diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveIntervals.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/LiveIntervals.cpp | 1659 | 
1 files changed, 1659 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/CodeGen/LiveIntervals.cpp b/contrib/llvm/lib/CodeGen/LiveIntervals.cpp new file mode 100644 index 000000000000..471775f8706b --- /dev/null +++ b/contrib/llvm/lib/CodeGen/LiveIntervals.cpp @@ -0,0 +1,1659 @@ +//===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file This file implements the LiveInterval analysis pass which is used +/// by the Linear Scan Register allocator. This pass linearizes the +/// basic blocks of the function in DFS order and computes live intervals for +/// each virtual and physical register. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/LiveIntervals.h" +#include "LiveRangeCalc.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "regalloc" + +char LiveIntervals::ID = 0; +char &llvm::LiveIntervalsID = LiveIntervals::ID; +INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", +                "Live Interval Analysis", false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(SlotIndexes) +INITIALIZE_PASS_END(LiveIntervals, "liveintervals", +                "Live Interval Analysis", false, false) + +#ifndef NDEBUG +static cl::opt<bool> EnablePrecomputePhysRegs( +  "precompute-phys-liveness", cl::Hidden, +  cl::desc("Eagerly compute live intervals for all physreg units.")); +#else +static bool EnablePrecomputePhysRegs = false; +#endif // NDEBUG + +namespace llvm { + +cl::opt<bool> UseSegmentSetForPhysRegs( +    "use-segment-set-for-physregs", cl::Hidden, cl::init(true), +    cl::desc( +        "Use segment set for the computation of the live ranges of physregs.")); + +} // end namespace llvm + +void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesCFG(); +  AU.addRequired<AAResultsWrapperPass>(); +  AU.addPreserved<AAResultsWrapperPass>(); +  AU.addPreserved<LiveVariables>(); +  AU.addPreservedID(MachineLoopInfoID); +  AU.addRequiredTransitiveID(MachineDominatorsID); +  AU.addPreservedID(MachineDominatorsID); +  AU.addPreserved<SlotIndexes>(); +  AU.addRequiredTransitive<SlotIndexes>(); +  MachineFunctionPass::getAnalysisUsage(AU); +} + +LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) { +  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); +} + +LiveIntervals::~LiveIntervals() { +  delete LRCalc; +} + +void LiveIntervals::releaseMemory() { +  // Free the live intervals themselves. +  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) +    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; +  VirtRegIntervals.clear(); +  RegMaskSlots.clear(); +  RegMaskBits.clear(); +  RegMaskBlocks.clear(); + +  for (LiveRange *LR : RegUnitRanges) +    delete LR; +  RegUnitRanges.clear(); + +  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. +  VNInfoAllocator.Reset(); +} + +bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { +  MF = &fn; +  MRI = &MF->getRegInfo(); +  TRI = MF->getSubtarget().getRegisterInfo(); +  TII = MF->getSubtarget().getInstrInfo(); +  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); +  Indexes = &getAnalysis<SlotIndexes>(); +  DomTree = &getAnalysis<MachineDominatorTree>(); + +  if (!LRCalc) +    LRCalc = new LiveRangeCalc(); + +  // Allocate space for all virtual registers. +  VirtRegIntervals.resize(MRI->getNumVirtRegs()); + +  computeVirtRegs(); +  computeRegMasks(); +  computeLiveInRegUnits(); + +  if (EnablePrecomputePhysRegs) { +    // For stress testing, precompute live ranges of all physical register +    // units, including reserved registers. +    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) +      getRegUnit(i); +  } +  LLVM_DEBUG(dump()); +  return true; +} + +void LiveIntervals::print(raw_ostream &OS, const Module* ) const { +  OS << "********** INTERVALS **********\n"; + +  // Dump the regunits. +  for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) +    if (LiveRange *LR = RegUnitRanges[Unit]) +      OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; + +  // Dump the virtregs. +  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { +    unsigned Reg = TargetRegisterInfo::index2VirtReg(i); +    if (hasInterval(Reg)) +      OS << getInterval(Reg) << '\n'; +  } + +  OS << "RegMasks:"; +  for (SlotIndex Idx : RegMaskSlots) +    OS << ' ' << Idx; +  OS << '\n'; + +  printInstrs(OS); +} + +void LiveIntervals::printInstrs(raw_ostream &OS) const { +  OS << "********** MACHINEINSTRS **********\n"; +  MF->print(OS, Indexes); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { +  printInstrs(dbgs()); +} +#endif + +LiveInterval* LiveIntervals::createInterval(unsigned reg) { +  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F; +  return new LiveInterval(reg, Weight); +} + +/// Compute the live interval of a virtual register, based on defs and uses. +void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { +  assert(LRCalc && "LRCalc not initialized."); +  assert(LI.empty() && "Should only compute empty intervals."); +  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); +  LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg)); +  computeDeadValues(LI, nullptr); +} + +void LiveIntervals::computeVirtRegs() { +  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { +    unsigned Reg = TargetRegisterInfo::index2VirtReg(i); +    if (MRI->reg_nodbg_empty(Reg)) +      continue; +    createAndComputeVirtRegInterval(Reg); +  } +} + +void LiveIntervals::computeRegMasks() { +  RegMaskBlocks.resize(MF->getNumBlockIDs()); + +  // Find all instructions with regmask operands. +  for (const MachineBasicBlock &MBB : *MF) { +    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; +    RMB.first = RegMaskSlots.size(); + +    // Some block starts, such as EH funclets, create masks. +    if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { +      RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); +      RegMaskBits.push_back(Mask); +    } + +    for (const MachineInstr &MI : MBB) { +      for (const MachineOperand &MO : MI.operands()) { +        if (!MO.isRegMask()) +          continue; +        RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); +        RegMaskBits.push_back(MO.getRegMask()); +      } +    } + +    // Some block ends, such as funclet returns, create masks. Put the mask on +    // the last instruction of the block, because MBB slot index intervals are +    // half-open. +    if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { +      assert(!MBB.empty() && "empty return block?"); +      RegMaskSlots.push_back( +          Indexes->getInstructionIndex(MBB.back()).getRegSlot()); +      RegMaskBits.push_back(Mask); +    } + +    // Compute the number of register mask instructions in this block. +    RMB.second = RegMaskSlots.size() - RMB.first; +  } +} + +//===----------------------------------------------------------------------===// +//                           Register Unit Liveness +//===----------------------------------------------------------------------===// +// +// Fixed interference typically comes from ABI boundaries: Function arguments +// and return values are passed in fixed registers, and so are exception +// pointers entering landing pads. Certain instructions require values to be +// present in specific registers. That is also represented through fixed +// interference. +// + +/// Compute the live range of a register unit, based on the uses and defs of +/// aliasing registers.  