diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/IfConversion.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/IfConversion.cpp | 2270 | 
1 files changed, 2270 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/IfConversion.cpp b/contrib/llvm/lib/CodeGen/IfConversion.cpp new file mode 100644 index 000000000000..628d599a3cc7 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/IfConversion.cpp @@ -0,0 +1,2270 @@ +//===-- IfConversion.cpp - Machine code if conversion pass. ---------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the machine instruction level if-conversion pass, which +// tries to convert conditional branches into predicated instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Passes.h" +#include "BranchFolding.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/ScopeExit.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/LivePhysRegs.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <algorithm> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "ifcvt" + +// Hidden options for help debugging. +static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden); +static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden); +static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden); +static cl::opt<bool> DisableSimple("disable-ifcvt-simple", +                                   cl::init(false), cl::Hidden); +static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false", +                                    cl::init(false), cl::Hidden); +static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle", +                                     cl::init(false), cl::Hidden); +static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev", +                                      cl::init(false), cl::Hidden); +static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false", +                                      cl::init(false), cl::Hidden); +static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev", +                                       cl::init(false), cl::Hidden); +static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond", +                                    cl::init(false), cl::Hidden); +static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond", +                                        cl::init(false), cl::Hidden); +static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold", +                                     cl::init(true), cl::Hidden); + +STATISTIC(NumSimple,       "Number of simple if-conversions performed"); +STATISTIC(NumSimpleFalse,  "Number of simple (F) if-conversions performed"); +STATISTIC(NumTriangle,     "Number of triangle if-conversions performed"); +STATISTIC(NumTriangleRev,  "Number of triangle (R) if-conversions performed"); +STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed"); +STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed"); +STATISTIC(NumDiamonds,     "Number of diamond if-conversions performed"); +STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed"); +STATISTIC(NumIfConvBBs,    "Number of if-converted blocks"); +STATISTIC(NumDupBBs,       "Number of duplicated blocks"); +STATISTIC(NumUnpred,       "Number of true blocks of diamonds unpredicated"); + +namespace { +  class IfConverter : public MachineFunctionPass { +    enum IfcvtKind { +      ICNotClassfied,  // BB data valid, but not classified. +      ICSimpleFalse,   // Same as ICSimple, but on the false path. +      ICSimple,        // BB is entry of an one split, no rejoin sub-CFG. +      ICTriangleFRev,  // Same as ICTriangleFalse, but false path rev condition. +      ICTriangleRev,   // Same as ICTriangle, but true path rev condition. +      ICTriangleFalse, // Same as ICTriangle, but on the false path. +      ICTriangle,      // BB is entry of a triangle sub-CFG. +      ICDiamond,       // BB is entry of a diamond sub-CFG. +      ICForkedDiamond  // BB is entry of an almost diamond sub-CFG, with a +                       // common tail that can be shared. +    }; + +    /// One per MachineBasicBlock, this is used to cache the result +    /// if-conversion feasibility analysis. This includes results from +    /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its +    /// classification, and common tail block of its successors (if it's a +    /// diamond shape), its size, whether it's predicable, and whether any +    /// instruction can clobber the 'would-be' predicate. +    /// +    /// IsDone          - True if BB is not to be considered for ifcvt. +    /// IsBeingAnalyzed - True if BB is currently being analyzed. +    /// IsAnalyzed      - True if BB has been analyzed (info is still valid). +    /// IsEnqueued      - True if BB has been enqueued to be ifcvt'ed. +    /// IsBrAnalyzable  - True if analyzeBranch() returns false. +    /// HasFallThrough  - True if BB may fallthrough to the following BB. +    /// IsUnpredicable  - True if BB is known to be unpredicable. +    /// ClobbersPred    - True if BB could modify predicates (e.g. has +    ///                   cmp, call, etc.) +    /// NonPredSize     - Number of non-predicated instructions. +    /// ExtraCost       - Extra cost for multi-cycle instructions. +    /// ExtraCost2      - Some instructions are slower when predicated +    /// BB              - Corresponding MachineBasicBlock. +    /// TrueBB / FalseBB- See analyzeBranch(). +    /// BrCond          - Conditions for end of block conditional branches. +    /// Predicate       - Predicate used in the BB. +    struct BBInfo { +      bool IsDone          : 1; +      bool IsBeingAnalyzed : 1; +      bool IsAnalyzed      : 1; +      bool IsEnqueued      : 1; +      bool IsBrAnalyzable  : 1; +      bool IsBrReversible  : 1; +      bool HasFallThrough  : 1; +      bool IsUnpredicable  : 1; +      bool CannotBeCopied  : 1; +      bool ClobbersPred    : 1; +      unsigned NonPredSize; +      unsigned ExtraCost; +      unsigned ExtraCost2; +      MachineBasicBlock *BB; +      MachineBasicBlock *TrueBB; +      MachineBasicBlock *FalseBB; +      SmallVector<MachineOperand, 4> BrCond; +      SmallVector<MachineOperand, 4> Predicate; +      BBInfo() : IsDone(false), IsBeingAnalyzed(false), +                 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), +                 IsBrReversible(false), HasFallThrough(false), +                 IsUnpredicable(false), CannotBeCopied(false), +                 ClobbersPred(false), NonPredSize(0), ExtraCost(0), +                 ExtraCost2(0), BB(nullptr), TrueBB(nullptr), +                 FalseBB(nullptr) {} +    }; + +    /// Record information about pending if-conversions to attempt: +    /// BBI             - Corresponding BBInfo. +    /// Kind            - Type of block. See IfcvtKind. +    /// NeedSubsumption - True if the to-be-predicated BB has already been +    ///                   predicated. +    /// NumDups      - Number of instructions that would be duplicated due +    ///                   to this if-conversion. (For diamonds, the number of +    ///                   identical instructions at the beginnings of both +    ///                   paths). +    /// NumDups2     - For diamonds, the number of identical instructions +    ///                   at the ends of both paths. +    struct IfcvtToken { +      BBInfo &BBI; +      IfcvtKind Kind; +      unsigned NumDups; +      unsigned NumDups2; +      bool NeedSubsumption : 1; +      bool TClobbersPred : 1; +      bool FClobbersPred : 1; +      IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, +                 bool tc = false, bool fc = false) +        : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), +          TClobbersPred(tc), FClobbersPred(fc) {} +    }; + +    /// Results of if-conversion feasibility analysis indexed by basic block +    /// number. +    std::vector<BBInfo> BBAnalysis; +    TargetSchedModel SchedModel; + +    const TargetLoweringBase *TLI; +    const TargetInstrInfo *TII; +    const TargetRegisterInfo *TRI; +    const MachineBranchProbabilityInfo *MBPI; +    MachineRegisterInfo *MRI; + +    LivePhysRegs Redefs; +    LivePhysRegs DontKill; + +    bool PreRegAlloc; +    bool MadeChange; +    int FnNum; +    std::function<bool(const MachineFunction &)> PredicateFtor; + +  public: +    static char ID; +    IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) +        : MachineFunctionPass(ID), FnNum(-1), PredicateFtor(std::move(Ftor)) { +      initializeIfConverterPass(*PassRegistry::getPassRegistry()); +    } + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.addRequired<MachineBlockFrequencyInfo>(); +      AU.addRequired<MachineBranchProbabilityInfo>(); +      MachineFunctionPass::getAnalysisUsage(AU); +    } + +    bool runOnMachineFunction(MachineFunction &MF) override; + +    MachineFunctionProperties getRequiredProperties() const override { +      return MachineFunctionProperties().set( +          MachineFunctionProperties::Property::NoVRegs); +    } + +  private: +    bool reverseBranchCondition(BBInfo &BBI) const; +    bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, +                     BranchProbability Prediction) const; +    bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, +                       bool FalseBranch, unsigned &Dups, +                       BranchProbability Prediction) const; +    bool CountDuplicatedInstructions( +        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, +        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, +        unsigned &Dups1, unsigned &Dups2, +        MachineBasicBlock &TBB, MachineBasicBlock &FBB, +        bool SkipUnconditionalBranches) const; +    bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, +                      unsigned &Dups1, unsigned &Dups2, +                      BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; +    bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, +                            unsigned &Dups1, unsigned &Dups2, +                            BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; +    void AnalyzeBranches(BBInfo &BBI); +    void ScanInstructions(BBInfo &BBI, +                          MachineBasicBlock::iterator &Begin, +                          MachineBasicBlock::iterator &End, +                          bool BranchUnpredicable = false) const; +    bool RescanInstructions( +        MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, +        MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, +        BBInfo &TrueBBI, BBInfo &FalseBBI) const; +    void AnalyzeBlock(MachineBasicBlock &MBB, +                      std::vector<std::unique_ptr<IfcvtToken>> &Tokens); +    bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Cond, +                             bool isTriangle = false, bool RevBranch = false, +                             bool hasCommonTail = false); +    void AnalyzeBlocks(MachineFunction &MF, +                       std::vector<std::unique_ptr<IfcvtToken>> &Tokens); +    void InvalidatePreds(MachineBasicBlock &MBB); +    void RemoveExtraEdges(BBInfo &BBI); +    bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); +    bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); +    bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, +                                unsigned NumDups1, unsigned NumDups2, +                                bool TClobbersPred, bool FClobbersPred, +                                bool RemoveBranch, bool MergeAddEdges); +    bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, +                          unsigned NumDups1, unsigned NumDups2, +                          bool TClobbers, bool FClobbers); +    bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, +                              unsigned NumDups1, unsigned NumDups2, +                              bool TClobbers, bool FClobbers); +    void PredicateBlock(BBInfo &BBI, +                        MachineBasicBlock::iterator E, +                        SmallVectorImpl<MachineOperand> &Cond, +                        SmallSet<unsigned, 4> *LaterRedefs = nullptr); +    void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, +                               SmallVectorImpl<MachineOperand> &Cond, +                               bool IgnoreBr = false); +    void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); + +    bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, +                            unsigned Cycle, unsigned Extra, +                            BranchProbability Prediction) const { +      return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra, +                                                   Prediction); +    } + +    bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB, +                            unsigned TCycle, unsigned TExtra, +                            MachineBasicBlock &FBB, +                            unsigned FCycle, unsigned FExtra, +                            BranchProbability Prediction) const { +      return TCycle > 0 && FCycle > 0 && +        TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra, +                                 Prediction); +    } + +    /// Returns true if Block ends without a terminator. +    bool blockAlwaysFallThrough(BBInfo &BBI) const { +      return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; +    } + +    /// Used to sort if-conversion candidates. +    static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, +                              const std::unique_ptr<IfcvtToken> &C2) { +      int Incr1 = (C1->Kind == ICDiamond) +        ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; +      int Incr2 = (C2->Kind == ICDiamond) +        ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; +      if (Incr1 > Incr2) +        return true; +      else if (Incr1 == Incr2) { +        // Favors subsumption. +        if (!C1->NeedSubsumption && C2->NeedSubsumption) +          return true; +        else if (C1->NeedSubsumption == C2->NeedSubsumption) { +          // Favors diamond over triangle, etc. +          if ((unsigned)C1->Kind < (unsigned)C2->Kind) +            return true; +          else if (C1->Kind == C2->Kind) +            return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); +        } +      } +      return false; +    } +  }; + +  char IfConverter::ID = 0; +} + +char &llvm::IfConverterID = IfConverter::ID; + +INITIALIZE_PASS_BEGIN(IfConverter, "if-converter", "If Converter", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) +INITIALIZE_PASS_END(IfConverter, "if-converter", "If Converter", false, false) + +bool IfConverter::runOnMachineFunction(MachineFunction &MF) { +  if (skipFunction(*MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) +    return false; + +  const TargetSubtargetInfo &ST = MF.getSubtarget(); +  TLI = ST.getTargetLowering(); +  TII = ST.getInstrInfo(); +  TRI = ST.getRegisterInfo(); +  BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>()); +  MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); +  MRI = &MF.getRegInfo(); +  SchedModel.init(ST.getSchedModel(), &ST, TII); + +  if (!TII) return false; + +  PreRegAlloc = MRI->isSSA(); + +  bool BFChange = false; +  if (!PreRegAlloc) { +    // Tail merge tend to expose more if-conversion opportunities. +    BranchFolder BF(true, false, MBFI, *MBPI); +    BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(), +                                   getAnalysisIfAvailable<MachineModuleInfo>()); +  } + +  DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum <<  ") \'" +               << MF.getName() << "\'"); + +  if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { +    DEBUG(dbgs() << " skipped\n"); +    return false; +  } +  DEBUG(dbgs() << "\n"); + +  MF.RenumberBlocks(); +  BBAnalysis.resize(MF.getNumBlockIDs()); + +  std::vector<std::unique_ptr<IfcvtToken>> Tokens; +  MadeChange = false; +  unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + +    NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; +  while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { +    // Do an initial analysis for each basic block and find all the potential +    // candidates to perform if-conversion. +    bool Change = false; +    AnalyzeBlocks(MF, Tokens); +    while (!Tokens.empty()) { +      std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); +      Tokens.pop_back(); +      BBInfo &BBI = Token->BBI; +      IfcvtKind Kind = Token->Kind; +      unsigned NumDups = Token->NumDups; +      unsigned NumDups2 = Token->NumDups2; + +      // If the block has been evicted out of the queue or it has already been +      // marked dead (due to it being predicated), then skip it. +      if (BBI.IsDone) +        BBI.IsEnqueued = false; +      if (!BBI.IsEnqueued) +        continue; + +      BBI.IsEnqueued = false; + +      bool RetVal = false; +      switch (Kind) { +      default: llvm_unreachable("Unexpected!"); +      case ICSimple: +      case ICSimpleFalse: { +        bool isFalse = Kind == ICSimpleFalse; +        if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; +        DEBUG(dbgs() << "Ifcvt (Simple" << (Kind == ICSimpleFalse ? +                                            " false" : "") +                     << "): BB#" << BBI.BB->getNumber() << " (" +                     << ((Kind == ICSimpleFalse) +                         ? BBI.FalseBB->getNumber() +                         : BBI.TrueBB->getNumber()) << ") "); +        RetVal = IfConvertSimple(BBI, Kind); +        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); +        if (RetVal) { +          if (isFalse) ++NumSimpleFalse; +          else         ++NumSimple; +        } +       break; +      } +      case ICTriangle: +      case ICTriangleRev: +      case ICTriangleFalse: +      case ICTriangleFRev: { +        bool isFalse = Kind == ICTriangleFalse; +        bool isRev   = (Kind == ICTriangleRev || Kind == ICTriangleFRev); +        if (DisableTriangle && !isFalse && !isRev) break; +        if (DisableTriangleR && !isFalse && isRev) break; +        if (DisableTriangleF && isFalse && !isRev) break; +        if (DisableTriangleFR && isFalse && isRev) break; +        DEBUG(dbgs() << "Ifcvt (Triangle"); +        if (isFalse) +          DEBUG(dbgs() << " false"); +        if (isRev) +          DEBUG(dbgs() << " rev"); +        DEBUG(dbgs() << "): BB#" << BBI.BB->getNumber() << " (T:" +                     << BBI.TrueBB->getNumber() << ",F:" +                     << BBI.FalseBB->getNumber() << ") "); +        RetVal = IfConvertTriangle(BBI, Kind); +        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); +        if (RetVal) { +          if (isFalse) { +            if (isRev) ++NumTriangleFRev; +            else       ++NumTriangleFalse; +          } else { +            if (isRev) ++NumTriangleRev; +            else       ++NumTriangle; +          } +        } +        break; +      } +      case ICDiamond: { +        if (DisableDiamond) break; +        DEBUG(dbgs() << "Ifcvt (Diamond): BB#" << BBI.BB->getNumber() << " (T:" +                     << BBI.TrueBB->getNumber() << ",F:" +                     << BBI.FalseBB->getNumber() << ") "); +        RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2, +                                  Token->TClobbersPred, +                                  Token->FClobbersPred); +        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); +        if (RetVal) ++NumDiamonds; +        break; +      } +      case ICForkedDiamond: { +        if (DisableForkedDiamond) break; +        DEBUG(dbgs() << "Ifcvt (Forked Diamond): BB#" +                     << BBI.BB->getNumber() << " (T:" +                     << BBI.TrueBB->getNumber() << ",F:" +                     << BBI.FalseBB->getNumber() << ") "); +        RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2, +                                      Token->TClobbersPred, +                                      Token->FClobbersPred); +        DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n"); +        if (RetVal) ++NumForkedDiamonds; +        break; +      } +      } + +      Change |= RetVal; + +      NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + +        NumTriangleFalse + NumTriangleFRev + NumDiamonds; +      if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) +        break; +    } + +    if (!Change) +      break; +    MadeChange |= Change; +  } + +  Tokens.clear(); +  BBAnalysis.clear(); + +  if (MadeChange && IfCvtBranchFold) { +    BranchFolder BF(false, false, MBFI, *MBPI); +    BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), +                        getAnalysisIfAvailable<MachineModuleInfo>()); +  } + +  MadeChange |= BFChange; +  return MadeChange; +} + +/// BB has a fallthrough. Find its 'false' successor given its 'true' successor. +static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, +                                         MachineBasicBlock *TrueBB) { +  for (MachineBasicBlock *SuccBB : BB->successors()) { +    if (SuccBB != TrueBB) +      return SuccBB; +  } +  return nullptr; +} + +/// Reverse the condition of the end of the block branch. Swap block's 'true' +/// and 'false' successors. +bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { +  DebugLoc dl;  // FIXME: this is nowhere +  if (!TII->reverseBranchCondition(BBI.BrCond)) { +    TII->removeBranch(*BBI.BB); +    TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl); +    std::swap(BBI.TrueBB, BBI.FalseBB); +    return true; +  } +  return false; +} + +/// Returns the next block in the function blocks ordering. If it is the end, +/// returns NULL. +static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { +  MachineFunction::iterator I = MBB.getIterator(); +  MachineFunction::iterator E = MBB.getParent()->end(); +  if (++I == E) +    return nullptr; +  return &*I; +} + +/// Returns true if the 'true' block (along with its predecessor) forms a valid +/// simple shape for ifcvt. It also returns the number of instructions that the +/// ifcvt would need to duplicate if performed in Dups. +bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, +                              BranchProbability Prediction) const { +  Dups = 0; +  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) +    return false; + +  if (TrueBBI.IsBrAnalyzable) +    return false; + +  if (TrueBBI.BB->pred_size() > 1) { +    if (TrueBBI.CannotBeCopied || +        !