diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp | 4606 | 
1 files changed, 4606 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp new file mode 100644 index 000000000000..d3aea37f944d --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp @@ -0,0 +1,4606 @@ +//===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the SelectionDAG::Legalize method. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "legalizedag" + +namespace { + +/// Keeps track of state when getting the sign of a floating-point value as an +/// integer. +struct FloatSignAsInt { +  EVT FloatVT; +  SDValue Chain; +  SDValue FloatPtr; +  SDValue IntPtr; +  MachinePointerInfo IntPointerInfo; +  MachinePointerInfo FloatPointerInfo; +  SDValue IntValue; +  APInt SignMask; +  uint8_t SignBit; +}; + +//===----------------------------------------------------------------------===// +/// This takes an arbitrary SelectionDAG as input and +/// hacks on it until the target machine can handle it.  This involves +/// eliminating value sizes the machine cannot handle (promoting small sizes to +/// large sizes or splitting up large values into small values) as well as +/// eliminating operations the machine cannot handle. +/// +/// This code also does a small amount of optimization and recognition of idioms +/// as part of its processing.  For example, if a target does not support a +/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this +/// will attempt merge setcc and brc instructions into brcc's. +class SelectionDAGLegalize { +  const TargetMachine &TM; +  const TargetLowering &TLI; +  SelectionDAG &DAG; + +  /// The set of nodes which have already been legalized. We hold a +  /// reference to it in order to update as necessary on node deletion. +  SmallPtrSetImpl<SDNode *> &LegalizedNodes; + +  /// A set of all the nodes updated during legalization. +  SmallSetVector<SDNode *, 16> *UpdatedNodes; + +  EVT getSetCCResultType(EVT VT) const { +    return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); +  } + +  // Libcall insertion helpers. + +public: +  SelectionDAGLegalize(SelectionDAG &DAG, +                       SmallPtrSetImpl<SDNode *> &LegalizedNodes, +                       SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) +      : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), +        LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} + +  /// Legalizes the given operation. +  void LegalizeOp(SDNode *Node); + +private: +  SDValue OptimizeFloatStore(StoreSDNode *ST); + +  void LegalizeLoadOps(SDNode *Node); +  void LegalizeStoreOps(SDNode *Node); + +  /// Some targets cannot handle a variable +  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it +  /// is necessary to spill the vector being inserted into to memory, perform +  /// the insert there, and then read the result back. +  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, +                                         const SDLoc &dl); +  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, +                                  const SDLoc &dl); + +  /// Return a vector shuffle operation which +  /// performs the same shuffe in terms of order or result bytes, but on a type +  /// whose vector element type is narrower than the original shuffle type. +  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> +  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl, +                                     SDValue N1, SDValue N2, +                                     ArrayRef<int> Mask) const; + +  bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, +                             bool &NeedInvert, const SDLoc &dl); + +  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); +  SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, +                        unsigned NumOps, bool isSigned, const SDLoc &dl); + +  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, +                                                 SDNode *Node, bool isSigned); +  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, +                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, +                          RTLIB::Libcall Call_F128, +                          RTLIB::Libcall Call_PPCF128); +  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, +                           RTLIB::Libcall Call_I8, +                           RTLIB::Libcall Call_I16, +                           RTLIB::Libcall Call_I32, +                           RTLIB::Libcall Call_I64, +                           RTLIB::Libcall Call_I128); +  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); +  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); + +  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, +                           const SDLoc &dl); +  SDValue ExpandBUILD_VECTOR(SDNode *Node); +  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); +  void ExpandDYNAMIC_STACKALLOC(SDNode *Node, +                                SmallVectorImpl<SDValue> &Results); +  void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL, +                         SDValue Value) const; +  SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL, +                          SDValue NewIntValue) const; +  SDValue ExpandFCOPYSIGN(SDNode *Node) const; +  SDValue ExpandFABS(SDNode *Node) const; +  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT, +                               const SDLoc &dl); +  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, +                                const SDLoc &dl); +  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, +                                const SDLoc &dl); + +  SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl); +  SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl); + +  SDValue ExpandExtractFromVectorThroughStack(SDValue Op); +  SDValue ExpandInsertToVectorThroughStack(SDValue Op); +  SDValue ExpandVectorBuildThroughStack(SDNode* Node); + +  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); +  SDValue ExpandConstant(ConstantSDNode *CP); + +  // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall +  bool ExpandNode(SDNode *Node); +  void ConvertNodeToLibcall(SDNode *Node); +  void PromoteNode(SDNode *Node); + +public: +  // Node replacement helpers + +  void ReplacedNode(SDNode *N) { +    LegalizedNodes.erase(N); +    if (UpdatedNodes) +      UpdatedNodes->insert(N); +  } + +  void ReplaceNode(SDNode *Old, SDNode *New) { +    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); +               dbgs() << "     with:      "; New->dump(&DAG)); + +    assert(Old->getNumValues() == New->getNumValues() && +           "Replacing one node with another that produces a different number " +           "of values!"); +    DAG.ReplaceAllUsesWith(Old, New); +    if (UpdatedNodes) +      UpdatedNodes->insert(New); +    ReplacedNode(Old); +  } + +  void ReplaceNode(SDValue Old, SDValue New) { +    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); +               dbgs() << "     with:      "; New->dump(&DAG)); + +    DAG.ReplaceAllUsesWith(Old, New); +    if (UpdatedNodes) +      UpdatedNodes->insert(New.getNode()); +    ReplacedNode(Old.getNode()); +  } + +  void ReplaceNode(SDNode *Old, const SDValue *New) { +    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); + +    DAG.ReplaceAllUsesWith(Old, New); +    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { +      LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      "); +                 New[i]->dump(&DAG)); +      if (UpdatedNodes) +        UpdatedNodes->insert(New[i].getNode()); +    } +    ReplacedNode(Old); +  } +}; + +} // end anonymous namespace + +/// Return a vector shuffle operation which +/// performs the same shuffle in terms of order or result bytes, but on a type +/// whose vector element type is narrower than the original shuffle type. +/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> +SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType( +    EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, +    ArrayRef<int> Mask) const { +  unsigned NumMaskElts = VT.getVectorNumElements(); +  unsigned NumDestElts = NVT.getVectorNumElements(); +  unsigned NumEltsGrowth = NumDestElts / NumMaskElts; + +  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); + +  if (NumEltsGrowth == 1) +    return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask); + +  SmallVector<int, 8> NewMask; +  for (unsigned i = 0; i != NumMaskElts; ++i) { +    int Idx = Mask[i]; +    for (unsigned j = 0; j != NumEltsGrowth; ++j) { +      if (Idx < 0) +        NewMask.push_back(-1); +      else +        NewMask.push_back(Idx * NumEltsGrowth + j); +    } +  } +  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); +  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); +  return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask); +} + +/// Expands the ConstantFP node to an integer constant or +/// a load from the constant pool. +SDValue +SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { +  bool Extend = false; +  SDLoc dl(CFP); + +  // If a FP immediate is precise when represented as a float and if the +  // target can do an extending load from float to double, we put it into +  // the constant pool as a float, even if it's is statically typed as a +  // double.  This shrinks FP constants and canonicalizes them for targets where +  // an FP extending load is the same cost as a normal load (such as on the x87 +  // fp stack or PPC FP unit). +  EVT VT = CFP->getValueType(0); +  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); +  if (!UseCP) { +    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); +    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, +                           (VT == MVT::f64) ? MVT::i64 : MVT::i32); +  } + +  APFloat APF = CFP->getValueAPF(); +  EVT OrigVT = VT; +  EVT SVT = VT; + +  // We don't want to shrink SNaNs. Converting the SNaN back to its real type +  // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ). +  if (!APF.isSignaling()) { +    while (SVT != MVT::f32 && SVT != MVT::f16) { +      SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); +      if (ConstantFPSDNode::isValueValidForType(SVT, APF) && +          // Only do this if the target has a native EXTLOAD instruction from +          // smaller type. +          TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && +          TLI.ShouldShrinkFPConstant(OrigVT)) { +        Type *SType = SVT.getTypeForEVT(*DAG.getContext()); +        LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); +        VT = SVT; +        Extend = true; +      } +    } +  } + +  SDValue CPIdx = +      DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); +  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); +  if (Extend) { +    SDValue Result = DAG.getExtLoad( +        ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, +        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, +        Alignment); +    return Result; +  } +  SDValue Result = DAG.getLoad( +      OrigVT, dl, DAG.getEntryNode(), CPIdx, +      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); +  return Result; +} + +/// Expands the Constant node to a load from the constant pool. +SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { +  SDLoc dl(CP); +  EVT VT = CP->getValueType(0); +  SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), +                                      TLI.getPointerTy(DAG.getDataLayout())); +  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); +  SDValue Result = DAG.getLoad( +      VT, dl, DAG.getEntryNode(), CPIdx, +      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment); +  return Result; +} + +/// Some target cannot handle a variable insertion index for the +/// INSERT_VECTOR_ELT instruction.  In this case, it +/// is necessary to spill the vector being inserted into to memory, perform +/// the insert there, and then read the result back. +SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec, +                                                             SDValue Val, +                                                             SDValue Idx, +                                                             const SDLoc &dl) { +  SDValue Tmp1 = Vec; +  SDValue Tmp2 = Val; +  SDValue Tmp3 = Idx; + +  // If the target doesn't support this, we have to spill the input vector +  // to a temporary stack slot, update the element, then reload it.  This is +  // badness.  We could also load the value into a vector register (either +  // with a "move to register" or "extload into register" instruction, then +  // permute it into place, if the idx is a constant and if the idx is +  // supported by the target. +  EVT VT    = Tmp1.getValueType(); +  EVT EltVT = VT.getVectorElementType(); +  SDValue StackPtr = DAG.CreateStackTemporary(VT); + +  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + +  // Store the vector. +  SDValue Ch = DAG.getStore( +      DAG.getEntryNode(), dl, Tmp1, StackPtr, +      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); + +  SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3); + +  // Store the scalar value. +  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT); +  // Load the updated vector. +  return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( +                                               DAG.getMachineFunction(), SPFI)); +} + +SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, +                                                      SDValue Idx, +                                                      const SDLoc &dl) { +  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { +    // SCALAR_TO_VECTOR requires that the type of the value being inserted +    // match the element type of the vector being created, except for +    // integers in which case the inserted value can be over width. +    EVT EltVT = Vec.getValueType().getVectorElementType(); +    if (Val.getValueType() == EltVT || +        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { +      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, +                                  Vec.getValueType(), Val); + +      unsigned NumElts = Vec.getValueType().getVectorNumElements(); +      // We generate a shuffle of InVec and ScVec, so the shuffle mask +      // should be 0,1,2,3,4,5... with the appropriate element replaced with +      // elt 0 of the RHS. +      SmallVector<int, 8> ShufOps; +      for (unsigned i = 0; i != NumElts; ++i) +        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); + +      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps); +    } +  } +  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); +} + +SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { +  LLVM_DEBUG(dbgs() << "Optimizing float store operations\n"); +  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' +  // FIXME: We shouldn't do this for TargetConstantFP's. +  // FIXME: move this to the DAG Combiner!  Note that we can't regress due +  // to phase ordering between legalized code and the dag combiner.  This +  // probably means that we need to integrate dag combiner and legalizer +  // together. +  // We generally can't do this one for long doubles. +  SDValue Chain = ST->getChain(); +  SDValue Ptr = ST->getBasePtr(); +  unsigned Alignment = ST->getAlignment(); +  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); +  AAMDNodes AAInfo = ST->getAAInfo(); +  SDLoc dl(ST); +  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { +    if (CFP->getValueType(0) == MVT::f32 && +        TLI.isTypeLegal(MVT::i32)) { +      SDValue Con = DAG.getConstant(CFP->getValueAPF(). +                                      bitcastToAPInt().zextOrTrunc(32), +                                    SDLoc(CFP), MVT::i32); +      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment, +                          MMOFlags, AAInfo); +    } + +    if (CFP->getValueType(0) == MVT::f64) { +      // If this target supports 64-bit registers, do a single 64-bit store. +      if (TLI.isTypeLegal(MVT::i64)) { +        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). +                                      zextOrTrunc(64), SDLoc(CFP), MVT::i64); +        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), +                            Alignment, MMOFlags, AAInfo); +      } + +      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { +        // Otherwise, if the target supports 32-bit registers, use 2 32-bit +        // stores.  If the target supports neither 32- nor 64-bits, this +        // xform is certainly not worth it. +        const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); +        SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); +        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); +        if (DAG.getDataLayout().isBigEndian()) +          std::swap(Lo, Hi); + +        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment, +                          MMOFlags, AAInfo); +        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, +                          DAG.getConstant(4, dl, Ptr.getValueType())); +        Hi = DAG.getStore(Chain, dl, Hi, Ptr, +                          ST->getPointerInfo().getWithOffset(4), +                          MinAlign(Alignment, 4U), MMOFlags, AAInfo); + +        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); +      } +    } +  } +  return SDValue(nullptr, 0); +} + +void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { +  StoreSDNode *ST = cast<StoreSDNode>(Node); +  SDValue Chain = ST->getChain(); +  SDValue Ptr = ST->getBasePtr(); +  SDLoc dl(Node); + +  unsigned Alignment = ST->getAlignment(); +  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); +  AAMDNodes AAInfo = ST->getAAInfo(); + +  if (!ST->isTruncatingStore()) { +    LLVM_DEBUG(dbgs() << "Legalizing store operation\n"); +    if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { +      ReplaceNode(ST, OptStore); +      return; +    } + +    SDValue Value = ST->getValue(); +    MVT VT = Value.getSimpleValueType(); +    switch (TLI.getOperationAction(ISD::STORE, VT)) { +    default: llvm_unreachable("This action is not supported yet!"); +    case TargetLowering::Legal: { +      // If this is an unaligned store and the target doesn't support it, +      // expand it. +      EVT MemVT = ST->getMemoryVT(); +      unsigned AS = ST->getAddressSpace(); +      unsigned Align = ST->getAlignment(); +      const DataLayout &DL = DAG.getDataLayout(); +      if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { +        LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n"); +        SDValue Result = TLI.expandUnalignedStore(ST, DAG); +        ReplaceNode(SDValue(ST, 0), Result); +      } else +        LLVM_DEBUG(dbgs() << "Legal store\n"); +      break; +    } +    case TargetLowering::Custom: { +      LLVM_DEBUG(dbgs() << "Trying custom lowering\n"); +      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); +      if (Res && Res != SDValue(Node, 0)) +        ReplaceNode(SDValue(Node, 0), Res); +      return; +    } +    case TargetLowering::Promote: { +      MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); +      assert(NVT.getSizeInBits() == VT.getSizeInBits() && +             "Can only promote stores to same size type"); +      Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); +      SDValue Result = +          DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), +                       Alignment, MMOFlags, AAInfo); +      ReplaceNode(SDValue(Node, 0), Result); +      break; +    } +    } +    return; +  } + +  LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n"); +  SDValue Value = ST->getValue(); +  EVT StVT = ST->getMemoryVT(); +  unsigned StWidth = StVT.getSizeInBits(); +  auto &DL = DAG.getDataLayout(); + +  if (StWidth != StVT.getStoreSizeInBits()) { +    // Promote to a byte-sized store with upper bits zero if not +    // storing an integral number of bytes.  