The range should be empty, or contain only dead +/// phi-defs from ABI blocks. +void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { +  assert(LRCalc && "LRCalc not initialized."); +  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); + +  // The physregs aliasing Unit are the roots and their super-registers. +  // Create all values as dead defs before extending to uses. Note that roots +  // may share super-registers. That's OK because createDeadDefs() is +  // idempotent. It is very rare for a register unit to have multiple roots, so +  // uniquing super-registers is probably not worthwhile. +  bool IsReserved = false; +  for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { +    bool IsRootReserved = true; +    for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); +         Super.isValid(); ++Super) { +      unsigned Reg = *Super; +      if (!MRI->reg_empty(Reg)) +        LRCalc->createDeadDefs(LR, Reg); +      // A register unit is considered reserved if all its roots and all their +      // super registers are reserved. +      if (!MRI->isReserved(Reg)) +        IsRootReserved = false; +    } +    IsReserved |= IsRootReserved; +  } +  assert(IsReserved == MRI->isReservedRegUnit(Unit) && +         "reserved computation mismatch"); + +  // Now extend LR to reach all uses. +  // Ignore uses of reserved registers. We only track defs of those. +  if (!IsReserved) { +    for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { +      for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); +           Super.isValid(); ++Super) { +        unsigned Reg = *Super; +        if (!MRI->reg_empty(Reg)) +          LRCalc->extendToUses(LR, Reg); +      } +    } +  } + +  // Flush the segment set to the segment vector. +  if (UseSegmentSetForPhysRegs) +    LR.flushSegmentSet(); +} + +/// Precompute the live ranges of any register units that are live-in to an ABI +/// block somewhere. Register values can appear without a corresponding def when +/// entering the entry block or a landing pad. +void LiveIntervals::computeLiveInRegUnits() { +  RegUnitRanges.resize(TRI->getNumRegUnits()); +  LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); + +  // Keep track of the live range sets allocated. +  SmallVector<unsigned, 8> NewRanges; + +  // Check all basic blocks for live-ins. +  for (const MachineBasicBlock &MBB : *MF) { +    // We only care about ABI blocks: Entry + landing pads. +    if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) +      continue; + +    // Create phi-defs at Begin for all live-in registers. +    SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); +    LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); +    for (const auto &LI : MBB.liveins()) { +      for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { +        unsigned Unit = *Units; +        LiveRange *LR = RegUnitRanges[Unit]; +        if (!LR) { +          // Use segment set to speed-up initial computation of the live range. +          LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); +          NewRanges.push_back(Unit); +        } +        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); +        (void)VNI; +        LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); +      } +    } +    LLVM_DEBUG(dbgs() << '\n'); +  } +  LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); + +  // Compute the 'normal' part of the ranges. +  for (unsigned Unit : NewRanges) +    computeRegUnitRange(*RegUnitRanges[Unit], Unit); +} + +static void createSegmentsForValues(LiveRange &LR, +    iterator_range<LiveInterval::vni_iterator> VNIs) { +  for (VNInfo *VNI : VNIs) { +    if (VNI->isUnused()) +      continue; +    SlotIndex Def = VNI->def; +    LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); +  } +} + +void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, +                                         ShrinkToUsesWorkList &WorkList, +                                         unsigned Reg, LaneBitmask LaneMask) { +  // Keep track of the PHIs that are in use. +  SmallPtrSet<VNInfo*, 8> UsedPHIs; +  // Blocks that have already been added to WorkList as live-out. +  SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; + +  auto getSubRange = [](const LiveInterval &I, LaneBitmask M) +        -> const LiveRange& { +    if (M.none()) +      return I; +    for (const LiveInterval::SubRange &SR : I.subranges()) { +      if ((SR.LaneMask & M).any()) { +        assert(SR.LaneMask == M && "Expecting lane masks to match exactly"); +        return SR; +      } +    } +    llvm_unreachable("Subrange for mask not found"); +  }; + +  const LiveInterval &LI = getInterval(Reg); +  const LiveRange &OldRange = getSubRange(LI, LaneMask); + +  // Extend intervals to reach all uses in WorkList. +  while (!WorkList.empty()) { +    SlotIndex Idx = WorkList.back().first; +    VNInfo *VNI = WorkList.back().second; +    WorkList.pop_back(); +    const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot()); +    SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB); + +    // Extend the live range for VNI to be live at Idx. +    if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) { +      assert(ExtVNI == VNI && "Unexpected existing value number"); +      (void)ExtVNI; +      // Is this a PHIDef we haven't seen before? +      if (!VNI->isPHIDef() || VNI->def != BlockStart || +          !UsedPHIs.insert(VNI).second) +        continue; +      // The PHI is live, make sure the predecessors are live-out. +      for (const MachineBasicBlock *Pred : MBB->predecessors()) { +        if (!LiveOut.insert(Pred).second) +          continue; +        SlotIndex Stop = Indexes->getMBBEndIdx(Pred); +        // A predecessor is not required to have a live-out value for a PHI. +        if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) +          WorkList.push_back(std::make_pair(Stop, PVNI)); +      } +      continue; +    } + +    // VNI is live-in to MBB. +    LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); +    Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); + +    // Make sure VNI is live-out from the predecessors. +    for (const MachineBasicBlock *Pred : MBB->predecessors()) { +      if (!LiveOut.insert(Pred).second) +        continue; +      SlotIndex Stop = Indexes->getMBBEndIdx(Pred); +      if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) { +        assert(OldVNI == VNI && "Wrong value out of predecessor"); +        (void)OldVNI; +        WorkList.push_back(std::make_pair(Stop, VNI)); +      } else { +#ifndef NDEBUG +        // There was no old VNI. Verify that Stop is jointly dominated +        // by <undef>s for this live range. +        assert(LaneMask.any() && +               "Missing value out of predecessor for main range"); +        SmallVector<SlotIndex,8> Undefs; +        LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); +        assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && +               "Missing value out of predecessor for subrange"); +#endif +      } +    } +  } +} + +bool LiveIntervals::shrinkToUses(LiveInterval *li, +                                 SmallVectorImpl<MachineInstr*> *dead) { +  LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); +  assert(TargetRegisterInfo::isVirtualRegister(li->reg) +         && "Can only shrink virtual registers"); + +  // Shrink subregister live ranges. +  bool NeedsCleanup = false; +  for (LiveInterval::SubRange &S : li->subranges()) { +    shrinkToUses(S, li->reg); +    if (S.empty()) +      NeedsCleanup = true; +  } +  if (NeedsCleanup) +    li->removeEmptySubRanges(); + +  // Find all the values used, including PHI kills. +  ShrinkToUsesWorkList WorkList; + +  // Visit all instructions reading li->reg. +  unsigned Reg = li->reg; +  for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { +    if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg)) +      continue; +    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); +    LiveQueryResult LRQ = li->Query(Idx); +    VNInfo *VNI = LRQ.valueIn(); +    if (!VNI) { +      // This shouldn't