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize, +                                        Prediction)) +      return false; +    Dups = TrueBBI.NonPredSize; +  } + +  return true; +} + +/// Returns true if the 'true' and 'false' blocks (along with their common +/// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is +/// true, it checks if 'true' block's false branch branches to the 'false' block +/// rather than the other way around. It also returns the number of instructions +/// that the ifcvt would need to duplicate if performed in 'Dups'. +bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, +                                bool FalseBranch, unsigned &Dups, +                                BranchProbability Prediction) const { +  Dups = 0; +  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) +    return false; + +  if (TrueBBI.BB->pred_size() > 1) { +    if (TrueBBI.CannotBeCopied) +      return false; + +    unsigned Size = TrueBBI.NonPredSize; +    if (TrueBBI.IsBrAnalyzable) { +      if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) +        // Ends with an unconditional branch. It will be removed. +        --Size; +      else { +        MachineBasicBlock *FExit = FalseBranch +          ? TrueBBI.TrueBB : TrueBBI.FalseBB; +        if (FExit) +          // Require a conditional branch +          ++Size; +      } +    } +    if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction)) +      return false; +    Dups = Size; +  } + +  MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; +  if (!TExit && blockAlwaysFallThrough(TrueBBI)) { +    MachineFunction::iterator I = TrueBBI.BB->getIterator(); +    if (++I == TrueBBI.BB->getParent()->end()) +      return false; +    TExit = &*I; +  } +  return TExit && TExit == FalseBBI.BB; +} + +/// Count duplicated instructions and move the iterators to show where they +/// are. +/// @param TIB True Iterator Begin +/// @param FIB False Iterator Begin +/// These two iterators initially point to the first instruction of the two +/// blocks, and finally point to the first non-shared instruction. +/// @param TIE True Iterator End +/// @param FIE False Iterator End +/// These two iterators initially point to End() for the two blocks() and +/// finally point to the first shared instruction in the tail. +/// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of +/// two blocks. +/// @param Dups1 count of duplicated instructions at the beginning of the 2 +/// blocks. +/// @param Dups2 count of duplicated instructions at the end of the 2 blocks. +/// @param SkipUnconditionalBranches if true, Don't make sure that +/// unconditional branches at the end of the blocks are the same. True is +/// passed when the blocks are analyzable to allow for fallthrough to be +/// handled. +/// @return false if the shared portion prevents if conversion. +bool IfConverter::CountDuplicatedInstructions( +    MachineBasicBlock::iterator &TIB, +    MachineBasicBlock::iterator &FIB, +    MachineBasicBlock::iterator &TIE, +    MachineBasicBlock::iterator &FIE, +    unsigned &Dups1, unsigned &Dups2, +    MachineBasicBlock &TBB, MachineBasicBlock &FBB, +    bool SkipUnconditionalBranches) const { + +  while (TIB != TIE && FIB != FIE) { +    // Skip dbg_value instructions. These do not count. +    TIB = skipDebugInstructionsForward(TIB, TIE); +    FIB = skipDebugInstructionsForward(FIB, FIE); +    if (TIB == TIE || FIB == FIE) +      break; +    if (!TIB->isIdenticalTo(*FIB)) +      break; +    // A pred-clobbering instruction in the shared portion prevents +    // if-conversion. +    std::vector<MachineOperand> PredDefs; +    if (TII->DefinesPredicate(*TIB, PredDefs)) +      return false; +    // If we get all the way to the branch instructions, don't count them. +    if (!TIB->isBranch()) +      ++Dups1; +    ++TIB; +    ++FIB; +  } + +  // Check for already containing all of the block. +  if (TIB == TIE || FIB == FIE) +    return true; +  // Now, in preparation for counting duplicate instructions at the ends of the +  // blocks, switch to reverse_iterators. Note that getReverse() returns an +  // iterator that points to the same instruction, unlike std::reverse_iterator. +  // We have to do our own shifting so that we get the same range. +  MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse()); +  MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse()); +  const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse()); +  const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse()); + +  if (!TBB.succ_empty() || !FBB.succ_empty()) { +    if (SkipUnconditionalBranches) { +      while (RTIE != RTIB && RTIE->isUnconditionalBranch()) +        ++RTIE; +      while (RFIE != RFIB && RFIE->isUnconditionalBranch()) +        ++RFIE; +    } +  } + +  // Count duplicate instructions at the ends of the blocks. +  while (RTIE != RTIB && RFIE != RFIB) { +    // Skip dbg_value instructions. These do not count. +    // Note that these are reverse iterators going forward. +    RTIE = skipDebugInstructionsForward(RTIE, RTIB); +    RFIE = skipDebugInstructionsForward(RFIE, RFIB); +    if (RTIE == RTIB || RFIE == RFIB) +      break; +    if (!RTIE->isIdenticalTo(*RFIE)) +      break; +    // We have to verify that any branch instructions are the same, and then we +    // don't count them toward the # of duplicate instructions. +    if (!RTIE->isBranch()) +      ++Dups2; +    ++RTIE; +    ++RFIE; +  } +  TIE = std::next(RTIE.getReverse()); +  FIE = std::next(RFIE.getReverse()); +  return true; +} + +/// RescanInstructions - Run ScanInstructions on a pair of blocks. +/// @param TIB - True Iterator Begin, points to first non-shared instruction +/// @param FIB - False Iterator Begin, points to first non-shared instruction +/// @param TIE - True Iterator End, points past last non-shared instruction +/// @param FIE - False Iterator End, points past last non-shared instruction +/// @param TrueBBI  - BBInfo to update for the true block. +/// @param FalseBBI - BBInfo to update for the false block. +/// @returns - false if either block cannot be predicated or if both blocks end +///   with a predicate-clobbering instruction. +bool IfConverter::RescanInstructions( +    MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, +    MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, +    BBInfo &TrueBBI, BBInfo &FalseBBI) const { +  bool BranchUnpredicable = true; +  TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; +  ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable); +  if (TrueBBI.IsUnpredicable) +    return false; +  ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable); +  if (FalseBBI.IsUnpredicable) +    return false; +  if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) +    return false; +  return true; +} + +#ifndef NDEBUG +static void verifySameBranchInstructions( +    MachineBasicBlock *MBB1, +    MachineBasicBlock *MBB2) { +  const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); +  const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); +  MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); +  MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); +  while (E1 != B1 && E2 != B2) { +    skipDebugInstructionsForward(E1, B1); +    skipDebugInstructionsForward(E2, B2); +    if (E1 == B1 && E2 == B2) +      break; + +    if (E1 == B1) { +      assert(!E2->isBranch() && "Branch mis-match, one block is empty."); +      break; +    } +    if (E2 == B2) { +      assert(!E1->isBranch() && "Branch mis-match, one block is empty."); +      break; +    } + +    if (E1->isBranch() || E2->isBranch()) +      assert(E1->isIdenticalTo(*E2) && +             "Branch mis-match, branch instructions don't match."); +    else +      break; +    ++E1; +    ++E2; +  } +} +#endif + +/// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along +/// with their common predecessor) form a diamond if a common tail block is +/// extracted. +/// While not strictly a diamond, this pattern would form a diamond if +/// tail-merging had merged the shared tails. +///           EBB +///         _/   \_ +///         |     | +///        TBB   FBB +///        /  \ /   \ +///  FalseBB TrueBB FalseBB +/// Currently only handles analyzable branches. +/// Specifically excludes actual diamonds to avoid overlap. +bool IfConverter::ValidForkedDiamond( +    BBInfo &TrueBBI, BBInfo &FalseBBI, +    unsigned &Dups1, unsigned &Dups2, +    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { +  Dups1 = Dups2 = 0; +  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || +      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) +    return false; + +  if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) +    return false; +  // Don't IfConvert blocks that can't be folded into their predecessor. +  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) +    return false; + +  // This function is specifically looking for conditional tails, as +  // unconditional tails are already handled by the standard diamond case. +  if (TrueBBI.BrCond.size() == 0 || +      FalseBBI.BrCond.size() == 0) +    return false; + +  MachineBasicBlock *TT = TrueBBI.TrueBB; +  MachineBasicBlock *TF = TrueBBI.FalseBB; +  MachineBasicBlock *FT = FalseBBI.TrueBB; +  MachineBasicBlock *FF = FalseBBI.FalseBB; + +  if (!TT) +    TT = getNextBlock(*TrueBBI.BB); +  if (!TF) +    TF = getNextBlock(*TrueBBI.BB); +  if (!FT) +    FT = getNextBlock(*FalseBBI.BB); +  if (!FF) +    FF = getNextBlock(*FalseBBI.BB); + +  if (!TT || !TF) +    return false; + +  // Check successors. If they don't match, bail. +  if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) +    return false; + +  bool FalseReversed = false; +  if (TF == FT && TT == FF) { +    // If the branches are opposing, but we can't reverse, don't do it. +    if (!FalseBBI.IsBrReversible) +      return false; +    FalseReversed = true; +    reverseBranchCondition(FalseBBI); +  } +  auto UnReverseOnExit = make_scope_exit([&]() { +    if (FalseReversed) +      reverseBranchCondition(FalseBBI); +  }); + +  // Count duplicate instructions at the beginning of the true and false blocks. +  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); +  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); +  MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); +  MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); +  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, +                                  *TrueBBI.BB, *FalseBBI.BB, +                                  /* SkipUnconditionalBranches */ true)) +    return false; + +  TrueBBICalc.BB = TrueBBI.BB; +  