diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp | 3011 | 
1 files changed, 3011 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp b/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp new file mode 100644 index 000000000000..8cabad4ad312 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp @@ -0,0 +1,3011 @@ +//===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains support for writing Microsoft CodeView debug info. +// +//===----------------------------------------------------------------------===// + +#include "CodeViewDebug.h" +#include "DwarfExpression.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/TinyPtrVector.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/BinaryFormat/COFF.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/CodeGen/AsmPrinter.h" +#include "llvm/CodeGen/LexicalScopes.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" +#include "llvm/DebugInfo/CodeView/CodeView.h" +#include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" +#include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" +#include "llvm/DebugInfo/CodeView/EnumTables.h" +#include "llvm/DebugInfo/CodeView/Line.h" +#include "llvm/DebugInfo/CodeView/SymbolRecord.h" +#include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" +#include "llvm/DebugInfo/CodeView/TypeIndex.h" +#include "llvm/DebugInfo/CodeView/TypeRecord.h" +#include "llvm/DebugInfo/CodeView/TypeTableCollection.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCSectionCOFF.h" +#include "llvm/MC/MCStreamer.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/BinaryByteStream.h" +#include "llvm/Support/BinaryStreamReader.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormatVariadic.h" +#include "llvm/Support/Path.h" +#include "llvm/Support/SMLoc.h" +#include "llvm/Support/ScopedPrinter.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cctype> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <limits> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace llvm::codeview; + +static CPUType mapArchToCVCPUType(Triple::ArchType Type) { +  switch (Type) { +  case Triple::ArchType::x86: +    return CPUType::Pentium3; +  case Triple::ArchType::x86_64: +    return CPUType::X64; +  case Triple::ArchType::thumb: +    return CPUType::Thumb; +  case Triple::ArchType::aarch64: +    return CPUType::ARM64; +  default: +    report_fatal_error("target architecture doesn't map to a CodeView CPUType"); +  } +} + +CodeViewDebug::CodeViewDebug(AsmPrinter *AP) +    : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { +  // If module doesn't have named metadata anchors or COFF debug section +  // is not available, skip any debug info related stuff. +  if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || +      !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { +    Asm = nullptr; +    MMI->setDebugInfoAvailability(false); +    return; +  } +  // Tell MMI that we have debug info. +  MMI->setDebugInfoAvailability(true); + +  TheCPU = +      mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); + +  collectGlobalVariableInfo(); + +  // Check if we should emit type record hashes. +  ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( +      MMI->getModule()->getModuleFlag("CodeViewGHash")); +  EmitDebugGlobalHashes = GH && !GH->isZero(); +} + +StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { +  std::string &Filepath = FileToFilepathMap[File]; +  if (!Filepath.empty()) +    return Filepath; + +  StringRef Dir = File->getDirectory(), Filename = File->getFilename(); + +  // If this is a Unix-style path, just use it as is. Don't try to canonicalize +  // it textually because one of the path components could be a symlink. +  if (Dir.startswith("/") || Filename.startswith("/")) { +    if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) +      return Filename; +    Filepath = Dir; +    if (Dir.back() != '/') +      Filepath += '/'; +    Filepath += Filename; +    return Filepath; +  } + +  // Clang emits directory and relative filename info into the IR, but CodeView +  // operates on full paths.  We could change Clang to emit full paths too, but +  // that would increase the IR size and probably not needed for other users. +  // For now, just concatenate and canonicalize the path here. +  if (Filename.find(':') == 1) +    Filepath = Filename; +  else +    Filepath = (Dir + "\\" + Filename).str(); + +  // Canonicalize the path.  We have to do it textually because we may no longer +  // have access the file in the filesystem. +  // First, replace all slashes with backslashes. +  std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); + +  // Remove all "\.\" with "\". +  size_t Cursor = 0; +  while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) +    Filepath.erase(Cursor, 2); + +  // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original +  // path should be well-formatted, e.g. start with a drive letter, etc. +  Cursor = 0; +  while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { +    // Something's wrong if the path starts with "\..\", abort. +    if (Cursor == 0) +      break; + +    size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); +    if (PrevSlash == std::string::npos) +      // Something's wrong, abort. +      break; + +    Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); +    // The next ".." might be following the one we've just erased. +    Cursor = PrevSlash; +  } + +  // Remove all duplicate backslashes. +  Cursor = 0; +  while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) +    Filepath.erase(Cursor, 1); + +  return Filepath; +} + +unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { +  StringRef FullPath = getFullFilepath(F); +  unsigned NextId = FileIdMap.size() + 1; +  auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); +  if (Insertion.second) { +    // We have to compute the full filepath and emit a .cv_file directive. +    ArrayRef<uint8_t> ChecksumAsBytes; +    FileChecksumKind CSKind = FileChecksumKind::None; +    if (F->getChecksum()) { +      std::string Checksum = fromHex(F->getChecksum()->Value); +      void *CKMem = OS.getContext().allocate(Checksum.size(), 1); +      memcpy(CKMem, Checksum.data(), Checksum.size()); +      ChecksumAsBytes = ArrayRef<uint8_t>( +          reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); +      switch (F->getChecksum()->Kind) { +      case DIFile::CSK_MD5:  CSKind = FileChecksumKind::MD5; break; +      case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; +      } +    } +    bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, +                                          static_cast<unsigned>(CSKind)); +    (void)Success; +    assert(Success && ".cv_file directive failed"); +  } +  return Insertion.first->second; +} + +CodeViewDebug::InlineSite & +CodeViewDebug::getInlineSite(const DILocation *InlinedAt, +                             const DISubprogram *Inlinee) { +  auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); +  InlineSite *Site = &SiteInsertion.first->second; +  if (SiteInsertion.second) { +    unsigned ParentFuncId = CurFn->FuncId; +    if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) +      ParentFuncId = +          getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) +              .SiteFuncId; + +    Site->SiteFuncId = NextFuncId++; +    OS.EmitCVInlineSiteIdDirective( +        Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), +        InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); +    Site->Inlinee = Inlinee; +    InlinedSubprograms.insert(Inlinee); +    getFuncIdForSubprogram(Inlinee); +  } +  return *Site; +} + +static StringRef getPrettyScopeName(const DIScope *Scope) { +  StringRef ScopeName = Scope->getName(); +  if (!ScopeName.empty()) +    return ScopeName; + +  switch (Scope->getTag()) { +  case dwarf::DW_TAG_enumeration_type: +  case dwarf::DW_TAG_class_type: +  case dwarf::DW_TAG_structure_type: +  case dwarf::DW_TAG_union_type: +    return "<unnamed-tag>"; +  case dwarf::DW_TAG_namespace: +    return "`anonymous namespace'"; +  } + +  return StringRef(); +} + +static const DISubprogram *getQualifiedNameComponents( +    const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { +  const DISubprogram *ClosestSubprogram = nullptr; +  while (Scope != nullptr) { +    if (ClosestSubprogram == nullptr) +      ClosestSubprogram = dyn_cast<DISubprogram>(Scope); +    StringRef ScopeName = getPrettyScopeName(Scope); +    if (!ScopeName.empty()) +      QualifiedNameComponents.push_back(ScopeName); +    Scope = Scope->getScope().resolve(); +  } +  return ClosestSubprogram; +} + +static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, +                                    StringRef TypeName) { +  std::string FullyQualifiedName; +  for (StringRef QualifiedNameComponent : +       llvm::reverse(QualifiedNameComponents)) { +    FullyQualifiedName.append(QualifiedNameComponent); +    FullyQualifiedName.append("::"); +  } +  FullyQualifiedName.append(TypeName); +  return FullyQualifiedName; +} + +static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { +  SmallVector<StringRef, 5> QualifiedNameComponents; +  getQualifiedNameComponents(Scope, QualifiedNameComponents); +  return getQualifiedName(QualifiedNameComponents, Name); +} + +struct CodeViewDebug::TypeLoweringScope { +  TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } +  ~TypeLoweringScope() { +    // Don't decrement TypeEmissionLevel until after emitting deferred types, so +    // inner TypeLoweringScopes don't attempt to emit deferred types. +    if (CVD.TypeEmissionLevel == 1) +      CVD.emitDeferredCompleteTypes(); +    --CVD.TypeEmissionLevel; +  } +  CodeViewDebug &CVD; +}; + +static std::string getFullyQualifiedName(const DIScope *Ty) { +  const DIScope *Scope = Ty->getScope().resolve(); +  return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); +} + +TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { +  // No scope means global scope and that uses the zero index. +  if (!Scope || isa<DIFile>(Scope)) +    return TypeIndex(); + +  assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); + +  // Check if we've already translated this scope. +  auto I = TypeIndices.find({Scope, nullptr}); +  if (I != TypeIndices.end()) +    return I->second; + +  // Build the fully qualified name of the scope. +  std::string ScopeName = getFullyQualifiedName(Scope); +  StringIdRecord SID(TypeIndex(), ScopeName); +  auto TI = TypeTable.writeLeafType(SID); +  return recordTypeIndexForDINode(Scope, TI); +} + +TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { +  assert(SP); + +  // Check if we've already translated this subprogram. +  auto I = TypeIndices.find({SP, nullptr}); +  if (I != TypeIndices.end()) +    return I->second; + +  // The display name includes function template arguments. Drop them to match +  // MSVC. +  StringRef DisplayName = SP->getName().split('<').first; + +  const DIScope *Scope = SP->getScope().resolve(); +  TypeIndex TI; +  if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { +    // If the scope is a DICompositeType, then this must be a method. Member +    // function types take some special handling, and require access to the +    // subprogram. +    TypeIndex ClassType = getTypeIndex(Class); +    MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), +                               DisplayName); +    TI = TypeTable.writeLeafType(MFuncId); +  } else { +    // Otherwise, this must be a free function. +    TypeIndex ParentScope = getScopeIndex(Scope); +    FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); +    TI = TypeTable.writeLeafType(FuncId); +  } + +  return recordTypeIndexForDINode(SP, TI); +} + +static bool isTrivial(const DICompositeType *DCTy) { +  return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); +} + +static FunctionOptions +getFunctionOptions(const DISubroutineType *Ty, +                   const DICompositeType *ClassTy = nullptr, +                   StringRef SPName = StringRef("")) { +  FunctionOptions FO = FunctionOptions::None; +  const DIType *ReturnTy = nullptr; +  if (auto TypeArray = Ty->getTypeArray()) { +    if (TypeArray.size()) +      ReturnTy = TypeArray[0].resolve(); +  } + +  if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { +    if (!isTrivial(ReturnDCTy)) +      FO |= FunctionOptions::CxxReturnUdt; +  } + +  // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. +  if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { +    FO |= FunctionOptions::Constructor; + +  // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. + +  } +  return FO; +} + +TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, +                                               const DICompositeType *Class) { +  // Always use the method declaration as the key for the function type. The +  // method declaration contains the this adjustment. +  if (SP->getDeclaration()) +    SP = SP->getDeclaration(); +  assert(!SP->getDeclaration() && "should use declaration as key"); + +  // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide +  // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. +  auto I = TypeIndices.find({SP, Class}); +  if (I != TypeIndices.end()) +    return I->second; + +  // Make sure complete type info for the class is emitted *after* the member +  // function type, as the complete class type is likely to reference this +  // member function type. +  TypeLoweringScope S(*this); +  const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; + +  FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); +  TypeIndex TI = lowerTypeMemberFunction( +      SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); +  return recordTypeIndexForDINode(SP, TI, Class); +} + +TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, +                                                  TypeIndex TI, +                                                  const DIType *ClassTy) { +  auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); +  (void)InsertResult; +  assert(InsertResult.second && "DINode was already assigned a type index"); +  return TI; +} + +unsigned CodeViewDebug::getPointerSizeInBytes() { +  return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; +} + +void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, +                                        const LexicalScope *LS) { +  if (const DILocation *InlinedAt = LS->getInlinedAt()) { +    // This variable was inlined. Associate it with the InlineSite. +    const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); +    InlineSite &Site = getInlineSite(InlinedAt, Inlinee); +    Site.InlinedLocals.emplace_back(Var); +  } else { +    // This variable goes into the corresponding lexical scope. +    ScopeVariables[LS].emplace_back(Var); +  } +} + +static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, +                               const DILocation *Loc) { +  auto B = Locs.begin(), E = Locs.end(); +  if (std::find(B, E, Loc) == E) +    Locs.push_back(Loc); +} + +void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, +                                        const MachineFunction *MF) { +  // Skip this instruction if it has the same location as the previous one. +  if (!DL || DL == PrevInstLoc) +    return; + +  const DIScope *Scope = DL.get()->getScope(); +  if (!Scope) +    return; + +  // Skip this line if it is longer than the maximum we can record. +  LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); +  if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || +      LI.isNeverStepInto()) +    return; + +  ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); +  if (CI.getStartColumn() != DL.getCol()) +    return; + +  if (!CurFn->HaveLineInfo) +    CurFn->HaveLineInfo = true; +  unsigned FileId = 0; +  if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) +    FileId = CurFn->LastFileId; +  else +    FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); +  PrevInstLoc = DL; + +  unsigned FuncId = CurFn->FuncId; +  if (const DILocation *SiteLoc = DL->getInlinedAt()) { +    const DILocation *Loc = DL.get(); + +    // If this location was actually inlined from somewhere else, give it the ID +    // of the inline call site. +    FuncId = +        getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; + +    // Ensure we have links in the tree of inline call sites. +    bool FirstLoc = true; +    while ((SiteLoc = Loc->getInlinedAt())) { +      InlineSite &Site = +          getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); +      if (!FirstLoc) +        addLocIfNotPresent(Site.ChildSites, Loc); +      FirstLoc = false; +      Loc = SiteLoc; +    } +    addLocIfNotPresent(CurFn->ChildSites, Loc); +  } + +  OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), +                        /*PrologueEnd=*/false, /*IsStmt=*/false, +                        DL->getFilename(), SMLoc()); +} + +void CodeViewDebug::emitCodeViewMagicVersion() { +  OS.EmitValueToAlignment(4); +  OS.AddComment("Debug section magic"); +  OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); +} + +void CodeViewDebug::endModule() { +  if (!Asm || !MMI->hasDebugInfo()) +    return; + +  assert(Asm != nullptr); + +  // The COFF .debug$S section consists of several subsections, each starting +  // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length +  // of the payload followed by the payload itself.  The subsections are 4-byte +  // aligned. + +  // Use the generic .debug$S section, and make a subsection for all the inlined +  // subprograms. +  switchToDebugSectionForSymbol(nullptr); + +  MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); +  emitCompilerInformation(); +  endCVSubsection(CompilerInfo); + +  emitInlineeLinesSubsection(); + +  // Emit per-function debug information. +  for (auto &P : FnDebugInfo) +    if (!P.first->isDeclarationForLinker()) +      emitDebugInfoForFunction(P.first, *P.second); + +  // Emit global variable debug information. +  setCurrentSubprogram(nullptr); +  emitDebugInfoForGlobals(); + +  // Emit retained types. +  emitDebugInfoForRetainedTypes(); + +  // Switch back to the generic .debug$S section after potentially processing +  // comdat symbol sections. +  switchToDebugSectionForSymbol(nullptr); + +  // Emit UDT records for any types used by global variables. +  if (!GlobalUDTs.empty()) { +    MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); +    emitDebugInfoForUDTs(GlobalUDTs); +    endCVSubsection(SymbolsEnd); +  } + +  // This subsection holds a file index to offset in string table table. +  OS.AddComment("File index to string table offset subsection"); +  OS.EmitCVFileChecksumsDirective(); + +  // This subsection holds the string table. +  OS.AddComment("String table"); +  OS.EmitCVStringTableDirective(); + +  // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol +  // subsection in the generic .debug$S section at the end. There is no +  // particular reason for this ordering other than to match MSVC. +  emitBuildInfo(); + +  // Emit type information and hashes last, so that any types we translate while +  // emitting function info are included. +  emitTypeInformation(); + +  if (EmitDebugGlobalHashes) +    emitTypeGlobalHashes(); + +  clear(); +} + +static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, +    unsigned MaxFixedRecordLength = 0xF00) { +  // The maximum CV record length is 0xFF00. Most of the strings we emit appear +  // after a fixed length portion of the record. The fixed length portion should +  // always be less than 0xF00 (3840) bytes, so truncate the string so that the +  // overall record size is less than the maximum allowed. +  SmallString<32> NullTerminatedString( +      S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); +  NullTerminatedString.push_back('\0'); +  OS.EmitBytes(NullTerminatedString); +} + +void CodeViewDebug::emitTypeInformation() { +  if (TypeTable.empty()) +    return; + +  // Start the .debug$T or .debug$P section with 0x4. +  OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); +  emitCodeViewMagicVersion(); + +  SmallString<8> CommentPrefix; +  if (OS.isVerboseAsm()) { +    CommentPrefix += '\t'; +    CommentPrefix += Asm->MAI->getCommentString(); +    CommentPrefix += ' '; +  } + +  TypeTableCollection Table(TypeTable.records()); +  Optional<TypeIndex> B = Table.getFirst(); +  while (B) { +    // This will fail if the record data is invalid. +    CVType Record = Table.getType(*B); + +    if (OS.isVerboseAsm()) { +      // Emit a block comment describing the type record for readability. +      SmallString<512> CommentBlock; +      raw_svector_ostream CommentOS(CommentBlock); +      ScopedPrinter SP(CommentOS); +      SP.setPrefix(CommentPrefix); +      TypeDumpVisitor TDV(Table, &SP, false); + +      Error E = codeview::visitTypeRecord(Record, *B, TDV); +      if (E) { +        logAllUnhandledErrors(std::move(E), errs(), "error: "); +        llvm_unreachable("produced malformed type record"); +      } +      // emitRawComment will insert its own tab and comment string before +      // the first line, so strip off our first one. It also prints its own +      // newline. +      OS.emitRawComment( +          CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); +    } +    OS.EmitBinaryData(Record.str_data()); +    B = Table.getNext(*B); +  } +} + +void CodeViewDebug::emitTypeGlobalHashes() { +  if (TypeTable.empty()) +    return; + +  // Start the .debug$H section with the version and hash algorithm, currently +  // hardcoded to version 0, SHA1. +  OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); + +  OS.EmitValueToAlignment(4); +  OS.AddComment("Magic"); +  OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); +  OS.AddComment("Section Version"); +  OS.EmitIntValue(0, 2); +  OS.AddComment("Hash Algorithm"); +  OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); + +  TypeIndex TI(TypeIndex::FirstNonSimpleIndex); +  for (const auto &GHR : TypeTable.hashes()) { +    if (OS.isVerboseAsm()) { +      // Emit an EOL-comment describing which TypeIndex this hash corresponds +      // to, as well as the stringified SHA1 hash. +      SmallString<32> Comment; +      raw_svector_ostream CommentOS(Comment); +      CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); +      OS.AddComment(Comment); +      ++TI; +    } +    assert(GHR.Hash.size() == 8); +    StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), +                GHR.Hash.size()); +    OS.EmitBinaryData(S); +  } +} + +static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { +  switch (DWLang) { +  case dwarf::DW_LANG_C: +  case dwarf::DW_LANG_C89: +  case dwarf::DW_LANG_C99: +  case dwarf::DW_LANG_C11: +  case dwarf::DW_LANG_ObjC: +    return SourceLanguage::C; +  case dwarf::DW_LANG_C_plus_plus: +  case dwarf::DW_LANG_C_plus_plus_03: +  case dwarf::DW_LANG_C_plus_plus_11: +  case dwarf::DW_LANG_C_plus_plus_14: +    return SourceLanguage::Cpp; +  case dwarf::DW_LANG_Fortran77: +  case dwarf::DW_LANG_Fortran90: +  case dwarf::DW_LANG_Fortran03: +  case dwarf::DW_LANG_Fortran08: +    return SourceLanguage::Fortran; +  case dwarf::DW_LANG_Pascal83: +    return SourceLanguage::Pascal; +  case dwarf::DW_LANG_Cobol74: +  case dwarf::DW_LANG_Cobol85: +    return SourceLanguage::Cobol; +  case dwarf::DW_LANG_Java: +    return SourceLanguage::Java; +  case dwarf::DW_LANG_D: +    return SourceLanguage::D; +  default: +    // There's no CodeView representation for this language, and CV doesn't +    // have an "unknown" option for the language field, so we'll use MASM, +    // as it's very low level. +    return SourceLanguage::Masm; +  } +} + +namespace { +struct Version { +  int Part[4]; +}; +} // end anonymous namespace + +// Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out +// the version number. +static Version parseVersion(StringRef Name) { +  Version V = {{0}}; +  int N = 0; +  for (const char C : Name) { +    if (isdigit(C)) { +      V.Part[N] *= 10; +      V.Part[N] += C - '0'; +    } else if (C == '.') { +      ++N; +      if (N >= 4) +        return V; +    } else if (N > 0) +      return V; +  } +  return V; +} + +void CodeViewDebug::emitCompilerInformation() { +  MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); +  uint32_t Flags = 0; + +  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); +  const MDNode *Node = *CUs->operands().begin(); +  const auto *CU = cast<DICompileUnit>(Node); + +  // The low byte of the flags indicates the source language. +  Flags = MapDWLangToCVLang(CU->getSourceLanguage()); +  // TODO:  Figure out which other flags need to be set. + +  OS.AddComment("Flags and language"); +  OS.EmitIntValue(Flags, 4); + +  OS.AddComment("CPUType"); +  OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); + +  StringRef CompilerVersion = CU->getProducer(); +  Version FrontVer = parseVersion(CompilerVersion); +  OS.AddComment("Frontend version"); +  for (int N = 0; N < 4; ++N) +    OS.EmitIntValue(FrontVer.Part[N], 2); + +  // Some Microsoft tools, like Binscope, expect a backend version number of at +  // least 8.something, so we'll coerce the LLVM version into a form that +  // guarantees it'll be big enough without really lying about the version. +  int Major = 1000 * LLVM_VERSION_MAJOR + +              10 * LLVM_VERSION_MINOR + +              LLVM_VERSION_PATCH; +  // Clamp it for builds that use unusually large version numbers. +  Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); +  Version BackVer = {{ Major, 0, 0, 0 }}; +  OS.AddComment("Backend version"); +  for (int N = 0; N < 4; ++N) +    OS.EmitIntValue(BackVer.Part[N], 2); + +  OS.AddComment("Null-terminated compiler version string"); +  emitNullTerminatedSymbolName(OS, CompilerVersion); + +  endSymbolRecord(CompilerEnd); +} + +static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, +                                    StringRef S) { +  StringIdRecord SIR(TypeIndex(0x0), S); +  return TypeTable.writeLeafType(SIR); +} + +void CodeViewDebug::emitBuildInfo() { +  // First, make LF_BUILDINFO. It's a sequence of strings with various bits of +  // build info. The known prefix is: +  // - Absolute path of current directory +  // - Compiler path +  // - Main source file path, relative to CWD or absolute +  // - Type server PDB file +  // - Canonical compiler command line +  // If frontend and backend compilation are separated (think llc or LTO), it's +  // not clear if the compiler path should refer to the executable for the +  // frontend or the backend. Leave it blank for now. +  TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; +  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); +  const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. +  const auto *CU = cast<DICompileUnit>(Node); +  const DIFile *MainSourceFile = CU->getFile(); +  BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = +      getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); +  BuildInfoArgs[BuildInfoRecord::SourceFile] = +      getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); +  // FIXME: Path to compiler and command line. PDB is intentionally blank unless +  // we implement /Zi type servers. +  BuildInfoRecord BIR(BuildInfoArgs); +  TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); + +  // Make a new .debug$S subsection for the S_BUILDINFO record, which points +  // from the module symbols into the type stream. +  MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); +  MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); +  OS.AddComment("LF_BUILDINFO index"); +  OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); +  endSymbolRecord(BIEnd); +  endCVSubsection(BISubsecEnd); +} + +void CodeViewDebug::emitInlineeLinesSubsection() { +  if (InlinedSubprograms.empty()) +    return; + +  OS.AddComment("Inlinee lines subsection"); +  MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); + +  // We emit the checksum info for files.  