happen: readsVirtualRegister returns true, but there is +      // no live value. It is likely caused by a target getting <undef> flags +      // wrong. +      LLVM_DEBUG( +          dbgs() << Idx << '\t' << UseMI +                 << "Warning: Instr claims to read non-existent value in " +                 << *li << '\n'); +      continue; +    } +    // Special case: An early-clobber tied operand reads and writes the +    // register one slot early. +    if (VNInfo *DefVNI = LRQ.valueDefined()) +      Idx = DefVNI->def; + +    WorkList.push_back(std::make_pair(Idx, VNI)); +  } + +  // Create new live ranges with only minimal live segments per def. +  LiveRange NewLR; +  createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end())); +  extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone()); + +  // Move the trimmed segments back. +  li->segments.swap(NewLR.segments); + +  // Handle dead values. +  bool CanSeparate = computeDeadValues(*li, dead); +  LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); +  return CanSeparate; +} + +bool LiveIntervals::computeDeadValues(LiveInterval &LI, +                                      SmallVectorImpl<MachineInstr*> *dead) { +  bool MayHaveSplitComponents = false; +  for (VNInfo *VNI : LI.valnos) { +    if (VNI->isUnused()) +      continue; +    SlotIndex Def = VNI->def; +    LiveRange::iterator I = LI.FindSegmentContaining(Def); +    assert(I != LI.end() && "Missing segment for VNI"); + +    // Is the register live before? Otherwise we may have to add a read-undef +    // flag for subregister defs. +    unsigned VReg = LI.reg; +    if (MRI->shouldTrackSubRegLiveness(VReg)) { +      if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { +        MachineInstr *MI = getInstructionFromIndex(Def); +        MI->setRegisterDefReadUndef(VReg); +      } +    } + +    if (I->end != Def.getDeadSlot()) +      continue; +    if (VNI->isPHIDef()) { +      // This is a dead PHI. Remove it. +      VNI->markUnused(); +      LI.removeSegment(I); +      LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); +      MayHaveSplitComponents = true; +    } else { +      // This is a dead def. Make sure the instruction knows. +      MachineInstr *MI = getInstructionFromIndex(Def); +      assert(MI && "No instruction defining live value"); +      MI->addRegisterDead(LI.reg, TRI); +      if (dead && MI->allDefsAreDead()) { +        LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); +        dead->push_back(MI); +      } +    } +  } +  return MayHaveSplitComponents; +} + +void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) { +  LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); +  assert(TargetRegisterInfo::isVirtualRegister(Reg) +         && "Can only shrink virtual registers"); +  // Find all the values used, including PHI kills. +  ShrinkToUsesWorkList WorkList; + +  // Visit all instructions reading Reg. +  SlotIndex LastIdx; +  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { +    // Skip "undef" uses. +    if (!MO.readsReg()) +      continue; +    // Maybe the operand is for a subregister we don't care about. +    unsigned SubReg = MO.getSubReg(); +    if (SubReg != 0) { +      LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); +      if ((LaneMask & SR.LaneMask).none()) +        continue; +    } +    // We only need to visit each instruction once. +    MachineInstr *UseMI = MO.getParent(); +    SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); +    if (Idx == LastIdx) +      continue; +    LastIdx = Idx; + +    LiveQueryResult LRQ = SR.Query(Idx); +    VNInfo *VNI = LRQ.valueIn(); +    // For Subranges it is possible that only undef values are left in that +    // part of the subregister, so there is no real liverange at the use +    if (!VNI) +      continue; + +    // Special case: An early-clobber tied operand reads and writes the +    // register one slot early. +    if (VNInfo *DefVNI = LRQ.valueDefined()) +      Idx = DefVNI->def; + +    WorkList.push_back(std::make_pair(Idx, VNI)); +  } + +  // Create a new live ranges with only minimal live segments per def. +  LiveRange NewLR; +  createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end())); +  extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask); + +  // Move the trimmed ranges back. +  SR.segments.swap(NewLR.segments); + +  // Remove dead PHI value numbers +  for (VNInfo *VNI : SR.valnos) { +    if (VNI->isUnused()) +      continue; +    const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); +    assert(Segment != nullptr && "Missing segment for VNI"); +    if (Segment->end != VNI->def.getDeadSlot()) +      continue; +    if (VNI->isPHIDef()) { +      // This is a dead PHI. Remove it. +      LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def +                        << " may separate interval\n"); +      VNI->markUnused(); +      SR.removeSegment(*Segment); +    } +  } + +  LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); +} + +void LiveIntervals::extendToIndices(LiveRange &LR, +                                    ArrayRef<SlotIndex> Indices, +                                    ArrayRef<SlotIndex> Undefs) { +  assert(LRCalc && "LRCalc not initialized."); +  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); +  for (SlotIndex Idx : Indices) +    LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); +} + +void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, +                               SmallVectorImpl<SlotIndex> *EndPoints) { +  LiveQueryResult LRQ = LR.Query(Kill); +  VNInfo *VNI = LRQ.valueOutOrDead(); +  if (!VNI) +    return; + +  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); +  SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); + +  // If VNI isn't live out from KillMBB, the value is trivially pruned. +  if (LRQ.endPoint() < MBBEnd) { +    LR.removeSegment(Kill, LRQ.endPoint()); +    if (EndPoints) EndPoints->push_back(LRQ.endPoint()); +    return; +  } + +  // VNI is live out of KillMBB. +  LR.removeSegment(Kill, MBBEnd); +  if (EndPoints) EndPoints->push_back(MBBEnd); + +  // Find all blocks that are reachable from KillMBB without leaving VNI's live +  // range. It is possible that KillMBB itself is reachable, so start a DFS +  // from each successor. +  using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; +  VisitedTy Visited; +  for (MachineBasicBlock *Succ : KillMBB->successors()) { +    for (df_ext_iterator<MachineBasicBlock*, VisitedTy> +         I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); +         I != E;) { +      MachineBasicBlock *MBB = *I; + +      // Check if VNI is live in to MBB. +      SlotIndex MBBStart, MBBEnd; +      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); +      LiveQueryResult LRQ = LR.Query(MBBStart); +      if (LRQ.valueIn() != VNI) { +        // This block isn't part of the VNI segment. Prune the search. +        I.skipChildren(); +        continue; +      } + +      // Prune the search if VNI is killed in MBB. +      if (LRQ.endPoint() < MBBEnd) { +        LR.removeSegment(MBBStart, LRQ.endPoint()); +        if (EndPoints) EndPoints->push_back(LRQ.endPoint()); +        I.skipChildren(); +        continue; +      } + +      // VNI is live through MBB. +      LR.removeSegment(MBBStart, MBBEnd); +      if (EndPoints) EndPoints->push_back(MBBEnd); +      ++I; +    } +  } +} + +//===----------------------------------------------------------------------===// +// Register allocator hooks. +// + +void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { +  // Keep track of regunit ranges. +  SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; +  // Keep track of subregister ranges. +  SmallVector<std::pair<const LiveInterval::SubRange*, +                        LiveRange::const_iterator>, 4> SRs; + +  