FalseBBICalc.BB = FalseBBI.BB; +  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) +    return false; + +  // The size is used to decide whether to if-convert, and the shared portions +  // are subtracted off. Because of the subtraction, we just use the size that +  // was calculated by the original ScanInstructions, as it is correct. +  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; +  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; +  return true; +} + +/// ValidDiamond - Returns true if the 'true' and 'false' blocks (along +/// with their common predecessor) forms a valid diamond shape for ifcvt. +bool IfConverter::ValidDiamond( +    BBInfo &TrueBBI, BBInfo &FalseBBI, +    unsigned &Dups1, unsigned &Dups2, +    BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { +  Dups1 = Dups2 = 0; +  if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || +      FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) +    return false; + +  MachineBasicBlock *TT = TrueBBI.TrueBB; +  MachineBasicBlock *FT = FalseBBI.TrueBB; + +  if (!TT && blockAlwaysFallThrough(TrueBBI)) +    TT = getNextBlock(*TrueBBI.BB); +  if (!FT && blockAlwaysFallThrough(FalseBBI)) +    FT = getNextBlock(*FalseBBI.BB); +  if (TT != FT) +    return false; +  if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) +    return false; +  if  (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) +    return false; + +  // FIXME: Allow true block to have an early exit? +  if (TrueBBI.FalseBB || FalseBBI.FalseBB) +    return false; + +  // Count duplicate instructions at the beginning and end of the true and +  // false blocks. +  // Skip unconditional branches only if we are considering an analyzable +  // diamond. Otherwise the branches must be the same. +  bool SkipUnconditionalBranches = +      TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; +  MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); +  MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); +  MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); +  MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); +  if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, +                                  *TrueBBI.BB, *FalseBBI.BB, +                                  SkipUnconditionalBranches)) +    return false; + +  TrueBBICalc.BB = TrueBBI.BB; +  FalseBBICalc.BB = FalseBBI.BB; +  if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc)) +    return false; +  // The size is used to decide whether to if-convert, and the shared portions +  // are subtracted off. Because of the subtraction, we just use the size that +  // was calculated by the original ScanInstructions, as it is correct. +  TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; +  FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; +  return true; +} + +/// AnalyzeBranches - Look at the branches at the end of a block to determine if +/// the block is predicable. +void IfConverter::AnalyzeBranches(BBInfo &BBI) { +  if (BBI.IsDone) +    return; + +  BBI.TrueBB = BBI.FalseBB = nullptr; +  BBI.BrCond.clear(); +  BBI.IsBrAnalyzable = +      !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond); +  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); +  BBI.IsBrReversible = (RevCond.size() == 0) || +      !TII->reverseBranchCondition(RevCond); +  BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; + +  if (BBI.BrCond.size()) { +    // No false branch. This BB must end with a conditional branch and a +    // fallthrough. +    if (!BBI.FalseBB) +      BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB); +    if (!BBI.FalseBB) { +      // Malformed bcc? True and false blocks are the same? +      BBI.IsUnpredicable = true; +    } +  } +} + +/// ScanInstructions - Scan all the instructions in the block to determine if +/// the block is predicable. In most cases, that means all the instructions +/// in the block are isPredicable(). Also checks if the block contains any +/// instruction which can clobber a predicate (e.g. condition code register). +/// If so, the block is not predicable unless it's the last instruction. +void IfConverter::ScanInstructions(BBInfo &BBI, +                                   MachineBasicBlock::iterator &Begin, +                                   MachineBasicBlock::iterator &End, +                                   bool BranchUnpredicable) const { +  if (BBI.IsDone || BBI.IsUnpredicable) +    return; + +  bool AlreadyPredicated = !BBI.Predicate.empty(); + +  BBI.NonPredSize = 0; +  BBI.ExtraCost = 0; +  BBI.ExtraCost2 = 0; +  BBI.ClobbersPred = false; +  for (MachineInstr &MI : make_range(Begin, End)) { +    if (MI.isDebugValue()) +      continue; + +    // It's unsafe to duplicate convergent instructions in this context, so set +    // BBI.CannotBeCopied to true if MI is convergent.  To see why, consider the +    // following CFG, which is subject to our "simple" transformation. +    // +    //    BB0     // if (c1) goto BB1; else goto BB2; +    //   /   \ +    //  BB1   | +    //   |   BB2  // if (c2) goto TBB; else goto FBB; +    //   |   / | +    //   |  /  | +    //   TBB   | +    //    |    | +    //    |   FBB +    //    | +    //    exit +    // +    // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd +    // be unconditional, and in BB2, they'd be predicated upon c2), and suppose +    // TBB contains a convergent instruction.  This is safe iff doing so does +    // not add a control-flow dependency to the convergent instruction -- i.e., +    // it's safe iff the set of control flows that leads us to the convergent +    // instruction does not get smaller after the transformation. +    // +    // Originally we executed TBB if c1 || c2.  After the transformation, there +    // are two copies of TBB's instructions.  We get to the first if c1, and we +    // get to the second if !c1 && c2. +    // +    // There are clearly fewer ways to satisfy the condition "c1" than +    // "c1 || c2".  Since we've shrunk the set of control flows which lead to +    // our convergent instruction, the transformation is unsafe. +    if (MI.isNotDuplicable() || MI.isConvergent()) +      BBI.CannotBeCopied = true; + +    bool isPredicated = TII->isPredicated(MI); +    bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); + +    if (BranchUnpredicable && MI.isBranch()) { +      BBI.IsUnpredicable = true; +      return; +    } + +    // A conditional branch is not predicable, but it may be eliminated. +    if (isCondBr) +      continue; + +    if (!isPredicated) { +      BBI.NonPredSize++; +      unsigned ExtraPredCost = TII->getPredicationCost(MI); +      unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false); +      if (NumCycles > 1) +        BBI.ExtraCost += NumCycles-1; +      BBI.ExtraCost2 += ExtraPredCost; +    } else if (!AlreadyPredicated) { +      // FIXME: This instruction is already predicated before the +      // if-conversion pass. It's probably something like a conditional move. +      // Mark this block unpredicable for now. +      BBI.IsUnpredicable = true; +      return; +    } + +    if (BBI.ClobbersPred && !isPredicated) { +      // Predicate modification instruction should end the block (except for +      // already predicated instructions and end of block branches). +      // Predicate may have been modified, the subsequent (currently) +      // unpredicated instructions cannot be correctly predicated. +      BBI.IsUnpredicable = true; +      return; +    } + +    // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are +    // still potentially predicable. +    std::vector<MachineOperand> PredDefs; +    if (TII->DefinesPredicate(MI, PredDefs)) +      BBI.ClobbersPred = true; + +    if (!TII->isPredicable(MI)) { +      BBI.IsUnpredicable = true; +      return; +    } +  } +} + +/// Determine if the block is a suitable candidate to be predicated by the +/// specified predicate. +/// @param BBI BBInfo for the block to check +/// @param Pred Predicate array for the branch that leads to BBI +/// @param isTriangle true if the Analysis is for a triangle +/// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false +///        case +/// @param hasCommonTail true if BBI shares a tail with a sibling block that +///        contains any instruction that would make the block unpredicable. +bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, +                                      SmallVectorImpl<MachineOperand> &Pred, +                                      bool isTriangle, bool RevBranch, +                                      bool hasCommonTail) { +  // If the block is dead or unpredicable, then it cannot be predicated. +  // Two blocks may share a common unpredicable tail, but this doesn't prevent +  // them from being if-converted. The non-shared portion is assumed to have +  // been checked +  if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) +    return false; + +  // If it is already predicated but we couldn't analyze its terminator, the +  // latter might fallthrough, but we can't determine where to. +  // Conservatively avoid if-converting again. +  if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) +    return false; + +  // If it is already predicated, check if the new predicate subsumes +  // its predicate. +  if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate)) +    return false; + +  if (!hasCommonTail && BBI.BrCond.size()) { +    if (!isTriangle) +      return false; + +    // Test predicate subsumption. +    SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); +    SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); +    if (RevBranch) { +      if (TII->reverseBranchCondition(Cond)) +        return false; +    } +    if (TII->reverseBranchCondition(RevPred) || +        !TII->SubsumesPredicate(Cond, RevPred)) +      return false; +  } + +  return true; +} + +/// Analyze the structure of the sub-CFG starting from the specified block. +/// Record its successors and whether it looks like an if-conversion candidate. +void IfConverter::AnalyzeBlock( +    MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { +  struct BBState { +    BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {} +    MachineBasicBlock *MBB; + +    /// This flag is true if MBB's successors have been analyzed. +    bool SuccsAnalyzed; +  }; + +  // Push MBB to the stack. +  SmallVector<BBState, 16> BBStack(1, MBB); + +  while (!BBStack.empty()) { +    BBState &State = BBStack.back(); +    MachineBasicBlock *BB = State.MBB; +    BBInfo &BBI = BBAnalysis[BB->getNumber()]; + +    if (!State.SuccsAnalyzed) { +      if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { +        BBStack.pop_back(); +        continue; +      } + +      BBI.BB = BB; +      BBI.IsBeingAnalyzed = true; + +      AnalyzeBranches(BBI); +      MachineBasicBlock::iterator Begin = BBI.BB->begin(); +      MachineBasicBlock::iterator End = BBI.BB->end(); +      ScanInstructions(BBI, Begin, End); + +      // Unanalyzable or ends with fallthrough