This is used by debuggers to +  // determine if a pdb matches the source before loading it.  Visual Studio, +  // for instance, will display a warning that the breakpoints are not valid if +  // the pdb does not match the source. +  OS.AddComment("Inlinee lines signature"); +  OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); + +  for (const DISubprogram *SP : InlinedSubprograms) { +    assert(TypeIndices.count({SP, nullptr})); +    TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; + +    OS.AddBlankLine(); +    unsigned FileId = maybeRecordFile(SP->getFile()); +    OS.AddComment("Inlined function " + SP->getName() + " starts at " + +                  SP->getFilename() + Twine(':') + Twine(SP->getLine())); +    OS.AddBlankLine(); +    OS.AddComment("Type index of inlined function"); +    OS.EmitIntValue(InlineeIdx.getIndex(), 4); +    OS.AddComment("Offset into filechecksum table"); +    OS.EmitCVFileChecksumOffsetDirective(FileId); +    OS.AddComment("Starting line number"); +    OS.EmitIntValue(SP->getLine(), 4); +  } + +  endCVSubsection(InlineEnd); +} + +void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, +                                        const DILocation *InlinedAt, +                                        const InlineSite &Site) { +  assert(TypeIndices.count({Site.Inlinee, nullptr})); +  TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; + +  // SymbolRecord +  MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); + +  OS.AddComment("PtrParent"); +  OS.EmitIntValue(0, 4); +  OS.AddComment("PtrEnd"); +  OS.EmitIntValue(0, 4); +  OS.AddComment("Inlinee type index"); +  OS.EmitIntValue(InlineeIdx.getIndex(), 4); + +  unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); +  unsigned StartLineNum = Site.Inlinee->getLine(); + +  OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, +                                    FI.Begin, FI.End); + +  endSymbolRecord(InlineEnd); + +  emitLocalVariableList(FI, Site.InlinedLocals); + +  // Recurse on child inlined call sites before closing the scope. +  for (const DILocation *ChildSite : Site.ChildSites) { +    auto I = FI.InlineSites.find(ChildSite); +    assert(I != FI.InlineSites.end() && +           "child site not in function inline site map"); +    emitInlinedCallSite(FI, ChildSite, I->second); +  } + +  // Close the scope. +  emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); +} + +void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { +  // If we have a symbol, it may be in a section that is COMDAT. If so, find the +  // comdat key. A section may be comdat because of -ffunction-sections or +  // because it is comdat in the IR. +  MCSectionCOFF *GVSec = +      GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; +  const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; + +  MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( +      Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); +  DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); + +  OS.SwitchSection(DebugSec); + +  // Emit the magic version number if this is the first time we've switched to +  // this section. +  if (ComdatDebugSections.insert(DebugSec).second) +    emitCodeViewMagicVersion(); +} + +// Emit an S_THUNK32/S_END symbol pair for a thunk routine. +// The only supported thunk ordinal is currently the standard type. +void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, +                                          FunctionInfo &FI, +                                          const MCSymbol *Fn) { +  std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); +  const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. + +  OS.AddComment("Symbol subsection for " + Twine(FuncName)); +  MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); + +  // Emit S_THUNK32 +  MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); +  OS.AddComment("PtrParent"); +  OS.EmitIntValue(0, 4); +  OS.AddComment("PtrEnd"); +  OS.EmitIntValue(0, 4); +  OS.AddComment("PtrNext"); +  OS.EmitIntValue(0, 4); +  OS.AddComment("Thunk section relative address"); +  OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); +  OS.AddComment("Thunk section index"); +  OS.EmitCOFFSectionIndex(Fn); +  OS.AddComment("Code size"); +  OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); +  OS.AddComment("Ordinal"); +  OS.EmitIntValue(unsigned(ordinal), 1); +  OS.AddComment("Function name"); +  emitNullTerminatedSymbolName(OS, FuncName); +  // Additional fields specific to the thunk ordinal would go here. +  endSymbolRecord(ThunkRecordEnd); + +  // Local variables/inlined routines are purposely omitted here.  The point of +  // marking this as a thunk is so Visual Studio will NOT stop in this routine. + +  // Emit S_PROC_ID_END +  emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); + +  endCVSubsection(SymbolsEnd); +} + +void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, +                                             FunctionInfo &FI) { +  // For each function there is a separate subsection which holds the PC to +  // file:line table. +  const MCSymbol *Fn = Asm->getSymbol(GV); +  assert(Fn); + +  // Switch to the to a comdat section, if appropriate. +  switchToDebugSectionForSymbol(Fn); + +  std::string FuncName; +  auto *SP = GV->getSubprogram(); +  assert(SP); +  setCurrentSubprogram(SP); + +  if (SP->isThunk()) { +    emitDebugInfoForThunk(GV, FI, Fn); +    return; +  } + +  // If we have a display name, build the fully qualified name by walking the +  // chain of scopes. +  if (!SP->getName().empty()) +    FuncName = +        getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); + +  // If our DISubprogram name is empty, use the mangled name. +  if (FuncName.empty()) +    FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); + +  // Emit FPO data, but only on 32-bit x86. No other platforms use it. +  if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) +    OS.EmitCVFPOData(Fn); + +  // Emit a symbol subsection, required by VS2012+ to find function boundaries. +  OS.AddComment("Symbol subsection for " + Twine(FuncName)); +  MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); +  { +    SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID +                                                : SymbolKind::S_GPROC32_ID; +    MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); + +    // These fields are filled in by tools like CVPACK which run after the fact. +    OS.AddComment("PtrParent"); +    OS.EmitIntValue(0, 4); +    OS.AddComment("PtrEnd"); +    OS.EmitIntValue(0, 4); +    OS.AddComment("PtrNext"); +    OS.EmitIntValue(0, 4); +    // This is the important bit that tells the debugger where the function +    // code is located and what's its size: +    OS.AddComment("Code size"); +    OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); +    OS.AddComment("Offset after prologue"); +    OS.EmitIntValue(0, 4); +    OS.AddComment("Offset before epilogue"); +    OS.EmitIntValue(0, 4); +    OS.AddComment("Function type index"); +    OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); +    OS.AddComment("Function section relative address"); +    OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); +    OS.AddComment("Function section index"); +    OS.EmitCOFFSectionIndex(Fn); +    OS.AddComment("Flags"); +    OS.EmitIntValue(0, 1); +    // Emit the function display name as a null-terminated string. +    OS.AddComment("Function name"); +    // Truncate the name so we won't overflow the record length field. +    emitNullTerminatedSymbolName(OS, FuncName); +    endSymbolRecord(ProcRecordEnd); + +    MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); +    // Subtract out the CSR size since MSVC excludes that and we include it. +    OS.AddComment("FrameSize"); +    OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); +    OS.AddComment("Padding"); +    OS.EmitIntValue(0, 4); +    OS.AddComment("Offset of padding"); +    OS.EmitIntValue(0, 4); +    OS.AddComment("Bytes of callee saved registers"); +    OS.EmitIntValue(FI.CSRSize, 4); +    OS.AddComment("Exception handler offset"); +    OS.EmitIntValue(0, 4); +    OS.AddComment("Exception handler section"); +    OS.EmitIntValue(0, 2); +    OS.AddComment("Flags (defines frame register)"); +    OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); +    endSymbolRecord(FrameProcEnd); + +    emitLocalVariableList(FI, FI.Locals); +    emitGlobalVariableList(FI.Globals); +    emitLexicalBlockList(FI.ChildBlocks, FI); + +    // Emit inlined call site information. Only emit functions inlined directly +    // into the parent function. We'll emit the other sites recursively as part +    // of their parent inline site. +    for (const DILocation *InlinedAt : FI.ChildSites) { +      auto I = FI.InlineSites.find(InlinedAt); +      assert(I != FI.InlineSites.end() && +             "child site not in function inline site map"); +      emitInlinedCallSite(FI, InlinedAt, I->second); +    } + +    for (auto Annot : FI.Annotations) { +      MCSymbol *Label = Annot.first; +      MDTuple *Strs = cast<MDTuple>(Annot.second); +      MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); +      OS.EmitCOFFSecRel32(Label, /*Offset=*/0); +      // FIXME: Make sure we don't overflow the max record size. +      OS.EmitCOFFSectionIndex(Label); +      OS.EmitIntValue(Strs->getNumOperands(), 2); +      for (Metadata *MD : Strs->operands()) { +        // MDStrings are null terminated, so we can do EmitBytes and get the +        // nice .asciz directive. +        StringRef Str = cast<MDString>(MD)->getString(); +        assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); +        OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); +      } +      endSymbolRecord(AnnotEnd); +    } + +    if (SP != nullptr) +      emitDebugInfoForUDTs(LocalUDTs); + +    // We're done with this function. +    emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); +  } +  endCVSubsection(SymbolsEnd); + +  // We have an assembler directive that takes care of the whole line table. +  OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); +} + +CodeViewDebug::LocalVarDefRange +CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { +  LocalVarDefRange DR; +  DR.InMemory = -1; +  DR.DataOffset = Offset; +  assert(DR.DataOffset == Offset && "truncation"); +  DR.IsSubfield = 0; +  DR.StructOffset = 0; +  DR.CVRegister = CVRegister; +  return DR; +} + +void CodeViewDebug::collectVariableInfoFromMFTable( +    DenseSet<InlinedEntity> &Processed) { +  const MachineFunction &MF = *Asm->MF; +  const TargetSubtargetInfo &TSI = MF.getSubtarget(); +  const TargetFrameLowering *TFI = TSI.getFrameLowering(); +  const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); + +  for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { +    if (!VI.Var) +      continue; +    assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && +           "Expected inlined-at fields to agree"); + +    Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); +    LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); + +    // If variable scope is not found then skip this variable. +    if (!Scope) +      continue; + +    // If the variable has an attached offset expression, extract it. +    // FIXME: Try to handle DW_OP_deref as well. +    int64_t ExprOffset = 0; +    if (VI.Expr) +      if (!VI.Expr->extractIfOffset(ExprOffset)) +        continue; + +    // Get the frame register used and the offset. +    unsigned FrameReg = 0; +    int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); +    uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); + +    // Calculate the label ranges. +    LocalVarDefRange DefRange = +        createDefRangeMem(CVReg, FrameOffset + ExprOffset); +    for (const InsnRange &Range : Scope->getRanges()) { +      const MCSymbol *Begin = getLabelBeforeInsn(Range.first); +      const MCSymbol *End = getLabelAfterInsn(Range.second); +      End = End ? End : Asm->getFunctionEnd(); +      DefRange.Ranges.emplace_back(Begin, End); +    } + +    LocalVariable Var; +    Var.DIVar = VI.Var; +    Var.DefRanges.emplace_back(std::move(DefRange)); +    recordLocalVariable(std::move(Var), Scope); +  } +} + +static bool canUseReferenceType(const DbgVariableLocation &Loc) { +  return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; +} + +static bool needsReferenceType(const DbgVariableLocation &Loc) { +  return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; +} + +void CodeViewDebug::calculateRanges( +    LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { +  const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); + +  // Calculate the definition ranges. +  for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { +    const InsnRange &Range = *I; +    const MachineInstr *DVInst = Range.first; +    assert(DVInst->isDebugValue() && "Invalid History entry"); +    // FIXME: Find a way to represent constant variables, since they are +    // relatively common. +    Optional<DbgVariableLocation> Location = +        DbgVariableLocation::extractFromMachineInstruction(*DVInst); +    if (!Location) +      continue; + +    // CodeView can only express variables in register and variables in memory +    // at a constant offset from a register. However, for variables passed +    // indirectly by pointer, it is common for that pointer to be spilled to a +    // stack location. For the special case of one offseted load followed by a +    // zero offset load (a pointer spilled to the stack), we change the type of +    // the local variable from a value type to a reference type. This tricks the +    // debugger into doing the load for us. +    if (Var.UseReferenceType) { +      // We're using a reference type. Drop the last zero offset load. +      if (canUseReferenceType(*Location)) +        Location->LoadChain.pop_back(); +      else +        continue; +    } else if (needsReferenceType(*Location)) { +      // This location can't be expressed without switching to a reference type. +      // Start over using that. +      Var.UseReferenceType = true; +      Var.DefRanges.clear(); +      calculateRanges(Var, Ranges); +      return; +    } + +    // We can only handle a register or an offseted load of a register. +    if (Location->Register == 0 || Location->LoadChain.size() > 1) +      continue; +    { +      LocalVarDefRange DR; +      DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); +      DR.InMemory = !Location->LoadChain.empty(); +      DR.DataOffset = +          !