For example, promote +    // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) +    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), +                                StVT.getStoreSizeInBits()); +    Value = DAG.getZeroExtendInReg(Value, dl, StVT); +    SDValue Result = +        DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT, +                          Alignment, MMOFlags, AAInfo); +    ReplaceNode(SDValue(Node, 0), Result); +  } else if (StWidth & (StWidth - 1)) { +    // If not storing a power-of-2 number of bits, expand as two stores. +    assert(!StVT.isVector() && "Unsupported truncstore!"); +    unsigned RoundWidth = 1 << Log2_32(StWidth); +    assert(RoundWidth < StWidth); +    unsigned ExtraWidth = StWidth - RoundWidth; +    assert(ExtraWidth < RoundWidth); +    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && +           "Store size not an integral number of bytes!"); +    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); +    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); +    SDValue Lo, Hi; +    unsigned IncrementSize; + +    if (DL.isLittleEndian()) { +      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) +      // Store the bottom RoundWidth bits. +      Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), +                             RoundVT, Alignment, MMOFlags, AAInfo); + +      // Store the remaining ExtraWidth bits. +      IncrementSize = RoundWidth / 8; +      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, +                        DAG.getConstant(IncrementSize, dl, +                                        Ptr.getValueType())); +      Hi = DAG.getNode( +          ISD::SRL, dl, Value.getValueType(), Value, +          DAG.getConstant(RoundWidth, dl, +                          TLI.getShiftAmountTy(Value.getValueType(), DL))); +      Hi = DAG.getTruncStore( +          Chain, dl, Hi, Ptr, +          ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, +          MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); +    } else { +      // Big endian - avoid unaligned stores. +      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X +      // Store the top RoundWidth bits. +      Hi = DAG.getNode( +          ISD::SRL, dl, Value.getValueType(), Value, +          DAG.getConstant(ExtraWidth, dl, +                          TLI.getShiftAmountTy(Value.getValueType(), DL))); +      Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), +                             RoundVT, Alignment, MMOFlags, AAInfo); + +      // Store the remaining ExtraWidth bits. +      IncrementSize = RoundWidth / 8; +      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, +                        DAG.getConstant(IncrementSize, dl, +                                        Ptr.getValueType())); +      Lo = DAG.getTruncStore( +          Chain, dl, Value, Ptr, +          ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT, +          MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo); +    } + +    // The order of the stores doesn't matter. +    SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); +    ReplaceNode(SDValue(Node, 0), Result); +  } else { +    switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { +    default: llvm_unreachable("This action is not supported yet!"); +    case TargetLowering::Legal: { +      EVT MemVT = ST->getMemoryVT(); +      unsigned AS = ST->getAddressSpace(); +      unsigned Align = ST->getAlignment(); +      // If this is an unaligned store and the target doesn't support it, +      // expand it. +      if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { +        SDValue Result = TLI.expandUnalignedStore(ST, DAG); +        ReplaceNode(SDValue(ST, 0), Result); +      } +      break; +    } +    case TargetLowering::Custom: { +      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); +      if (Res && Res != SDValue(Node, 0)) +        ReplaceNode(SDValue(Node, 0), Res); +      return; +    } +    case TargetLowering::Expand: +      assert(!StVT.isVector() && +             "Vector Stores are handled in LegalizeVectorOps"); + +      SDValue Result; + +      // TRUNCSTORE:i16 i32 -> STORE i16 +      if (TLI.isTypeLegal(StVT)) { +        Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); +        Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), +                              Alignment, MMOFlags, AAInfo); +      } else { +        // The in-memory type isn't legal. Truncate to the type it would promote +        // to, and then do a truncstore. +        Value = DAG.getNode(ISD::TRUNCATE, dl, +                            TLI.getTypeToTransformTo(*DAG.getContext(), StVT), +                            Value); +        Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), +                                   StVT, Alignment, MMOFlags, AAInfo); +      } + +      ReplaceNode(SDValue(Node, 0), Result); +      break; +    } +  } +} + +void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { +  LoadSDNode *LD = cast<LoadSDNode>(Node); +  SDValue Chain = LD->getChain();  // The chain. +  SDValue Ptr = LD->getBasePtr();  // The base pointer. +  SDValue Value;                   // The value returned by the load op. +  SDLoc dl(Node); + +  ISD::LoadExtType ExtType = LD->getExtensionType(); +  if (ExtType == ISD::NON_EXTLOAD) { +    LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n"); +    MVT VT = Node->getSimpleValueType(0); +    SDValue RVal = SDValue(Node, 0); +    SDValue RChain = SDValue(Node, 1); + +    switch (TLI.getOperationAction(Node->getOpcode(), VT)) { +    default: llvm_unreachable("This action is not supported yet!"); +    case TargetLowering::Legal: { +      EVT MemVT = LD->getMemoryVT(); +      unsigned AS = LD->getAddressSpace(); +      unsigned Align = LD->getAlignment(); +      const DataLayout &DL = DAG.getDataLayout(); +      // If this is an unaligned load and the target doesn't support it, +      // expand it. +      if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { +        std::tie(RVal, RChain) =  TLI.expandUnalignedLoad(LD, DAG); +      } +      break; +    } +    case TargetLowering::Custom: +      if (SDValue Res = TLI.LowerOperation(RVal, DAG)) { +        RVal = Res; +        RChain = Res.getValue(1); +      } +      break; + +    case TargetLowering::Promote: { +      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); +      assert(NVT.getSizeInBits() == VT.getSizeInBits() && +             "Can only promote loads to same size type"); + +      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); +      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); +      RChain = Res.getValue(1); +      break; +    } +    } +    if (RChain.getNode() != Node) { +      assert(RVal.getNode() != Node && "Load must be completely replaced"); +      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); +      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); +      if (UpdatedNodes) { +        UpdatedNodes->insert(RVal.getNode()); +        UpdatedNodes->insert(RChain.getNode()); +      } +      ReplacedNode(Node); +    } +    return; +  } + +  LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n"); +  EVT SrcVT = LD->getMemoryVT(); +  unsigned SrcWidth = SrcVT.getSizeInBits(); +  unsigned Alignment = LD->getAlignment(); +  MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags(); +  AAMDNodes AAInfo = LD->getAAInfo(); + +  if (SrcWidth != SrcVT.getStoreSizeInBits() && +      // Some targets pretend to have an i1 loading operation, and actually +      // load an i8.  This trick is correct for ZEXTLOAD because the top 7 +      // bits are guaranteed to be zero; it helps the optimizers understand +      // that these bits are zero.  It is also useful for EXTLOAD, since it +      // tells the optimizers that those bits are undefined.  It would be +      // nice to have an effective generic way of getting these benefits... +      // Until such a way is found, don't insist on promoting i1 here. +      (SrcVT != MVT::i1 || +       TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == +         TargetLowering::Promote)) { +    // Promote to a byte-sized load if not loading an integral number of +    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24. +    unsigned NewWidth = SrcVT.getStoreSizeInBits(); +    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); +    SDValue Ch; + +    // The extra bits are guaranteed to be zero, since we stored them that +    // way.  A zext load from NVT thus automatically gives zext from SrcVT. + +    ISD::LoadExtType NewExtType = +      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; + +    SDValue Result = +        DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr, +                       LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo); + +    Ch = Result.getValue(1); // The chain. + +    if (ExtType == ISD::SEXTLOAD) +      // Having the top bits zero doesn't help when sign extending. +      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, +                           Result.getValueType(), +                           Result, DAG.getValueType(SrcVT)); +    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) +      // All the top bits are guaranteed to be zero - inform the optimizers. +      Result = DAG.getNode(ISD::AssertZext, dl, +                           Result.getValueType(), Result, +                           DAG.getValueType(SrcVT)); + +    Value = Result; +    Chain = Ch; +  } else if (SrcWidth & (SrcWidth - 1)) { +    // If not loading a power-of-2 number of bits, expand as two loads. +    assert(!SrcVT.isVector() && "Unsupported extload!"); +    unsigned RoundWidth = 1 << Log2_32(SrcWidth); +    assert(RoundWidth < SrcWidth); +    unsigned ExtraWidth = SrcWidth - RoundWidth; +    assert(ExtraWidth < RoundWidth); +    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && +           "Load size not an integral number of bytes!"); +    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); +    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); +    SDValue Lo, Hi, Ch; +    unsigned IncrementSize; +    auto &DL = DAG.getDataLayout(); + +    if (DL.isLittleEndian()) { +      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) +      // Load the bottom RoundWidth bits. +      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, +                          LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, +                          AAInfo); + +      // Load the remaining ExtraWidth bits. +      IncrementSize = RoundWidth / 8; +      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, +                         DAG.getConstant(IncrementSize, dl, +                                         Ptr.getValueType())); +      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, +                          LD->getPointerInfo().getWithOffset(IncrementSize), +                          ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, +                          AAInfo); + +      // Build a factor node to remember that this load is independent of +      // the other one. +      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), +                       Hi.getValue(1)); + +      // Move the top bits to the right place. +      Hi = DAG.getNode( +          ISD::SHL, dl, Hi.getValueType(), Hi, +          DAG.getConstant(RoundWidth, dl, +                          TLI.getShiftAmountTy(Hi.getValueType(), DL))); + +      // Join the hi and lo parts. +      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); +    } else { +      // Big endian - avoid unaligned loads. +      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 +      // Load the top RoundWidth bits. +      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, +                          LD->getPointerInfo(), RoundVT, Alignment, MMOFlags, +                          AAInfo); + +      // Load the remaining ExtraWidth bits. +      IncrementSize = RoundWidth / 8; +      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, +                         DAG.getConstant(IncrementSize, dl, +                                         Ptr.getValueType())); +      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr, +                          LD->getPointerInfo().getWithOffset(IncrementSize), +                          ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags, +                          AAInfo); + +      // Build a factor node to remember that this load is independent of +      // the other one. +      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), +                       Hi.getValue(1)); + +      // Move the top bits to the right place. +      Hi = DAG.getNode( +          ISD::SHL, dl, Hi.getValueType(), Hi, +          DAG.getConstant(ExtraWidth, dl, +                          TLI.getShiftAmountTy(Hi.getValueType(), DL))); + +      // Join the hi and lo parts. +      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); +    } + +    Chain = Ch; +  } else { +    bool isCustom = false; +    switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), +                                 SrcVT.getSimpleVT())) { +    default: llvm_unreachable("This action is not supported yet!"); +    case TargetLowering::Custom: +      isCustom = true; +      LLVM_FALLTHROUGH; +    case TargetLowering::Legal: +      Value = SDValue(Node, 0); +      Chain = SDValue(Node, 1); + +      if (isCustom) { +        if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { +          Value = Res; +          Chain = Res.getValue(1); +        } +      } else { +        // If this is an unaligned load and the target doesn't support it, +        // expand it. +        EVT MemVT = LD->getMemoryVT(); +        unsigned AS = LD->getAddressSpace(); +        unsigned Align = LD->getAlignment(); +        const DataLayout &DL = DAG.getDataLayout(); +        if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) { +          std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG); +        } +      } +      break; + +    case TargetLowering::Expand: { +      EVT DestVT = Node->getValueType(0); +      if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { +        // If the source type is not legal, see if there is a legal extload to +        // an intermediate type that we can then extend further. +        EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); +        if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? +            TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { +          // If we are loading a legal type, this is a non-extload followed by a +          // full extend. +          ISD::LoadExtType MidExtType = +              (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; + +          SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, +                                        SrcVT, LD->getMemOperand()); +          unsigned ExtendOp = +              ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); +          Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); +          Chain = Load.getValue(1); +          break; +        } + +        // Handle the special case of fp16 extloads. EXTLOAD doesn't have the +        // normal undefined upper bits behavior to allow using an in-reg extend +        // with the illegal FP type, so load as an integer and do the +        // from-integer conversion. +        if (SrcVT.getScalarType() == MVT::f16) { +          EVT ISrcVT = SrcVT.changeTypeToInteger(); +          EVT IDestVT = DestVT.changeTypeToInteger(); +          EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); + +          SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, +                                          Chain, Ptr, ISrcVT, +                                          LD->getMemOperand()); +          Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); +          Chain = Result.getValue(1); +          break; +        } +      } + +      assert(!SrcVT.isVector() && +             "Vector Loads are handled in LegalizeVectorOps"); + +      // FIXME: This does not work for vectors on most targets.  Sign- +      // and zero-extend operations are currently folded into extending +      // loads, whether they are legal or not, and then we end up here +      // without any support for legalizing them. +      assert(ExtType != ISD::EXTLOAD && +             "EXTLOAD should always be supported!"); +      // Turn the unsupported load into an EXTLOAD followed by an +      // explicit zero/sign extend inreg. +      SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, +                                      Node->getValueType(0), +                                      Chain, Ptr, SrcVT, +                                      LD->getMemOperand()); +      SDValue ValRes; +      if (ExtType == ISD::SEXTLOAD) +        ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, +                             Result.getValueType(), +                             Result, DAG.getValueType(SrcVT)); +      else +        ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); +      Value = ValRes; +      Chain = Result.getValue(1); +      break; +    } +    } +  } + +  // Since loads produce two values, make sure to remember that we legalized +  // both of them. +  if (Chain.getNode() != Node) { +    assert(Value.getNode() != Node && "Load must be completely replaced"); +    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); +    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); +    if (UpdatedNodes) { +      UpdatedNodes->insert(Value.getNode()); +      UpdatedNodes->insert(Chain.getNode()); +    } +    ReplacedNode(Node); +  } +} + +/// Return a legal replacement for the given operation, with all legal operands. +void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { +  LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); + +  // Allow illegal target nodes and illegal registers. +  if (Node->getOpcode() == ISD::TargetConstant || +      Node->getOpcode() == ISD::Register) +    return; + +#ifndef NDEBUG +  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) +    assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == +              TargetLowering::TypeLegal || +            TLI.isTypeLegal(Node->getValueType(i))) && +           "Unexpected illegal type!"); + +  for (const SDValue &Op : Node->op_values()) +    assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == +              TargetLowering::TypeLegal || +            TLI.isTypeLegal(Op.getValueType()) || +            Op.getOpcode() == ISD::TargetConstant || +            Op.getOpcode() == ISD::Register) && +            "Unexpected illegal type!"); +#endif + +  // Figure out the correct action; the way to query this varies by opcode +  TargetLowering::LegalizeAction Action = TargetLowering::Legal; +  bool SimpleFinishLegalizing = true; +  switch (Node->getOpcode()) { +  case ISD::INTRINSIC_W_CHAIN: +  case ISD::INTRINSIC_WO_CHAIN: +  case ISD::INTRINSIC_VOID: +  case ISD::STACKSAVE: +    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); +    break; +  case ISD::GET_DYNAMIC_AREA_OFFSET: +    Action = TLI.getOperationAction(Node->getOpcode(), +                                    Node->getValueType(0)); +    break; +  case ISD::VAARG: +    Action = TLI.getOperationAction(Node->getOpcode(), +                                    Node->getValueType(0)); +    if (Action != TargetLowering::Promote) +      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); +    break; +  case ISD::FP_TO_FP16: +  case ISD::SINT_TO_FP: +  case ISD::UINT_TO_FP: +  case ISD::EXTRACT_VECTOR_ELT: +    Action = TLI.getOperationAction(Node->getOpcode(), +                                    Node->getOperand(0).getValueType()); +    break; +  case ISD::FP_ROUND_INREG: +  case ISD::SIGN_EXTEND_INREG: { +    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); +    Action = TLI.getOperationAction(Node->getOpcode(), InnerType); +    break; +  } +  case ISD::ATOMIC_STORE: +    Action = TLI.getOperationAction(Node->getOpcode(), +                                    Node->getOperand(2).getValueType()); +    break; +  case ISD::SELECT_CC: +  case ISD::SETCC: +  case ISD::BR_CC: { +    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : +                         Node->getOpcode() == ISD::SETCC ? 2 : 1; +    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; +    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); +    ISD::CondCode CCCode = +        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); +    Action = TLI.getCondCodeAction(CCCode, OpVT); +    if (Action == TargetLowering::Legal) { +      if (Node->getOpcode() == ISD::SELECT_CC) +        Action = TLI.getOperationAction(Node->getOpcode(), +                                        Node->getValueType(0)); +      else +        Action = TLI.getOperationAction(Node->getOpcode(), OpVT); +    } +    break; +  } +  case ISD::LOAD: +  case ISD::STORE: +    // FIXME: Model these properly.  LOAD and STORE are complicated, and +    // STORE expects the unlegalized operand in some cases. +    SimpleFinishLegalizing = false; +    break; +  case ISD::CALLSEQ_START: +  case ISD::CALLSEQ_END: +    // FIXME: This shouldn't be necessary.  These nodes have special properties +    // dealing with the recursive nature of legalization.  