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { +    unsigned Reg = TargetRegisterInfo::index2VirtReg(i); +    if (MRI->reg_nodbg_empty(Reg)) +      continue; +    const LiveInterval &LI = getInterval(Reg); +    if (LI.empty()) +      continue; + +    // Find the regunit intervals for the assigned register. They may overlap +    // the virtual register live range, cancelling any kills. +    RU.clear(); +    for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid(); +         ++Unit) { +      const LiveRange &RURange = getRegUnit(*Unit); +      if (RURange.empty()) +        continue; +      RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); +    } + +    if (MRI->subRegLivenessEnabled()) { +      SRs.clear(); +      for (const LiveInterval::SubRange &SR : LI.subranges()) { +        SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end))); +      } +    } + +    // Every instruction that kills Reg corresponds to a segment range end +    // point. +    for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; +         ++RI) { +      // A block index indicates an MBB edge. +      if (RI->end.isBlock()) +        continue; +      MachineInstr *MI = getInstructionFromIndex(RI->end); +      if (!MI) +        continue; + +      // Check if any of the regunits are live beyond the end of RI. That could +      // happen when a physreg is defined as a copy of a virtreg: +      // +      //   %eax = COPY %5 +      //   FOO %5             <--- MI, cancel kill because %eax is live. +      //   BAR killed %eax +      // +      // There should be no kill flag on FOO when %5 is rewritten as %eax. +      for (auto &RUP : RU) { +        const LiveRange &RURange = *RUP.first; +        LiveRange::const_iterator &I = RUP.second; +        if (I == RURange.end()) +          continue; +        I = RURange.advanceTo(I, RI->end); +        if (I == RURange.end() || I->start >= RI->end) +          continue; +        // I is overlapping RI. +        goto CancelKill; +      } + +      if (MRI->subRegLivenessEnabled()) { +        // When reading a partial undefined value we must not add a kill flag. +        // The regalloc might have used the undef lane for something else. +        // Example: +        //     %1 = ...                  ; R32: %1 +        //     %2:high16 = ...           ; R64: %2 +        //        = read killed %2        ; R64: %2 +        //        = read %1              ; R32: %1 +        // The <kill> flag is correct for %2, but the register allocator may +        // assign R0L to %1, and R0 to %2 because the low 32bits of R0 +        // are actually never written by %2. After assignment the <kill> +        // flag at the read instruction is invalid. +        LaneBitmask DefinedLanesMask; +        if (!SRs.empty()) { +          // Compute a mask of lanes that are defined. +          DefinedLanesMask = LaneBitmask::getNone(); +          for (auto &SRP : SRs) { +            const LiveInterval::SubRange &SR = *SRP.first; +            LiveRange::const_iterator &I = SRP.second; +            if (I == SR.end()) +              continue; +            I = SR.advanceTo(I, RI->end); +            if (I == SR.end() || I->start >= RI->end) +              continue; +            // I is overlapping RI +            DefinedLanesMask |= SR.LaneMask; +          } +        } else +          DefinedLanesMask = LaneBitmask::getAll(); + +        bool IsFullWrite = false; +        for (const MachineOperand &MO : MI->operands()) { +          if (!MO.isReg() || MO.getReg() != Reg) +            continue; +          if (MO.isUse()) { +            // Reading any undefined lanes? +            LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); +            if ((UseMask & ~DefinedLanesMask).any()) +              goto CancelKill; +          } else if (MO.getSubReg() == 0) { +            // Writing to the full register? +            assert(MO.isDef()); +            IsFullWrite = true; +          } +        } + +        // If an instruction writes to a subregister, a new segment starts in +        // the LiveInterval. But as this is only overriding part of the register +        // adding kill-flags is not correct here after registers have been +        // assigned. +        if (!IsFullWrite) { +          // Next segment has to be adjacent in the subregister write case. +          LiveRange::const_iterator N = std::next(RI); +          if (N != LI.end() && N->start == RI->end) +            goto CancelKill; +        } +      } + +      MI->addRegisterKilled(Reg, nullptr); +      continue; +CancelKill: +      MI->clearRegisterKills(Reg, nullptr); +    } +  } +} + +MachineBasicBlock* +LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { +  // A local live range must be fully contained inside the block, meaning it is +  // defined and killed at instructions, not at block boundaries. It is not +  // live in or out of any block. +  // +  // It is technically possible to have a PHI-defined live range identical to a +  // single block, but we are going to return false in that case. + +  SlotIndex Start = LI.beginIndex(); +  if (Start.isBlock()) +    return nullptr; + +  SlotIndex Stop = LI.endIndex(); +  if (Stop.isBlock()) +    return nullptr; + +  // getMBBFromIndex doesn't need to search the MBB table when both indexes +  // belong to proper instructions. +  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); +  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); +  return MBB1 == MBB2 ? MBB1 : nullptr; +} + +bool +LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { +  for (const VNInfo *PHI : LI.valnos) { +    if (PHI->isUnused() || !PHI->isPHIDef()) +      continue; +    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); +    // Conservatively return true instead of scanning huge predecessor lists. +    if (PHIMBB->pred_size() > 100) +      return true; +    for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) +      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) +        return true; +  } +  return false; +} + +float LiveIntervals::getSpillWeight(bool isDef, bool isUse, +                                    const MachineBlockFrequencyInfo *MBFI, +                                    const MachineInstr &MI) { +  return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); +} + +float LiveIntervals::getSpillWeight(bool isDef, bool isUse, +                                    const MachineBlockFrequencyInfo *MBFI, +                                    const MachineBasicBlock *MBB) { +  BlockFrequency Freq = MBFI->getBlockFreq(MBB); +  const float Scale = 1.0f / MBFI->getEntryFreq(); +  return (isDef + isUse) * (Freq.getFrequency() * Scale); +} + +LiveRange::Segment +LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) { +  LiveInterval& Interval = createEmptyInterval(reg); +  VNInfo *VN = Interval.getNextValue( +      SlotIndex(getInstructionIndex(startInst).getRegSlot()), +      getVNInfoAllocator()); +  LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), +                       getMBBEndIdx(startInst.getParent()), VN); +  Interval.addSegment(S); + +  return S; +} + +//===----------------------------------------------------------------------===// +//                          Register mask functions +//===----------------------------------------------------------------------===// + +bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, +                                             BitVector &UsableRegs) { +  if (LI.empty()) +    return false; +  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); + +  // Use a smaller arrays for local live ranges. +  ArrayRef<SlotIndex> Slots; +  ArrayRef<const uint32_t*> Bits; +  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { +    Slots = getRegMaskSlotsInBlock(MBB->getNumber()); +    Bits = getRegMaskBitsInBlock(MBB->getNumber()); +  } else { +    Slots = getRegMaskSlots(); +    Bits = getRegMaskBits(); +  } + +  // We are going to enumerate all the register mask slots contained in LI. +  // Start with a binary search of RegMaskSlots to find a starting point. +  ArrayRef<SlotIndex>::iterator SlotI = +    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); +  ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); + +  // No slots in range, LI begins after the last call. +  if (SlotI == SlotE) +    return false; + +  bool Found = false; +  while (true) { +    assert(*SlotI >= LiveI->start); +    // Loop over all slots overlapping this segment. +    while (*SlotI < LiveI->end) { +      // *SlotI overlaps LI. Collect mask bits. +      if (!Found) { +        // This is the first overlap. Initialize UsableRegs to all ones. +        UsableRegs.clear(); +        UsableRegs.resize(TRI->getNumRegs(), true); +        Found = true; +      } +      // Remove usable registers clobbered by this mask. +      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); +      if (++SlotI == SlotE) +        return Found; +    } +    // *SlotI is beyond the current LI segment. +    LiveI = LI.advanceTo(LiveI, *SlotI); +    if (LiveI == LiveE) +      return Found; +    // Advance SlotI until it overlaps. +    while (*SlotI < LiveI->start) +      if (++SlotI == SlotE) +        return Found; +  } +} + +//===----------------------------------------------------------------------===// +//                         IntervalUpdate class. +//===----------------------------------------------------------------------===// + +/// Toolkit used by handleMove to trim or extend live intervals. +class LiveIntervals::HMEditor { +private: +  LiveIntervals& LIS; +  const MachineRegisterInfo& MRI; +  const TargetRegisterInfo& TRI; +  SlotIndex OldIdx; +  SlotIndex NewIdx; +  SmallPtrSet<LiveRange*, 8> Updated; +  bool UpdateFlags; + +public: +  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, +           const TargetRegisterInfo& TRI, +           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) +    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), +      UpdateFlags(UpdateFlags) {} + +  // FIXME: UpdateFlags is a workaround that creates live intervals for all +  // physregs, even those that aren't needed for regalloc, in order to update +  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill +  // flags, and postRA passes will use a live register utility instead. +  LiveRange *getRegUnitLI(unsigned Unit) { +    if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) +      return &LIS.getRegUnit(Unit); +    return LIS.getCachedRegUnit(Unit); +  } + +  /// Update all live ranges touched by MI, assuming a move from OldIdx to +  /// NewIdx. +  void updateAllRanges(MachineInstr *MI) { +    LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " +                      << *MI); +    bool hasRegMask = false; +    for (MachineOperand &MO : MI->operands()) { +      if (MO.isRegMask()) +        hasRegMask = true; +      if (!MO.isReg()) +        continue; +      if (MO.isUse()) { +        if (!MO.readsReg()) +          continue; +        // Aggressively clear all kill flags. +        // They are reinserted by VirtRegRewriter. +        MO.setIsKill(false); +      } + +      unsigned Reg = MO.getReg(); +      if (!Reg) +        continue; +      if (TargetRegisterInfo::isVirtualRegister(Reg)) { +        LiveInterval &LI = LIS.getInterval(Reg); +        if (LI.hasSubRanges()) { +          unsigned SubReg = MO.getSubReg(); +          LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) +                                        : MRI.getMaxLaneMaskForVReg(Reg); +          for (LiveInterval::SubRange &S : LI.subranges()) { +            if ((S.LaneMask & LaneMask).none()) +              continue; +            updateRange(S, Reg, S.LaneMask); +          } +        } +        updateRange(LI, Reg, LaneBitmask::getNone()); +        continue; +      } + +      // For physregs, only update the regunits that actually have a +      // precomputed live range. +      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) +        if (LiveRange *LR = getRegUnitLI(*Units)) +          updateRange(*LR, *Units, LaneBitmask::getNone()); +    } +    if (hasRegMask) +      updateRegMaskSlots(); +  } + +private: +  /// Update a single live range, assuming an instruction has been moved from +  /// OldIdx to NewIdx. +  void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { +    if (!Updated.insert(&LR).second) +      return; +    LLVM_DEBUG({ +      dbgs() << "     "; +      if (TargetRegisterInfo::isVirtualRegister(Reg)) { +        dbgs() << printReg(Reg); +        if (LaneMask.any()) +          dbgs() << " L" << PrintLaneMask(LaneMask); +      } else { +        dbgs() << printRegUnit(Reg, &TRI); +      } +      dbgs() << ":\t" << LR << '\n'; +    }); +    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) +      handleMoveDown(LR); +    else +      handleMoveUp(LR, Reg, LaneMask); +    LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n'); +    LR.verify(); +  } + +  /// Update LR to reflect an instruction has been moved downwards from OldIdx +  /// to NewIdx (OldIdx < NewIdx). +  void handleMoveDown(LiveRange &LR) { +    LiveRange::iterator E = LR.end(); +    // Segment going into OldIdx. +    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); + +    // No value live before or after OldIdx? Nothing to do. +    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) +      return; + +    LiveRange::iterator OldIdxOut; +    // Do we have a value live-in to OldIdx? +    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { +      // If the live-in value already extends to NewIdx, there is nothing to do. +      if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) +        return; +      // Aggressively remove all kill flags from the old kill point. +      // Kill flags shouldn't be used while live intervals exist, they will be +      // reinserted by VirtRegRewriter. +      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) +        for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) +          if (MO->isReg() && MO->isUse()) +            MO->setIsKill(false); + +      // Is there a def before NewIdx which is not OldIdx? +      LiveRange::iterator Next = std::next(OldIdxIn); +      if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && +          SlotIndex::isEarlierInstr(Next->start, NewIdx)) { +        // If we are here then OldIdx was just a use but not a def. We only have +        // to ensure liveness extends to NewIdx. +        LiveRange::iterator NewIdxIn = +          LR.advanceTo(Next, NewIdx.getBaseIndex()); +        // Extend the segment before NewIdx if necessary. +        if (NewIdxIn == E || +            !