::SF_Weak; + bool Absolute = Flags & SymbolRef::SF_Absolute; + bool Common = Flags & SymbolRef::SF_Common; + bool Hidden = Flags & SymbolRef::SF_Hidden; + + char GlobLoc = ' '; + if ((Section != O.section_end() || Absolute) && !Weak) + GlobLoc = Global ? 'g' : 'l'; + char IFunc = ' '; + if (O.isELF()) { + if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) + IFunc = 'i'; + if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) + GlobLoc = 'u'; + } + + char Debug = ' '; + if (DumpDynamic) + Debug = 'D'; + else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) + Debug = 'd'; + + char FileFunc = ' '; + if (Type == SymbolRef::ST_File) + FileFunc = 'f'; + else if (Type == SymbolRef::ST_Function) + FileFunc = 'F'; + else if (Type == SymbolRef::ST_Data) + FileFunc = 'O'; + + const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; + + outs() << format(Fmt, Address) << " " + << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' + << (Weak ? 'w' : ' ') // Weak? + << ' ' // Constructor. Not supported yet. + << ' ' // Warning. Not supported yet. + << IFunc // Indirect reference to another symbol. + << Debug // Debugging (d) or dynamic (D) symbol. + << FileFunc // Name of function (F), file (f) or object (O). + << ' '; + if (Absolute) { + outs() << "*ABS*"; + } else if (Common) { + outs() << "*COM*"; + } else if (Section == O.section_end()) { + if (O.isXCOFF()) { + XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( + Symbol.getRawDataRefImpl()); + if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) + outs() << "*DEBUG*"; + else + outs() << "*UND*"; + } else + outs() << "*UND*"; + } else { + StringRef SegmentName = getSegmentName(MachO, *Section); + if (!SegmentName.empty()) + outs() << SegmentName << ","; + StringRef SectionName = unwrapOrError(Section->getName(), FileName); + outs() << SectionName; + if (O.isXCOFF()) { + std::optional<SymbolRef> SymRef = + getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); + if (SymRef) { + + Expected<StringRef> NameOrErr = SymRef->getName(); + + if (NameOrErr) { + outs() << " (csect:"; + std::string SymName(NameOrErr.get()); + + if (Demangle) + SymName = demangle(SymName); + + if (SymbolDescription) + SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), + SymName); + + outs() << ' ' << SymName; + outs() << ") "; + } else + reportWarning(toString(NameOrErr.takeError()), FileName); + } + } + } + + if (Common) + outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); + else if (O.isXCOFF()) + outs() << '\t' + << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( + Symbol.getRawDataRefImpl())); + else if (O.isELF()) + outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); + + if (O.isELF()) { + if (!SymbolVersions.empty()) { + const VersionEntry &Ver = + SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; + std::string Str; + if (!Ver.Name.empty()) + Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; + outs() << ' ' << left_justify(Str, 12); + } + + uint8_t Other = ELFSymbolRef(Symbol).getOther(); + switch (Other) { + case ELF::STV_DEFAULT: + break; + case ELF::STV_INTERNAL: + outs() << " .internal"; + break; + case ELF::STV_HIDDEN: + outs() << " .hidden"; + break; + case ELF::STV_PROTECTED: + outs() << " .protected"; + break; + default: + outs() << format(" 0x%02x", Other); + break; + } + } else if (Hidden) { + outs() << " .hidden"; + } + + std::string SymName(Name); + if (Demangle) + SymName = demangle(SymName); + + if (O.isXCOFF() && SymbolDescription) + SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); + + outs() << ' ' << SymName << '\n'; +} + +static void printUnwindInfo(const ObjectFile *O) { + outs() << "Unwind info:\n\n"; + + if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) + printCOFFUnwindInfo(Coff); + else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) + printMachOUnwindInfo(MachO); + else + // TODO: Extract DWARF dump tool to objdump. + WithColor::error(errs(), ToolName) + << "This operation is only currently supported " + "for COFF and MachO object files.\n"; +} + +/// Dump the raw contents of the __clangast section so the output can be piped +/// into llvm-bcanalyzer. +static void printRawClangAST(const ObjectFile *Obj) { + if (outs().is_displayed()) { + WithColor::error(errs(), ToolName) + << "The -raw-clang-ast option will dump the raw binary contents of " + "the clang ast section.\n" + "Please redirect the output to a file or another program such as " + "llvm-bcanalyzer.\n"; + return; + } + + StringRef ClangASTSectionName("__clangast"); + if (Obj->isCOFF()) { + ClangASTSectionName = "clangast"; + } + + std::optional<object::SectionRef> ClangASTSection; + for (auto Sec : ToolSectionFilter(*Obj)) { + StringRef Name; + if (Expected<StringRef> NameOrErr = Sec.getName()) + Name = *NameOrErr; + else + consumeError(NameOrErr.takeError()); + + if (Name == ClangASTSectionName) { + ClangASTSection = Sec; + break; + } + } + if (!ClangASTSection) + return; + + StringRef ClangASTContents = + unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); + outs().write(ClangASTContents.data(), ClangASTContents.size()); +} + +static void printFaultMaps(const ObjectFile *Obj) { + StringRef FaultMapSectionName; + + if (Obj->isELF()) { + FaultMapSectionName = ".llvm_faultmaps"; + } else if (Obj->isMachO()) { + FaultMapSectionName = "__llvm_faultmaps"; + } else { + WithColor::error(errs(), ToolName) + << "This operation is only currently supported " + "for ELF and Mach-O executable files.