Removing this +    // special case should be done as part of making LegalizeDAG non-recursive. +    SimpleFinishLegalizing = false; +    break; +  case ISD::EXTRACT_ELEMENT: +  case ISD::FLT_ROUNDS_: +  case ISD::MERGE_VALUES: +  case ISD::EH_RETURN: +  case ISD::FRAME_TO_ARGS_OFFSET: +  case ISD::EH_DWARF_CFA: +  case ISD::EH_SJLJ_SETJMP: +  case ISD::EH_SJLJ_LONGJMP: +  case ISD::EH_SJLJ_SETUP_DISPATCH: +    // These operations lie about being legal: when they claim to be legal, +    // they should actually be expanded. +    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); +    if (Action == TargetLowering::Legal) +      Action = TargetLowering::Expand; +    break; +  case ISD::INIT_TRAMPOLINE: +  case ISD::ADJUST_TRAMPOLINE: +  case ISD::FRAMEADDR: +  case ISD::RETURNADDR: +  case ISD::ADDROFRETURNADDR: +  case ISD::SPONENTRY: +    // These operations lie about being legal: when they claim to be legal, +    // they should actually be custom-lowered. +    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); +    if (Action == TargetLowering::Legal) +      Action = TargetLowering::Custom; +    break; +  case ISD::READCYCLECOUNTER: +    // READCYCLECOUNTER returns an i64, even if type legalization might have +    // expanded that to several smaller types. +    Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); +    break; +  case ISD::READ_REGISTER: +  case ISD::WRITE_REGISTER: +    // Named register is legal in the DAG, but blocked by register name +    // selection if not implemented by target (to chose the correct register) +    // They'll be converted to Copy(To/From)Reg. +    Action = TargetLowering::Legal; +    break; +  case ISD::DEBUGTRAP: +    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); +    if (Action == TargetLowering::Expand) { +      // replace ISD::DEBUGTRAP with ISD::TRAP +      SDValue NewVal; +      NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), +                           Node->getOperand(0)); +      ReplaceNode(Node, NewVal.getNode()); +      LegalizeOp(NewVal.getNode()); +      return; +    } +    break; +  case ISD::STRICT_FADD: +  case ISD::STRICT_FSUB: +  case ISD::STRICT_FMUL: +  case ISD::STRICT_FDIV: +  case ISD::STRICT_FREM: +  case ISD::STRICT_FSQRT: +  case ISD::STRICT_FMA: +  case ISD::STRICT_FPOW: +  case ISD::STRICT_FPOWI: +  case ISD::STRICT_FSIN: +  case ISD::STRICT_FCOS: +  case ISD::STRICT_FEXP: +  case ISD::STRICT_FEXP2: +  case ISD::STRICT_FLOG: +  case ISD::STRICT_FLOG10: +  case ISD::STRICT_FLOG2: +  case ISD::STRICT_FRINT: +  case ISD::STRICT_FNEARBYINT: +  case ISD::STRICT_FMAXNUM: +  case ISD::STRICT_FMINNUM: +  case ISD::STRICT_FCEIL: +  case ISD::STRICT_FFLOOR: +  case ISD::STRICT_FROUND: +  case ISD::STRICT_FTRUNC: +    // These pseudo-ops get legalized as if they were their non-strict +    // equivalent.  For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT +    // is also legal, but if ISD::FSQRT requires expansion then so does +    // ISD::STRICT_FSQRT. +    Action = TLI.getStrictFPOperationAction(Node->getOpcode(), +                                            Node->getValueType(0)); +    break; +  case ISD::SADDSAT: +  case ISD::UADDSAT: +  case ISD::SSUBSAT: +  case ISD::USUBSAT: { +    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); +    break; +  } +  case ISD::SMULFIX: { +    unsigned Scale = Node->getConstantOperandVal(2); +    Action = TLI.getFixedPointOperationAction(Node->getOpcode(), +                                              Node->getValueType(0), Scale); +    break; +  } +  case ISD::MSCATTER: +    Action = TLI.getOperationAction(Node->getOpcode(), +                    cast<MaskedScatterSDNode>(Node)->getValue().getValueType()); +    break; +  case ISD::MSTORE: +    Action = TLI.getOperationAction(Node->getOpcode(), +                    cast<MaskedStoreSDNode>(Node)->getValue().getValueType()); +    break; +  default: +    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { +      Action = TargetLowering::Legal; +    } else { +      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); +    } +    break; +  } + +  if (SimpleFinishLegalizing) { +    SDNode *NewNode = Node; +    switch (Node->getOpcode()) { +    default: break; +    case ISD::SHL: +    case ISD::SRL: +    case ISD::SRA: +    case ISD::ROTL: +    case ISD::ROTR: { +      // Legalizing shifts/rotates requires adjusting the shift amount +      // to the appropriate width. +      SDValue Op0 = Node->getOperand(0); +      SDValue Op1 = Node->getOperand(1); +      if (!Op1.getValueType().isVector()) { +        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1); +        // The getShiftAmountOperand() may create a new operand node or +        // return the existing one. If new operand is created we need +        // to update the parent node. +        // Do not try to legalize SAO here! It will be automatically legalized +        // in the next round. +        if (SAO != Op1) +          NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO); +      } +    } +    break; +    case ISD::FSHL: +    case ISD::FSHR: +    case ISD::SRL_PARTS: +    case ISD::SRA_PARTS: +    case ISD::SHL_PARTS: { +      // Legalizing shifts/rotates requires adjusting the shift amount +      // to the appropriate width. +      SDValue Op0 = Node->getOperand(0); +      SDValue Op1 = Node->getOperand(1); +      SDValue Op2 = Node->getOperand(2); +      if (!Op2.getValueType().isVector()) { +        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2); +        // The getShiftAmountOperand() may create a new operand node or +        // return the existing one. If new operand is created we need +        // to update the parent node. +        if (SAO != Op2) +          NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO); +      } +      break; +    } +    } + +    if (NewNode != Node) { +      ReplaceNode(Node, NewNode); +      Node = NewNode; +    } +    switch (Action) { +    case TargetLowering::Legal: +      LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); +      return; +    case TargetLowering::Custom: +      LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); +      // FIXME: The handling for custom lowering with multiple results is +      // a complete mess. +      if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) { +        if (!(Res.getNode() != Node || Res.getResNo() != 0)) +          return; + +        if (Node->getNumValues() == 1) { +          LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); +          // We can just directly replace this node with the lowered value. +          ReplaceNode(SDValue(Node, 0), Res); +          return; +        } + +        SmallVector<SDValue, 8> ResultVals; +        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) +          ResultVals.push_back(Res.getValue(i)); +        LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n"); +        ReplaceNode(Node, ResultVals.data()); +        return; +      } +      LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); +      LLVM_FALLTHROUGH; +    case TargetLowering::Expand: +      if (ExpandNode(Node)) +        return; +      LLVM_FALLTHROUGH; +    case TargetLowering::LibCall: +      ConvertNodeToLibcall(Node); +      return; +    case TargetLowering::Promote: +      PromoteNode(Node); +      return; +    } +  } + +  switch (Node->getOpcode()) { +  default: +#ifndef NDEBUG +    dbgs() << "NODE: "; +    Node->dump( &DAG); +    dbgs() << "\n"; +#endif +    llvm_unreachable("Do not know how to legalize this operator!"); + +  case ISD::CALLSEQ_START: +  case ISD::CALLSEQ_END: +    break; +  case ISD::LOAD: +    return LegalizeLoadOps(Node); +  case ISD::STORE: +    return LegalizeStoreOps(Node); +  } +} + +SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { +  SDValue Vec = Op.getOperand(0); +  SDValue Idx = Op.getOperand(1); +  SDLoc dl(Op); + +  // Before we generate a new store to a temporary stack slot, see if there is +  // already one that we can use. There often is because when we scalarize +  // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole +  // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in +  // the vector. If all are expanded here, we don't want one store per vector +  // element. + +  // Caches for hasPredecessorHelper +  SmallPtrSet<const SDNode *, 32> Visited; +  SmallVector<const SDNode *, 16> Worklist; +  Visited.insert(Op.getNode()); +  Worklist.push_back(Idx.getNode()); +  SDValue StackPtr, Ch; +  for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), +       UE = Vec.getNode()->use_end(); UI != UE; ++UI) { +    SDNode *User = *UI; +    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { +      if (ST->isIndexed() || ST->isTruncatingStore() || +          ST->getValue() != Vec) +        continue; + +      // Make sure that nothing else could have stored into the destination of +      // this store. +      if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) +        continue; + +      // If the index is dependent on the store we will introduce a cycle when +      // creating the load (the load uses the index, and by replacing the chain +      // we will make the index dependent on the load). Also, the store might be +      // dependent on the extractelement and introduce a cycle when creating +      // the load. +      if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) || +          ST->hasPredecessor(Op.getNode())) +        continue; + +      StackPtr = ST->getBasePtr(); +      Ch = SDValue(ST, 0); +      break; +    } +  } + +  EVT VecVT = Vec.getValueType(); + +  if (!Ch.getNode()) { +    // Store the value to a temporary stack slot, then LOAD the returned part. +    StackPtr = DAG.CreateStackTemporary(VecVT); +    Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, +                      MachinePointerInfo()); +  } + +  StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); + +  SDValue NewLoad; + +  if (Op.getValueType().isVector()) +    NewLoad = +        DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo()); +  else +    NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, +                             MachinePointerInfo(), +                             VecVT.getVectorElementType()); + +  // Replace the chain going out of the store, by the one out of the load. +  DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); + +  // We introduced a cycle though, so update the loads operands, making sure +  // to use the original store's chain as an incoming chain. +  SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), +                                          NewLoad->op_end()); +  NewLoadOperands[0] = Ch; +  NewLoad = +      SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); +  return NewLoad; +} + +SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { +  assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); + +  SDValue Vec  = Op.getOperand(0); +  SDValue Part = Op.getOperand(1); +  SDValue Idx  = Op.getOperand(2); +  SDLoc dl(Op); + +  // Store the value to a temporary stack slot, then LOAD the returned part. +  EVT VecVT = Vec.getValueType(); +  SDValue StackPtr = DAG.CreateStackTemporary(VecVT); +  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); +  MachinePointerInfo PtrInfo = +      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); + +  // First store the whole vector. +  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo); + +  // Then store the inserted part. +  SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx); + +  // Store the subvector. +  Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo()); + +  // Finally, load the updated vector. +  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo); +} + +SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { +  // We can't handle this case efficiently.  Allocate a sufficiently +  // aligned object on the stack, store each element into it, then load +  // the result as a vector. +  // Create the stack frame object. +  EVT VT = Node->getValueType(0); +  EVT EltVT = VT.getVectorElementType(); +  SDLoc dl(Node); +  SDValue FIPtr = DAG.CreateStackTemporary(VT); +  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); +  MachinePointerInfo PtrInfo = +      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); + +  // Emit a store of each element to the stack slot. +  SmallVector<SDValue, 8> Stores; +  unsigned TypeByteSize = EltVT.getSizeInBits() / 8; +  // Store (in the right endianness) the elements to memory. +  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { +    // Ignore undef elements. +    if (Node->getOperand(i).isUndef()) continue; + +    unsigned Offset = TypeByteSize*i; + +    SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); +    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); + +    // If the destination vector element type is narrower than the source +    // element type, only store the bits necessary. +    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { +      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, +                                         Node->getOperand(i), Idx, +                                         PtrInfo.getWithOffset(Offset), EltVT)); +    } else +      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i), +                                    Idx, PtrInfo.getWithOffset(Offset))); +  } + +  SDValue StoreChain; +  if (!Stores.empty())    // Not all undef elements? +    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); +  else +    StoreChain = DAG.getEntryNode(); + +  // Result is a load from the stack slot. +  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo); +} + +/// Bitcast a floating-point value to an integer value. Only bitcast the part +/// containing the sign bit if the target has no integer value capable of +/// holding all bits of the floating-point value. +void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, +                                             const SDLoc &DL, +                                             SDValue Value) const { +  EVT FloatVT = Value.getValueType(); +  unsigned NumBits = FloatVT.getSizeInBits(); +  State.FloatVT = FloatVT; +  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); +  // Convert to an integer of the same size. +  if (TLI.isTypeLegal(IVT)) { +    State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); +    State.SignMask = APInt::getSignMask(NumBits); +    State.SignBit = NumBits - 1; +    return; +  } + +  auto &DataLayout = DAG.getDataLayout(); +  // Store the float to memory, then load the sign part out as an integer. +  MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); +  // First create a temporary that is aligned for both the load and store. +  SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); +  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); +  // Then store the float to it. +  State.FloatPtr = StackPtr; +  MachineFunction &MF = DAG.getMachineFunction(); +  State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); +  State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, +                             State.FloatPointerInfo); + +  SDValue IntPtr; +  if (DataLayout.isBigEndian()) { +    assert(FloatVT.isByteSized() && "Unsupported floating point type!"); +    // Load out a legal integer with the same sign bit as the float. +    IntPtr = StackPtr; +    State.IntPointerInfo = State.FloatPointerInfo; +  } else { +    // Advance the pointer so that the loaded byte will contain the sign bit. +    unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; +    IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, +                      DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); +    State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, +                                                             ByteOffset); +  } + +  State.IntPtr = IntPtr; +  State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr, +                                  State.IntPointerInfo, MVT::i8); +  State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); +  State.SignBit = 7; +} + +/// Replace the integer value produced by getSignAsIntValue() with a new value +/// and cast the result back to a floating-point type. +SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, +                                              const SDLoc &DL, +                                              SDValue NewIntValue) const { +  if (!State.Chain) +    return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); + +  // Override the part containing the sign bit in the value stored on the stack. +  SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, +                                    State.IntPointerInfo, MVT::i8); +  return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, +                     State.FloatPointerInfo); +} + +SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { +  SDLoc DL(Node); +  SDValue Mag = Node->getOperand(0); +  SDValue Sign = Node->getOperand(1); + +  // Get sign bit into an integer value. +  FloatSignAsInt SignAsInt; +  getSignAsIntValue(SignAsInt, DL, Sign); + +  EVT IntVT = SignAsInt.IntValue.getValueType(); +  SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); +  SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, +                                SignMask); + +  // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) +  EVT FloatVT = Mag.getValueType(); +  if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && +      TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { +    SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); +    SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); +    SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, +                                DAG.getConstant(0, DL, IntVT), ISD::SETNE); +    return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); +  } + +  // Transform Mag value to integer, and clear the sign bit. +  FloatSignAsInt MagAsInt; +  getSignAsIntValue(MagAsInt, DL, Mag); +  EVT MagVT = MagAsInt.IntValue.getValueType(); +  SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT); +  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue, +                                    ClearSignMask); + +  // Get the signbit at the right position for MagAsInt. +  int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit; +  EVT ShiftVT = IntVT; +  if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) { +    SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit); +    ShiftVT = MagVT; +  } +  if (ShiftAmount > 0) { +    SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT); +    SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst); +  } else if (ShiftAmount < 0) { +    SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT); +    SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst); +  } +  if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) { +    SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit); +  } + +  // Store the part with the modified sign and convert back to float. +  SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit); +  return modifySignAsInt(MagAsInt, DL, CopiedSign); +} + +SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { +  SDLoc DL(Node); +  SDValue Value = Node->getOperand(0); + +  // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. +  EVT FloatVT = Value.getValueType(); +  if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { +    SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); +    return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); +  } + +  // Transform value to integer, clear the sign bit and transform back. +  FloatSignAsInt ValueAsInt; +  getSignAsIntValue(ValueAsInt, DL, Value); +  EVT IntVT = ValueAsInt.IntValue.getValueType(); +  SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); +  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, +                                    ClearSignMask); +  return modifySignAsInt(ValueAsInt, DL, ClearedSign); +} + +void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, +                                           SmallVectorImpl<SDValue> &Results) { +  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); +  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" +          " not tell us which reg is the stack pointer!"); +  SDLoc dl(Node); +  EVT VT = Node->getValueType(0); +  SDValue Tmp1 = SDValue(Node, 0); +  SDValue Tmp2 = SDValue(Node, 1); +  SDValue Tmp3 = Node->getOperand(2); +  SDValue Chain = Tmp1.getOperand(0); + +  // Chain the dynamic stack allocation so that it doesn't modify the stack +  // pointer when other instructions are using the stack. +  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); + +  SDValue Size  = Tmp2.getOperand(1); +  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); +  Chain = SP.getValue(1); +  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); +  unsigned StackAlign = +      DAG.getSubtarget().getFrameLowering()->getStackAlignment(); +  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value +  if (Align > StackAlign) +    Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, +                       DAG.getConstant(-(uint64_t)Align, dl, VT)); +  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain + +  Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), +                            DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); + +  Results.push_back(Tmp1); +  Results.push_back(Tmp2); +} + +/// Legalize a SETCC with given LHS and RHS and condition code CC on the current +/// target. +/// +/// If the SETCC has been legalized using AND / OR, then the legalized node +/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert +/// will be set to false. +/// +/// If the SETCC has been legalized by using getSetCCSwappedOperands(), +/// then the values of LHS and RHS will be swapped, CC will be set to the +/// new condition, and NeedInvert will be set to false. +/// +/// If the SETCC has been legalized using the inverse condcode, then LHS and +/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert +/// will be set to true. The caller must invert the result of the SETCC with +/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect +/// of a true/false result. +/// +/// \returns true if the SetCC has been legalized, false if it hasn't. +bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS, +                                                 SDValue &RHS, SDValue &CC, +                                                 bool &NeedInvert, +                                                 const SDLoc &dl) { +  MVT OpVT = LHS.getSimpleValueType(); +  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); +  NeedInvert = false; +  bool NeedSwap = false; +  switch (TLI.getCondCodeAction(CCCode, OpVT)) { +  default: llvm_unreachable("Unknown condition code action!"); +  case TargetLowering::Legal: +    // Nothing to do. +    break; +  case TargetLowering::Expand: { +    ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); +    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { +      std::swap(LHS, RHS); +      CC = DAG.getCondCode(InvCC); +      return true; +    } +    // Swapping operands didn't work. Try inverting the condition. +    InvCC = getSetCCInverse(CCCode, OpVT.isInteger()); +    if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { +      // If inverting the condition is not enough, try swapping operands +      // on top of it. +      InvCC = ISD::getSetCCSwappedOperands(InvCC); +      NeedSwap = true; +    } +    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { +      CC = DAG.getCondCode(InvCC); +      NeedInvert = true; +      if (NeedSwap) +        std::swap(LHS, RHS); +      return true; +    } + +    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; +    unsigned Opc = 0; +    switch (CCCode) { +    default: llvm_unreachable("Don't know how to expand this condition!"); +    case ISD::SETO: +        assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) +            && "If SETO is expanded, SETOEQ must be legal!"); +        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; +    case ISD::SETUO: +        assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT) +            && "If SETUO is expanded, SETUNE must be legal!"); +        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break; +    case ISD::SETOEQ: +    case ISD::SETOGT: +    case ISD::SETOGE: +    case ISD::SETOLT: +    case ISD::SETOLE: +    case ISD::SETONE: +    case ISD::SETUEQ: +    case ISD::SETUNE: +    case ISD::SETUGT: +    case ISD::SETUGE: +    case ISD::SETULT: +    case ISD::SETULE: +        // If we are floating point, assign and break, otherwise fall through. +        if (!OpVT.isInteger()) { +          // We can use the 4th bit to tell if we are the unordered +          // or ordered version of the opcode. +          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; +          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; +          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); +          break; +        } +        // Fallthrough if we are unsigned integer. +        LLVM_FALLTHROUGH; +    case ISD::SETLE: +    case ISD::SETGT: +    case ISD::SETGE: +    case ISD::SETLT: +    case ISD::SETNE: +    case ISD::SETEQ: +      // If all combinations of inverting the condition and swapping operands +      // didn't work then we have no means to expand the condition. +      llvm_unreachable("Don't know how to expand this condition!"); +    } + +    SDValue SetCC1, SetCC2; +    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { +      // If we aren't the ordered or unorder operation, +      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). +      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); +      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); +    } else { +      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) +      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); +      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); +    } +    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); +    RHS = SDValue(); +    CC  = SDValue(); +    return true; +  } +  } +  return false; +} + +/// Emit a store/load combination to the stack.  This stores +/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does +/// a load from the stack slot to DestVT, extending it if needed. +/// The resultant code need not be legal. +SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT, +                                               EVT DestVT, const SDLoc &dl) { +  // Create the stack frame object. +  unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( +      SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); +  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); + +  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); +  int SPFI = StackPtrFI->getIndex(); +  MachinePointerInfo PtrInfo = +      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); + +  unsigned SrcSize = SrcOp.getValueSizeInBits(); +  unsigned SlotSize = SlotVT.getSizeInBits(); +  unsigned DestSize = DestVT.getSizeInBits(); +  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); +  unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); + +  // Emit a store to the stack slot.  Use a truncstore if the input value is +  // later than DestVT. +  SDValue Store; + +  if (SrcSize > SlotSize) +    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, +                              SlotVT, SrcAlign); +  else { +    assert(SrcSize == SlotSize && "Invalid store"); +    Store = +        DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign); +  } + +  // Result is a load from the stack slot. +  if (SlotSize == DestSize) +    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign); + +  assert(SlotSize < DestSize && "Unknown extension!"); +  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT, +                        DestAlign); +} + +SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { +  SDLoc dl(Node); +  // Create a vector sized/aligned stack slot, store the value to element #0, +  // then load the whole vector back out. +  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); + +  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); +  int SPFI = StackPtrFI->getIndex(); + +  SDValue Ch = DAG.getTruncStore( +      DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, +      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), +      Node->getValueType(0).getVectorElementType()); +  return DAG.getLoad( +      Node->getValueType(0), dl, Ch, StackPtr, +      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI)); +} + +static bool +ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, +                     const TargetLowering &TLI, SDValue &Res) { +  unsigned NumElems = Node->getNumOperands(); +  SDLoc dl(Node); +  EVT VT = Node->getValueType(0); + +  // Try to group the scalars into pairs, shuffle the pairs together, then +  // shuffle the pairs of pairs together, etc. until the vector has +  // been built. This will work only if all of the necessary shuffle masks +  // are legal. + +  // We do this in two phases; first to check the legality of the shuffles, +  // and next, assuming that all shuffles are legal, to create the new nodes. +  for (int Phase = 0; Phase < 2; ++Phase) { +    SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals, +                                                              NewIntermedVals; +    for (unsigned i = 0; i < NumElems; ++i) { +      SDValue V = Node->getOperand(i); +      if (V.isUndef()) +        continue; + +      SDValue Vec; +      if (Phase) +        Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); +      IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); +    } + +    while (IntermedVals.size() > 2) { +      NewIntermedVals.clear(); +      for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { +        // This vector and the next vector are shuffled together (simply to +        // append the one to the other). +        SmallVector<int, 16> ShuffleVec(NumElems, -1); + +        SmallVector<int, 16> FinalIndices; +        FinalIndices.reserve(IntermedVals[i].second.size() + +                             IntermedVals[i+1].second.size()); + +        int k = 0; +        for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; +             ++j, ++k) { +          ShuffleVec[k] = j; +          FinalIndices.push_back(IntermedVals[i].second[j]); +        } +        for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; +             ++j, ++k) { +          ShuffleVec[k] = NumElems + j; +          FinalIndices.push_back(IntermedVals[i+1].second[j]); +        } + +        SDValue Shuffle; +        if (Phase) +          Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, +                                         IntermedVals[i+1].first, +                                         ShuffleVec); +        else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) +          return false; +        NewIntermedVals.push_back( +            std::make_pair(Shuffle, std::move(FinalIndices))); +      } + +      // If we had an odd number of defined values, then append the last +      // element to the array of new vectors. +      if ((IntermedVals.size() & 1) != 0) +        NewIntermedVals.push_back(IntermedVals.back()); + +      IntermedVals.swap(NewIntermedVals); +    } + +    assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && +           "Invalid number of intermediate vectors"); +    SDValue Vec1 = IntermedVals[0].first; +    SDValue Vec2; +    if (IntermedVals.size() > 1) +      Vec2 = IntermedVals[1].first; +    else if (Phase) +      Vec2 = DAG.getUNDEF(VT); + +    SmallVector<int, 16> ShuffleVec(NumElems, -1); +    for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) +      ShuffleVec[IntermedVals[0].second[i]] = i; +    for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) +      ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; + +    if (Phase) +      Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); +    else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) +      return false; +  } + +  return true; +} + +/// Expand a BUILD_VECTOR node on targets that don't +/// support the operation, but do support the resultant vector type. +SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { +  unsigned NumElems = Node->getNumOperands(); +  SDValue Value1, Value2; +  SDLoc dl(Node); +  EVT VT = Node->getValueType(0); +  EVT OpVT = Node->getOperand(0).getValueType(); +  EVT EltVT = VT.getVectorElementType(); + +  // If the only non-undef value is the low element, turn this into a +  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X. +  bool isOnlyLowElement = true; +  bool MoreThanTwoValues = false; +  bool isConstant = true; +  for (unsigned i = 0; i < NumElems; ++i) { +    SDValue V = Node->getOperand(i); +    if (V.isUndef()) +      continue; +    if (i > 0) +      isOnlyLowElement = false; +    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) +      isConstant = false; + +    if (!Value1.getNode()) { +      Value1 = V; +    } else if (!Value2.getNode()) { +      if (V != Value1) +        Value2 = V; +    } else if (V != Value1 && V != Value2) { +      MoreThanTwoValues = true; +    } +  } + +  if (!Value1.getNode()) +    return DAG.getUNDEF(VT); + +  if (isOnlyLowElement) +    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); + +  // If all elements are constants, create a load from the constant pool. +  if (isConstant) { +    SmallVector<Constant*, 16> CV; +    for (unsigned i = 0, e = NumElems; i != e; ++i) { +      if (ConstantFPSDNode *V = +          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { +        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); +      } else if (ConstantSDNode *V = +                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { +        if (OpVT==EltVT) +          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); +        else { +          // If OpVT and EltVT don't match, EltVT is not legal and the +          // element values have been promoted/truncated earlier.  Undo this; +          // we don't want a v16i8 to become a v16i32 for example. +          const ConstantInt *CI = V->getConstantIntValue(); +          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), +                                        CI->getZExtValue())); +        } +      } else { +        assert(Node->getOperand(i).isUndef()); +        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); +        CV.push_back(UndefValue::get(OpNTy)); +      } +    } +    Constant *CP = ConstantVector::get(CV); +    SDValue CPIdx = +        DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); +    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); +    return DAG.getLoad( +        VT, dl, DAG.getEntryNode(), CPIdx, +        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), +        Alignment); +  } + +  SmallSet<SDValue, 16> DefinedValues; +  for (unsigned i = 0; i < NumElems; ++i) { +    if (Node->getOperand(i).isUndef()) +      continue; +    DefinedValues.insert(Node->getOperand(i)); +  } + +  if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { +    if (!MoreThanTwoValues) { +      SmallVector<int, 8> ShuffleVec(NumElems, -1); +      for (unsigned i = 0; i < NumElems; ++i) { +        SDValue V = Node->getOperand(i); +        if (V.isUndef()) +          continue; +        ShuffleVec[i] = V == Value1 ? 0 : NumElems; +      } +      if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { +        // Get the splatted value into the low element of a vector register. +        SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); +        SDValue Vec2; +        if (Value2.getNode()) +          Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); +        else +          Vec2 = DAG.getUNDEF(VT); + +        // Return shuffle(LowValVec, undef, <0,0,0,0>) +        return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec); +      } +    } else { +      SDValue Res; +      if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) +        return Res; +    } +  } + +  // Otherwise, we can't handle this case efficiently. +  return ExpandVectorBuildThroughStack(Node); +} + +// Expand a node into a call to a libcall.  If the result value +// does not fit into a register, return the lo part and set the hi part to the +// by-reg argument.  If it does fit into a single register, return the result +// and leave the Hi part unset. +SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, +                                            bool isSigned) { +  TargetLowering::ArgListTy Args; +  TargetLowering::ArgListEntry Entry; +  for (const SDValue &Op : Node->op_values()) { +    EVT ArgVT = Op.getValueType(); +    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); +    Entry.Node = Op; +    Entry.Ty = ArgTy; +    Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); +    Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned); +    Args.push_back(Entry); +  } +  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), +                                         TLI.getPointerTy(DAG.getDataLayout())); + +  EVT RetVT = Node->getValueType(0); +  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + +  // By default, the input chain to this libcall is the entry node of the +  // function. If the libcall is going to be emitted as a tail call then +  // TLI.isUsedByReturnOnly will change it to the right chain if the return +  // node which is being folded has a non-entry input chain. +  SDValue InChain = DAG.getEntryNode(); + +  // isTailCall may be true since the callee does not reference caller stack +  // frame. Check if it's in the right position and that the return types match. +  SDValue TCChain = InChain; +  const Function &F = DAG.getMachineFunction().getFunction(); +  bool isTailCall = +      TLI.isInTailCallPosition(DAG, Node, TCChain) && +      (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); +  if (isTailCall) +    InChain = TCChain; + +  TargetLowering::CallLoweringInfo CLI(DAG); +  bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned); +  CLI.setDebugLoc(SDLoc(Node)) +      .setChain(InChain) +      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, +                    std::move(Args)) +      .setTailCall(isTailCall) +      .setSExtResult(signExtend) +      .setZExtResult(!signExtend) +      .setIsPostTypeLegalization(true); + +  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + +  if (!CallInfo.second.getNode()) { +    LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump()); +    // It's a tailcall, return the chain (which is the DAG root). +    return DAG.getRoot(); +  } + +  LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump()); +  return CallInfo.first; +} + +/// Generate a libcall taking the given operands as arguments +/// and returning a result of type RetVT. +SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, +                                            const SDValue *Ops, unsigned NumOps, +                                            bool isSigned, const SDLoc &dl) { +  TargetLowering::ArgListTy Args; +  Args.reserve(NumOps); + +  TargetLowering::ArgListEntry Entry; +  for (unsigned i = 0; i != NumOps; ++i) { +    Entry.Node = Ops[i]; +    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); +    Entry.IsSExt = isSigned; +    Entry.IsZExt = !isSigned; +    Args.push_back(Entry); +  } +  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), +                                         TLI.getPointerTy(DAG.getDataLayout())); + +  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + +  TargetLowering::CallLoweringInfo CLI(DAG); +  CLI.setDebugLoc(dl) +      .setChain(DAG.getEntryNode()) +      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, +                    std::move(Args)) +      .setSExtResult(isSigned) +      .setZExtResult(!isSigned) +      .setIsPostTypeLegalization(true); + +  std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); + +  return CallInfo.first; +} + +// Expand a node into a call to a libcall. Similar to +// ExpandLibCall except that the first operand is the in-chain. +std::pair<SDValue, SDValue> +SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, +                                         SDNode *Node, +                                         bool isSigned) { +  SDValue InChain = Node->getOperand(0); + +  TargetLowering::ArgListTy Args; +  TargetLowering::ArgListEntry Entry; +  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { +    EVT ArgVT = Node->getOperand(i).getValueType(); +    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); +    Entry.Node = Node->getOperand(i); +    Entry.Ty = ArgTy; +    Entry.IsSExt = isSigned; +    Entry.IsZExt = !isSigned; +    Args.push_back(Entry); +  } +  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), +                                         TLI.getPointerTy(DAG.getDataLayout())); + +  Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); + +  TargetLowering::CallLoweringInfo CLI(DAG); +  CLI.setDebugLoc(SDLoc(Node)) +      .setChain(InChain) +      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, +                    std::move(Args)) +      .setSExtResult(isSigned) +      .setZExtResult(!isSigned); + +  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + +  return CallInfo; +} + +SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, +                                              RTLIB::Libcall Call_F32, +                                              RTLIB::Libcall Call_F64, +                                              RTLIB::Libcall Call_F80, +                                              RTLIB::Libcall