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { +          LiveRange::iterator Prev = std::prev(NewIdxIn); +          Prev->end = NewIdx.getRegSlot(); +        } +        // Extend OldIdxIn. +        OldIdxIn->end = Next->start; +        return; +      } + +      // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR +      // invalid by overlapping ranges. +      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); +      OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); +      // If this was not a kill, then there was no def and we're done. +      if (!isKill) +        return; + +      // Did we have a Def at OldIdx? +      OldIdxOut = Next; +      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) +        return; +    } else { +      OldIdxOut = OldIdxIn; +    } + +    // If we are here then there is a Definition at OldIdx. OldIdxOut points +    // to the segment starting there. +    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && +           "No def?"); +    VNInfo *OldIdxVNI = OldIdxOut->valno; +    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); + +    // If the defined value extends beyond NewIdx, just move the beginning +    // of the segment to NewIdx. +    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); +    if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { +      OldIdxVNI->def = NewIdxDef; +      OldIdxOut->start = OldIdxVNI->def; +      return; +    } + +    // If we are here then we have a Definition at OldIdx which ends before +    // NewIdx. + +    // Is there an existing Def at NewIdx? +    LiveRange::iterator AfterNewIdx +      = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); +    bool OldIdxDefIsDead = OldIdxOut->end.isDead(); +    if (!OldIdxDefIsDead && +        SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { +      // OldIdx is not a dead def, and NewIdxDef is inside a new interval. +      VNInfo *DefVNI; +      if (OldIdxOut != LR.begin() && +          !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, +                                     OldIdxOut->start)) { +        // There is no gap between OldIdxOut and its predecessor anymore, +        // merge them. +        LiveRange::iterator IPrev = std::prev(OldIdxOut); +        DefVNI = OldIdxVNI; +        IPrev->end = OldIdxOut->end; +      } else { +        // The value is live in to OldIdx +        LiveRange::iterator INext = std::next(OldIdxOut); +        assert(INext != E && "Must have following segment"); +        // We merge OldIdxOut and its successor. As we're dealing with subreg +        // reordering, there is always a successor to OldIdxOut in the same BB +        // We don't need INext->valno anymore and will reuse for the new segment +        // we create later. +        DefVNI = OldIdxVNI; +        INext->start = OldIdxOut->end; +        INext->valno->def = INext->start; +      } +      // If NewIdx is behind the last segment, extend that and append a new one. +      if (AfterNewIdx == E) { +        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up +        // one position. +        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end +        // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end +        std::copy(std::next(OldIdxOut), E, OldIdxOut); +        // The last segment is undefined now, reuse it for a dead def. +        LiveRange::iterator NewSegment = std::prev(E); +        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), +                                         DefVNI); +        DefVNI->def = NewIdxDef; + +        LiveRange::iterator Prev = std::prev(NewSegment); +        Prev->end = NewIdxDef; +      } else { +        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up +        // one position. +        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| +        // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| +        std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); +        LiveRange::iterator Prev = std::prev(AfterNewIdx); +        // We have two cases: +        if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { +          // Case 1: NewIdx is inside a liverange. Split this liverange at +          // NewIdxDef into the segment "Prev" followed by "NewSegment". +          LiveRange::iterator NewSegment = AfterNewIdx; +          *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); +          Prev->valno->def = NewIdxDef; + +          *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); +          DefVNI->def = Prev->start; +        } else { +          // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and +          // turn Prev into a segment from NewIdx to AfterNewIdx->start. +          *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); +          DefVNI->def = NewIdxDef; +          assert(DefVNI != AfterNewIdx->valno); +        } +      } +      return; +    } + +    if (AfterNewIdx != E && +        SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { +      // There is an existing def at NewIdx. The def at OldIdx is coalesced into +      // that value. +      assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); +      LR.removeValNo(OldIdxVNI); +    } else { +      // There was no existing def at NewIdx. We need to create a dead def +      // at NewIdx. Shift segments over the old OldIdxOut segment, this frees +      // a new segment at the place where we want to construct the dead def. +      //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| +      // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| +      assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); +      std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); +      // We can reuse OldIdxVNI now. +      LiveRange::iterator NewSegment = std::prev(AfterNewIdx); +      VNInfo *NewSegmentVNI = OldIdxVNI; +      NewSegmentVNI->def = NewIdxDef; +      *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), +                                       NewSegmentVNI); +    } +  } + +  /// Update LR to reflect an instruction has been moved upwards from OldIdx +  /// to NewIdx (NewIdx < OldIdx). +  void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { +    LiveRange::iterator E = LR.end(); +    // Segment going into OldIdx. +    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); + +    // No value live before or after OldIdx? Nothing to do. +    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) +      return; + +    LiveRange::iterator OldIdxOut; +    // Do we have a value live-in to OldIdx? +    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { +      // If the live-in value isn't killed here, then we have no Def at +      // OldIdx, moreover the value must be live at NewIdx so there is nothing +      // to do. +      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); +      if (!isKill) +        return; + +      // At this point we have to move OldIdxIn->end back to the nearest +      // previous use or (dead-)def but no further than NewIdx. +      SlotIndex DefBeforeOldIdx +        = std::max(OldIdxIn->start.getDeadSlot(), +                   NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); +      OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); + +      // Did we have a Def at OldIdx? If not we are done now. +      OldIdxOut = std::next(OldIdxIn); +      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) +        return; +    } else { +      OldIdxOut = OldIdxIn; +      OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; +    } + +    // If we are here then there is a Definition at OldIdx. OldIdxOut points +    // to the segment starting there. +    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && +           "No def?"); +    VNInfo *OldIdxVNI = OldIdxOut->valno; +    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); +    bool OldIdxDefIsDead = OldIdxOut->end.isDead(); + +    // Is there an existing def at NewIdx? +    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); +    LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); +    if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { +      assert(NewIdxOut->valno != OldIdxVNI && +             "Same value defined more than once?"); +      // If OldIdx was a dead def remove it. +      if (!OldIdxDefIsDead) { +        // Remove segment starting at NewIdx and move begin of OldIdxOut to +        // NewIdx so it can take its place. +        OldIdxVNI->def = NewIdxDef; +        OldIdxOut->start = NewIdxDef; +        LR.removeValNo(NewIdxOut->valno); +      } else { +        // Simply remove the dead def at OldIdx. +        LR.removeValNo(OldIdxVNI); +      } +    } else { +      // Previously nothing was live after NewIdx, so all we have to do now is +      // move the begin of