or unconditional branch, or if is +      // not considered for ifcvt anymore. +      if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { +        BBI.IsBeingAnalyzed = false; +        BBI.IsAnalyzed = true; +        BBStack.pop_back(); +        continue; +      } + +      // Do not ifcvt if either path is a back edge to the entry block. +      if (BBI.TrueBB == BB || BBI.FalseBB == BB) { +        BBI.IsBeingAnalyzed = false; +        BBI.IsAnalyzed = true; +        BBStack.pop_back(); +        continue; +      } + +      // Do not ifcvt if true and false fallthrough blocks are the same. +      if (!BBI.FalseBB) { +        BBI.IsBeingAnalyzed = false; +        BBI.IsAnalyzed = true; +        BBStack.pop_back(); +        continue; +      } + +      // Push the False and True blocks to the stack. +      State.SuccsAnalyzed = true; +      BBStack.push_back(*BBI.FalseBB); +      BBStack.push_back(*BBI.TrueBB); +      continue; +    } + +    BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; +    BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; + +    if (TrueBBI.IsDone && FalseBBI.IsDone) { +      BBI.IsBeingAnalyzed = false; +      BBI.IsAnalyzed = true; +      BBStack.pop_back(); +      continue; +    } + +    SmallVector<MachineOperand, 4> +        RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); +    bool CanRevCond = !TII->reverseBranchCondition(RevCond); + +    unsigned Dups = 0; +    unsigned Dups2 = 0; +    bool TNeedSub = !TrueBBI.Predicate.empty(); +    bool FNeedSub = !FalseBBI.Predicate.empty(); +    bool Enqueued = false; + +    BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB); + +    if (CanRevCond) { +      BBInfo TrueBBICalc, FalseBBICalc; +      auto feasibleDiamond = [&]() { +        bool MeetsSize = MeetIfcvtSizeLimit( +            *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) + +                          TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2, +            *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) + +                           FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2, +            Prediction); +        bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond, +                                                /* IsTriangle */ false, /* RevCond */ false, +                                                /* hasCommonTail */ true); +        bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond, +                                                 /* IsTriangle */ false, /* RevCond */ false, +                                                 /* hasCommonTail */ true); +        return MeetsSize && TrueFeasible && FalseFeasible; +      }; + +      if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2, +                       TrueBBICalc, FalseBBICalc)) { +        if (feasibleDiamond()) { +          // Diamond: +          //   EBB +          //   / \_ +          //  |   | +          // TBB FBB +          //   \ / +          //  TailBB +          // Note TailBB can be empty. +          Tokens.push_back(llvm::make_unique<IfcvtToken>( +              BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2, +              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); +          Enqueued = true; +        } +      } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2, +                                    TrueBBICalc, FalseBBICalc)) { +        if (feasibleDiamond()) { +          // ForkedDiamond: +          // if TBB and FBB have a common tail that includes their conditional +          // branch instructions, then we can If Convert this pattern. +          //          EBB +          //         _/ \_ +          //         |   | +          //        TBB  FBB +          //        / \ /   \ +          //  FalseBB TrueBB FalseBB +          // +          Tokens.push_back(llvm::make_unique<IfcvtToken>( +              BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2, +              (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred)); +          Enqueued = true; +        } +      } +    } + +    if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) && +        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, +                           TrueBBI.ExtraCost2, Prediction) && +        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) { +      // Triangle: +      //   EBB +      //   | \_ +      //   |  | +      //   | TBB +      //   |  / +      //   FBB +      Tokens.push_back( +          llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups)); +      Enqueued = true; +    } + +    if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) && +        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, +                           TrueBBI.ExtraCost2, Prediction) && +        FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) { +      Tokens.push_back( +          llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups)); +      Enqueued = true; +    } + +    if (ValidSimple(TrueBBI, Dups, Prediction) && +        MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost, +                           TrueBBI.ExtraCost2, Prediction) && +        FeasibilityAnalysis(TrueBBI, BBI.BrCond)) { +      // Simple (split, no rejoin): +      //   EBB +      //   | \_ +      //   |  | +      //   | TBB---> exit +      //   | +      //   FBB +      Tokens.push_back( +          llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups)); +      Enqueued = true; +    } + +    if (CanRevCond) { +      // Try the other path... +      if (ValidTriangle(FalseBBI, TrueBBI, false, Dups, +                        Prediction.getCompl()) && +          MeetIfcvtSizeLimit(*FalseBBI.BB, +                             FalseBBI.NonPredSize + FalseBBI.ExtraCost, +                             FalseBBI.ExtraCost2, Prediction.getCompl()) && +          FeasibilityAnalysis(FalseBBI, RevCond, true)) { +        Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse, +                                                       FNeedSub, Dups)); +        Enqueued = true; +      } + +      if (ValidTriangle(FalseBBI, TrueBBI, true, Dups, +                        Prediction.getCompl()) && +          MeetIfcvtSizeLimit(*FalseBBI.BB, +                             FalseBBI.NonPredSize + FalseBBI.ExtraCost, +                           FalseBBI.ExtraCost2, Prediction.getCompl()) && +        FeasibilityAnalysis(FalseBBI, RevCond, true, true)) { +        Tokens.push_back( +            llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups)); +        Enqueued = true; +      } + +      if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) && +          MeetIfcvtSizeLimit(*FalseBBI.BB, +                             FalseBBI.NonPredSize + FalseBBI.ExtraCost, +                             FalseBBI.ExtraCost2, Prediction.getCompl()) && +          FeasibilityAnalysis(FalseBBI, RevCond)) { +        Tokens.push_back( +            llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups)); +        Enqueued = true; +      } +    } + +    BBI.IsEnqueued = Enqueued; +    BBI.IsBeingAnalyzed = false; +    BBI.IsAnalyzed = true; +    BBStack.pop_back(); +  } +} + +/// Analyze all blocks and find entries for all if-conversion candidates. +void IfConverter::AnalyzeBlocks( +    MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { +  for (MachineBasicBlock &MBB : MF) +    AnalyzeBlock(MBB, Tokens); + +  // Sort to favor more complex ifcvt scheme. +  std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp); +} + +/// Returns true either if ToMBB is the next block after MBB or that all the +/// intervening blocks are empty (given MBB can fall through to its next block). +static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { +  MachineFunction::iterator PI = MBB.getIterator(); +  MachineFunction::iterator I = std::next(PI); +  MachineFunction::iterator TI = ToMBB.getIterator(); +  MachineFunction::iterator E = MBB.getParent()->end(); +  while (I != TI) { +    // Check isSuccessor to avoid case where the next block is empty, but +    // it's not a successor. +    if (I == E || !I->empty() || !PI->isSuccessor(&*I)) +      return false; +    PI = I++; +  } +  // Finally see if the last I is indeed a successor to PI. +  return PI->isSuccessor(&*I); +} + +/// Invalidate predecessor BB info so it would be re-analyzed to determine if it +/// can be if-converted. If predecessor is already enqueued, dequeue it! +void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { +  for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { +    BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; +    if (PBBI.IsDone || PBBI.BB == &MBB) +      continue; +    PBBI.IsAnalyzed = false; +    PBBI.IsEnqueued = false; +  } +} + +/// Inserts an unconditional branch from \p MBB to \p ToMBB. +static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, +                               const TargetInstrInfo *TII) { +  DebugLoc dl;  // FIXME: this is nowhere +  SmallVector<MachineOperand, 0> NoCond; +  TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl); +} + +/// Remove true / false edges if either / both are no longer successors. +void IfConverter::RemoveExtraEdges(BBInfo &BBI) { +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +  SmallVector<MachineOperand, 4> Cond; +  if (!TII->analyzeBranch(*BBI.BB, TBB, FBB, Cond)) +    BBI.BB->CorrectExtraCFGEdges(TBB, FBB, !Cond.empty()); +} + +/// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all +/// values defined in MI which are also live/used by MI. +static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { +  const TargetRegisterInfo *TRI = MI.getParent()->getParent() +    ->getSubtarget().getRegisterInfo(); + +  // Before stepping forward past MI, remember which regs were live +  // before MI. This is needed to set the Undef flag only when reg is +  // dead. +  SparseSet<unsigned> LiveBeforeMI; +  LiveBeforeMI.setUniverse(TRI->getNumRegs()); +  for (unsigned Reg : Redefs) +    LiveBeforeMI.insert(Reg); + +  SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers; +  Redefs.stepForward(MI, Clobbers); + +  // Now add the implicit uses for each of the clobbered values. +  for (auto Clobber : Clobbers) { +    // FIXME: Const cast here is nasty, but better than making StepForward +    // take a mutable instruction instead of const. +    unsigned Reg = Clobber.first; +    MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); +    MachineInstr *OpMI = Op.getParent(); +    MachineInstrBuilder MIB(*OpMI->getParent()->getParent(), OpMI); +    if (Op.isRegMask()) { +      // First handle regmasks.  