Call_F128, +                                              RTLIB::Libcall Call_PPCF128) { +  if (Node->isStrictFPOpcode()) +    Node = DAG.mutateStrictFPToFP(Node); + +  RTLIB::Libcall LC; +  switch (Node->getSimpleValueType(0).SimpleTy) { +  default: llvm_unreachable("Unexpected request for libcall!"); +  case MVT::f32: LC = Call_F32; break; +  case MVT::f64: LC = Call_F64; break; +  case MVT::f80: LC = Call_F80; break; +  case MVT::f128: LC = Call_F128; break; +  case MVT::ppcf128: LC = Call_PPCF128; break; +  } +  return ExpandLibCall(LC, Node, false); +} + +SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, +                                               RTLIB::Libcall Call_I8, +                                               RTLIB::Libcall Call_I16, +                                               RTLIB::Libcall Call_I32, +                                               RTLIB::Libcall Call_I64, +                                               RTLIB::Libcall Call_I128) { +  RTLIB::Libcall LC; +  switch (Node->getSimpleValueType(0).SimpleTy) { +  default: llvm_unreachable("Unexpected request for libcall!"); +  case MVT::i8:   LC = Call_I8; break; +  case MVT::i16:  LC = Call_I16; break; +  case MVT::i32:  LC = Call_I32; break; +  case MVT::i64:  LC = Call_I64; break; +  case MVT::i128: LC = Call_I128; break; +  } +  return ExpandLibCall(LC, Node, isSigned); +} + +/// Issue libcalls to __{u}divmod to compute div / rem pairs. +void +SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, +                                          SmallVectorImpl<SDValue> &Results) { +  unsigned Opcode = Node->getOpcode(); +  bool isSigned = Opcode == ISD::SDIVREM; + +  RTLIB::Libcall LC; +  switch (Node->getSimpleValueType(0).SimpleTy) { +  default: llvm_unreachable("Unexpected request for libcall!"); +  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break; +  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; +  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; +  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; +  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; +  } + +  // The input chain to this libcall is the entry node of the function. +  // Legalizing the call will automatically add the previous call to the +  // dependence. +  SDValue InChain = DAG.getEntryNode(); + +  EVT RetVT = Node->getValueType(0); +  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + +  TargetLowering::ArgListTy Args; +  TargetLowering::ArgListEntry Entry; +  for (const SDValue &Op : Node->op_values()) { +    EVT ArgVT = Op.getValueType(); +    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); +    Entry.Node = Op; +    Entry.Ty = ArgTy; +    Entry.IsSExt = isSigned; +    Entry.IsZExt = !isSigned; +    Args.push_back(Entry); +  } + +  // Also pass the return address of the remainder. +  SDValue FIPtr = DAG.CreateStackTemporary(RetVT); +  Entry.Node = FIPtr; +  Entry.Ty = RetTy->getPointerTo(); +  Entry.IsSExt = isSigned; +  Entry.IsZExt = !isSigned; +  Args.push_back(Entry); + +  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), +                                         TLI.getPointerTy(DAG.getDataLayout())); + +  SDLoc dl(Node); +  TargetLowering::CallLoweringInfo CLI(DAG); +  CLI.setDebugLoc(dl) +      .setChain(InChain) +      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, +                    std::move(Args)) +      .setSExtResult(isSigned) +      .setZExtResult(!isSigned); + +  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + +  // Remainder is loaded back from the stack frame. +  SDValue Rem = +      DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo()); +  Results.push_back(CallInfo.first); +  Results.push_back(Rem); +} + +/// Return true if sincos libcall is available. +static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { +  RTLIB::Libcall LC; +  switch (Node->getSimpleValueType(0).SimpleTy) { +  default: llvm_unreachable("Unexpected request for libcall!"); +  case MVT::f32:     LC = RTLIB::SINCOS_F32; break; +  case MVT::f64:     LC = RTLIB::SINCOS_F64; break; +  case MVT::f80:     LC = RTLIB::SINCOS_F80; break; +  case MVT::f128:    LC = RTLIB::SINCOS_F128; break; +  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; +  } +  return TLI.getLibcallName(LC) != nullptr; +} + +/// Only issue sincos libcall if both sin and cos are needed. +static bool useSinCos(SDNode *Node) { +  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN +    ? ISD::FCOS : ISD::FSIN; + +  SDValue Op0 = Node->getOperand(0); +  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), +       UE = Op0.getNode()->use_end(); UI != UE; ++UI) { +    SDNode *User = *UI; +    if (User == Node) +      continue; +    // The other user might have been turned into sincos already. +    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) +      return true; +  } +  return false; +} + +/// Issue libcalls to sincos to compute sin / cos pairs. +void +SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, +                                          SmallVectorImpl<SDValue> &Results) { +  RTLIB::Libcall LC; +  switch (Node->getSimpleValueType(0).SimpleTy) { +  default: llvm_unreachable("Unexpected request for libcall!"); +  case MVT::f32:     LC = RTLIB::SINCOS_F32; break; +  case MVT::f64:     LC = RTLIB::SINCOS_F64; break; +  case MVT::f80:     LC = RTLIB::SINCOS_F80; break; +  case MVT::f128:    LC = RTLIB::SINCOS_F128; break; +  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; +  } + +  // The input chain to this libcall is the entry node of the function. +  // Legalizing the call will automatically add the previous call to the +  // dependence. +  SDValue InChain = DAG.getEntryNode(); + +  EVT RetVT = Node->getValueType(0); +  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); + +  TargetLowering::ArgListTy Args; +  TargetLowering::ArgListEntry Entry; + +  // Pass the argument. +  Entry.Node = Node->getOperand(0); +  Entry.Ty = RetTy; +  Entry.IsSExt = false; +  Entry.IsZExt = false; +  Args.push_back(Entry); + +  // Pass the return address of sin. +  SDValue SinPtr = DAG.CreateStackTemporary(RetVT); +  Entry.Node = SinPtr; +  Entry.Ty = RetTy->getPointerTo(); +  Entry.IsSExt = false; +  Entry.IsZExt = false; +  Args.push_back(Entry); + +  // Also pass the return address of the cos. +  SDValue CosPtr = DAG.CreateStackTemporary(RetVT); +  Entry.Node = CosPtr; +  Entry.Ty = RetTy->getPointerTo(); +  Entry.IsSExt = false; +  Entry.IsZExt = false; +  Args.push_back(Entry); + +  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), +                                         TLI.getPointerTy(DAG.getDataLayout())); + +  SDLoc dl(Node); +  TargetLowering::CallLoweringInfo CLI(DAG); +  CLI.setDebugLoc(dl).setChain(InChain).setLibCallee( +      TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee, +      std::move(Args)); + +  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); + +  Results.push_back( +      DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo())); +  Results.push_back( +      DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo())); +} + +/// This function is responsible for legalizing a +/// INT_TO_FP operation of the specified operand when the target requests that +/// we expand it.  At this point, we know that the result and operand types are +/// legal for the target. +SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, +                                                   EVT DestVT, +                                                   const SDLoc &dl) { +  EVT SrcVT = Op0.getValueType(); + +  // TODO: Should any fast-math-flags be set for the created nodes? +  LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n"); +  if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { +    LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double " +                         "expansion\n"); + +    // Get the stack frame index of a 8 byte buffer. +    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); + +    // word offset constant for Hi/Lo address computation +    SDValue WordOff = DAG.getConstant(sizeof(int), dl, +                                      StackSlot.getValueType()); +    // set up Hi and Lo (into buffer) address based on endian +    SDValue Hi = StackSlot; +    SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), +                             StackSlot, WordOff); +    if (DAG.getDataLayout().isLittleEndian()) +      std::swap(Hi, Lo); + +    // if signed map to unsigned space +    SDValue Op0Mapped; +    if (isSigned) { +      // constant used to invert sign bit (signed to unsigned mapping) +      SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); +      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); +    } else { +      Op0Mapped = Op0; +    } +    // store the lo of the constructed double - based on integer input +    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo, +                                  MachinePointerInfo()); +    // initial hi portion of constructed double +    SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); +    // store the hi of the constructed double - biased exponent +    SDValue Store2 = +        DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo()); +    // load the constructed double +    SDValue Load = +        DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo()); +    // FP constant to bias correct the final result +    SDValue Bias = DAG.getConstantFP(isSigned ? +                                     BitsToDouble(0x4330000080000000ULL) : +                                     BitsToDouble(0x4330000000000000ULL), +                                     dl, MVT::f64); +    // subtract the bias +    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); +    // final result +    SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT); +    return Result; +  } +  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); +  // Code below here assumes !isSigned without checking again. + +  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); + +  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0, +                                 DAG.getConstant(0, dl, SrcVT), ISD::SETLT); +  SDValue Zero = DAG.getIntPtrConstant(0, dl), +          Four = DAG.getIntPtrConstant(4, dl); +  SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), +                                    SignSet, Four, Zero); + +  // If the sign bit of the integer is set, the large number will be treated +  // as a negative number.  To counteract this, the dynamic code adds an +  // offset depending on the data type. +  uint64_t FF; +  switch (SrcVT.getSimpleVT().SimpleTy) { +  default: llvm_unreachable("Unsupported integer type!"); +  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float) +  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float) +  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float) +  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float) +  } +  if (DAG.getDataLayout().isLittleEndian()) +    FF <<= 32; +  Constant *FudgeFactor = ConstantInt::get( +                                       Type::getInt64Ty(*DAG.getContext()), FF); + +  SDValue CPIdx = +      DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); +  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); +  CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); +  Alignment = std::min(Alignment, 4u); +  SDValue FudgeInReg; +  if (DestVT == MVT::f32) +    FudgeInReg = DAG.getLoad( +        MVT::f32, dl, DAG.getEntryNode(), CPIdx, +        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), +        Alignment); +  else { +    SDValue Load = DAG.getExtLoad( +        ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, +        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, +        Alignment); +    HandleSDNode Handle(Load); +    LegalizeOp(Load.getNode()); +    FudgeInReg = Handle.getValue(); +  } + +  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); +} + +/// This function is responsible for legalizing a +/// *INT_TO_FP operation of the specified operand when the target requests that +/// we promote it.  At this point, we know that the result and operand types are +/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP +/// operation that takes a larger input. +SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, +                                                    bool isSigned, +                                                    const SDLoc &dl) { +  // First step, figure out the appropriate *INT_TO_FP operation to use. +  EVT NewInTy = LegalOp.getValueType(); + +  unsigned OpToUse = 0; + +  // Scan for the appropriate larger type to use. +  while (true) { +    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); +    assert(NewInTy.isInteger() && "Ran out of possibilities!"); + +    // If the target supports SINT_TO_FP of this type, use it. +    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { +      OpToUse = ISD::SINT_TO_FP; +      break; +    } +    if (isSigned) continue; + +    // If the target supports UINT_TO_FP of this type, use it. +    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { +      OpToUse = ISD::UINT_TO_FP; +      break; +    } + +    // Otherwise, try a larger type. +  } + +  // Okay, we found the operation and type to use.  Zero extend our input to the +  // desired type then run the operation on it. +  return DAG.getNode(OpToUse, dl, DestVT, +                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, +                                 dl, NewInTy, LegalOp)); +} + +/// This function is responsible for legalizing a +/// FP_TO_*INT operation of the specified operand when the target requests that +/// we promote it.  At this point, we know that the result and operand types are +/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT +/// operation that returns a larger result. +SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, +                                                    bool isSigned, +                                                    const SDLoc &dl) { +  // First step, figure out the appropriate FP_TO*INT operation to use. +  EVT NewOutTy = DestVT; + +  unsigned OpToUse = 0; + +  // Scan for the appropriate larger type to use. +  while (true) { +    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); +    assert(NewOutTy.isInteger() && "Ran out of possibilities!"); + +    // A larger signed type can hold all unsigned values of the requested type, +    // so using FP_TO_SINT is valid +    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { +      OpToUse = ISD::FP_TO_SINT; +      break; +    } + +    // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. +    if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { +      OpToUse = ISD::FP_TO_UINT; +      break; +    } + +    // Otherwise, try a larger type. +  } + +  // Okay, we found the operation and type to use. +  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); + +  // Truncate the result of the extended FP_TO_*INT operation to the desired +  // size. +  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); +} + +/// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts. +SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) { +  EVT VT = Op.getValueType(); +  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); +  unsigned Sz = VT.getScalarSizeInBits(); + +  SDValue Tmp, Tmp2, Tmp3; + +  // If we can, perform BSWAP first and then the mask+swap the i4, then i2 +  // and finally the i1 pairs. +  // TODO: We can easily support i4/i2 legal types if any target ever does. +  if (Sz >= 8 && isPowerOf2_32(Sz)) { +    // Create the masks - repeating the pattern every byte. +    APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0); +    APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0); +    for (unsigned J = 0; J != Sz; J += 8) { +      MaskHi4 = MaskHi4 | (0xF0ull << J); +      MaskLo4 = MaskLo4 | (0x0Full << J); +      MaskHi2 = MaskHi2 | (0xCCull << J); +      MaskLo2 = MaskLo2 | (0x33ull << J); +      MaskHi1 = MaskHi1 | (0xAAull << J); +      MaskLo1 = MaskLo1 | (0x55ull << J); +    } + +    // BSWAP if the type is wider than a single byte. +    Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); + +    // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) +    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); +    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); +    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); +    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); +    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + +    // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) +    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); +    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); +    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); +    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); +    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); + +    // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) +    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); +    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); +    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); +    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); +    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); +    return Tmp; +  } + +  Tmp = DAG.getConstant(0, dl, VT); +  for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { +    if (I < J) +      Tmp2 = +          DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); +    else +      Tmp2 = +          DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); + +    APInt Shift(Sz, 1); +    Shift <<= J; +    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); +    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); +  } + +  return Tmp; +} + +/// Open code the operations for BSWAP of the specified operation. +SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) { +  EVT VT = Op.getValueType(); +  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); +  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; +  switch (VT.getSimpleVT().getScalarType().SimpleTy) { +  default: llvm_unreachable("Unhandled Expand type in BSWAP!"); +  case MVT::i16: +    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); +    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); +    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); +  case MVT::i32: +    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); +    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); +    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); +    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); +    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, +                       DAG.getConstant(0xFF0000, dl, VT)); +    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); +    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); +    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); +    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); +  case MVT::i64: +    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); +    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); +    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); +    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); +    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); +    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); +    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); +    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); +    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, +                       DAG.getConstant(255ULL<<48, dl, VT)); +    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, +                       DAG.getConstant(255ULL<<40, dl, VT)); +    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, +                       DAG.getConstant(255ULL<<32, dl, VT)); +    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, +                       DAG.getConstant(255ULL<<24, dl, VT)); +    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, +                       DAG.getConstant(255ULL<<16, dl, VT)); +    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, +                       DAG.getConstant(255ULL<<8 , dl, VT)); +    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); +    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); +    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); +    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); +    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); +    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); +    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); +  } +} + +bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { +  LLVM_DEBUG(dbgs() << "Trying to expand node\n"); +  SmallVector<SDValue, 8> Results; +  SDLoc dl(Node); +  SDValue Tmp1, Tmp2, Tmp3, Tmp4; +  bool NeedInvert; +  switch (Node->getOpcode()) { +  case ISD::ABS: +    if (TLI.expandABS(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::CTPOP: +    if (TLI.expandCTPOP(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::CTLZ: +  case ISD::CTLZ_ZERO_UNDEF: +    if (TLI.expandCTLZ(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::CTTZ: +  case ISD::CTTZ_ZERO_UNDEF: +    if (TLI.expandCTTZ(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::BITREVERSE: +    Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); +    break; +  case ISD::BSWAP: +    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); +    break; +  case ISD::FRAMEADDR: +  case ISD::RETURNADDR: +  case ISD::FRAME_TO_ARGS_OFFSET: +    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); +    break; +  case ISD::EH_DWARF_CFA: { +    SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl, +                                        TLI.getPointerTy(DAG.getDataLayout())); +    SDValue Offset = DAG.getNode(ISD::ADD, dl, +                                 CfaArg.getValueType(), +                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, +                                             CfaArg.getValueType()), +                                 CfaArg); +    SDValue FA = DAG.getNode( +        ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()), +        DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()))); +    Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(), +                                  FA, Offset)); +    break; +  } +  case ISD::FLT_ROUNDS_: +    Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); +    break; +  case ISD::EH_RETURN: +  case ISD::EH_LABEL: +  case ISD::PREFETCH: +  case ISD::VAEND: +  case ISD::EH_SJLJ_LONGJMP: +    // If the target didn't expand these, there's nothing to do, so just +    // preserve the chain and be done. +    Results.push_back(Node->getOperand(0)); +    break; +  case ISD::READCYCLECOUNTER: +    // If the target didn't expand this, just return 'zero' and preserve the +    // chain. +    Results.append(Node->getNumValues() - 1, +                   DAG.getConstant(0, dl, Node->getValueType(0))); +    Results.push_back(Node->getOperand(0)); +    break; +  case ISD::EH_SJLJ_SETJMP: +    // If the target didn't expand this, just return 'zero' and preserve the +    // chain. +    Results.push_back(DAG.getConstant(0, dl, MVT::i32)); +    Results.push_back(Node->getOperand(0)); +    break; +  case ISD::ATOMIC_LOAD: { +    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. +    SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); +    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); +    SDValue Swap = DAG.getAtomicCmpSwap( +        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, +        Node->getOperand(0), Node->getOperand(1), Zero, Zero, +        cast<AtomicSDNode>(Node)->getMemOperand()); +    Results.push_back(Swap.getValue(0)); +    Results.push_back(Swap.getValue(1)); +    break; +  } +  case ISD::ATOMIC_STORE: { +    // There is no libcall for atomic store; fake it with ATOMIC_SWAP. +    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, +                                 cast<AtomicSDNode>(Node)->getMemoryVT(), +                                 Node->getOperand(0), +                                 Node->getOperand(1), Node->getOperand(2), +                                 cast<AtomicSDNode>(Node)->getMemOperand()); +    Results.push_back(Swap.getValue(1)); +    break; +  } +  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { +    // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and +    // splits out the success value as a comparison. Expanding the resulting +    // ATOMIC_CMP_SWAP will produce a libcall. +    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); +    SDValue Res = DAG.getAtomicCmpSwap( +        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, +        Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), +        Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand()); + +    SDValue ExtRes = Res; +    SDValue LHS = Res; +    SDValue RHS = Node->getOperand(1); + +    EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT(); +    EVT OuterType = Node->getValueType(0); +    switch (TLI.getExtendForAtomicOps()) { +    case ISD::SIGN_EXTEND: +      LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res, +                        DAG.getValueType(AtomicType)); +      RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType, +                        Node->getOperand(2), DAG.getValueType(AtomicType)); +      ExtRes = LHS; +      break; +    case ISD::ZERO_EXTEND: +      LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res, +                        DAG.getValueType(AtomicType)); +      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); +      ExtRes = LHS; +      break; +    case ISD::ANY_EXTEND: +      LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType); +      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType); +      break; +    default: +      llvm_unreachable("Invalid atomic op extension"); +    } + +    SDValue Success = +        DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ); + +    Results.push_back(ExtRes.getValue(0)); +    Results.push_back(Success); +    Results.push_back(Res.getValue(1)); +    break; +  } +  case ISD::DYNAMIC_STACKALLOC: +    ExpandDYNAMIC_STACKALLOC(Node, Results); +    break; +  case ISD::MERGE_VALUES: +    for (unsigned i = 0; i < Node->getNumValues(); i++) +      Results.push_back(Node->getOperand(i)); +    break; +  case ISD::UNDEF: { +    EVT VT = Node->getValueType(0); +    if (VT.isInteger()) +      Results.push_back(DAG.getConstant(0, dl, VT)); +    else { +      assert(VT.isFloatingPoint() && "Unknown value type!"); +      Results.push_back(DAG.getConstantFP(0, dl, VT)); +    } +    break; +  } +  case ISD::FP_ROUND: +  case ISD::BITCAST: +    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), +                            Node->getValueType(0), dl); +    Results.push_back(Tmp1); +    break; +  case ISD::FP_EXTEND: +    Tmp1 = EmitStackConvert(Node->getOperand(0), +                            Node->getOperand(0).getValueType(), +                            Node->getValueType(0), dl); +    Results.push_back(Tmp1); +    break; +  case ISD::SIGN_EXTEND_INREG: { +    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); +    EVT VT = Node->getValueType(0); + +    // An in-register sign-extend of a boolean is a negation: +    // 'true' (1) sign-extended is -1. +    // 'false' (0) sign-extended is 0. +    // However, we must mask the high bits of the source operand because the +    // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero. + +    // TODO: Do this for vectors too? +    if (ExtraVT.getSizeInBits() == 1) { +      SDValue One = DAG.getConstant(1, dl, VT); +      SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One); +      SDValue Zero = DAG.getConstant(0, dl, VT); +      SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And); +      Results.push_back(Neg); +      break; +    } + +    // NOTE: we could fall back on load/store here too for targets without +    // SRA.  However, it is doubtful that any exist. +    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); +    unsigned BitsDiff = VT.getScalarSizeInBits() - +                        ExtraVT.getScalarSizeInBits(); +    SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); +    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), +                       Node->getOperand(0), ShiftCst); +    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::FP_ROUND_INREG: { +    // The only way we can lower this is to turn it into a TRUNCSTORE, +    // EXTLOAD pair, targeting a temporary location (a stack slot). + +    // NOTE: there is a choice here between constantly creating new stack +    // slots and always reusing the same one.  We currently always create +    // new ones, as reuse may inhibit scheduling. +    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); +    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, +                            Node->getValueType(0), dl); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::UINT_TO_FP: +    if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) { +      Results.push_back(Tmp1); +      break; +    } +    LLVM_FALLTHROUGH; +  case ISD::SINT_TO_FP: +    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, +                                Node->getOperand(0), Node->getValueType(0), dl); +    Results.push_back(Tmp1); +    break; +  case ISD::FP_TO_SINT: +    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::FP_TO_UINT: +    if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::VAARG: +    Results.push_back(DAG.expandVAArg(Node)); +    Results.push_back(Results[0].getValue(1)); +    break; +  case ISD::VACOPY: +    Results.push_back(DAG.expandVACopy(Node)); +    break; +  case ISD::EXTRACT_VECTOR_ELT: +    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) +      // This must be an access of the only element.  Return it. +      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), +                         Node->getOperand(0)); +    else +      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); +    Results.push_back(Tmp1); +    break; +  case ISD::EXTRACT_SUBVECTOR: +    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); +    break; +  case ISD::INSERT_SUBVECTOR: +    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); +    break; +  case ISD::CONCAT_VECTORS: +    Results.push_back(ExpandVectorBuildThroughStack(Node)); +    break; +  case ISD::SCALAR_TO_VECTOR: +    Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); +    break; +  case ISD::INSERT_VECTOR_ELT: +    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), +                                              Node->getOperand(1), +                                              Node->getOperand(2), dl)); +    break; +  case ISD::VECTOR_SHUFFLE: { +    SmallVector<int, 32> NewMask; +    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); + +    EVT VT = Node->getValueType(0); +    EVT EltVT = VT.getVectorElementType(); +    SDValue Op0 = Node->getOperand(0); +    SDValue Op1 = Node->getOperand(1); +    if (!TLI.isTypeLegal(EltVT)) { +      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); + +      // BUILD_VECTOR operands are allowed to be wider than the element type. +      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept +      // it. +      if (NewEltVT.bitsLT(EltVT)) { +        // Convert shuffle node. +        // If original node was v4i64 and the new EltVT is i32, +        // cast operands to v8i32 and re-build the mask. + +        // Calculate new VT, the size of the new VT should be equal to original. +        EVT NewVT = +            EVT::getVectorVT(*DAG.getContext(), NewEltVT, +                             VT.getSizeInBits() / NewEltVT.getSizeInBits()); +        assert(NewVT.bitsEq(VT)); + +        // cast operands to new VT +        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); +        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); + +        // Convert the shuffle mask +        unsigned int factor = +                         NewVT.getVectorNumElements()/VT.getVectorNumElements(); + +        // EltVT gets smaller +        assert(factor > 0); + +        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { +          if (Mask[i] < 0) { +            for (unsigned fi = 0; fi < factor; ++fi) +              NewMask.push_back(Mask[i]); +          } +          else { +            for (unsigned fi = 0; fi < factor; ++fi) +              NewMask.push_back(Mask[i]*factor+fi); +          } +        } +        Mask = NewMask; +        VT = NewVT; +      } +      EltVT = NewEltVT; +    } +    unsigned NumElems = VT.getVectorNumElements(); +    SmallVector<SDValue, 16> Ops; +    for (unsigned i = 0; i != NumElems; ++i) { +      if (Mask[i] < 0) { +        Ops.push_back(DAG.getUNDEF(EltVT)); +        continue; +      } +      unsigned Idx = Mask[i]; +      if (Idx < NumElems) +        Ops.push_back(DAG.getNode( +            ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, +            DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); +      else +        Ops.push_back(DAG.getNode( +            ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, +            DAG.getConstant(Idx - NumElems, dl, +                            TLI.getVectorIdxTy(DAG.getDataLayout())))); +    } + +    Tmp1 = DAG.getBuildVector(VT, dl, Ops); +    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. +    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::EXTRACT_ELEMENT: { +    EVT OpTy = Node->getOperand(0).getValueType(); +    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { +      // 1 -> Hi +      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), +                         DAG.getConstant(OpTy.getSizeInBits() / 2, dl, +                                         TLI.getShiftAmountTy( +                                             Node->getOperand(0).getValueType(), +                                             DAG.getDataLayout()))); +      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); +    } else { +      // 0 -> Lo +      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), +                         Node->getOperand(0)); +    } +    Results.push_back(Tmp1); +    break; +  } +  case ISD::STACKSAVE: +    // Expand to CopyFromReg if the target set +    // StackPointerRegisterToSaveRestore. +    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { +      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, +                                           Node->getValueType(0))); +      Results.push_back(Results[0].getValue(1)); +    } else { +      Results.push_back(DAG.getUNDEF(Node->getValueType(0))); +      Results.push_back(Node->getOperand(0)); +    } +    break; +  case ISD::STACKRESTORE: +    // Expand to CopyToReg if the target set +    // StackPointerRegisterToSaveRestore. +    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { +      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, +                                         Node->getOperand(1))); +    } else { +      Results.push_back(Node->getOperand(0)); +    } +    break; +  case ISD::GET_DYNAMIC_AREA_OFFSET: +    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); +    Results.push_back(Results[0].getValue(0)); +    break; +  case ISD::FCOPYSIGN: +    Results.push_back(ExpandFCOPYSIGN(Node)); +    break; +  case ISD::FNEG: +    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X +    Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); +    // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. +    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, +                       Node->getOperand(0)); +    Results.push_back(Tmp1); +    break; +  case ISD::FABS: +    Results.push_back(ExpandFABS(Node)); +    break; +  case ISD::SMIN: +  case ISD::SMAX: +  case ISD::UMIN: +  case ISD::UMAX: { +    // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B +    ISD::CondCode Pred; +    switch (Node->getOpcode()) { +    default: llvm_unreachable("How did we get here?"); +    case ISD::SMAX: Pred = ISD::SETGT; break; +    case ISD::SMIN: Pred = ISD::SETLT; break; +    case ISD::UMAX: Pred = ISD::SETUGT; break; +    case ISD::UMIN: Pred = ISD::SETULT; break; +    } +    Tmp1 = Node->getOperand(0); +    Tmp2 = Node->getOperand(1); +    Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::FMINNUM: +  case ISD::FMAXNUM: { +    if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) +      Results.push_back(Expanded); +    break; +  } +  case ISD::FSIN: +  case ISD::FCOS: { +    EVT VT = Node->getValueType(0); +    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / +    // fcos which share the same operand and both are used. +    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || +         isSinCosLibcallAvailable(Node, TLI)) +        && useSinCos(Node)) { +      SDVTList VTs = DAG.getVTList(VT, VT); +      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); +      if (Node->getOpcode() == ISD::FCOS) +        Tmp1 = Tmp1.getValue(1); +      Results.push_back(Tmp1); +    } +    break; +  } +  case ISD::FMAD: +    llvm_unreachable("Illegal fmad should never be formed"); + +  case ISD::FP16_TO_FP: +    if (Node->getValueType(0) != MVT::f32) { +      // We can extend to types bigger than f32 in two steps without changing +      // the result. Since "f16 -> f32" is much more commonly available, give +      // CodeGen the option of emitting that before resorting to a libcall. +      SDValue Res = +          DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); +      Results.push_back( +          DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); +    } +    break; +  case ISD::FP_TO_FP16: +    LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n"); +    if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { +      SDValue Op = Node->getOperand(0); +      MVT SVT = Op.getSimpleValueType(); +      if ((SVT == MVT::f64 || SVT == MVT::f80) && +          TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { +        // Under fastmath, we can expand this node into a fround followed by +        // a float-half conversion. +        SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, +                                       DAG.getIntPtrConstant(0, dl)); +        Results.push_back( +            DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal)); +      } +    } +    break; +  case ISD::ConstantFP: { +    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); +    // Check to see if this FP immediate is already legal. +    // If this is a legal constant, turn it into a TargetConstantFP node. +    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) +      Results.push_back(ExpandConstantFP(CFP, true)); +    break; +  } +  case ISD::Constant: { +    ConstantSDNode *CP = cast<ConstantSDNode>(Node); +    Results.push_back(ExpandConstant(CP)); +    break; +  } +  case ISD::FSUB: { +    EVT VT = Node->getValueType(0); +    if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && +        TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { +      const SDNodeFlags Flags = Node->getFlags(); +      Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); +      Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); +      Results.push_back(Tmp1); +    } +    break; +  } +  case ISD::SUB: { +    EVT VT = Node->getValueType(0); +    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && +           TLI.isOperationLegalOrCustom(ISD::XOR, VT) && +           "Don't know how to expand this subtraction!"); +    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), +               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, +                               VT)); +    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); +    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); +    break; +  } +  case ISD::UREM: +  case ISD::SREM: { +    EVT VT = Node->getValueType(0); +    bool isSigned = Node->getOpcode() == ISD::SREM; +    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; +    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; +    Tmp2 = Node->getOperand(0); +    Tmp3 = Node->getOperand(1); +    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { +      SDVTList VTs = DAG.getVTList(VT, VT); +      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); +      Results.push_back(Tmp1); +    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { +      // X % Y -> X-X/Y*Y +      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); +      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); +      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); +      Results.push_back(Tmp1); +    } +    break; +  } +  case ISD::UDIV: +  case ISD::SDIV: { +    bool isSigned = Node->getOpcode() == ISD::SDIV; +    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; +    EVT VT = Node->getValueType(0); +    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { +      SDVTList VTs = DAG.getVTList(VT, VT); +      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), +                         Node->getOperand(1)); +      Results.push_back(Tmp1); +    } +    break; +  } +  case ISD::MULHU: +  case ISD::MULHS: { +    unsigned ExpandOpcode = +        Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI; +    EVT VT = Node->getValueType(0); +    SDVTList VTs = DAG.getVTList(VT, VT); + +    