OldIdxOut to NewIdx. +      if (!OldIdxDefIsDead) { +        // Do we have any intermediate Defs between OldIdx and NewIdx? +        if (OldIdxIn != E && +            SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { +          // OldIdx is not a dead def and NewIdx is before predecessor start. +          LiveRange::iterator NewIdxIn = NewIdxOut; +          assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); +          const SlotIndex SplitPos = NewIdxDef; +          OldIdxVNI = OldIdxIn->valno; + +          // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. +          OldIdxOut->valno->def = OldIdxIn->start; +          *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, +                                          OldIdxOut->valno); +          // OldIdxIn and OldIdxVNI are now undef and can be overridden. +          // We Slide [NewIdxIn, OldIdxIn) down one position. +          //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| +          // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| +          std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); +          // NewIdxIn is now considered undef so we can reuse it for the moved +          // value. +          LiveRange::iterator NewSegment = NewIdxIn; +          LiveRange::iterator Next = std::next(NewSegment); +          if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { +            // There is no gap between NewSegment and its predecessor. +            *NewSegment = LiveRange::Segment(Next->start, SplitPos, +                                             Next->valno); +            *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI); +            Next->valno->def = SplitPos; +          } else { +            // There is a gap between NewSegment and its predecessor +            // Value becomes live in. +            *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); +            NewSegment->valno->def = SplitPos; +          } +        } else { +          // Leave the end point of a live def. +          OldIdxOut->start = NewIdxDef; +          OldIdxVNI->def = NewIdxDef; +          if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) +            OldIdxIn->end = NewIdx.getRegSlot(); +        } +      } else if (OldIdxIn != E +          && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx) +          && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) { +        // OldIdxVNI is a dead def that has been moved into the middle of +        // another value in LR. That can happen when LR is a whole register, +        // but the dead def is a write to a subreg that is dead at NewIdx. +        // The dead def may have been moved across other values +        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) +        // down one position. +        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | +        // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| +        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); +        // Modify the segment at NewIdxOut and the following segment to meet at +        // the point of the dead def, with the following segment getting +        // OldIdxVNI as its value number. +        *NewIdxOut = LiveRange::Segment( +            NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); +        *(NewIdxOut + 1) = LiveRange::Segment( +            NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); +        OldIdxVNI->def = NewIdxDef; +        // Modify subsequent segments to be defined by the moved def OldIdxVNI. +        for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) +          Idx->valno = OldIdxVNI; +        // Aggressively remove all dead flags from the former dead definition. +        // Kill/dead flags shouldn't be used while live intervals exist; they +        // will be reinserted by VirtRegRewriter. +        if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx)) +          for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) +            if (MO->isReg() && !MO->isUse()) +              MO->setIsDead(false); +      } else { +        // OldIdxVNI is a dead def. It may have been moved across other values +        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) +        // down one position. +        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | +        // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| +        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); +        // OldIdxVNI can be reused now to build a new dead def segment. +        LiveRange::iterator NewSegment = NewIdxOut; +        VNInfo *NewSegmentVNI = OldIdxVNI; +        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), +                                         NewSegmentVNI); +        NewSegmentVNI->def = NewIdxDef; +      } +    } +  } + +  void updateRegMaskSlots() { +    SmallVectorImpl<SlotIndex>::iterator RI = +      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), +                       OldIdx); +    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && +           "No RegMask at OldIdx."); +    *RI = NewIdx.getRegSlot(); +    assert((RI == LIS.RegMaskSlots.begin() || +            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && +           "Cannot move regmask instruction above another call"); +    assert((std::next(RI) == LIS.RegMaskSlots.end() || +            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && +           "Cannot move regmask instruction below another call"); +  } + +  // Return the last use of reg between NewIdx and OldIdx. +  SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg, +                              LaneBitmask LaneMask) { +    if (TargetRegisterInfo::isVirtualRegister(Reg)) { +      SlotIndex LastUse = Before; +      for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { +        if (MO.isUndef()) +          continue; +        unsigned SubReg = MO.getSubReg(); +        if (SubReg != 0 && LaneMask.any() +            && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) +          continue; + +        const MachineInstr &MI = *MO.getParent(); +        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); +        if (InstSlot > LastUse && InstSlot < OldIdx) +          LastUse = InstSlot.getRegSlot(); +      } +      return LastUse; +    } + +    // This is a regunit interval, so scanning the use list could be very +    // expensive. Scan upwards from OldIdx instead. +    assert(Before < OldIdx && "Expected upwards move"); +    SlotIndexes *Indexes = LIS.getSlotIndexes(); +    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); + +    // OldIdx may not correspond to an instruction any longer, so set MII to +    // point to the next instruction after OldIdx, or MBB->end(). +    MachineBasicBlock::iterator MII = MBB->end(); +    if (MachineInstr *MI = Indexes->getInstructionFromIndex( +                           Indexes->getNextNonNullIndex(OldIdx))) +      if (MI->getParent() == MBB) +        MII = MI; + +    MachineBasicBlock::iterator Begin = MBB->begin(); +    while (MII != Begin) { +      if ((--MII)->isDebugInstr()) +        continue; +      SlotIndex Idx = Indexes->getInstructionIndex(*MII); + +      // Stop searching when Before is reached. +      if (!SlotIndex::isEarlierInstr(Before, Idx)) +        return Before; + +      // Check if MII uses Reg. +      for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) +        if (MO->isReg() && !MO->isUndef() && +            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) && +            TRI.hasRegUnit(MO->getReg(), Reg)) +          return Idx.getRegSlot(); +    } +    // Didn't reach Before. It must be the first instruction in the block. +    return Before; +  } +}; + +void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { +  assert(!MI.isBundled() && "Can't handle bundled instructions yet."); +  SlotIndex OldIndex = Indexes->getInstructionIndex(MI); +  Indexes->removeMachineInstrFromMaps(MI); +  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); +  assert(getMBBStartIdx(MI.getParent()) <= OldIndex && +         OldIndex < getMBBEndIdx(MI.getParent()) && +         "Cannot handle moves across basic block boundaries."); + +  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); +  HME.updateAllRanges(&MI); +} + +void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI, +                                         MachineInstr &BundleStart, +                                         bool UpdateFlags) { +  SlotIndex OldIndex = Indexes->getInstructionIndex(MI); +  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); +  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); +  HME.updateAllRanges(&MI); +} + +void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, +                                        const MachineBasicBlock::iterator End, +                                        const SlotIndex endIdx, +                                        LiveRange &LR, const unsigned Reg, +                                        LaneBitmask LaneMask) { +  LiveInterval::iterator LII = LR.find(endIdx); +  SlotIndex lastUseIdx; +  if (LII == LR.begin()) { +    // This happens when the function is called for a subregister that only +    // occurs _after_ the range that is to be repaired. +    return; +  } +  if (LII != LR.end() && LII->start < endIdx) +    lastUseIdx = LII->end; +  else +    --LII; + +  for (MachineBasicBlock::iterator I = End; I != Begin;) { +    --I; +    MachineInstr &MI = *I; +    if (MI.isDebugInstr()) +      continue; + +    SlotIndex instrIdx = getInstructionIndex(MI); +    bool isStartValid = getInstructionFromIndex(LII->start); +    bool isEndValid = getInstructionFromIndex(LII->end); + +    // FIXME: This doesn't currently handle early-clobber or multiple removed +    // defs inside of the region to repair. +    for (MachineInstr::mop_iterator OI = MI.operands_begin(), +                                    OE = MI.operands_end(); +         OI != OE; ++OI) { +      const MachineOperand &MO = *OI; +      if (!MO.isReg() || MO.getReg() != Reg) +        continue; + +      unsigned SubReg = MO.getSubReg(); +      LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); +      if ((Mask & LaneMask).none()) +        continue; + +      if (MO.isDef()) { +        if (!isStartValid) { +          if (LII->end.isDead()) { +            SlotIndex prevStart; +            if (LII != LR.begin()) +              prevStart = std::prev(LII)->start; + +            // FIXME: This could be more efficient if there was a +            // removeSegment method that returned an iterator. +            LR.removeSegment(*LII, true); +            if (prevStart.isValid()) +              LII = LR.find(prevStart); +            else +              LII = LR.begin(); +          } else { +            LII->start = instrIdx.getRegSlot(); +            LII->valno->def = instrIdx.getRegSlot(); +            if (MO.getSubReg() && !MO.isUndef()) +              lastUseIdx = instrIdx.getRegSlot(); +            else +              lastUseIdx = SlotIndex(); +            continue; +          } +        } + +        if (!lastUseIdx.isValid()) { +          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); +          LiveRange::Segment S(instrIdx.getRegSlot(), +                               instrIdx.getDeadSlot(), VNI); +          LII = LR.addSegment(S); +        } else if (LII->start != instrIdx.getRegSlot()) { +          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); +          LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); +          LII = LR.addSegment(S); +        } + +        if (MO.getSubReg() && !MO.isUndef()) +          lastUseIdx = instrIdx.getRegSlot(); +        else +          lastUseIdx = SlotIndex(); +      } else if (MO.isUse()) { +        // FIXME: This should probably be handled outside of this branch, +        // either as part of the def case (for defs inside of the region) or +        // after the loop over the region. +        if (!isEndValid && !LII->end.isBlock()) +          LII->end = instrIdx.getRegSlot(); +        if (!lastUseIdx.isValid()) +          lastUseIdx = instrIdx.getRegSlot(); +      } +    } +  } +} + +void +LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, +                                      MachineBasicBlock::iterator Begin, +                                      MachineBasicBlock::iterator End, +                                      ArrayRef<unsigned> OrigRegs) { +  // Find anchor points, which are at the beginning/end of blocks or at +  // instructions that already have indexes. +  while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin)) +    --Begin; +  while (End != MBB->end() && !Indexes->hasIndex(*End)) +    ++End; + +  SlotIndex endIdx; +  if (End == MBB->end()) +    endIdx = getMBBEndIdx(MBB).getPrevSlot(); +  else +    endIdx = getInstructionIndex(*End); + +  Indexes->repairIndexesInRange(MBB, Begin, End); + +  for (MachineBasicBlock::iterator I = End; I != Begin;) { +    --I; +    MachineInstr &MI = *I; +    if (MI.isDebugInstr()) +      continue; +    for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), +                                          MOE = MI.operands_end(); +         MOI != MOE; ++MOI) { +      if (MOI->isReg() && +          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) && +          !hasInterval(MOI->getReg())) { +        createAndComputeVirtRegInterval(MOI->getReg()); +      } +    } +  } + +  for (unsigned Reg : OrigRegs) { +    if (!TargetRegisterInfo::isVirtualRegister(Reg)) +      continue; + +    LiveInterval &LI = getInterval(Reg); +    // FIXME: Should we support undefs that gain defs? +    if (!LI.hasAtLeastOneValue()) +      continue; + +    for (LiveInterval::SubRange &S : LI.subranges()) +      repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask); + +    repairOldRegInRange(Begin, End, endIdx, LI, Reg); +  } +} + +void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) { +  for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) { +    if (LiveRange *LR = getCachedRegUnit(*Unit)) +      if (VNInfo *VNI = LR->getVNInfoAt(Pos)) +        LR->removeValNo(VNI); +  } +} + +void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { +  // LI may not have the main range computed yet, but its subranges may +  // be present. +  VNInfo *VNI = LI.getVNInfoAt(Pos); +  if (VNI != nullptr) { +    assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); +    LI.removeValNo(VNI); +  } + +  // Also remove the value defined in subranges. +  for (LiveInterval::SubRange &S : LI.subranges()) { +    if (VNInfo *SVNI = S.getVNInfoAt(Pos)) +      if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) +        S.removeValNo(SVNI); +  } +  LI.removeEmptySubRanges(); +} + +void LiveIntervals::splitSeparateComponents(LiveInterval &LI, +    SmallVectorImpl<LiveInterval*> &SplitLIs) { +  ConnectedVNInfoEqClasses ConEQ(*this); +  unsigned NumComp = ConEQ.Classify(LI); +  if (NumComp <= 1) +    return; +  LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n'); +  unsigned Reg = LI.reg; +  const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); +  for (unsigned I = 1; I < NumComp; ++I) { +    unsigned NewVReg = MRI->createVirtualRegister(RegClass); +    LiveInterval &NewLI = createEmptyInterval(NewVReg); +    SplitLIs.push_back(&NewLI); +  } +  ConEQ.Distribute(LI, SplitLIs.data(), *MRI); +} + +void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { +  assert(LRCalc && "LRCalc not initialized."); +  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); +  LRCalc->constructMainRangeFromSubranges(LI); +} | 