\n"; + return; + } + + std::optional<object::SectionRef> FaultMapSection; + + for (auto Sec : ToolSectionFilter(*Obj)) { + StringRef Name; + if (Expected<StringRef> NameOrErr = Sec.getName()) + Name = *NameOrErr; + else + consumeError(NameOrErr.takeError()); + + if (Name == FaultMapSectionName) { + FaultMapSection = Sec; + break; + } + } + + outs() << "FaultMap table:\n"; + + if (!FaultMapSection) { + outs() << "<not found>\n"; + return; + } + + StringRef FaultMapContents = + unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); + FaultMapParser FMP(FaultMapContents.bytes_begin(), + FaultMapContents.bytes_end()); + + outs() << FMP; +} + +static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { + if (O->isELF()) { + printELFFileHeader(O); + printELFDynamicSection(O); + printELFSymbolVersionInfo(O); + return; + } + if (O->isCOFF()) + return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); + if (O->isWasm()) + return printWasmFileHeader(O); + if (O->isMachO()) { + printMachOFileHeader(O); + if (!OnlyFirst) + printMachOLoadCommands(O); + return; + } + reportError(O->getFileName(), "Invalid/Unsupported object file format"); +} + +static void printFileHeaders(const ObjectFile *O) { + if (!O->isELF() && !O->isCOFF()) + reportError(O->getFileName(), "Invalid/Unsupported object file format"); + + Triple::ArchType AT = O->getArch(); + outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; + uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); + + StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; + outs() << "start address: " + << "0x" << format(Fmt.data(), Address) << "\n"; +} + +static void printArchiveChild(StringRef Filename, const Archive::Child &C) { + Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); + if (!ModeOrErr) { + WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; + consumeError(ModeOrErr.takeError()); + return; + } + sys::fs::perms Mode = ModeOrErr.get(); + outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); + outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); + outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); + outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); + outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); + outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); + outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); + outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); + outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); + + outs() << " "; + + outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), + unwrapOrError(C.getGID(), Filename), + unwrapOrError(C.getRawSize(), Filename)); + + StringRef RawLastModified = C.getRawLastModified(); + unsigned Seconds; + if (RawLastModified.getAsInteger(10, Seconds)) + outs() << "(date: \"" << RawLastModified + << "\" contains non-decimal chars) "; + else { + // Since ctime(3) returns a 26 character string of the form: + // "Sun Sep 16 01:03:52 1973\n\0" + // just print 24 characters. + time_t t = Seconds; + outs() << format("%.24s ", ctime(&t)); + } + + StringRef Name = ""; + Expected<StringRef> NameOrErr = C.getName(); + if (!NameOrErr) { + consumeError(NameOrErr.takeError()); + Name = unwrapOrError(C.getRawName(), Filename); + } else { + Name = NameOrErr.get(); + } + outs() << Name << "\n"; +} + +// For ELF only now. +static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { + if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { + if (Elf->getEType() != ELF::ET_REL) + return true; + } + return false; +} + +static void checkForInvalidStartStopAddress(ObjectFile *Obj, + uint64_t Start, uint64_t Stop) { + if (!shouldWarnForInvalidStartStopAddress(Obj)) + return; + + for (const SectionRef &Section : Obj->sections()) + if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { + uint64_t BaseAddr = Section.getAddress(); + uint64_t Size = Section.getSize(); + if ((Start < BaseAddr + Size) && Stop > BaseAddr) + return; + } + + if (!HasStartAddressFlag) + reportWarning("no section has address less than 0x" + + Twine::utohexstr(Stop) + " specified by --stop-address", + Obj->getFileName()); + else if (!HasStopAddressFlag) + reportWarning("no section has address greater than or equal to 0x" + + Twine::utohexstr(Start) + " specified by --start-address", + Obj->getFileName()); + else + reportWarning("no section overlaps the range [0x" + + Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + + ") specified by --start-address/--stop-address", + Obj->getFileName()); +} + +static void dumpObject(ObjectFile *O, const Archive *A = nullptr, + const Archive::Child *C = nullptr) { + // Avoid other output when using a raw option. + if (!RawClangAST) { + outs() << '\n'; + if (A) + outs() << A->getFileName() << "(" << O->getFileName() << ")"; + else + outs() << O->getFileName(); + outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; + } + + if (HasStartAddressFlag || HasStopAddressFlag) + checkForInvalidStartStopAddress(O, StartAddress, StopAddress); + + // Note: the order here matches GNU objdump for compatability. + StringRef ArchiveName = A ? A->getFileName() : ""; + if (ArchiveHeaders && !MachOOpt && C) + printArchiveChild(ArchiveName, *C); + if (FileHeaders) + printFileHeaders(O); + if (PrivateHeaders || FirstPrivateHeader) + printPrivateFileHeaders(O, FirstPrivateHeader); + if (SectionHeaders) + printSectionHeaders(*O); + if (SymbolTable) + printSymbolTable(*O, ArchiveName); + if (DynamicSymbolTable) + printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"", + /*DumpDynamic=*/true); + if (DwarfDumpType != DIDT_Null) { + std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); + // Dump the complete DWARF structure. + DIDumpOptions DumpOpts; + DumpOpts.DumpType = DwarfDumpType; + DICtx->dump(outs(), DumpOpts); + } + if (Relocations && !Disassemble) + printRelocations(O); + if (DynamicRelocations) + printDynamicRelocations(O); + if (SectionContents) + printSectionContents(O); + if (Disassemble) + disassembleObject(O, Relocations); + if (UnwindInfo) + printUnwindInfo(O); + + // Mach-O specific options: + if (ExportsTrie) + printExportsTrie(O); + if (Rebase) + printRebaseTable(O); + if (Bind) + printBindTable(O); + if (LazyBind) + printLazyBindTable(O); + if (WeakBind) + printWeakBindTable(O); + + // Other special sections: + if (RawClangAST) + printRawClangAST(O); + if (FaultMapSection) + printFaultMaps(O); + if (Offloading) + dumpOffloadBinary(*O); +} + +static void dumpObject(const COFFImportFile *I, const Archive *A, + const Archive::Child *C = nullptr) { + StringRef ArchiveName = A ? A->getFileName() : ""; + + // Avoid other output when using a raw option. + if (!RawClangAST) + outs() << '\n' + << ArchiveName << "(" << I->getFileName() << ")" + << ":\tfile format COFF-import-file" + << "\n\n"; + + if (ArchiveHeaders && !MachOOpt && C) + printArchiveChild(ArchiveName, *C); + if (SymbolTable) + printCOFFSymbolTable(*I); +} + +/// Dump each object file in \a a; +static void dumpArchive(const Archive *A) { + Error Err = Error::success(); + unsigned I = -1; + for (auto &C : A->children(Err)) { + ++I; + Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); + if (!ChildOrErr) { + if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) + reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); + continue; + } + if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) + dumpObject(O, A, &C); + else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) + dumpObject(I, A, &C); + else + reportError(errorCodeToError(object_error::invalid_file_type), + A->getFileName()); + } + if (Err) + reportError(std::move(Err), A->getFileName()); +} + +/// Open file and figure out how to dump it. +static void dumpInput(StringRef file) { + // If we are using the Mach-O specific object file parser, then let it parse + // the file and process the command line options. So the -arch flags can + // be used to select specific slices, etc. + if (MachOOpt) { + parseInputMachO(file); + return; + } + + // Attempt to open the binary. + OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); + Binary &Binary = *OBinary.getBinary(); + + if (Archive *A = dyn_cast<Archive>(&Binary)) + dumpArchive(A); + else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) + dumpObject(O); + else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) + parseInputMachO(UB); + else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) + dumpOffloadSections(*OB); + else + reportError(errorCodeToError(object_error::invalid_file_type), file); +} + +template <typename T> +static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, + T &Value) { + if (const opt::Arg *A = InputArgs.getLastArg(ID)) { + StringRef V(A->getValue()); + if (!llvm::to_integer(V, Value, 0)) { + reportCmdLineError(A->getSpelling() + + ": expected a non-negative integer, but got '" + V + + "'"); + } + } +} + +static object::BuildID parseBuildIDArg(const opt::Arg *A) { + StringRef V(A->getValue()); + std::string Bytes; + if (!tryGetFromHex(V, Bytes)) + reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + + V + "'"); + ArrayRef<uint8_t> BuildID(reinterpret_cast<const uint8_t *>(Bytes.data()), + Bytes.size()); + return object::BuildID(BuildID.begin(), BuildID.end()); +} + +void objdump::invalidArgValue(const opt::Arg *A) { + reportCmdLineError("'" + StringRef(A->getValue()) + + "' is not a valid value for '" + A->getSpelling() + "'"); +} + +static std::vector<std::string> +commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { + std::vector<std::string> Values; + for (StringRef Value : InputArgs.getAllArgValues(ID)) { + llvm::SmallVector<StringRef, 2> SplitValues; + llvm::SplitString(Value, SplitValues, ","); + for (StringRef SplitValue : SplitValues) + Values.push_back(SplitValue.str()); + } + return Values; +} + +static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { + MachOOpt = true; + FullLeadingAddr = true; + PrintImmHex = true; + + ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); + LinkOptHints = InputArgs.hasArg(OTOOL_C); + if (InputArgs.hasArg(OTOOL_d)) + FilterSections.push_back("__DATA,__data"); + DylibId = InputArgs.hasArg(OTOOL_D); + UniversalHeaders = InputArgs.hasArg(OTOOL_f); + DataInCode = InputArgs.hasArg(OTOOL_G); + FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); + IndirectSymbols = InputArgs.hasArg(OTOOL_I); + ShowRawInsn = InputArgs.hasArg(OTOOL_j); + PrivateHeaders = InputArgs.hasArg(OTOOL_l); + DylibsUsed = InputArgs.hasArg(OTOOL_L); + MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); + ObjcMetaData = InputArgs.hasArg(OTOOL_o); + DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); + InfoPlist = InputArgs.hasArg(OTOOL_P); + Relocations = InputArgs.hasArg(OTOOL_r); + if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { + auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); + FilterSections.push_back(Filter); + } + if (InputArgs.hasArg(OTOOL_t)) + FilterSections.push_back("__TEXT,__text"); + Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || + InputArgs.hasArg(OTOOL_o); + SymbolicOperands = InputArgs.hasArg(OTOOL_V); + if (InputArgs.hasArg(OTOOL_x)) + FilterSections.push_back(",__text"); + LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); + + ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); + DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); + + InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); + if (InputFilenames.empty()) + reportCmdLineError("no input file"); + + for (const Arg *A : InputArgs) { + const Option &O = A->getOption(); + if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { + reportCmdLineWarning(O.getPrefixedName() + + " is obsolete and not implemented"); + } + } +} + +static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { + parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); + AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); + ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); + ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); + Demangle = InputArgs.hasArg(OBJDUMP_demangle); + Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); + DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); + SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); + DisassembleSymbols = + commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); + DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); + if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { + DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) + .Case("frames", DIDT_DebugFrame) + .Default(DIDT_Null); + if (DwarfDumpType == DIDT_Null) + invalidArgValue(A); + } + DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); + FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); + Offloading = InputArgs.hasArg(OBJDUMP_offloading); + FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); + SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); + PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); + InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); + MachOOpt = InputArgs.hasArg(OBJDUMP_macho); + MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); + MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); + ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); + LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); + RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); + Relocations = InputArgs.hasArg(OBJDUMP_reloc); + PrintImmHex = + InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); + PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); + FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); + SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); + ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); + ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); + PrintSource = InputArgs.hasArg(OBJDUMP_source); + parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); + HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); + parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); + HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); + SymbolTable = InputArgs.hasArg(OBJDUMP_syms); + SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); + DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); + TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); + UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); + Wide = InputArgs.hasArg(OBJDUMP_wide); + Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); + parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); + if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { + DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) + .Case("ascii", DVASCII) + .Case("unicode", DVUnicode) + .Default(DVInvalid); + if (DbgVariables == DVInvalid) + invalidArgValue(A); + } + parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); + + parseMachOOptions(InputArgs); + + // Parse -M (--disassembler-options) and deprecated + // --x86-asm-syntax={att,intel}. + // + // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the + // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is + // called too late. For now we have to use the internal cl::opt option. + const char *AsmSyntax = nullptr; + for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, + OBJDUMP_x86_asm_syntax_att, + OBJDUMP_x86_asm_syntax_intel)) { + switch (A->getOption().getID()) { + case OBJDUMP_x86_asm_syntax_att: + AsmSyntax = "--x86-asm-syntax=att"; + continue; + case OBJDUMP_x86_asm_syntax_intel: + AsmSyntax = "--x86-asm-syntax=intel"; + continue; + } + + SmallVector<StringRef, 2> Values; + llvm::SplitString(A->getValue(), Values, ","); + for (StringRef V : Values) { + if (V == "att") + AsmSyntax = "--x86-asm-syntax=att"; + else if (V == "intel") + AsmSyntax = "--x86-asm-syntax=intel"; + else + DisassemblerOptions.push_back(V.str()); + } + } + if (AsmSyntax) { + const char *Argv[] = {"llvm-objdump", AsmSyntax}; + llvm::cl::ParseCommandLineOptions(2, Argv); + } + + // Look up any provided build IDs, then append them to the input filenames. + for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { + object::BuildID BuildID = parseBuildIDArg(A); + std::optional<std::string> Path = BIDFetcher->fetch(BuildID); + if (!Path) { + reportCmdLineError(A->getSpelling() + ": could not find build ID '" + + A->getValue() + "'"); + } + InputFilenames.push_back(std::move(*Path)); + } + + // objdump defaults to a.out if no filenames specified. + if (InputFilenames.empty()) + InputFilenames.push_back("a.out"); +} + +int main(int argc, char **argv) { + using namespace llvm; + InitLLVM X(argc, argv); + + ToolName = argv[0]; + std::unique_ptr<CommonOptTable> T; + OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; + + StringRef Stem = sys::path::stem(ToolName); + auto Is = [=](StringRef Tool) { + // We need to recognize the following filenames: + // + // llvm-objdump -> objdump + // llvm-otool-10.exe -> otool + // powerpc64-unknown-freebsd13-objdump -> objdump + auto I = Stem.rfind_insensitive(Tool); + return I != StringRef::npos && + (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); + }; + if (Is("otool")) { + T = std::make_unique<OtoolOptTable>(); + Unknown = OTOOL_UNKNOWN; + HelpFlag = OTOOL_help; + HelpHiddenFlag = OTOOL_help_hidden; + VersionFlag = OTOOL_version; + } else { + T = std::make_unique<ObjdumpOptTable>(); + Unknown = OBJDUMP_UNKNOWN; + HelpFlag = OBJDUMP_help; + HelpHiddenFlag = OBJDUMP_help_hidden; + VersionFlag = OBJDUMP_version; + } + + BumpPtrAllocator A; + StringSaver Saver(A); + opt::InputArgList InputArgs = + T->parseArgs(argc, argv, Unknown, Saver, + [&](StringRef Msg) { reportCmdLineError(Msg); }); + + if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { + T->printHelp(ToolName); + return 0; + } + if (InputArgs.hasArg(HelpHiddenFlag)) { + T->printHelp(ToolName, /*ShowHidden=*/true); + return 0; + } + + // Initialize targets and assembly printers/parsers. + InitializeAllTargetInfos(); + InitializeAllTargetMCs(); + InitializeAllDisassemblers(); + + if (InputArgs.hasArg(VersionFlag)) { + cl::PrintVersionMessage(); + if (!Is("otool")) { + outs() << '\n'; + TargetRegistry::printRegisteredTargetsForVersion(outs()); + } + return 0; + } + + // Initialize debuginfod. + const bool ShouldUseDebuginfodByDefault = + InputArgs.hasArg(OBJDUMP_build_id) || + (HTTPClient::isAvailable() && + !ExitOnErr(getDefaultDebuginfodUrls()).empty()); + std::vector<std::string> DebugFileDirectories = + InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); + if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, + ShouldUseDebuginfodByDefault)) { + HTTPClient::initialize(); + BIDFetcher = + std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); + } else { + BIDFetcher = + std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); + } + + if (Is("otool")) + parseOtoolOptions(InputArgs); + else + parseObjdumpOptions(InputArgs); + + if (StartAddress >= StopAddress) + reportCmdLineError("start address should be less than stop address"); + + // Removes trailing separators from prefix. + while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) + Prefix.pop_back(); + + if (AllHeaders) + ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = + SectionHeaders = SymbolTable = true; + + if (DisassembleAll || PrintSource || PrintLines || + !DisassembleSymbols.empty()) + Disassemble = true; + + if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && + !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && + !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && + !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && + !(MachOOpt && + (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || + DylibsUsed || ExportsTrie || FirstPrivateHeader || + FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || + InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || + Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { + T->printHelp(ToolName); + return 2; + } + + DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); + + llvm::for_each(InputFilenames, dumpInput); + + warnOnNoMatchForSections(); + + return EXIT_SUCCESS; +} |