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), +                       Node->getOperand(1)); +    Results.push_back(Tmp1.getValue(1)); +    break; +  } +  case ISD::UMUL_LOHI: +  case ISD::SMUL_LOHI: { +    SDValue LHS = Node->getOperand(0); +    SDValue RHS = Node->getOperand(1); +    MVT VT = LHS.getSimpleValueType(); +    unsigned MULHOpcode = +        Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS; + +    if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) { +      Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS)); +      Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS)); +      break; +    } + +    SmallVector<SDValue, 4> Halves; +    EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext()); +    assert(TLI.isTypeLegal(HalfType)); +    if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves, +                           HalfType, DAG, +                           TargetLowering::MulExpansionKind::Always)) { +      for (unsigned i = 0; i < 2; ++i) { +        SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]); +        SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]); +        SDValue Shift = DAG.getConstant( +            HalfType.getScalarSizeInBits(), dl, +            TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); +        Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); +        Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); +      } +      break; +    } +    break; +  } +  case ISD::MUL: { +    EVT VT = Node->getValueType(0); +    SDVTList VTs = DAG.getVTList(VT, VT); +    // See if multiply or divide can be lowered using two-result operations. +    // We just need the low half of the multiply; try both the signed +    // and unsigned forms. If the target supports both SMUL_LOHI and +    // UMUL_LOHI, form a preference by checking which forms of plain +    // MULH it supports. +    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); +    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); +    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); +    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); +    unsigned OpToUse = 0; +    if (HasSMUL_LOHI && !HasMULHS) { +      OpToUse = ISD::SMUL_LOHI; +    } else if (HasUMUL_LOHI && !HasMULHU) { +      OpToUse = ISD::UMUL_LOHI; +    } else if (HasSMUL_LOHI) { +      OpToUse = ISD::SMUL_LOHI; +    } else if (HasUMUL_LOHI) { +      OpToUse = ISD::UMUL_LOHI; +    } +    if (OpToUse) { +      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), +                                    Node->getOperand(1))); +      break; +    } + +    SDValue Lo, Hi; +    EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); +    if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && +        TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && +        TLI.isOperationLegalOrCustom(ISD::SHL, VT) && +        TLI.isOperationLegalOrCustom(ISD::OR, VT) && +        TLI.expandMUL(Node, Lo, Hi, HalfType, DAG, +                      TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) { +      Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); +      Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); +      SDValue Shift = +          DAG.getConstant(HalfType.getSizeInBits(), dl, +                          TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); +      Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); +      Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); +    } +    break; +  } +  case ISD::FSHL: +  case ISD::FSHR: +    if (TLI.expandFunnelShift(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::ROTL: +  case ISD::ROTR: +    if (TLI.expandROT(Node, Tmp1, DAG)) +      Results.push_back(Tmp1); +    break; +  case ISD::SADDSAT: +  case ISD::UADDSAT: +  case ISD::SSUBSAT: +  case ISD::USUBSAT: +    Results.push_back(TLI.expandAddSubSat(Node, DAG)); +    break; +  case ISD::SMULFIX: +    Results.push_back(TLI.getExpandedFixedPointMultiplication(Node, DAG)); +    break; +  case ISD::SADDO: +  case ISD::SSUBO: { +    SDValue LHS = Node->getOperand(0); +    SDValue RHS = Node->getOperand(1); +    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? +                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(), +                              LHS, RHS); +    Results.push_back(Sum); +    EVT ResultType = Node->getValueType(1); +    EVT OType = getSetCCResultType(Node->getValueType(0)); + +    SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); + +    //   LHSSign -> LHS >= 0 +    //   RHSSign -> RHS >= 0 +    //   SumSign -> Sum >= 0 +    // +    //   Add: +    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) +    //   Sub: +    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) +    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); +    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); +    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, +                                      Node->getOpcode() == ISD::SADDO ? +                                      ISD::SETEQ : ISD::SETNE); + +    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); +    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); + +    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); +    Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); +    break; +  } +  case ISD::UADDO: +  case ISD::USUBO: { +    SDValue LHS = Node->getOperand(0); +    SDValue RHS = Node->getOperand(1); +    bool IsAdd = Node->getOpcode() == ISD::UADDO; +    // If ADD/SUBCARRY is legal, use that instead. +    unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; +    if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { +      SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); +      SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), +                                      { LHS, RHS, CarryIn }); +      Results.push_back(SDValue(NodeCarry.getNode(), 0)); +      Results.push_back(SDValue(NodeCarry.getNode(), 1)); +      break; +    } + +    SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, +                              LHS.getValueType(), LHS, RHS); +    Results.push_back(Sum); + +    EVT ResultType = Node->getValueType(1); +    EVT SetCCType = getSetCCResultType(Node->getValueType(0)); +    ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; +    SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); + +    Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); +    break; +  } +  case ISD::UMULO: +  case ISD::SMULO: { +    EVT VT = Node->getValueType(0); +    EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); +    SDValue LHS = Node->getOperand(0); +    SDValue RHS = Node->getOperand(1); +    SDValue BottomHalf; +    SDValue TopHalf; +    static const unsigned Ops[2][3] = +        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, +          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; +    bool isSigned = Node->getOpcode() == ISD::SMULO; +    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { +      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); +      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); +    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { +      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, +                               RHS); +      TopHalf = BottomHalf.getValue(1); +    } else if (TLI.isTypeLegal(WideVT)) { +      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); +      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); +      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); +      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, +                               DAG.getIntPtrConstant(0, dl)); +      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, +                            DAG.getIntPtrConstant(1, dl)); +    } else { +      // We can fall back to a libcall with an illegal type for the MUL if we +      // have a libcall big enough. +      // Also, we can fall back to a division in some cases, but that's a big +      // performance hit in the general case. +      RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; +      if (WideVT == MVT::i16) +        LC = RTLIB::MUL_I16; +      else if (WideVT == MVT::i32) +        LC = RTLIB::MUL_I32; +      else if (WideVT == MVT::i64) +        LC = RTLIB::MUL_I64; +      else if (WideVT == MVT::i128) +        LC = RTLIB::MUL_I128; +      assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); + +      SDValue HiLHS; +      SDValue HiRHS; +      if (isSigned) { +        // The high part is obtained by SRA'ing all but one of the bits of low +        // part. +        unsigned LoSize = VT.getSizeInBits(); +        HiLHS = +            DAG.getNode(ISD::SRA, dl, VT, LHS, +                        DAG.getConstant(LoSize - 1, dl, +                                        TLI.getPointerTy(DAG.getDataLayout()))); +        HiRHS = +            DAG.getNode(ISD::SRA, dl, VT, RHS, +                        DAG.getConstant(LoSize - 1, dl, +                                        TLI.getPointerTy(DAG.getDataLayout()))); +      } else { +          HiLHS = DAG.getConstant(0, dl, VT); +          HiRHS = DAG.getConstant(0, dl, VT); +      } + +      // Here we're passing the 2 arguments explicitly as 4 arguments that are +      // pre-lowered to the correct types. This all depends upon WideVT not +      // being a legal type for the architecture and thus has to be split to +      // two arguments. +      SDValue Ret; +      if(DAG.getDataLayout().isLittleEndian()) { +        // Halves of WideVT are packed into registers in different order +        // depending on platform endianness. This is usually handled by +        // the C calling convention, but we can't defer to it in +        // the legalizer. +        SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; +        Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); +      } else { +        SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; +        Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); +      } +      assert(Ret.getOpcode() == ISD::MERGE_VALUES && +             "Ret value is a collection of constituent nodes holding result."); +      BottomHalf = Ret.getOperand(0); +      TopHalf = Ret.getOperand(1); +    } + +    if (isSigned) { +      Tmp1 = DAG.getConstant( +          VT.getSizeInBits() - 1, dl, +          TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); +      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); +      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, +                             ISD::SETNE); +    } else { +      TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, +                             DAG.getConstant(0, dl, VT), ISD::SETNE); +    } + +    // Truncate the result if SetCC returns a larger type than needed. +    EVT RType = Node->getValueType(1); +    if (RType.getSizeInBits() < TopHalf.getValueSizeInBits()) +      TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf); + +    assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() && +           "Unexpected result type for S/UMULO legalization"); + +    Results.push_back(BottomHalf); +    Results.push_back(TopHalf); +    break; +  } +  case ISD::BUILD_PAIR: { +    EVT PairTy = Node->getValueType(0); +    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); +    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); +    Tmp2 = DAG.getNode( +        ISD::SHL, dl, PairTy, Tmp2, +        DAG.getConstant(PairTy.getSizeInBits() / 2, dl, +                        TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); +    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); +    break; +  } +  case ISD::SELECT: +    Tmp1 = Node->getOperand(0); +    Tmp2 = Node->getOperand(1); +    Tmp3 = Node->getOperand(2); +    if (Tmp1.getOpcode() == ISD::SETCC) { +      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), +                             Tmp2, Tmp3, +                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); +    } else { +      Tmp1 = DAG.getSelectCC(dl, Tmp1, +                             DAG.getConstant(0, dl, Tmp1.getValueType()), +                             Tmp2, Tmp3, ISD::SETNE); +    } +    Results.push_back(Tmp1); +    break; +  case ISD::BR_JT: { +    SDValue Chain = Node->getOperand(0); +    SDValue Table = Node->getOperand(1); +    SDValue Index = Node->getOperand(2); + +    const DataLayout &TD = DAG.getDataLayout(); +    EVT PTy = TLI.getPointerTy(TD); + +    unsigned EntrySize = +      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); + +    // For power-of-two jumptable entry sizes convert multiplication to a shift. +    // This transformation needs to be done here since otherwise the MIPS +    // backend will end up emitting a three instruction multiply sequence +    // instead of a single shift and MSP430 will call a runtime function. +    if (llvm::isPowerOf2_32(EntrySize)) +      Index = DAG.getNode( +          ISD::SHL, dl, Index.getValueType(), Index, +          DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType())); +    else +      Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, +                          DAG.getConstant(EntrySize, dl, Index.getValueType())); +    SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), +                               Index, Table); + +    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); +    SDValue LD = DAG.getExtLoad( +        ISD::SEXTLOAD, dl, PTy, Chain, Addr, +        MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT); +    Addr = LD; +    if (TLI.isJumpTableRelative()) { +      // For PIC, the sequence is: +      // BRIND(load(Jumptable + index) + RelocBase) +      // RelocBase can be JumpTable, GOT or some sort of global base. +      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, +                          TLI.getPICJumpTableRelocBase(Table, DAG)); +    } + +    Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::BRCOND: +    // Expand brcond's setcc into its constituent parts and create a BR_CC +    // Node. +    Tmp1 = Node->getOperand(0); +    Tmp2 = Node->getOperand(1); +    if (Tmp2.getOpcode() == ISD::SETCC) { +      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, +                         Tmp1, Tmp2.getOperand(2), +                         Tmp2.getOperand(0), Tmp2.getOperand(1), +                         Node->getOperand(2)); +    } else { +      // We test only the i1 bit.  Skip the AND if UNDEF or another AND. +      if (Tmp2.isUndef() || +          (Tmp2.getOpcode() == ISD::AND && +           isa<ConstantSDNode>(Tmp2.getOperand(1)) && +           cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1)) +        Tmp3 = Tmp2; +      else +        Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, +                           DAG.getConstant(1, dl, Tmp2.getValueType())); +      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, +                         DAG.getCondCode(ISD::SETNE), Tmp3, +                         DAG.getConstant(0, dl, Tmp3.getValueType()), +                         Node->getOperand(2)); +    } +    Results.push_back(Tmp1); +    break; +  case ISD::SETCC: { +    Tmp1 = Node->getOperand(0); +    Tmp2 = Node->getOperand(1); +    Tmp3 = Node->getOperand(2); +    bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, +                                           Tmp3, NeedInvert, dl); + +    if (Legalized) { +      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the +      // condition code, create a new SETCC node. +      if (Tmp3.getNode()) +        Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), +                           Tmp1, Tmp2, Tmp3); + +      // If we expanded the SETCC by inverting the condition code, then wrap +      // the existing SETCC in a NOT to restore the intended condition. +      if (NeedInvert) +        Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); + +      Results.push_back(Tmp1); +      break; +    } + +    // Otherwise, SETCC for the given comparison type must be completely +    // illegal; expand it into a SELECT_CC. +    EVT VT = Node->getValueType(0); +    int TrueValue; +    switch (TLI.getBooleanContents(Tmp1.getValueType())) { +    case TargetLowering::ZeroOrOneBooleanContent: +    case TargetLowering::UndefinedBooleanContent: +      TrueValue = 1; +      break; +    case TargetLowering::ZeroOrNegativeOneBooleanContent: +      TrueValue = -1; +      break; +    } +    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, +                       DAG.getConstant(TrueValue, dl, VT), +                       DAG.getConstant(0, dl, VT), +                       Tmp3); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::SELECT_CC: { +    Tmp1 = Node->getOperand(0);   // LHS +    Tmp2 = Node->getOperand(1);   // RHS +    Tmp3 = Node->getOperand(2);   // True +    Tmp4 = Node->getOperand(3);   // False +    EVT VT = Node->getValueType(0); +    SDValue CC = Node->getOperand(4); +    ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); + +    if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) { +      // If the condition code is legal, then we need to expand this +      // node using SETCC and SELECT. +      EVT CmpVT = Tmp1.getValueType(); +      assert(!TLI.isOperationExpand(ISD::SELECT, VT) && +             "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " +             "expanded."); +      EVT CCVT = +          TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); +      SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); +      Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); +      break; +    } + +    // SELECT_CC is legal, so the condition code must not be. +    bool Legalized = false; +    // Try to legalize by inverting the condition.  