They clobber any entries in the mask which +      // means that we need a def for those registers. +      if (LiveBeforeMI.count(Reg)) +        MIB.addReg(Reg, RegState::Implicit); + +      // We also need to add an implicit def of this register for the later +      // use to read from. +      // For the register allocator to have allocated a register clobbered +      // by the call which is used later, it must be the case that +      // the call doesn't return. +      MIB.addReg(Reg, RegState::Implicit | RegState::Define); +      continue; +    } +    assert(Op.isReg() && "Register operand required"); +    if (Op.isDead()) { +      // If we found a dead def, but it needs to be live, then remove the dead +      // flag. +      if (Redefs.contains(Op.getReg())) +        Op.setIsDead(false); +    } +    if (LiveBeforeMI.count(Reg)) +      MIB.addReg(Reg, RegState::Implicit); +    else { +      bool HasLiveSubReg = false; +      for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) { +        if (!LiveBeforeMI.count(*S)) +          continue; +        HasLiveSubReg = true; +        break; +      } +      if (HasLiveSubReg) +        MIB.addReg(Reg, RegState::Implicit); +    } +  } +} + +/// Remove kill flags from operands with a registers in the \p DontKill set. +static void RemoveKills(MachineInstr &MI, const LivePhysRegs &DontKill) { +  for (MIBundleOperands O(MI); O.isValid(); ++O) { +    if (!O->isReg() || !O->isKill()) +      continue; +    if (DontKill.contains(O->getReg())) +      O->setIsKill(false); +  } +} + +/// Walks a range of machine instructions and removes kill flags for registers +/// in the \p DontKill set. +static void RemoveKills(MachineBasicBlock::iterator I, +                        MachineBasicBlock::iterator E, +                        const LivePhysRegs &DontKill, +                        const MCRegisterInfo &MCRI) { +  for (MachineInstr &MI : make_range(I, E)) +    RemoveKills(MI, DontKill); +} + +/// If convert a simple (split, no rejoin) sub-CFG. +bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { +  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()]; +  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; +  BBInfo *CvtBBI = &TrueBBI; +  BBInfo *NextBBI = &FalseBBI; + +  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); +  if (Kind == ICSimpleFalse) +    std::swap(CvtBBI, NextBBI); + +  MachineBasicBlock &CvtMBB = *CvtBBI->BB; +  MachineBasicBlock &NextMBB = *NextBBI->BB; +  if (CvtBBI->IsDone || +      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { +    // Something has changed. It's no longer safe to predicate this block. +    BBI.IsAnalyzed = false; +    CvtBBI->IsAnalyzed = false; +    return false; +  } + +  if (CvtMBB.hasAddressTaken()) +    // Conservatively abort if-conversion if BB's address is taken. +    return false; + +  if (Kind == ICSimpleFalse) +    if (TII->reverseBranchCondition(Cond)) +      llvm_unreachable("Unable to reverse branch condition!"); + +  Redefs.init(*TRI); +  DontKill.init(*TRI); + +  if (MRI->tracksLiveness()) { +    // Initialize liveins to the first BB. These are potentiall redefined by +    // predicated instructions. +    Redefs.addLiveIns(CvtMBB); +    Redefs.addLiveIns(NextMBB); +    // Compute a set of registers which must not be killed by instructions in +    // BB1: This is everything live-in to BB2. +    DontKill.addLiveIns(NextMBB); +  } + +  if (CvtMBB.pred_size() > 1) { +    BBI.NonPredSize -= TII->removeBranch(*BBI.BB); +    // Copy instructions in the true block, predicate them, and add them to +    // the entry block. +    CopyAndPredicateBlock(BBI, *CvtBBI, Cond); + +    // RemoveExtraEdges won't work if the block has an unanalyzable branch, so +    // explicitly remove CvtBBI as a successor. +    BBI.BB->removeSuccessor(&CvtMBB, true); +  } else { +    RemoveKills(CvtMBB.begin(), CvtMBB.end(), DontKill, *TRI); +    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); + +    // Merge converted block into entry block. +    BBI.NonPredSize -= TII->removeBranch(*BBI.BB); +    MergeBlocks(BBI, *CvtBBI); +  } + +  bool IterIfcvt = true; +  if (!canFallThroughTo(*BBI.BB, NextMBB)) { +    InsertUncondBranch(*BBI.BB, NextMBB, TII); +    BBI.HasFallThrough = false; +    // Now ifcvt'd block will look like this: +    // BB: +    // ... +    // t, f = cmp +    // if t op +    // b BBf +    // +    // We cannot further ifcvt this block because the unconditional branch +    // will have to be predicated on the new condition, that will not be +    // available if cmp executes. +    IterIfcvt = false; +  } + +  RemoveExtraEdges(BBI); + +  // Update block info. BB can be iteratively if-converted. +  if (!IterIfcvt) +    BBI.IsDone = true; +  InvalidatePreds(*BBI.BB); +  CvtBBI->IsDone = true; + +  // FIXME: Must maintain LiveIns. +  return true; +} + +/// If convert a triangle sub-CFG. +bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { +  BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; +  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; +  BBInfo *CvtBBI = &TrueBBI; +  BBInfo *NextBBI = &FalseBBI; +  DebugLoc dl;  // FIXME: this is nowhere + +  SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); +  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) +    std::swap(CvtBBI, NextBBI); + +  MachineBasicBlock &CvtMBB = *CvtBBI->BB; +  MachineBasicBlock &NextMBB = *NextBBI->BB; +  if (CvtBBI->IsDone || +      (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { +    // Something has changed. It's no longer safe to predicate this block. +    BBI.IsAnalyzed = false; +    CvtBBI->IsAnalyzed = false; +    return false; +  } + +  if (CvtMBB.hasAddressTaken()) +    // Conservatively abort if-conversion if BB's address is taken. +    return false; + +  if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) +    if (TII->reverseBranchCondition(Cond)) +      llvm_unreachable("Unable to reverse branch condition!"); + +  if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { +    if (reverseBranchCondition(*CvtBBI)) { +      // BB has been changed, modify its predecessors (except for this +      // one) so they don't get ifcvt'ed based on bad intel. +      for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { +        if (PBB == BBI.BB) +          continue; +        BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; +        if (PBBI.IsEnqueued) { +          PBBI.IsAnalyzed = false; +          PBBI.IsEnqueued = false; +        } +      } +    } +  } + +  // Initialize liveins to the first BB. These are potentially redefined by +  // predicated instructions. +  Redefs.init(*TRI); +  if (MRI->tracksLiveness()) { +    Redefs.addLiveIns(CvtMBB); +    Redefs.addLiveIns(NextMBB); +  } + +  DontKill.clear(); + +  bool HasEarlyExit = CvtBBI->FalseBB != nullptr; +  BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; + +  if (HasEarlyExit) { +    // Get probabilities before modifying CvtMBB and BBI.BB. +    CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB); +    CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB); +    BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB); +    BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB); +  } + +  // To be able to insert code freely at the end of BBI we sometimes remove +  // the branch from BBI to NextMBB temporarily. Remember if this happened. +  bool RemovedBranchToNextMBB = false; +  if (CvtMBB.pred_size() > 1) { +    BBI.NonPredSize -= TII->removeBranch(*BBI.BB); +    // Copy instructions in the true block, predicate them, and add them to +    // the entry block. +    CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true); + +    // Keep the CFG updated. +    BBI.BB->removeSuccessor(&CvtMBB, true); +  } else { +    // Predicate the 'true' block after removing its branch. +    CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB); +    PredicateBlock(*CvtBBI, CvtMBB.end(), Cond); + +    // Remove the branch from the entry of the triangle to NextBB to be able to +    // do the merge below. Keep the CFG updated, but remember we removed the +    // branch since we do want to execute NextMBB, either by introducing a +    // branch to it again, or merging it into the entry block. +    // How it's handled is decided further down. +    BBI.NonPredSize -= TII->removeBranch(*BBI.BB); +    BBI.BB->removeSuccessor(&NextMBB, true); +    RemovedBranchToNextMBB = true; + +    // Now merge the entry of the triangle with the true block. +    MergeBlocks(BBI, *CvtBBI, false); +  } + +  // If 'true' block has a 'false' successor, add an exit branch to it. +  if (HasEarlyExit) { +    SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), +                                           CvtBBI->BrCond.end()); +    if (TII->reverseBranchCondition(RevCond)) +      llvm_unreachable("Unable to reverse branch condition!"); + +    // Update the edge probability for both CvtBBI->FalseBB and NextBBI. +    // NewNext = New_Prob(BBI.BB, NextMBB) = +    //   Prob(BBI.BB, NextMBB) + +    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) +    // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = +    //   Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) +    auto NewTrueBB = getNextBlock(*BBI.BB); +    auto NewNext = BBNext + BBCvt * CvtNext; +    auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB); +    if (NewTrueBBIter != BBI.BB->succ_end()) +      BBI.BB->setSuccProbability(NewTrueBBIter, NewNext); + +    auto NewFalse = BBCvt * CvtFalse; +    TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl); +    BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse); +  } + +  // Merge in the 'false' block if the 'false' block has no other +  // predecessors. Otherwise, add an unconditional branch to 'false'. +  bool FalseBBDead = false; +  bool IterIfcvt = true; +  bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB); +  if (!isFallThrough) { +    // Only merge them if the true block does not fallthrough to the false +    // block. By not merging them, we make it possible to iteratively +    // ifcvt the blocks. +    if (!HasEarlyExit && +        // We might have removed BBI from NextMBB's predecessor list above but +        // we want it to be there, so consider that too. +        (NextMBB.pred_size() == (RemovedBranchToNextMBB ? 