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; +      if (Location->FragmentInfo) { +        DR.IsSubfield = true; +        DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; +      } else { +        DR.IsSubfield = false; +        DR.StructOffset = 0; +      } + +      if (Var.DefRanges.empty() || +          Var.DefRanges.back().isDifferentLocation(DR)) { +        Var.DefRanges.emplace_back(std::move(DR)); +      } +    } + +    // Compute the label range. +    const MCSymbol *Begin = getLabelBeforeInsn(Range.first); +    const MCSymbol *End = getLabelAfterInsn(Range.second); +    if (!End) { +      // This range is valid until the next overlapping bitpiece. In the +      // common case, ranges will not be bitpieces, so they will overlap. +      auto J = std::next(I); +      const DIExpression *DIExpr = DVInst->getDebugExpression(); +      while (J != E && +             !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) +        ++J; +      if (J != E) +        End = getLabelBeforeInsn(J->first); +      else +        End = Asm->getFunctionEnd(); +    } + +    // If the last range end is our begin, just extend the last range. +    // Otherwise make a new range. +    SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = +        Var.DefRanges.back().Ranges; +    if (!R.empty() && R.back().second == Begin) +      R.back().second = End; +    else +      R.emplace_back(Begin, End); + +    // FIXME: Do more range combining. +  } +} + +void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { +  DenseSet<InlinedEntity> Processed; +  // Grab the variable info that was squirreled away in the MMI side-table. +  collectVariableInfoFromMFTable(Processed); + +  for (const auto &I : DbgValues) { +    InlinedEntity IV = I.first; +    if (Processed.count(IV)) +      continue; +    const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); +    const DILocation *InlinedAt = IV.second; + +    // Instruction ranges, specifying where IV is accessible. +    const auto &Ranges = I.second; + +    LexicalScope *Scope = nullptr; +    if (InlinedAt) +      Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); +    else +      Scope = LScopes.findLexicalScope(DIVar->getScope()); +    // If variable scope is not found then skip this variable. +    if (!Scope) +      continue; + +    LocalVariable Var; +    Var.DIVar = DIVar; + +    calculateRanges(Var, Ranges); +    recordLocalVariable(std::move(Var), Scope); +  } +} + +void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { +  const TargetSubtargetInfo &TSI = MF->getSubtarget(); +  const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); +  const MachineFrameInfo &MFI = MF->getFrameInfo(); +  const Function &GV = MF->getFunction(); +  auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); +  assert(Insertion.second && "function already has info"); +  CurFn = Insertion.first->second.get(); +  CurFn->FuncId = NextFuncId++; +  CurFn->Begin = Asm->getFunctionBegin(); + +  // The S_FRAMEPROC record reports the stack size, and how many bytes of +  // callee-saved registers were used. For targets that don't use a PUSH +  // instruction (AArch64), this will be zero. +  CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); +  CurFn->FrameSize = MFI.getStackSize(); +  CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); +  CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); + +  // For this function S_FRAMEPROC record, figure out which codeview register +  // will be the frame pointer. +  CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. +  CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. +  if (CurFn->FrameSize > 0) { +    if (!TSI.getFrameLowering()->hasFP(*MF)) { +      CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; +      CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; +    } else { +      // If there is an FP, parameters are always relative to it. +      CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; +      if (CurFn->HasStackRealignment) { +        // If the stack needs realignment, locals are relative to SP or VFRAME. +        CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; +      } else { +        // Otherwise, locals are relative to EBP, and we probably have VLAs or +        // other stack adjustments. +        CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; +      } +    } +  } + +  // Compute other frame procedure options. +  FrameProcedureOptions FPO = FrameProcedureOptions::None; +  if (MFI.hasVarSizedObjects()) +    FPO |= FrameProcedureOptions::HasAlloca; +  if (MF->exposesReturnsTwice()) +    FPO |= FrameProcedureOptions::HasSetJmp; +  // FIXME: Set HasLongJmp if we ever track that info. +  if (MF->hasInlineAsm()) +    FPO |= FrameProcedureOptions::HasInlineAssembly; +  if (GV.hasPersonalityFn()) { +    if (isAsynchronousEHPersonality( +            classifyEHPersonality(GV.getPersonalityFn()))) +      FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; +    else +      FPO |= FrameProcedureOptions::HasExceptionHandling; +  } +  if (GV.hasFnAttribute(Attribute::InlineHint)) +    FPO |= FrameProcedureOptions::MarkedInline; +  if (GV.hasFnAttribute(Attribute::Naked)) +    FPO |= FrameProcedureOptions::Naked; +  if (MFI.hasStackProtectorIndex()) +    FPO |= FrameProcedureOptions::SecurityChecks; +  FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); +  FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); +  if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && +      !GV.hasFnAttribute(Attribute::OptimizeNone)) +    FPO |= FrameProcedureOptions::OptimizedForSpeed; +  // FIXME: Set GuardCfg when it is implemented. +  CurFn->FrameProcOpts = FPO; + +  OS.EmitCVFuncIdDirective(CurFn->FuncId); + +  // Find the end of the function prolog.  First known non-DBG_VALUE and +  // non-frame setup location marks the beginning of the function body. +  // FIXME: is there a simpler a way to do this? Can we just search +  // for the first instruction of the function, not the last of the prolog? +  DebugLoc PrologEndLoc; +  bool EmptyPrologue = true; +  for (const auto &MBB : *MF) { +    for (const auto &MI : MBB) { +      if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && +          MI.getDebugLoc()) { +        PrologEndLoc = MI.getDebugLoc(); +        break; +      } else if (!MI.isMetaInstruction()) { +        EmptyPrologue = false; +      } +    } +  } + +  // Record beginning of function if we have a non-empty prologue. +  if (PrologEndLoc && !EmptyPrologue) { +    DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); +    maybeRecordLocation(FnStartDL, MF); +  } +} + +static bool shouldEmitUdt(const DIType *T) { +  if (!T) +    return false; + +  // MSVC does not emit UDTs for typedefs that are scoped to classes. +  if (T->getTag() == dwarf::DW_TAG_typedef) { +    if (DIScope *Scope = T->getScope().resolve()) { +      switch (Scope->getTag()) { +      case dwarf::DW_TAG_structure_type: +      case dwarf::DW_TAG_class_type: +      case dwarf::DW_TAG_union_type: +        return false; +      } +    } +  } + +  while (true) { +    if (!T || T->isForwardDecl()) +      return false; + +    const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); +    if (!DT) +      return true; +    T = DT->getBaseType().resolve(); +  } +  return true; +} + +void CodeViewDebug::addToUDTs(const DIType *Ty) { +  // Don't record empty UDTs. +  if (Ty->getName().empty()) +    return; +  if (!shouldEmitUdt(Ty)) +    return; + +  SmallVector<StringRef, 5> QualifiedNameComponents; +  const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( +      Ty->getScope().resolve(), QualifiedNameComponents); + +  std::string FullyQualifiedName = +      getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); + +  if (ClosestSubprogram == nullptr) { +    GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); +  } else if (ClosestSubprogram == CurrentSubprogram) { +    LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); +  } + +  // TODO: What if the ClosestSubprogram is neither null or the current +  // subprogram?  Currently, the UDT just gets dropped on the floor. +  // +  // The current behavior is not desirable.  To get maximal fidelity, we would +  // need to perform all type translation before beginning emission of .debug$S +  // and then make LocalUDTs a member of FunctionInfo +} + +TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { +  // Generic dispatch for lowering an unknown type. +  switch (Ty->getTag()) { +  case dwarf::DW_TAG_array_type: +    return lowerTypeArray(cast<DICompositeType>(Ty)); +  case dwarf::DW_TAG_typedef: +    return lowerTypeAlias(cast<DIDerivedType>(Ty)); +  case dwarf::DW_TAG_base_type: +    return lowerTypeBasic(cast<DIBasicType>(Ty)); +  case dwarf::DW_TAG_pointer_type: +    if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") +      return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); +    LLVM_FALLTHROUGH; +  case dwarf::DW_TAG_reference_type: +  case dwarf::DW_TAG_rvalue_reference_type: +    return lowerTypePointer(cast<DIDerivedType>(Ty)); +  case dwarf::DW_TAG_ptr_to_member_type: +    return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); +  case dwarf::DW_TAG_restrict_type: +  case dwarf::DW_TAG_const_type: +  case dwarf::DW_TAG_volatile_type: +  // TODO: add support for DW_TAG_atomic_type here +    return lowerTypeModifier(cast<DIDerivedType>(Ty)); +  case dwarf::DW_TAG_subroutine_type: +    if (ClassTy) { +      // The member function type of a member function pointer has no +      // ThisAdjustment. +      return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, +                                     /*ThisAdjustment=*/0, +                                     /*IsStaticMethod=*/false); +    } +    return lowerTypeFunction(cast<DISubroutineType>(Ty)); +  case dwarf::DW_TAG_enumeration_type: +    return lowerTypeEnum(cast<DICompositeType>(Ty)); +  case dwarf::DW_TAG_class_type: +  case dwarf::DW_TAG_structure_type: +    return lowerTypeClass(cast<DICompositeType>(Ty)); +  case dwarf::DW_TAG_union_type: +    return lowerTypeUnion(cast<DICompositeType>(Ty)); +  case dwarf::DW_TAG_unspecified_type: +    if (Ty->getName() == "decltype(nullptr)") +      return TypeIndex::NullptrT(); +    return TypeIndex::None(); +  default: +    // Use the null type index. +    return TypeIndex(); +  } +} + +TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { +  DITypeRef UnderlyingTypeRef = Ty->getBaseType(); +  TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); +  StringRef TypeName = Ty->getName(); + +  addToUDTs(Ty); + +  if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && +      TypeName == "HRESULT") +    return TypeIndex(SimpleTypeKind::HResult); +  if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && +      TypeName == "wchar_t") +    return TypeIndex(SimpleTypeKind::WideCharacter); + +  return UnderlyingTypeIndex; +} + +TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { +  DITypeRef ElementTypeRef = Ty->getBaseType(); +  TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); +  // IndexType is size_t, which depends on the bitness of the target. +  TypeIndex IndexType = getPointerSizeInBytes() == 8 +                            ? TypeIndex(SimpleTypeKind::UInt64Quad) +                            : TypeIndex(SimpleTypeKind::UInt32Long); + +  uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; + +  // Add subranges to array type. +  DINodeArray Elements = Ty->getElements(); +  for (int i = Elements.size() - 1; i >= 0; --i) { +    const DINode *Element = Elements[i]; +    assert(Element->getTag() == dwarf::DW_TAG_subrange_type); + +    const DISubrange *Subrange = cast<DISubrange>(Element); +    assert(Subrange->getLowerBound() == 0 && +           "codeview doesn't support subranges with lower bounds"); +    int64_t Count = -1; +    if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) +      Count = CI->getSExtValue(); + +    // Forward declarations of arrays without a size and VLAs use a count of -1. +    // Emit a count of zero in these cases to match what MSVC does for arrays +    // without a size. MSVC doesn't support VLAs, so it's not clear what we +    // should do for them even if we could distinguish them. +    if (Count == -1) +      Count = 0; + +    // Update the element size and element type index for subsequent subranges. +    ElementSize *= Count; + +    // If this is the outermost array, use the size from the array. It will be +    // more accurate if we had a VLA or an incomplete element type size. +    uint64_t ArraySize = +        (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; + +    StringRef Name = (i == 0) ? Ty->getName() : ""; +    ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); +    ElementTypeIndex = TypeTable.writeLeafType(AR); +  } + +  return ElementTypeIndex; +} + +TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { +  TypeIndex Index; +  dwarf::TypeKind Kind; +  uint32_t ByteSize; + +  Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); +  ByteSize = Ty->getSizeInBits() / 8; + +  SimpleTypeKind STK = SimpleTypeKind::None; +  switch (Kind) { +  case dwarf::DW_ATE_address: +    // FIXME: Translate +    break; +  case dwarf::DW_ATE_boolean: +    switch (ByteSize) { +    case 1:  STK = SimpleTypeKind::Boolean8;   break; +    case 2:  STK = SimpleTypeKind::Boolean16;  break; +    case 4:  STK = SimpleTypeKind::Boolean32;  break; +    case 8:  STK = SimpleTypeKind::Boolean64;  break; +    case 16: STK = SimpleTypeKind::Boolean128; break; +    } +    break; +  case dwarf::DW_ATE_complex_float: +    switch (ByteSize) { +    case 2:  STK = SimpleTypeKind::Complex16;  break; +    case 4:  STK = SimpleTypeKind::Complex32;  break; +    case 8:  STK = SimpleTypeKind::Complex64;  break; +    case 10: STK = SimpleTypeKind::Complex80;  break; +    case 16: STK = SimpleTypeKind::Complex128; break; +    } +    break; +  case dwarf::DW_ATE_float: +    switch (ByteSize) { +    case 2:  STK = SimpleTypeKind::Float16;  break; +    case 4:  STK = SimpleTypeKind::Float32;  break; +    case 6:  STK = SimpleTypeKind::Float48;  break; +    case 8:  STK = SimpleTypeKind::Float64;  break; +    case 10: STK = SimpleTypeKind::Float80;  break; +    case 16: STK = SimpleTypeKind::Float128; break; +    } +    break; +  case dwarf::DW_ATE_signed: +    switch (ByteSize) { +    case 1:  STK = SimpleTypeKind::SignedCharacter; break; +    case 2:  STK = SimpleTypeKind::Int16Short;      break; +    case 4:  STK = SimpleTypeKind::Int32;           break; +    case 8:  STK = SimpleTypeKind::Int64Quad;       break; +    case 16: STK = SimpleTypeKind::Int128Oct;       break; +    } +    break; +  case dwarf::DW_ATE_unsigned: +    switch (ByteSize) { +    case 1:  STK = SimpleTypeKind::UnsignedCharacter; break; +    case 2:  STK = SimpleTypeKind::UInt16Short;       break; +    case 4:  STK = SimpleTypeKind::UInt32;            break; +    case 8:  STK = SimpleTypeKind::UInt64Quad;        break; +    case 16: STK = SimpleTypeKind::UInt128Oct;        break; +    } +    break; +  case dwarf::DW_ATE_UTF: +    switch (ByteSize) { +    case 2: STK = SimpleTypeKind::Character16; break; +    case 4: STK = SimpleTypeKind::Character32; break; +    } +    break; +  case dwarf::DW_ATE_signed_char: +    if (ByteSize == 1) +      STK = SimpleTypeKind::SignedCharacter; +    break; +  case dwarf::DW_ATE_unsigned_char: +    if (ByteSize == 1) +      STK = SimpleTypeKind::UnsignedCharacter; +    break; +  default: +    break; +  } + +  // Apply some fixups based on the source-level type name. +  if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") +    STK = SimpleTypeKind::Int32Long; +  if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") +    STK = SimpleTypeKind::UInt32Long; +  if (STK == SimpleTypeKind::UInt16Short && +      (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) +    STK = SimpleTypeKind::WideCharacter; +  if ((STK == SimpleTypeKind::SignedCharacter || +       STK == SimpleTypeKind::UnsignedCharacter) && +      Ty->getName() == "char") +    STK = SimpleTypeKind::NarrowCharacter; + +  return TypeIndex(STK); +} + +TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, +                                          PointerOptions PO) { +  TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); + +  // Pointers to simple types without any options can use SimpleTypeMode, rather +  // than having a dedicated pointer type record. +  if (PointeeTI.isSimple() && PO == PointerOptions::None && +      PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && +      Ty->getTag() == dwarf::DW_TAG_pointer_type) { +    SimpleTypeMode Mode = Ty->getSizeInBits() == 64 +                              ? SimpleTypeMode::NearPointer64 +                              : SimpleTypeMode::NearPointer32; +    return TypeIndex(PointeeTI.getSimpleKind(), Mode); +  } + +  PointerKind PK = +      Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; +  PointerMode PM = PointerMode::Pointer; +  switch (Ty->getTag()) { +  default: llvm_unreachable("not a pointer tag type"); +  case dwarf::DW_TAG_pointer_type: +    PM = PointerMode::Pointer; +    break; +  case dwarf::DW_TAG_reference_type: +    PM = PointerMode::LValueReference; +    break; +  case dwarf::DW_TAG_rvalue_reference_type: +    PM = PointerMode::RValueReference; +    break; +  } + +  if (Ty->isObjectPointer()) +    PO |= PointerOptions::Const; + +  PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); +  return TypeTable.writeLeafType(PR); +} + +static PointerToMemberRepresentation +translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { +  // SizeInBytes being zero generally implies that the member pointer type was +  // incomplete, which can happen if it is part of a function prototype. In this +  // case, use the unknown model instead of the general model. +  if (IsPMF) { +    switch (Flags & DINode::FlagPtrToMemberRep) { +    case 0: +      return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown +                              : PointerToMemberRepresentation::GeneralFunction; +    case DINode::FlagSingleInheritance: +      return PointerToMemberRepresentation::SingleInheritanceFunction; +    case DINode::FlagMultipleInheritance: +      return PointerToMemberRepresentation::MultipleInheritanceFunction; +    case DINode::FlagVirtualInheritance: +      return PointerToMemberRepresentation::VirtualInheritanceFunction; +    } +  } else { +    switch (Flags & DINode::FlagPtrToMemberRep) { +    case 0: +      return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown +                              : PointerToMemberRepresentation::GeneralData; +    case DINode::FlagSingleInheritance: +      return PointerToMemberRepresentation::SingleInheritanceData; +    case DINode::FlagMultipleInheritance: +      return PointerToMemberRepresentation::MultipleInheritanceData; +    case DINode::FlagVirtualInheritance: +      return PointerToMemberRepresentation::VirtualInheritanceData; +    } +  } +  llvm_unreachable("invalid ptr to member representation"); +} + +TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, +                                                PointerOptions PO) { +  assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); +  TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); +  TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); +  PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 +                                                : PointerKind::Near32; +  bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); +  PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction +                         : PointerMode::PointerToDataMember; + +  assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); +  uint8_t SizeInBytes = Ty->getSizeInBits() / 8; +  MemberPointerInfo MPI( +      ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); +  PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); +  return TypeTable.writeLeafType(PR); +} + +/// Given a DWARF calling convention, get the CodeView equivalent. If we don't +/// have a translation, use the NearC convention. +static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { +  switch (DwarfCC) { +  case dwarf::DW_CC_normal:             return CallingConvention::NearC; +  case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; +  case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall; +  case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall; +  case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal; +  case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector; +  } +  return CallingConvention::NearC; +} + +TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { +  ModifierOptions Mods = ModifierOptions::None; +  PointerOptions PO = PointerOptions::None; +  bool IsModifier = true; +  const DIType *BaseTy = Ty; +  while (IsModifier && BaseTy) { +    // FIXME: Need to add DWARF tags for __unaligned and _Atomic +    switch (BaseTy->getTag()) { +    case dwarf::DW_TAG_const_type: +      Mods |= ModifierOptions::Const; +      PO |= PointerOptions::Const; +      break; +    case dwarf::DW_TAG_volatile_type: +      Mods |= ModifierOptions::Volatile; +      PO |= PointerOptions::Volatile; +      break; +    case dwarf::DW_TAG_restrict_type: +      // Only pointer types be marked with __restrict. There is no known flag +      // for __restrict in LF_MODIFIER records. +      PO |= PointerOptions::Restrict; +      break; +    default: +      IsModifier = false; +      break; +    } +    if (IsModifier) +      BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); +  } + +  // Check if the inner type will use an LF_POINTER record. If so, the +  // qualifiers will go in the LF_POINTER record. This comes up for types like +  // 'int *const' and 'int *__restrict', not the more common cases like 'const +  // char *'. +  if (BaseTy) { +    switch (BaseTy->getTag()) { +    case dwarf::DW_TAG_pointer_type: +    case dwarf::DW_TAG_reference_type: +    case dwarf::DW_TAG_rvalue_reference_type: +      return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); +    case dwarf::DW_TAG_ptr_to_member_type: +      return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); +    default: +      break; +    } +  } + +  TypeIndex ModifiedTI = getTypeIndex(BaseTy); + +  // Return the base type index if there aren't any modifiers. For example, the +  // metadata could contain restrict wrappers around non-pointer types. +  if (Mods == ModifierOptions::None) +    return ModifiedTI; + +  ModifierRecord MR(ModifiedTI, Mods); +  return TypeTable.writeLeafType(MR); +} + +TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { +  SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; +  for (DITypeRef ArgTypeRef : Ty->getTypeArray()) +    ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); + +  // MSVC uses type none for variadic argument. +  if (ReturnAndArgTypeIndices.size() > 1 && +      ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { +    ReturnAndArgTypeIndices.back() = TypeIndex::None(); +  } +  TypeIndex ReturnTypeIndex = TypeIndex::Void(); +  ArrayRef<TypeIndex> ArgTypeIndices = None; +  if (!ReturnAndArgTypeIndices.empty()) { +    auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); +    ReturnTypeIndex = ReturnAndArgTypesRef.front(); +    ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); +  } + +  ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); +  TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); + +  CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); + +  FunctionOptions FO = getFunctionOptions(Ty); +  ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), +                            ArgListIndex); +  return TypeTable.writeLeafType(Procedure); +} + +TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, +                                                 const DIType *ClassTy, +                                                 int ThisAdjustment, +                                                 bool IsStaticMethod, +                                                 FunctionOptions FO) { +  // Lower the containing class type. +  TypeIndex ClassType = getTypeIndex(ClassTy); + +  DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); + +  unsigned Index = 0; +  SmallVector<TypeIndex, 8> ArgTypeIndices; +  TypeIndex ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); + +  // If the first argument is a pointer type and this isn't a static method, +  // treat it as the special 'this' parameter, which is encoded separately from +  // the arguments. +  TypeIndex ThisTypeIndex; +  if (!IsStaticMethod && ReturnAndArgs.size() > Index) { +    if (const DIDerivedType *PtrTy = +            dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index].resolve())) { +      if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { +        ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); +        Index++; +      } +    } +  } + +  while (Index < ReturnAndArgs.size()) +    ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); + +  // MSVC uses type none for variadic argument. +  if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) +    ArgTypeIndices.back() = TypeIndex::None(); + +  ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); +  TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); + +  CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); + +  MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, +                           ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); +  return TypeTable.writeLeafType(MFR); +} + +TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { +  unsigned VSlotCount = +      Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); +  SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); + +  VFTableShapeRecord VFTSR(Slots); +  return TypeTable.writeLeafType(VFTSR); +} + +static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { +  switch (Flags & DINode::FlagAccessibility) { +  case DINode::FlagPrivate:   return MemberAccess::Private; +  case DINode::FlagPublic:    return MemberAccess::Public; +  case DINode::FlagProtected: return MemberAccess::Protected; +  case 0: +    // If there was no explicit access control, provide the default for the tag. +    return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private +                                                 : MemberAccess::Public; +  } +  llvm_unreachable("access flags are exclusive"); +} + +static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { +  if (SP->isArtificial()) +    return MethodOptions::CompilerGenerated; + +  // FIXME: Handle other MethodOptions. + +  return MethodOptions::None; +} + +static MethodKind translateMethodKindFlags(const DISubprogram *SP, +                                           bool Introduced) { +  if (SP->getFlags() & DINode::FlagStaticMember) +    return MethodKind::Static; + +  switch (SP->getVirtuality()) { +  case dwarf::DW_VIRTUALITY_none: +    break; +  case dwarf::DW_VIRTUALITY_virtual: +    return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; +  case dwarf::DW_VIRTUALITY_pure_virtual: +    return Introduced ? MethodKind::PureIntroducingVirtual +                      : MethodKind::PureVirtual; +  default: +    llvm_unreachable("unhandled virtuality case"); +  } + +  return MethodKind::Vanilla; +} + +static TypeRecordKind getRecordKind(const DICompositeType *Ty) { +  switch (Ty->getTag()) { +  case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class; +  case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; +  } +  llvm_unreachable("unexpected tag"); +} + +/// Return ClassOptions that should be present on both the forward declaration +/// and the defintion of a tag type. +static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { +  ClassOptions CO = ClassOptions::None; + +  // MSVC always sets this flag, even for local types. Clang doesn't always +  // appear to give every type a linkage name, which may be problematic for us. +  // FIXME: Investigate the consequences of not following them here. +  if (!Ty->getIdentifier().empty()) +    CO |= ClassOptions::HasUniqueName; + +  // Put the Nested flag on a type if it appears immediately inside a tag type. +  // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass +  // here. That flag is only set on definitions, and not forward declarations. +  const DIScope *ImmediateScope = Ty->getScope().resolve(); +  if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) +    CO |= ClassOptions::Nested; + +  // Put the Scoped flag on function-local types. MSVC puts this flag for enum +  // type only when it has an immediate function scope. Clang never puts enums +  // inside DILexicalBlock scopes. Enum types, as generated by clang, are +  // always in function, class, or file scopes. +  if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { +    if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) +      CO |= ClassOptions::Scoped; +  } else { +    for (const DIScope *Scope = ImmediateScope; Scope != nullptr; +         Scope = Scope->getScope().resolve()) { +      if (isa<DISubprogram>(Scope)) { +        CO |= ClassOptions::Scoped; +        break; +      } +    } +  } + +  return CO; +} + +void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { +  switch (Ty->getTag()) { +  case dwarf::DW_TAG_class_type: +  case dwarf::DW_TAG_structure_type: +  case dwarf::DW_TAG_union_type: +  case dwarf::DW_TAG_enumeration_type: +    break; +  default: +    return; +  } + +  if (const auto *File = Ty->getFile()) { +    StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); +    TypeIndex SIDI = TypeTable.writeLeafType(SIDR); + +    UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); +    TypeTable.writeLeafType(USLR); +  } +} + +TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { +  ClassOptions CO = getCommonClassOptions(Ty); +  TypeIndex FTI; +  unsigned EnumeratorCount = 0; + +  if (Ty->isForwardDecl()) { +    CO |= ClassOptions::ForwardReference; +  } else { +    ContinuationRecordBuilder ContinuationBuilder; +    ContinuationBuilder.begin(ContinuationRecordKind::FieldList); +    for (const DINode *Element : Ty->getElements()) { +      // We assume that the frontend provides all members in source declaration +      // order, which is what MSVC does. +      if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { +        EnumeratorRecord ER(MemberAccess::Public, +                            APSInt::getUnsigned(Enumerator->getValue()), +                            Enumerator->getName()); +        ContinuationBuilder.writeMemberType(ER); +        EnumeratorCount++; +      } +    } +    FTI = TypeTable.insertRecord(ContinuationBuilder); +  } + +  std::string FullName = getFullyQualifiedName(Ty); + +  EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), +                getTypeIndex(Ty->getBaseType())); +  TypeIndex EnumTI = TypeTable.writeLeafType(ER); + +  addUDTSrcLine(Ty, EnumTI); + +  return EnumTI; +} + +//===----------------------------------------------------------------------===// +// ClassInfo +//===----------------------------------------------------------------------===// + +struct llvm::ClassInfo { +  struct MemberInfo { +    const DIDerivedType *MemberTypeNode; +    uint64_t BaseOffset; +  }; +  // [MemberInfo] +  using MemberList = std::vector<MemberInfo>; + +  using MethodsList = TinyPtrVector<const DISubprogram *>; +  // MethodName -> MethodsList +  using MethodsMap = MapVector<MDString *, MethodsList>; + +  /// Base classes. +  std::vector<const DIDerivedType *> Inheritance; + +  /// Direct members. +  MemberList Members; +  // Direct overloaded methods gathered by name. +  MethodsMap Methods; + +  TypeIndex VShapeTI; + +  std::vector<const DIType *> NestedTypes; +}; + +void CodeViewDebug::clear() { +  assert(CurFn == nullptr); +  FileIdMap.clear(); +  FnDebugInfo.clear(); +  FileToFilepathMap.clear(); +  LocalUDTs.clear(); +  GlobalUDTs.clear(); +  TypeIndices.clear(); +  CompleteTypeIndices.clear(); +  ScopeGlobals.clear(); +} + +void CodeViewDebug::collectMemberInfo(ClassInfo &Info, +                                      const DIDerivedType *DDTy) { +  if (!DDTy->getName().empty()) { +    Info.Members.push_back({DDTy, 0}); +    return; +  } + +  // An unnamed member may represent a nested struct or union. Attempt to +  // interpret the unnamed member as a DICompositeType possibly wrapped in +  // qualifier types. Add all the indirect fields to the current record if that +  // succeeds, and drop the member if that fails. +  assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); +  uint64_t Offset = DDTy->getOffsetInBits(); +  const DIType *Ty = DDTy->getBaseType().resolve(); +  bool FullyResolved = false; +  while (!FullyResolved) { +    switch (Ty->getTag()) { +    case dwarf::DW_TAG_const_type: +    case dwarf::DW_TAG_volatile_type: +      // FIXME: we should apply the qualifier types to the indirect fields +      // rather than dropping them. +      Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); +      break; +    default: +      FullyResolved = true; +      break; +    } +  } + +  const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); +  if (!DCTy) +    return; + +  ClassInfo NestedInfo = collectClassInfo(DCTy); +  for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) +    Info.Members.push_back( +        {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); +} + +ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { +  ClassInfo Info; +  // Add elements to structure type. +  DINodeArray Elements = Ty->getElements(); +  for (auto *Element : Elements) { +    // We assume that the frontend provides all members in source declaration +    // order, which is what MSVC does. +    if (!Element) +      continue; +    if (auto *SP = dyn_cast<DISubprogram>(Element)) { +      Info.Methods[SP->getRawName()].push_back(SP); +    } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { +      if (DDTy->getTag() == dwarf::DW_TAG_member) { +        collectMemberInfo(Info, DDTy); +      } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { +        Info.Inheritance.push_back(DDTy); +      } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && +                 DDTy->getName() == "__vtbl_ptr_type") { +        Info.VShapeTI = getTypeIndex(DDTy); +      } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { +        Info.NestedTypes.push_back(DDTy); +      } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { +        // Ignore friend members. It appears that MSVC emitted info about +        // friends in the past, but modern versions do not. +      } +    } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { +      Info.NestedTypes.push_back(Composite); +    } +    // Skip other unrecognized kinds of elements. +  } +  return Info; +} + +static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { +  // This routine is used by lowerTypeClass and lowerTypeUnion to determine +  // if a complete type should be emitted instead of a forward reference. +  return Ty->getName().empty() && Ty->getIdentifier().empty() && +      !Ty->isForwardDecl(); +} + +TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { +  // Emit the complete type for unnamed structs.  C++ classes with methods +  // which have a circular reference back to the class type are expected to +  // be named by the front-end and should not be "unnamed".  C unnamed +  // structs should not have circular references. +  if (shouldAlwaysEmitCompleteClassType(Ty)) { +    // If this unnamed complete type is already in the process of being defined +    // then the description of the type is malformed and cannot be emitted +    // into CodeView correctly so report a fatal error. +    auto I = CompleteTypeIndices.find(Ty); +    if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) +      report_fatal_error("cannot debug circular reference to unnamed type"); +    return getCompleteTypeIndex(Ty); +  } + +  // First, construct the forward decl.  Don't look into Ty to compute the +  // forward decl options, since it might not be available in all TUs. +  TypeRecordKind Kind = getRecordKind(Ty); +  ClassOptions CO = +      ClassOptions::ForwardReference | getCommonClassOptions(Ty); +  std::string FullName = getFullyQualifiedName(Ty); +  ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, +                 FullName, Ty->getIdentifier()); +  TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); +  if (!Ty->isForwardDecl()) +    DeferredCompleteTypes.push_back(Ty); +  return FwdDeclTI; +} + +TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { +  // Construct the field list and complete type record. +  TypeRecordKind Kind = getRecordKind(Ty); +  ClassOptions CO = getCommonClassOptions(Ty); +  TypeIndex FieldTI; +  TypeIndex VShapeTI; +  unsigned FieldCount; +  bool ContainsNestedClass; +  std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = +      lowerRecordFieldList(Ty); + +  if (ContainsNestedClass) +    CO |= ClassOptions::ContainsNestedClass; + +  std::string FullName = getFullyQualifiedName(Ty); + +  uint64_t SizeInBytes = Ty->getSizeInBits() / 8; + +  ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, +                 SizeInBytes, FullName, Ty->getIdentifier()); +  TypeIndex ClassTI = TypeTable.writeLeafType(CR); + +  addUDTSrcLine(Ty, ClassTI); + +  addToUDTs(Ty); + +  return ClassTI; +} + +TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { +  // Emit the complete type for unnamed unions. +  if (shouldAlwaysEmitCompleteClassType(Ty)) +    return getCompleteTypeIndex(Ty); + +  ClassOptions CO = +      ClassOptions::ForwardReference | getCommonClassOptions(Ty); +  std::string FullName = getFullyQualifiedName(Ty); +  UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); +  TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); +  if (!Ty->isForwardDecl()) +    DeferredCompleteTypes.push_back(Ty); +  return FwdDeclTI; +} + +TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { +  ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); +  TypeIndex FieldTI; +  unsigned FieldCount; +  bool ContainsNestedClass; +  std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = +      lowerRecordFieldList(Ty); + +  if (ContainsNestedClass) +    CO |= ClassOptions::ContainsNestedClass; + +  uint64_t SizeInBytes = Ty->getSizeInBits() / 8; +  std::string FullName = getFullyQualifiedName(Ty); + +  UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, +                 Ty->getIdentifier()); +  TypeIndex UnionTI = TypeTable.writeLeafType(UR); + +  addUDTSrcLine(Ty, UnionTI); + +  addToUDTs(Ty); + +  return UnionTI; +} + +std::tuple<TypeIndex, TypeIndex, unsigned, bool> +CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { +  // Manually count members. MSVC appears to count everything that generates a +  // field list record. Each individual overload in a method overload group +  // contributes to this count, even though the overload group is a single field +  // list record. +  unsigned MemberCount = 0; +  ClassInfo Info = collectClassInfo(Ty); +  ContinuationRecordBuilder ContinuationBuilder; +  ContinuationBuilder.begin(ContinuationRecordKind::FieldList); + +  // Create base classes. +  for (const DIDerivedType *I : Info.Inheritance) { +    if (I->getFlags() & DINode::FlagVirtual) { +      // Virtual base. +      unsigned VBPtrOffset = I->getVBPtrOffset(); +      // FIXME: Despite the accessor name, the offset is really in bytes. +      unsigned VBTableIndex = I->getOffsetInBits() / 4; +      auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase +                            ? TypeRecordKind::IndirectVirtualBaseClass +                            : TypeRecordKind::VirtualBaseClass; +      VirtualBaseClassRecord VBCR( +          RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), +          getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, +          VBTableIndex); + +      ContinuationBuilder.writeMemberType(VBCR); +      MemberCount++; +    } else { +      assert(I->getOffsetInBits() % 8 == 0 && +             "bases must be on byte boundaries"); +      BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), +                          getTypeIndex(I->getBaseType()), +                          I->getOffsetInBits() / 8); +      ContinuationBuilder.writeMemberType(BCR); +      MemberCount++; +    } +  } + +  // Create members. +  for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { +    const DIDerivedType *Member = MemberInfo.MemberTypeNode; +    TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); +    StringRef MemberName = Member->getName(); +    MemberAccess Access = +        translateAccessFlags(Ty->getTag(), Member->getFlags()); + +    if (Member->isStaticMember()) { +      StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); +      ContinuationBuilder.writeMemberType(SDMR); +      MemberCount++; +      continue; +    } + +    // Virtual function pointer member. +    if ((Member->getFlags() & DINode::FlagArtificial) && +        Member->getName().startswith("_vptr$")) { +      VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); +      ContinuationBuilder.writeMemberType(VFPR); +      MemberCount++; +      continue; +    } + +    // Data member. +    uint64_t MemberOffsetInBits = +        Member->getOffsetInBits() + MemberInfo.BaseOffset; +    if (Member->isBitField()) { +      uint64_t StartBitOffset = MemberOffsetInBits; +      if (const auto *CI = +              dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { +        MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; +      } +      StartBitOffset -= MemberOffsetInBits; +      BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), +                         StartBitOffset); +      MemberBaseType = TypeTable.writeLeafType(BFR); +    } +    uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; +    DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, +                         MemberName); +    ContinuationBuilder.writeMemberType(DMR); +    MemberCount++; +  } + +  // Create methods +  for (auto &MethodItr : Info.Methods) { +    StringRef Name = MethodItr.first->getString(); + +    std::vector<OneMethodRecord> Methods; +    for (const DISubprogram *SP : MethodItr.second) { +      TypeIndex MethodType = getMemberFunctionType(SP, Ty); +      bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; + +      unsigned VFTableOffset = -1; +      if (Introduced) +        VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); + +      Methods.push_back(OneMethodRecord( +          MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), +          translateMethodKindFlags(SP, Introduced), +          translateMethodOptionFlags(SP), VFTableOffset, Name)); +      MemberCount++; +    } +    assert(!Methods.empty() && "Empty methods map entry"); +    if (Methods.size() == 1) +      ContinuationBuilder.writeMemberType(Methods[0]); +    else { +      // FIXME: Make this use its own ContinuationBuilder so that +      // MethodOverloadList can be split correctly. +      MethodOverloadListRecord MOLR(Methods); +      TypeIndex MethodList = TypeTable.writeLeafType(MOLR); + +      OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); +      ContinuationBuilder.writeMemberType(OMR); +    } +  } + +  // Create nested classes. +  for (const DIType *Nested : Info.NestedTypes) { +    NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); +    ContinuationBuilder.writeMemberType(R); +    MemberCount++; +  } + +  TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); +  return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, +                         !Info.NestedTypes.empty()); +} + +TypeIndex CodeViewDebug::getVBPTypeIndex() { +  if (!VBPType.getIndex()) { +    // Make a 'const int *' type. +    ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); +    TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); + +    PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 +                                                  : PointerKind::Near32; +    PointerMode PM = PointerMode::Pointer; +    PointerOptions PO = PointerOptions::None; +    PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); +    VBPType = TypeTable.writeLeafType(PR); +  } + +  return VBPType; +} + +TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { +  const DIType *Ty = TypeRef.resolve(); +  const DIType *ClassTy = ClassTyRef.resolve(); + +  // The null DIType is the void type. Don't try to hash it. +  if (!Ty) +    return TypeIndex::Void(); + +  // Check if we've already translated this type. Don't try to do a +  // get-or-create style insertion that caches the hash lookup across the +  // lowerType call. It will update the TypeIndices map. +  auto I = TypeIndices.find({Ty, ClassTy}); +  if (I != TypeIndices.end()) +    return I->second; + +  TypeLoweringScope S(*this); +  TypeIndex TI = lowerType(Ty, ClassTy); +  return recordTypeIndexForDINode(Ty, TI, ClassTy); +} + +codeview::TypeIndex +CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, +                                      const DISubroutineType *SubroutineTy) { +  assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && +         "this type must be a pointer type"); + +  PointerOptions Options = PointerOptions::None; +  if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) +    Options = PointerOptions::LValueRefThisPointer; +  else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) +    Options = PointerOptions::RValueRefThisPointer; + +  // Check if we've already translated this type.  If there is no ref qualifier +  // on the function then we look up this pointer type with no associated class +  // so that the TypeIndex for the this pointer can be shared with the type +  // index for other pointers to this class type.  If there is a ref qualifier +  // then we lookup the pointer using the subroutine as the parent type. +  auto I = TypeIndices.find({PtrTy, SubroutineTy}); +  if (I != TypeIndices.end()) +    return I->second; + +  TypeLoweringScope S(*this); +  TypeIndex TI = lowerTypePointer(PtrTy, Options); +  return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); +} + +TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { +  DIType *Ty = TypeRef.resolve(); +  PointerRecord PR(getTypeIndex(Ty), +                   getPointerSizeInBytes() == 8 ? PointerKind::Near64 +                                                : PointerKind::Near32, +                   PointerMode::LValueReference, PointerOptions::None, +                   Ty->getSizeInBits() / 8); +  return TypeTable.writeLeafType(PR); +} + +TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { +  const DIType *Ty = TypeRef.resolve(); + +  // The null DIType is the void type. Don't try to hash it. +  if (!Ty) +    return TypeIndex::Void(); + +  // Look through typedefs when getting the complete type index. Call +  // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are +  // emitted only once. +  if (Ty->getTag() == dwarf::DW_TAG_typedef) +    (void)getTypeIndex(Ty); +  while (Ty->getTag() == dwarf::DW_TAG_typedef) +    Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); + +  // If this is a non-record type, the complete type index is the same as the +  // normal type index. Just call getTypeIndex. +  switch (Ty->getTag()) { +  case dwarf::DW_TAG_class_type: +  case dwarf::DW_TAG_structure_type: +  case dwarf::DW_TAG_union_type: +    break; +  default: +    return getTypeIndex(Ty); +  } + +  // Check if we've already translated the complete record type. +  const auto *CTy = cast<DICompositeType>(Ty); +  auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); +  if (!InsertResult.second) +    return InsertResult.first->second; + +  TypeLoweringScope S(*this); + +  // Make sure the forward declaration is emitted first. It's unclear if this +  // is necessary, but MSVC does it, and we should follow suit until we can show +  // otherwise. +  // We only emit a forward declaration for named types. +  if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { +    TypeIndex FwdDeclTI = getTypeIndex(CTy); + +    // Just use the forward decl if we don't have complete type info. This +    // might happen if the frontend is using modules and expects the complete +    // definition to be emitted elsewhere. +    if (CTy->isForwardDecl()) +      return FwdDeclTI; +  } + +  TypeIndex TI; +  switch (CTy->getTag()) { +  case dwarf::DW_TAG_class_type: +  case dwarf::DW_TAG_structure_type: +    TI = lowerCompleteTypeClass(CTy); +    break; +  case dwarf::DW_TAG_union_type: +    TI = lowerCompleteTypeUnion(CTy); +    break; +  default: +    llvm_unreachable("not a record"); +  } + +  // Update the type index associated with this CompositeType.  This cannot +  // use the 'InsertResult' iterator above because it is potentially +  // invalidated by map insertions which can occur while lowering the class +  // type above. +  CompleteTypeIndices[CTy] = TI; +  return TI; +} + +/// Emit all the deferred complete record types. Try to do this in FIFO order, +/// and do this until fixpoint, as each complete record type typically +/// references +/// many other record types. +void CodeViewDebug::emitDeferredCompleteTypes() { +  SmallVector<const DICompositeType *, 4> TypesToEmit; +  while (!DeferredCompleteTypes.empty()) { +    std::swap(DeferredCompleteTypes, TypesToEmit); +    for (const DICompositeType *RecordTy : TypesToEmit) +      getCompleteTypeIndex(RecordTy); +    TypesToEmit.clear(); +  } +} + +void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, +                                          ArrayRef<LocalVariable> Locals) { +  // Get the sorted list of parameters and emit them first. +  SmallVector<const LocalVariable *, 6> Params; +  for (const LocalVariable &L : Locals) +    if (L.DIVar->isParameter()) +      Params.push_back(&L); +  llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { +    return L->DIVar->getArg() < R->DIVar->getArg(); +  }); +  for (const LocalVariable *L : Params) +    emitLocalVariable(FI, *L); + +  // Next emit all non-parameters in the order that we found them. +  for (const LocalVariable &L : Locals) +    if (!L.DIVar->isParameter()) +      emitLocalVariable(FI, L); +} + +/// Only call this on endian-specific types like ulittle16_t and little32_t, or +/// structs composed of them. +template <typename T> +static void copyBytesForDefRange(SmallString<20> &BytePrefix, +                                 SymbolKind SymKind, const T &DefRangeHeader) { +  BytePrefix.resize(2 + sizeof(T)); +  ulittle16_t SymKindLE = ulittle16_t(SymKind); +  memcpy(&BytePrefix[0], &SymKindLE, 2); +  memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); +} + +void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, +                                      const LocalVariable &Var) { +  // LocalSym record, see SymbolRecord.h for more info. +  MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); + +  LocalSymFlags Flags = LocalSymFlags::None; +  if (Var.DIVar->isParameter()) +    Flags |= LocalSymFlags::IsParameter; +  if (Var.DefRanges.empty()) +    Flags |= LocalSymFlags::IsOptimizedOut; + +  OS.AddComment("TypeIndex"); +  TypeIndex TI = Var.UseReferenceType +                     ? getTypeIndexForReferenceTo(Var.DIVar->getType()) +                     : getCompleteTypeIndex(Var.DIVar->getType()); +  OS.EmitIntValue(TI.getIndex(), 4); +  OS.AddComment("Flags"); +  OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); +  // Truncate the name so we won't overflow the record length field. +  emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); +  endSymbolRecord(LocalEnd); + +  // Calculate the on disk prefix of the appropriate def range record. The +  // records and on disk formats are described in SymbolRecords.h. BytePrefix +  // should be big enough to hold all forms without memory allocation. +  SmallString<20> BytePrefix; +  for (const LocalVarDefRange &DefRange : Var.DefRanges) { +    BytePrefix.clear(); +    if (DefRange.InMemory) { +      int Offset = DefRange.DataOffset; +      unsigned Reg = DefRange.CVRegister; + +      // 32-bit x86 call sequences often use PUSH instructions, which disrupt +      // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, +      // instead. In frames without stack realignment, $T0 will be the CFA. +      if (RegisterId(Reg) == RegisterId::ESP) { +        Reg = unsigned(RegisterId::VFRAME); +        Offset += FI.OffsetAdjustment; +      } + +      // If we can use the chosen frame pointer for the frame and this isn't a +      // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. +      // Otherwise, use S_DEFRANGE_REGISTER_REL. +      EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); +      if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && +          (bool(Flags & LocalSymFlags::IsParameter) +               ? (EncFP == FI.EncodedParamFramePtrReg) +               : (EncFP == FI.EncodedLocalFramePtrReg))) { +        little32_t FPOffset = little32_t(Offset); +        copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); +      } else { +        uint16_t RegRelFlags = 0; +        if (DefRange.IsSubfield) { +          RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | +                        (DefRange.StructOffset +                         << DefRangeRegisterRelSym::OffsetInParentShift); +        } +        DefRangeRegisterRelSym::Header DRHdr; +        DRHdr.Register = Reg; +        DRHdr.Flags = RegRelFlags; +        DRHdr.BasePointerOffset = Offset; +        copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); +      } +    } else { +      assert(DefRange.DataOffset == 0 && "unexpected offset into register"); +      if (DefRange.IsSubfield) { +        DefRangeSubfieldRegisterSym::Header DRHdr; +        DRHdr.Register = DefRange.CVRegister; +        DRHdr.MayHaveNoName = 0; +        DRHdr.OffsetInParent = DefRange.StructOffset; +        copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); +      } else { +        DefRangeRegisterSym::Header DRHdr; +        DRHdr.Register = DefRange.CVRegister; +        DRHdr.MayHaveNoName = 0; +        copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); +      } +    } +    OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); +  } +} + +void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, +                                         const FunctionInfo& FI) { +  for (LexicalBlock *Block : Blocks) +    emitLexicalBlock(*Block, FI); +} + +/// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a +/// lexical block scope. +void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, +                                     const FunctionInfo& FI) { +  MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); +  OS.AddComment("PtrParent"); +  OS.EmitIntValue(0, 4);                                  // PtrParent +  OS.AddComment("PtrEnd"); +  OS.EmitIntValue(0, 4);                                  // PtrEnd +  OS.AddComment("Code size"); +  OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size +  OS.AddComment("Function section relative address"); +  OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset +  OS.AddComment("Function section index"); +  OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol +  OS.AddComment("Lexical block name"); +  emitNullTerminatedSymbolName(OS, Block.Name);           // Name +  endSymbolRecord(RecordEnd); + +  // Emit variables local to this lexical block. +  emitLocalVariableList(FI, Block.Locals); +  emitGlobalVariableList(Block.Globals); + +  // Emit lexical blocks contained within this block. +  emitLexicalBlockList(Block.Children, FI); + +  // Close the lexical block scope. +  emitEndSymbolRecord(SymbolKind::S_END); +} + +/// Convenience routine for collecting lexical block information for a list +/// of lexical scopes. +void CodeViewDebug::collectLexicalBlockInfo( +        SmallVectorImpl<LexicalScope *> &Scopes, +        SmallVectorImpl<LexicalBlock *> &Blocks, +        SmallVectorImpl<LocalVariable> &Locals, +        SmallVectorImpl<CVGlobalVariable> &Globals) { +  for (LexicalScope *Scope : Scopes) +    collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); +} + +/// Populate the lexical blocks and local variable lists of the parent with +/// information about the specified lexical scope. +void CodeViewDebug::collectLexicalBlockInfo( +    LexicalScope &Scope, +    SmallVectorImpl<LexicalBlock *> &ParentBlocks, +    SmallVectorImpl<LocalVariable> &ParentLocals, +    SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { +  if (Scope.isAbstractScope()) +    return; + +  // Gather information about the lexical scope including local variables, +  // global variables, and address ranges. +  bool IgnoreScope = false; +  auto LI = ScopeVariables.find(&Scope); +  SmallVectorImpl<LocalVariable> *Locals = +      LI != ScopeVariables.end() ? &LI->second : nullptr; +  auto GI = ScopeGlobals.find(Scope.getScopeNode()); +  SmallVectorImpl<CVGlobalVariable> *Globals = +      GI != ScopeGlobals.end() ? GI->second.get() : nullptr; +  const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); +  const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); + +  // Ignore lexical scopes which do not contain variables. +  if (!Locals && !Globals) +    IgnoreScope = true; + +  // Ignore lexical scopes which are not lexical blocks. +  if (!DILB) +    IgnoreScope = true; + +  // Ignore scopes which have too many address ranges to represent in the +  // current CodeView format or do not have a valid address range. +  // +  // For lexical scopes with multiple address ranges you may be tempted to +  // construct a single range covering every instruction where the block is +  // live and everything in between.  Unfortunately, Visual Studio only +  // displays variables from the first matching lexical block scope.  If the +  // first lexical block contains exception handling code or cold code which +  // is moved to the bottom of the routine creating a single range covering +  // nearly the entire routine, then it will hide all other lexical blocks +  // and the variables they contain. +  if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) +    IgnoreScope = true; + +  if (IgnoreScope) { +    // This scope can be safely ignored and eliminating it will reduce the +    // size of the debug information. Be sure to collect any variable and scope +    // information from the this scope or any of its children and collapse them +    // into the parent scope. +    if (Locals) +      ParentLocals.append(Locals->begin(), Locals->end()); +    if (Globals) +      ParentGlobals.append(Globals->begin(), Globals->end()); +    collectLexicalBlockInfo(Scope.getChildren(), +                            ParentBlocks, +                            ParentLocals, +                            ParentGlobals); +    return; +  } + +  // Create a new CodeView lexical block for this lexical scope.  If we've +  // seen this DILexicalBlock before then the scope tree is malformed and +  // we can handle this gracefully by not processing it a second time. +  auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); +  if (!BlockInsertion.second) +    return; + +  // Create a lexical block containing the variables and collect the the +  // lexical block information for the children. +  const InsnRange &Range = Ranges.front(); +  assert(Range.first && Range.second); +  LexicalBlock &Block = BlockInsertion.first->second; +  Block.Begin = getLabelBeforeInsn(Range.first); +  Block.End = getLabelAfterInsn(Range.second); +  assert(Block.Begin && "missing label for scope begin"); +  assert(Block.End && "missing label for scope end"); +  Block.Name = DILB->getName(); +  if (Locals) +    Block.Locals = std::move(*Locals); +  if (Globals) +    Block.Globals = std::move(*Globals); +  ParentBlocks.push_back(&Block); +  collectLexicalBlockInfo(Scope.getChildren(), +                          Block.Children, +                          Block.Locals, +                          Block.Globals); +} + +void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { +  const Function &GV = MF->getFunction(); +  assert(FnDebugInfo.count(&GV)); +  assert(CurFn == FnDebugInfo[&GV].get()); + +  collectVariableInfo(GV.getSubprogram()); + +  // Build the lexical block structure to emit for this routine. +  if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) +    collectLexicalBlockInfo(*CFS, +                            CurFn->ChildBlocks, +                            CurFn->Locals, +                            CurFn->Globals); + +  // Clear the scope and variable information from the map which will not be +  // valid after we have finished processing this routine.  This also prepares +  // the map for the subsequent routine. +  ScopeVariables.clear(); + +  // Don't emit anything if we don't have any line tables. +  // Thunks are compiler-generated and probably won't have source correlation. +  if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { +    FnDebugInfo.erase(&GV); +    CurFn = nullptr; +    return; +  } + +  CurFn->Annotations = MF->getCodeViewAnnotations(); + +  CurFn->End = Asm->getFunctionEnd(); + +  CurFn = nullptr; +} + +void CodeViewDebug::beginInstruction(const MachineInstr *MI) { +  DebugHandlerBase::beginInstruction(MI); + +  // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. +  if (!Asm || !CurFn || MI->isDebugInstr() || +      MI->getFlag(MachineInstr::FrameSetup)) +    return; + +  // If the first instruction of a new MBB has no location, find the first +  // instruction with a location and use that. +  DebugLoc DL = MI->getDebugLoc(); +  if (!DL && MI->getParent() != PrevInstBB) { +    for (const auto &NextMI : *MI->getParent()) { +      if (NextMI.isDebugInstr()) +        continue; +      DL = NextMI.getDebugLoc(); +      if (DL) +        break; +    } +  } +  PrevInstBB = MI->getParent(); + +  // If we still don't have a debug location, don't record a location. +  if (!DL) +    return; + +  maybeRecordLocation(DL, Asm->MF); +} + +MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { +  MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), +           *EndLabel = MMI->getContext().createTempSymbol(); +  OS.EmitIntValue(unsigned(Kind), 4); +  OS.AddComment("Subsection size"); +  OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); +  OS.EmitLabel(BeginLabel); +  return EndLabel; +} + +void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { +  OS.EmitLabel(EndLabel); +  // Every subsection must be aligned to a 4-byte boundary. +  OS.EmitValueToAlignment(4); +} + +static StringRef getSymbolName(SymbolKind SymKind) { +  for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) +    if (EE.Value == SymKind) +      return EE.Name; +  return ""; +} + +MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { +  MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), +           *EndLabel = MMI->getContext().createTempSymbol(); +  OS.AddComment("Record length"); +  OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); +  OS.EmitLabel(BeginLabel); +  if (OS.isVerboseAsm()) +    OS.AddComment("Record kind: " + getSymbolName(SymKind)); +  OS.EmitIntValue(unsigned(SymKind), 2); +  return EndLabel; +} + +void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { +  // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid +  // an extra copy of every symbol record in LLD. This increases object file +  // size by less than 1% in the clang build, and is compatible with the Visual +  // C++ linker. +  OS.EmitValueToAlignment(4); +  OS.EmitLabel(SymEnd); +} + +void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { +  OS.AddComment("Record length"); +  OS.EmitIntValue(2, 2); +  if (OS.isVerboseAsm()) +    OS.AddComment("Record kind: " + getSymbolName(EndKind)); +  OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind +} + +void CodeViewDebug::emitDebugInfoForUDTs( +    ArrayRef<std::pair<std::string, const DIType *>> UDTs) { +  for (const auto &UDT : UDTs) { +    const DIType *T = UDT.second; +    assert(shouldEmitUdt(T)); + +    MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); +    OS.AddComment("Type"); +    OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); +    emitNullTerminatedSymbolName(OS, UDT.first); +    endSymbolRecord(UDTRecordEnd); +  } +} + +void CodeViewDebug::collectGlobalVariableInfo() { +  DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> +      GlobalMap; +  for (const GlobalVariable &GV : MMI->getModule()->globals()) { +    SmallVector<DIGlobalVariableExpression *, 1> GVEs; +    GV.getDebugInfo(GVEs); +    for (const auto *GVE : GVEs) +      GlobalMap[GVE] = &GV; +  } + +  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); +  for (const MDNode *Node : CUs->operands()) { +    const auto *CU = cast<DICompileUnit>(Node); +    for (const auto *GVE : CU->getGlobalVariables()) { +      const auto *GV = GlobalMap.lookup(GVE); +      if (!GV || GV->isDeclarationForLinker()) +        continue; +      const DIGlobalVariable *DIGV = GVE->getVariable(); +      DIScope *Scope = DIGV->getScope(); +      SmallVector<CVGlobalVariable, 1> *VariableList; +      if (Scope && isa<DILocalScope>(Scope)) { +        // Locate a global variable list for this scope, creating one if +        // necessary. +        auto Insertion = ScopeGlobals.insert( +            {Scope, std::unique_ptr<GlobalVariableList>()}); +        if (Insertion.second) +          Insertion.first->second = llvm::make_unique<GlobalVariableList>(); +        VariableList = Insertion.first->second.get(); +      } else if (GV->hasComdat()) +        // Emit this global variable into a COMDAT section. +        VariableList = &ComdatVariables; +      else +        // Emit this globla variable in a single global symbol section. +        VariableList = &GlobalVariables; +      CVGlobalVariable CVGV = {DIGV, GV}; +      VariableList->emplace_back(std::move(CVGV)); +    } +  } +} + +void CodeViewDebug::emitDebugInfoForGlobals() { +  // First, emit all globals that are not in a comdat in a single symbol +  // substream. MSVC doesn't like it if the substream is empty, so only open +  // it if we have at least one global to emit. +  switchToDebugSectionForSymbol(nullptr); +  if (!GlobalVariables.empty()) { +    OS.AddComment("Symbol subsection for globals"); +    MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); +    emitGlobalVariableList(GlobalVariables); +    endCVSubsection(EndLabel); +  } + +  // Second, emit each global that is in a comdat into its own .debug$S +  // section along with its own symbol substream. +  for (const CVGlobalVariable &CVGV : ComdatVariables) { +    MCSymbol *GVSym = Asm->getSymbol(CVGV.GV); +    OS.AddComment("Symbol subsection for " + +            Twine(GlobalValue::dropLLVMManglingEscape(CVGV.GV->getName()))); +    switchToDebugSectionForSymbol(GVSym); +    MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); +    // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. +    emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym); +    endCVSubsection(EndLabel); +  } +} + +void CodeViewDebug::emitDebugInfoForRetainedTypes() { +  NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); +  for (const MDNode *Node : CUs->operands()) { +    for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { +      if (DIType *RT = dyn_cast<DIType>(Ty)) { +        getTypeIndex(RT); +        // FIXME: Add to global/local DTU list. +      } +    } +  } +} + +// Emit each global variable in the specified array. +void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { +  for (const CVGlobalVariable &CVGV : Globals) { +    MCSymbol *GVSym = Asm->getSymbol(CVGV.GV); +    // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. +    emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym); +  } +} + +void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, +                                           const GlobalVariable *GV, +                                           MCSymbol *GVSym) { +  // DataSym record, see SymbolRecord.h for more info. Thread local data +  // happens to have the same format as global data. +  SymbolKind DataSym = GV->isThreadLocal() +                           ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 +                                                    : SymbolKind::S_GTHREAD32) +                           : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 +                                                    : SymbolKind::S_GDATA32); +  MCSymbol *DataEnd = beginSymbolRecord(DataSym); +  OS.AddComment("Type"); +  OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); +  OS.AddComment("DataOffset"); +  OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); +  OS.AddComment("Segment"); +  OS.EmitCOFFSectionIndex(GVSym); +  OS.AddComment("Name"); +  const unsigned LengthOfDataRecord = 12; +  emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord); +  endSymbolRecord(DataEnd); +} | 