0 : 1)) && +        !NextBBI->HasFallThrough && +        !NextMBB.hasAddressTaken()) { +      // We will merge NextBBI into BBI, and thus remove the current +      // fallthrough from BBI into CvtBBI. +      BBI.BB->removeSuccessor(&CvtMBB, true); +      MergeBlocks(BBI, *NextBBI); +      FalseBBDead = true; +    } else { +      InsertUncondBranch(*BBI.BB, NextMBB, TII); +      BBI.BB->addSuccessor(&NextMBB); +      BBI.HasFallThrough = false; +    } +    // Mixed predicated and unpredicated code. This cannot be iteratively +    // predicated. +    IterIfcvt = false; +  } + +  // Update block info. BB can be iteratively if-converted. +  if (!IterIfcvt) +    BBI.IsDone = true; +  InvalidatePreds(*BBI.BB); +  CvtBBI->IsDone = true; +  if (FalseBBDead) +    NextBBI->IsDone = true; + +  // FIXME: Must maintain LiveIns. +  return true; +} + +/// Common code shared between diamond conversions. +/// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. +/// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI +///               and FalseBBI +/// \p NumDups2 - number of shared instructions at the end of \p TrueBBI +///               and \p FalseBBI +/// \p RemoveBranch - Remove the common branch of the two blocks before +///                   predicating. Only false for unanalyzable fallthrough +///                   cases. The caller will replace the branch if necessary. +/// \p MergeAddEdges - Add successor edges when merging blocks. Only false for +///                    unanalyzable fallthrough +bool IfConverter::IfConvertDiamondCommon( +    BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, +    unsigned NumDups1, unsigned NumDups2, +    bool TClobbersPred, bool FClobbersPred, +    bool RemoveBranch, bool MergeAddEdges) { + +  if (TrueBBI.IsDone || FalseBBI.IsDone || +      TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { +    // Something has changed. It's no longer safe to predicate these blocks. +    BBI.IsAnalyzed = false; +    TrueBBI.IsAnalyzed = false; +    FalseBBI.IsAnalyzed = false; +    return false; +  } + +  if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) +    // Conservatively abort if-conversion if either BB has its address taken. +    return false; + +  // Put the predicated instructions from the 'true' block before the +  // instructions from the 'false' block, unless the true block would clobber +  // the predicate, in which case, do the opposite. +  BBInfo *BBI1 = &TrueBBI; +  BBInfo *BBI2 = &FalseBBI; +  SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); +  if (TII->reverseBranchCondition(RevCond)) +    llvm_unreachable("Unable to reverse branch condition!"); +  SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; +  SmallVector<MachineOperand, 4> *Cond2 = &RevCond; + +  // Figure out the more profitable ordering. +  bool DoSwap = false; +  if (TClobbersPred && !FClobbersPred) +    DoSwap = true; +  else if (!TClobbersPred && !FClobbersPred) { +    if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) +      DoSwap = true; +  } else if (TClobbersPred && FClobbersPred) +    llvm_unreachable("Predicate info cannot be clobbered by both sides."); +  if (DoSwap) { +    std::swap(BBI1, BBI2); +    std::swap(Cond1, Cond2); +  } + +  // Remove the conditional branch from entry to the blocks. +  BBI.NonPredSize -= TII->removeBranch(*BBI.BB); + +  MachineBasicBlock &MBB1 = *BBI1->BB; +  MachineBasicBlock &MBB2 = *BBI2->BB; + +  // Initialize the Redefs: +  // - BB2 live-in regs need implicit uses before being redefined by BB1 +  //   instructions. +  // - BB1 live-out regs need implicit uses before being redefined by BB2 +  //   instructions. We start with BB1 live-ins so we have the live-out regs +  //   after tracking the BB1 instructions. +  Redefs.init(*TRI); +  if (MRI->tracksLiveness()) { +    Redefs.addLiveIns(MBB1); +    Redefs.addLiveIns(MBB2); +  } + +  // Remove the duplicated instructions at the beginnings of both paths. +  // Skip dbg_value instructions +  MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(); +  MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(); +  BBI1->NonPredSize -= NumDups1; +  BBI2->NonPredSize -= NumDups1; + +  // Skip past the dups on each side separately since there may be +  // differing dbg_value entries. +  for (unsigned i = 0; i < NumDups1; ++DI1) { +    if (!DI1->isDebugValue()) +      ++i; +  } +  while (NumDups1 != 0) { +    ++DI2; +    if (!DI2->isDebugValue()) +      --NumDups1; +  } + +  // Compute a set of registers which must not be killed by instructions in BB1: +  // This is everything used+live in BB2 after the duplicated instructions. We +  // can compute this set by simulating liveness backwards from the end of BB2. +  DontKill.init(*TRI); +  if (MRI->tracksLiveness()) { +    for (const MachineInstr &MI : make_range(MBB2.rbegin(), ++DI2.getReverse())) +      DontKill.stepBackward(MI); + +    for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) { +      SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy; +      Redefs.stepForward(MI, Dummy); +    } +  } +  BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1); +  MBB2.erase(MBB2.begin(), DI2); + +  // The branches have been checked to match, so it is safe to remove the branch +  // in BB1 and rely on the copy in BB2 +#ifndef NDEBUG +  // Unanalyzable branches must match exactly. Check that now. +  if (!BBI1->IsBrAnalyzable) +    verifySameBranchInstructions(&MBB1, &MBB2); +#endif +  BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB); +  // Remove duplicated instructions. +  DI1 = MBB1.end(); +  for (unsigned i = 0; i != NumDups2; ) { +    // NumDups2 only counted non-dbg_value instructions, so this won't +    // run off the head of the list. +    assert(DI1 != MBB1.begin()); +    --DI1; +    // skip dbg_value instructions +    if (!DI1->isDebugValue()) +      ++i; +  } +  MBB1.erase(DI1, MBB1.end()); + +  // Kill flags in the true block for registers living into the false block +  // must be removed. +  RemoveKills(MBB1.begin(), MBB1.end(), DontKill, *TRI); + +  DI2 = BBI2->BB->end(); +  // The branches have been checked to match. Skip over the branch in the false +  // block so that we don't try to predicate it. +  if (RemoveBranch) +    BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB); +  else { +    do { +      assert(DI2 != MBB2.begin()); +      DI2--; +    } while (DI2->isBranch() || DI2->isDebugValue()); +    DI2++; +  } +  while (NumDups2 != 0) { +    // NumDups2 only counted non-dbg_value instructions, so this won't +    // run off the head of the list. +    assert(DI2 != MBB2.begin()); +    --DI2; +    // skip dbg_value instructions +    if (!DI2->isDebugValue()) +      --NumDups2; +  } + +  // Remember which registers would later be defined by the false block. +  // This allows us not to predicate instructions in the true block that would +  // later be re-defined. That is, rather than +  //   subeq  r0, r1, #1 +  //   addne  r0, r1, #1 +  // generate: +  //   sub    r0, r1, #1 +  //   addne  r0, r1, #1 +  SmallSet<unsigned, 4> RedefsByFalse; +  SmallSet<unsigned, 4> ExtUses; +  if (TII->isProfitableToUnpredicate(MBB1, MBB2)) { +    for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) { +      if (FI.isDebugValue()) +        continue; +      SmallVector<unsigned, 4> Defs; +      for (const MachineOperand &MO : FI.operands()) { +        if (!MO.isReg()) +          continue; +        unsigned Reg = MO.getReg(); +        if (!Reg) +          continue; +        if (MO.isDef()) { +          Defs.push_back(Reg); +        } else if (!RedefsByFalse.count(Reg)) { +          // These are defined before ctrl flow reach the 'false' instructions. +          // They cannot be modified by the 'true' instructions. +          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); +               SubRegs.isValid(); ++SubRegs) +            ExtUses.insert(*SubRegs); +        } +      } + +      for (unsigned Reg : Defs) { +        if (!ExtUses.count(Reg)) { +          for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); +               SubRegs.isValid(); ++SubRegs) +            RedefsByFalse.insert(*SubRegs); +        } +      } +    } +  } + +  // Predicate the 'true' block. +  PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse); + +  // After predicating BBI1, if there is a predicated terminator in BBI1 and +  // a non-predicated in BBI2, then we don't want to predicate the one from +  // BBI2. The reason is that if we merged these blocks, we would end up with +  // two predicated terminators in the same block. +  if (!MBB2.empty() && (DI2 == MBB2.end())) { +    MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); +    MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); +    if (BBI1T != MBB1.end() && TII->isPredicated(*BBI1T) && +        BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T)) +      --DI2; +  } + +  // Predicate the 'false' block. +  PredicateBlock(*BBI2, DI2, *Cond2); + +  // Merge the true block into the entry of the diamond. +  MergeBlocks(BBI, *BBI1, MergeAddEdges); +  MergeBlocks(BBI, *BBI2, MergeAddEdges); +  return true; +} + +/// If convert an almost-diamond sub-CFG where the true +/// and false blocks share a common tail. +bool IfConverter::IfConvertForkedDiamond( +    BBInfo &BBI, IfcvtKind Kind, +    unsigned NumDups1, unsigned NumDups2, +    bool TClobbersPred, bool FClobbersPred) { +  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()]; +  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; + +  // Save the debug location for later. +  DebugLoc dl; +  MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); +  if (TIE != TrueBBI.BB->end()) +    dl = TIE->getDebugLoc(); +  // Removing branches from both blocks is safe, because we have already +  // determined that both blocks have the same branch instructions. The branch +  // will be added back at the end, unpredicated. +  if (!IfConvertDiamondCommon( +      BBI, TrueBBI, FalseBBI, +      NumDups1, NumDups2, +      TClobbersPred, FClobbersPred, +      /* RemoveBranch */ true, /* MergeAddEdges */ true)) +    return false; + +  // Add back the branch. +  // Debug location saved above when removing the branch from BBI2 +  TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB, +                    TrueBBI.BrCond, dl); + +  RemoveExtraEdges(BBI); + +  // Update block info. +  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; +  InvalidatePreds(*BBI.BB); + +  // FIXME: Must maintain LiveIns. +  return true; +} + +/// If convert a diamond sub-CFG. +bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, +                                   unsigned NumDups1, unsigned NumDups2, +                                   bool TClobbersPred, bool FClobbersPred) { +  BBInfo &TrueBBI  = BBAnalysis[BBI.TrueBB->getNumber()]; +  BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; +  MachineBasicBlock *TailBB = TrueBBI.TrueBB; + +  // True block must fall through or end with an unanalyzable terminator. +  if (!TailBB) { +    if (blockAlwaysFallThrough(TrueBBI)) +      TailBB = FalseBBI.TrueBB; +    assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!"); +  } + +  if (!IfConvertDiamondCommon( +      BBI, TrueBBI, FalseBBI, +      NumDups1, NumDups2, +      TClobbersPred, FClobbersPred, +      /* RemoveBranch */ TrueBBI.IsBrAnalyzable, +      /* MergeAddEdges */ TailBB == nullptr)) +    return false; + +  // If the if-converted block falls through or unconditionally branches into +  // the tail block, and the tail block does not have other predecessors, then +  // fold the tail block in as well. Otherwise, unless it falls through to the +  // tail, add a unconditional branch to it. +  if (TailBB) { +    BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; +    bool CanMergeTail = !TailBBI.HasFallThrough && +      !TailBBI.BB->hasAddressTaken(); +    // The if-converted block can still have a predicated terminator +    // (e.g. a predicated return). If that is the case, we cannot merge +    // it with the tail block. +    MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); +    if (TI != BBI.BB->end() && TII->isPredicated(*TI)) +      CanMergeTail = false; +    // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; +    // check if there are any other predecessors besides those. +    unsigned NumPreds = TailBB->pred_size(); +    if (NumPreds > 1) +      CanMergeTail = false; +    else if (NumPreds == 1 && CanMergeTail) { +      MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); +      if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) +        CanMergeTail = false; +    } +    if (CanMergeTail) { +      MergeBlocks(BBI, TailBBI); +      TailBBI.IsDone = true; +    } else { +      BBI.BB->addSuccessor(TailBB, BranchProbability::getOne()); +      InsertUncondBranch(*BBI.BB, *TailBB, TII); +      BBI.HasFallThrough = false; +    } +  } + +  // RemoveExtraEdges won't work if the block has an unanalyzable branch, +  // which can happen here if TailBB is unanalyzable and is merged, so +  // explicitly remove BBI1 and BBI2 as successors. +  BBI.BB->removeSuccessor(TrueBBI.BB); +  BBI.BB->removeSuccessor(FalseBBI.BB, /* NormalizeSuccessProbs */ true); +  RemoveExtraEdges(BBI); + +  // Update block info. +  BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; +  InvalidatePreds(*BBI.BB); + +  // FIXME: Must maintain LiveIns. +  return true; +} + +static bool MaySpeculate(const MachineInstr &MI, +                         SmallSet<unsigned, 4> &LaterRedefs) { +  bool SawStore = true; +  if (!MI.isSafeToMove(nullptr, SawStore)) +    return false; + +  for (const MachineOperand &MO : MI.operands()) { +    if (!MO.isReg()) +      continue; +    unsigned Reg = MO.getReg(); +    if (!Reg) +      continue; +    if (MO.isDef() && !LaterRedefs.count(Reg)) +      return false; +  } + +  return true; +} + +/// Predicate instructions from the start of the block to the specified end with +/// the specified condition. +void IfConverter::PredicateBlock(BBInfo &BBI, +                                 MachineBasicBlock::iterator E, +                                 SmallVectorImpl<MachineOperand> &Cond, +                                 SmallSet<unsigned, 4> *LaterRedefs) { +  bool AnyUnpred = false; +  bool MaySpec = LaterRedefs != nullptr; +  for (MachineInstr &I : make_range(BBI.BB->begin(), E)) { +    if (I.isDebugValue() || TII->isPredicated(I)) +      continue; +    // It may be possible not to predicate an instruction if it's the 'true' +    // side of a diamond and the 'false' side may re-define the instruction's +    // defs. +    if (MaySpec && MaySpeculate(I, *LaterRedefs)) { +      AnyUnpred = true; +      continue; +    } +    // If any instruction is predicated, then every instruction after it must +    // be predicated. +    MaySpec = false; +    if (!TII->PredicateInstruction(I, Cond)) { +#ifndef NDEBUG +      dbgs() << "Unable to predicate " << I << "!\n"; +#endif +      llvm_unreachable(nullptr); +    } + +    // If the predicated instruction now redefines a register as the result of +    // if-conversion, add an implicit kill. +    UpdatePredRedefs(I, Redefs); +  } + +  BBI.Predicate.append(Cond.begin(), Cond.end()); + +  BBI.IsAnalyzed = false; +  BBI.NonPredSize = 0; + +  ++NumIfConvBBs; +  if (AnyUnpred) +    ++NumUnpred; +} + +/// Copy and predicate instructions from source BB to the destination block. +/// Skip end of block branches if IgnoreBr is true. +void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, +                                        SmallVectorImpl<MachineOperand> &Cond, +                                        bool IgnoreBr) { +  MachineFunction &MF = *ToBBI.BB->getParent(); + +  MachineBasicBlock &FromMBB = *FromBBI.BB; +  for (MachineInstr &I : FromMBB) { +    // Do not copy the end of the block branches. +    if (IgnoreBr && I.isBranch()) +      break; + +    MachineInstr *MI = MF.CloneMachineInstr(&I); +    ToBBI.BB->insert(ToBBI.BB->end(), MI); +    ToBBI.NonPredSize++; +    unsigned ExtraPredCost = TII->getPredicationCost(I); +    unsigned NumCycles = SchedModel.computeInstrLatency(&I, false); +    if (NumCycles > 1) +      ToBBI.ExtraCost += NumCycles-1; +    ToBBI.ExtraCost2 += ExtraPredCost; + +    if (!TII->isPredicated(I) && !MI->isDebugValue()) { +      if (!TII->PredicateInstruction(*MI, Cond)) { +#ifndef NDEBUG +        dbgs() << "Unable to predicate " << I << "!\n"; +#endif +        llvm_unreachable(nullptr); +      } +    } + +    // If the predicated instruction now redefines a register as the result of +    // if-conversion, add an implicit kill. +    UpdatePredRedefs(*MI, Redefs); + +    // Some kill flags may not be correct anymore. +    if (!DontKill.empty()) +      RemoveKills(*MI, DontKill); +  } + +  if (!IgnoreBr) { +    std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), +                                           FromMBB.succ_end()); +    MachineBasicBlock *NBB = getNextBlock(FromMBB); +    MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; + +    for (MachineBasicBlock *Succ : Succs) { +      // Fallthrough edge can't be transferred. +      if (Succ == FallThrough) +        continue; +      ToBBI.BB->addSuccessor(Succ); +    } +  } + +  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); +  ToBBI.Predicate.append(Cond.begin(), Cond.end()); + +  ToBBI.ClobbersPred |= FromBBI.ClobbersPred; +  ToBBI.IsAnalyzed = false; + +  ++NumDupBBs; +} + +/// Move all instructions from FromBB to the end of ToBB.  This will leave +/// FromBB as an empty block, so remove all of its successor edges except for +/// the fall-through edge.  If AddEdges is true, i.e., when FromBBI's branch is +/// being moved, add those successor edges to ToBBI. +void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { +  MachineBasicBlock &FromMBB = *FromBBI.BB; +  assert(!FromMBB.hasAddressTaken() && +         "Removing a BB whose address is taken!"); + +  // In case FromMBB contains terminators (e.g. return instruction), +  // first move the non-terminator instructions, then the terminators. +  MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); +  MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); +  ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI); + +  // If FromBB has non-predicated terminator we should copy it at the end. +  if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI)) +    ToTI = ToBBI.BB->end(); +  ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end()); + +  // Force normalizing the successors' probabilities of ToBBI.BB to convert all +  // unknown probabilities into known ones. +  // FIXME: This usage is too tricky and in the future we would like to +  // eliminate all unknown probabilities in MBB. +  if (ToBBI.IsBrAnalyzable) +    ToBBI.BB->normalizeSuccProbs(); + +  SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(), +                                                FromMBB.succ_end()); +  MachineBasicBlock *NBB = getNextBlock(FromMBB); +  MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; +  // The edge probability from ToBBI.BB to FromMBB, which is only needed when +  // AddEdges is true and FromMBB is a successor of ToBBI.BB. +  auto To2FromProb = BranchProbability::getZero(); +  if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) { +    To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB); +    // Set the edge probability from ToBBI.BB to FromMBB to zero to avoid the +    // edge probability being merged to other edges when this edge is removed +    // later. +    ToBBI.BB->setSuccProbability(find(ToBBI.BB->successors(), &FromMBB), +                                 BranchProbability::getZero()); +  } + +  for (MachineBasicBlock *Succ : FromSuccs) { +    // Fallthrough edge can't be transferred. +    if (Succ == FallThrough) +      continue; + +    auto NewProb = BranchProbability::getZero(); +    if (AddEdges) { +      // Calculate the edge probability for the edge from ToBBI.BB to Succ, +      // which is a portion of the edge probability from FromMBB to Succ. The +      // portion ratio is the edge probability from ToBBI.BB to FromMBB (if +      // FromBBI is a successor of ToBBI.BB. See comment below for excepion). +      NewProb = MBPI->getEdgeProbability(&FromMBB, Succ); + +      // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This +      // only happens when if-converting a diamond CFG and FromMBB is the +      // tail BB.  In this case FromMBB post-dominates ToBBI.BB and hence we +      // could just use the probabilities on FromMBB's out-edges when adding +      // new successors. +      if (!To2FromProb.isZero()) +        NewProb *= To2FromProb; +    } + +    FromMBB.removeSuccessor(Succ); + +    if (AddEdges) { +      // If the edge from ToBBI.BB to Succ already exists, update the +      // probability of this edge by adding NewProb to it. An example is shown +      // below, in which A is ToBBI.BB and B is FromMBB. In this case we +      // don't have to set C as A's successor as it already is. We only need to +      // update the edge probability on A->C. Note that B will not be +      // immediately removed from A's successors. It is possible that B->D is +      // not removed either if D is a fallthrough of B. Later the edge A->D +      // (generated here) and B->D will be combined into one edge. To maintain +      // correct edge probability of this combined edge, we need to set the edge +      // probability of A->B to zero, which is already done above. The edge +      // probability on A->D is calculated by scaling the original probability +      // on A->B by the probability of B->D. +      // +      // Before ifcvt:      After ifcvt (assume B->D is kept): +      // +      //       A                A +      //      /|               /|\ +      //     / B              / B| +      //    | /|             |  || +      //    |/ |             |  |/ +      //    C  D             C  D +      // +      if (ToBBI.BB->isSuccessor(Succ)) +        ToBBI.BB->setSuccProbability( +            find(ToBBI.BB->successors(), Succ), +            MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb); +      else +        ToBBI.BB->addSuccessor(Succ, NewProb); +    } +  } + +  // Now FromBBI always falls through to the next block! +  if (NBB && !FromMBB.isSuccessor(NBB)) +    FromMBB.addSuccessor(NBB); + +  // Normalize the probabilities of ToBBI.BB's successors with all adjustment +  // we've done above. +  if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) +    ToBBI.BB->normalizeSuccProbs(); + +  ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end()); +  FromBBI.Predicate.clear(); + +  ToBBI.NonPredSize += FromBBI.NonPredSize; +  ToBBI.ExtraCost += FromBBI.ExtraCost; +  ToBBI.ExtraCost2 += FromBBI.ExtraCost2; +  FromBBI.NonPredSize = 0; +  FromBBI.ExtraCost = 0; +  FromBBI.ExtraCost2 = 0; + +  ToBBI.ClobbersPred |= FromBBI.ClobbersPred; +  ToBBI.HasFallThrough = FromBBI.HasFallThrough; +  ToBBI.IsAnalyzed = false; +  FromBBI.IsAnalyzed = false; +} + +FunctionPass * +llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { +  return new IfConverter(std::move(Ftor)); +}  | 