This is for targets that +    // might support an ordered version of a condition, but not the unordered +    // version (or vice versa). +    ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, +                                               Tmp1.getValueType().isInteger()); +    if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) { +      // Use the new condition code and swap true and false +      Legalized = true; +      Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); +    } else { +      // If The inverse is not legal, then try to swap the arguments using +      // the inverse condition code. +      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); +      if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) { +        // The swapped inverse condition is legal, so swap true and false, +        // lhs and rhs. +        Legalized = true; +        Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); +      } +    } + +    if (!Legalized) { +      Legalized = LegalizeSetCCCondCode( +          getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, +          dl); + +      assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); + +      // If we expanded the SETCC by inverting the condition code, then swap +      // the True/False operands to match. +      if (NeedInvert) +        std::swap(Tmp3, Tmp4); + +      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the +      // condition code, create a new SELECT_CC node. +      if (CC.getNode()) { +        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), +                           Tmp1, Tmp2, Tmp3, Tmp4, CC); +      } else { +        Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); +        CC = DAG.getCondCode(ISD::SETNE); +        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, +                           Tmp2, Tmp3, Tmp4, CC); +      } +    } +    Results.push_back(Tmp1); +    break; +  } +  case ISD::BR_CC: { +    Tmp1 = Node->getOperand(0);              // Chain +    Tmp2 = Node->getOperand(2);              // LHS +    Tmp3 = Node->getOperand(3);              // RHS +    Tmp4 = Node->getOperand(1);              // CC + +    bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( +        Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); +    (void)Legalized; +    assert(Legalized && "Can't legalize BR_CC with legal condition!"); + +    assert(!NeedInvert && "Don't know how to invert BR_CC!"); + +    // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC +    // node. +    if (Tmp4.getNode()) { +      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, +                         Tmp4, Tmp2, Tmp3, Node->getOperand(4)); +    } else { +      Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); +      Tmp4 = DAG.getCondCode(ISD::SETNE); +      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, +                         Tmp2, Tmp3, Node->getOperand(4)); +    } +    Results.push_back(Tmp1); +    break; +  } +  case ISD::BUILD_VECTOR: +    Results.push_back(ExpandBUILD_VECTOR(Node)); +    break; +  case ISD::SRA: +  case ISD::SRL: +  case ISD::SHL: { +    // Scalarize vector SRA/SRL/SHL. +    EVT VT = Node->getValueType(0); +    assert(VT.isVector() && "Unable to legalize non-vector shift"); +    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); +    unsigned NumElem = VT.getVectorNumElements(); + +    SmallVector<SDValue, 8> Scalars; +    for (unsigned Idx = 0; Idx < NumElem; Idx++) { +      SDValue Ex = DAG.getNode( +          ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), +          DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); +      SDValue Sh = DAG.getNode( +          ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), +          DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); +      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, +                                    VT.getScalarType(), Ex, Sh)); +    } + +    SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars); +    ReplaceNode(SDValue(Node, 0), Result); +    break; +  } +  case ISD::GLOBAL_OFFSET_TABLE: +  case ISD::GlobalAddress: +  case ISD::GlobalTLSAddress: +  case ISD::ExternalSymbol: +  case ISD::ConstantPool: +  case ISD::JumpTable: +  case ISD::INTRINSIC_W_CHAIN: +  case ISD::INTRINSIC_WO_CHAIN: +  case ISD::INTRINSIC_VOID: +    // FIXME: Custom lowering for these operations shouldn't return null! +    break; +  } + +  // Replace the original node with the legalized result. +  if (Results.empty()) { +    LLVM_DEBUG(dbgs() << "Cannot expand node\n"); +    return false; +  } + +  LLVM_DEBUG(dbgs() << "Successfully expanded node\n"); +  ReplaceNode(Node, Results.data()); +  return true; +} + +void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { +  LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n"); +  SmallVector<SDValue, 8> Results; +  SDLoc dl(Node); +  // FIXME: Check flags on the node to see if we can use a finite call. +  bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath; +  unsigned Opc = Node->getOpcode(); +  switch (Opc) { +  case ISD::ATOMIC_FENCE: { +    // If the target didn't lower this, lower it to '__sync_synchronize()' call +    // FIXME: handle "fence singlethread" more efficiently. +    TargetLowering::ArgListTy Args; + +    TargetLowering::CallLoweringInfo CLI(DAG); +    CLI.setDebugLoc(dl) +        .setChain(Node->getOperand(0)) +        .setLibCallee( +            CallingConv::C, Type::getVoidTy(*DAG.getContext()), +            DAG.getExternalSymbol("__sync_synchronize", +                                  TLI.getPointerTy(DAG.getDataLayout())), +            std::move(Args)); + +    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); + +    Results.push_back(CallResult.second); +    break; +  } +  // By default, atomic intrinsics are marked Legal and lowered. Targets +  // which don't support them directly, however, may want libcalls, in which +  // case they mark them Expand, and we get here. +  case ISD::ATOMIC_SWAP: +  case ISD::ATOMIC_LOAD_ADD: +  case ISD::ATOMIC_LOAD_SUB: +  case ISD::ATOMIC_LOAD_AND: +  case ISD::ATOMIC_LOAD_CLR: +  case ISD::ATOMIC_LOAD_OR: +  case ISD::ATOMIC_LOAD_XOR: +  case ISD::ATOMIC_LOAD_NAND: +  case ISD::ATOMIC_LOAD_MIN: +  case ISD::ATOMIC_LOAD_MAX: +  case ISD::ATOMIC_LOAD_UMIN: +  case ISD::ATOMIC_LOAD_UMAX: +  case ISD::ATOMIC_CMP_SWAP: { +    MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); +    RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT); +    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); + +    std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); +    Results.push_back(Tmp.first); +    Results.push_back(Tmp.second); +    break; +  } +  case ISD::TRAP: { +    // If this operation is not supported, lower it to 'abort()' call +    TargetLowering::ArgListTy Args; +    TargetLowering::CallLoweringInfo CLI(DAG); +    CLI.setDebugLoc(dl) +        .setChain(Node->getOperand(0)) +        .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), +                      DAG.getExternalSymbol( +                          "abort", TLI.getPointerTy(DAG.getDataLayout())), +                      std::move(Args)); +    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); + +    Results.push_back(CallResult.second); +    break; +  } +  case ISD::FMINNUM: +  case ISD::STRICT_FMINNUM: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, +                                      RTLIB::FMIN_F80, RTLIB::FMIN_F128, +                                      RTLIB::FMIN_PPCF128)); +    break; +  case ISD::FMAXNUM: +  case ISD::STRICT_FMAXNUM: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, +                                      RTLIB::FMAX_F80, RTLIB::FMAX_F128, +                                      RTLIB::FMAX_PPCF128)); +    break; +  case ISD::FSQRT: +  case ISD::STRICT_FSQRT: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, +                                      RTLIB::SQRT_F80, RTLIB::SQRT_F128, +                                      RTLIB::SQRT_PPCF128)); +    break; +  case ISD::FCBRT: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64, +                                      RTLIB::CBRT_F80, RTLIB::CBRT_F128, +                                      RTLIB::CBRT_PPCF128)); +    break; +  case ISD::FSIN: +  case ISD::STRICT_FSIN: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, +                                      RTLIB::SIN_F80, RTLIB::SIN_F128, +                                      RTLIB::SIN_PPCF128)); +    break; +  case ISD::FCOS: +  case ISD::STRICT_FCOS: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, +                                      RTLIB::COS_F80, RTLIB::COS_F128, +                                      RTLIB::COS_PPCF128)); +    break; +  case ISD::FSINCOS: +    // Expand into sincos libcall. +    ExpandSinCosLibCall(Node, Results); +    break; +  case ISD::FLOG: +  case ISD::STRICT_FLOG: +    if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite)) +      Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32, +                                        RTLIB::LOG_FINITE_F64, +                                        RTLIB::LOG_FINITE_F80, +                                        RTLIB::LOG_FINITE_F128, +                                        RTLIB::LOG_FINITE_PPCF128)); +    else +      Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, +                                        RTLIB::LOG_F80, RTLIB::LOG_F128, +                                        RTLIB::LOG_PPCF128)); +    break; +  case ISD::FLOG2: +  case ISD::STRICT_FLOG2: +    if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite)) +      Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32, +                                        RTLIB::LOG2_FINITE_F64, +                                        RTLIB::LOG2_FINITE_F80, +                                        RTLIB::LOG2_FINITE_F128, +                                        RTLIB::LOG2_FINITE_PPCF128)); +    else +      Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, +                                        RTLIB::LOG2_F80, RTLIB::LOG2_F128, +                                        RTLIB::LOG2_PPCF128)); +    break; +  case ISD::FLOG10: +  case ISD::STRICT_FLOG10: +    if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite)) +      Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32, +                                        RTLIB::LOG10_FINITE_F64, +                                        RTLIB::LOG10_FINITE_F80, +                                        RTLIB::LOG10_FINITE_F128, +                                        RTLIB::LOG10_FINITE_PPCF128)); +    else +      Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, +                                        RTLIB::LOG10_F80, RTLIB::LOG10_F128, +                                        RTLIB::LOG10_PPCF128)); +    break; +  case ISD::FEXP: +  case ISD::STRICT_FEXP: +    if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite)) +      Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32, +                                        RTLIB::EXP_FINITE_F64, +                                        RTLIB::EXP_FINITE_F80, +                                        RTLIB::EXP_FINITE_F128, +                                        RTLIB::EXP_FINITE_PPCF128)); +    else +      Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, +                                        RTLIB::EXP_F80, RTLIB::EXP_F128, +                                        RTLIB::EXP_PPCF128)); +    break; +  case ISD::FEXP2: +  case ISD::STRICT_FEXP2: +    if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite)) +      Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32, +                                        RTLIB::EXP2_FINITE_F64, +                                        RTLIB::EXP2_FINITE_F80, +                                        RTLIB::EXP2_FINITE_F128, +                                        RTLIB::EXP2_FINITE_PPCF128)); +    else +      Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, +                                        RTLIB::EXP2_F80, RTLIB::EXP2_F128, +                                        RTLIB::EXP2_PPCF128)); +    break; +  case ISD::FTRUNC: +  case ISD::STRICT_FTRUNC: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, +                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, +                                      RTLIB::TRUNC_PPCF128)); +    break; +  case ISD::FFLOOR: +  case ISD::STRICT_FFLOOR: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, +                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, +                                      RTLIB::FLOOR_PPCF128)); +    break; +  case ISD::FCEIL: +  case ISD::STRICT_FCEIL: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, +                                      RTLIB::CEIL_F80, RTLIB::CEIL_F128, +                                      RTLIB::CEIL_PPCF128)); +    break; +  case ISD::FRINT: +  case ISD::STRICT_FRINT: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, +                                      RTLIB::RINT_F80, RTLIB::RINT_F128, +                                      RTLIB::RINT_PPCF128)); +    break; +  case ISD::FNEARBYINT: +  case ISD::STRICT_FNEARBYINT: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, +                                      RTLIB::NEARBYINT_F64, +                                      RTLIB::NEARBYINT_F80, +                                      RTLIB::NEARBYINT_F128, +                                      RTLIB::NEARBYINT_PPCF128)); +    break; +  case ISD::FROUND: +  case ISD::STRICT_FROUND: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, +                                      RTLIB::ROUND_F64, +                                      RTLIB::ROUND_F80, +                                      RTLIB::ROUND_F128, +                                      RTLIB::ROUND_PPCF128)); +    break; +  case ISD::FPOWI: +  case ISD::STRICT_FPOWI: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, +                                      RTLIB::POWI_F80, RTLIB::POWI_F128, +                                      RTLIB::POWI_PPCF128)); +    break; +  case ISD::FPOW: +  case ISD::STRICT_FPOW: +    if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite)) +      Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32, +                                        RTLIB::POW_FINITE_F64, +                                        RTLIB::POW_FINITE_F80, +                                        RTLIB::POW_FINITE_F128, +                                        RTLIB::POW_FINITE_PPCF128)); +    else +      Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, +                                        RTLIB::POW_F80, RTLIB::POW_F128, +                                        RTLIB::POW_PPCF128)); +    break; +  case ISD::FDIV: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, +                                      RTLIB::DIV_F80, RTLIB::DIV_F128, +                                      RTLIB::DIV_PPCF128)); +    break; +  case ISD::FREM: +  case ISD::STRICT_FREM: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, +                                      RTLIB::REM_F80, RTLIB::REM_F128, +                                      RTLIB::REM_PPCF128)); +    break; +  case ISD::FMA: +  case ISD::STRICT_FMA: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, +                                      RTLIB::FMA_F80, RTLIB::FMA_F128, +                                      RTLIB::FMA_PPCF128)); +    break; +  case ISD::FADD: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, +                                      RTLIB::ADD_F80, RTLIB::ADD_F128, +                                      RTLIB::ADD_PPCF128)); +    break; +  case ISD::FMUL: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, +                                      RTLIB::MUL_F80, RTLIB::MUL_F128, +                                      RTLIB::MUL_PPCF128)); +    break; +  case ISD::FP16_TO_FP: +    if (Node->getValueType(0) == MVT::f32) { +      Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); +    } +    break; +  case ISD::FP_TO_FP16: { +    RTLIB::Libcall LC = +        RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); +    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); +    Results.push_back(ExpandLibCall(LC, Node, false)); +    break; +  } +  case ISD::FSUB: +    Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, +                                      RTLIB::SUB_F80, RTLIB::SUB_F128, +                                      RTLIB::SUB_PPCF128)); +    break; +  case ISD::SREM: +    Results.push_back(ExpandIntLibCall(Node, true, +                                       RTLIB::SREM_I8, +                                       RTLIB::SREM_I16, RTLIB::SREM_I32, +                                       RTLIB::SREM_I64, RTLIB::SREM_I128)); +    break; +  case ISD::UREM: +    Results.push_back(ExpandIntLibCall(Node, false, +                                       RTLIB::UREM_I8, +                                       RTLIB::UREM_I16, RTLIB::UREM_I32, +                                       RTLIB::UREM_I64, RTLIB::UREM_I128)); +    break; +  case ISD::SDIV: +    Results.push_back(ExpandIntLibCall(Node, true, +                                       RTLIB::SDIV_I8, +                                       RTLIB::SDIV_I16, RTLIB::SDIV_I32, +                                       RTLIB::SDIV_I64, RTLIB::SDIV_I128)); +    break; +  case ISD::UDIV: +    Results.push_back(ExpandIntLibCall(Node, false, +                                       RTLIB::UDIV_I8, +                                       RTLIB::UDIV_I16, RTLIB::UDIV_I32, +                                       RTLIB::UDIV_I64, RTLIB::UDIV_I128)); +    break; +  case ISD::SDIVREM: +  case ISD::UDIVREM: +    // Expand into divrem libcall +    ExpandDivRemLibCall(Node, Results); +    break; +  case ISD::MUL: +    Results.push_back(ExpandIntLibCall(Node, false, +                                       RTLIB::MUL_I8, +                                       RTLIB::MUL_I16, RTLIB::MUL_I32, +                                       RTLIB::MUL_I64, RTLIB::MUL_I128)); +    break; +  case ISD::CTLZ_ZERO_UNDEF: +    switch (Node->getSimpleValueType(0).SimpleTy) { +    default: +      llvm_unreachable("LibCall explicitly requested, but not available"); +    case MVT::i32: +      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false)); +      break; +    case MVT::i64: +      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false)); +      break; +    case MVT::i128: +      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false)); +      break; +    } +    break; +  } + +  // Replace the original node with the legalized result. +  if (!Results.empty()) { +    LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n"); +    ReplaceNode(Node, Results.data()); +  } else +    LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n"); +} + +// Determine the vector type to use in place of an original scalar element when +// promoting equally sized vectors. +static MVT getPromotedVectorElementType(const TargetLowering &TLI, +                                        MVT EltVT, MVT NewEltVT) { +  unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); +  MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); +  assert(TLI.isTypeLegal(MidVT) && "unexpected"); +  return MidVT; +} + +void SelectionDAGLegalize::PromoteNode(SDNode *Node) { +  LLVM_DEBUG(dbgs() << "Trying to promote node\n"); +  SmallVector<SDValue, 8> Results; +  MVT OVT = Node->getSimpleValueType(0); +  if (Node->getOpcode() == ISD::UINT_TO_FP || +      Node->getOpcode() == ISD::SINT_TO_FP || +      Node->getOpcode() == ISD::SETCC || +      Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || +      Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { +    OVT = Node->getOperand(0).getSimpleValueType(); +  } +  if (Node->getOpcode() == ISD::BR_CC) +    OVT = Node->getOperand(2).getSimpleValueType(); +  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); +  SDLoc dl(Node); +  SDValue Tmp1, Tmp2, Tmp3; +  switch (Node->getOpcode()) { +  case ISD::CTTZ: +  case ISD::CTTZ_ZERO_UNDEF: +  case ISD::CTLZ: +  case ISD::CTLZ_ZERO_UNDEF: +  case ISD::CTPOP: +    // Zero extend the argument. +    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); +    if (Node->getOpcode() == ISD::CTTZ) { +      // The count is the same in the promoted type except if the original +      // value was zero.  This can be handled by setting the bit just off +      // the top of the original type. +      auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(), +                                        OVT.getSizeInBits()); +      Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1, +                         DAG.getConstant(TopBit, dl, NVT)); +    } +    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is +    // already the correct result. +    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); +    if (Node->getOpcode() == ISD::CTLZ || +        Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { +      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) +      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, +                          DAG.getConstant(NVT.getSizeInBits() - +                                          OVT.getSizeInBits(), dl, NVT)); +    } +    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); +    break; +  case ISD::BITREVERSE: +  case ISD::BSWAP: { +    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); +    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); +    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); +    Tmp1 = DAG.getNode( +        ISD::SRL, dl, NVT, Tmp1, +        DAG.getConstant(DiffBits, dl, +                        TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); + +    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); +    break; +  } +  case ISD::FP_TO_UINT: +  case ISD::FP_TO_SINT: +    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), +                                 Node->getOpcode() == ISD::FP_TO_SINT, dl); +    Results.push_back(Tmp1); +    break; +  case ISD::UINT_TO_FP: +  case ISD::SINT_TO_FP: +    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), +                                 Node->getOpcode() == ISD::SINT_TO_FP, dl); +    Results.push_back(Tmp1); +    break; +  case ISD::VAARG: { +    SDValue Chain = Node->getOperand(0); // Get the chain. +    SDValue Ptr = Node->getOperand(1); // Get the pointer. + +    unsigned TruncOp; +    if (OVT.isVector()) { +      TruncOp = ISD::BITCAST; +    } else { +      assert(OVT.isInteger() +        && "VAARG promotion is supported only for vectors or integer types"); +      TruncOp = ISD::TRUNCATE; +    } + +    // Perform the larger operation, then convert back +    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), +             Node->getConstantOperandVal(3)); +    Chain = Tmp1.getValue(1); + +    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); + +    // Modified the chain result - switch anything that used the old chain to +    // use the new one. +    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); +    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); +    if (UpdatedNodes) { +      UpdatedNodes->insert(Tmp2.getNode()); +      UpdatedNodes->insert(Chain.getNode()); +    } +    ReplacedNode(Node); +    break; +  } +  case ISD::MUL: +  case ISD::SDIV: +  case ISD::SREM: +  case ISD::UDIV: +  case ISD::UREM: +  case ISD::AND: +  case ISD::OR: +  case ISD::XOR: { +    unsigned ExtOp, TruncOp; +    if (OVT.isVector()) { +      ExtOp   = ISD::BITCAST; +      TruncOp = ISD::BITCAST; +    } else { +      assert(OVT.isInteger() && "Cannot promote logic operation"); + +      switch (Node->getOpcode()) { +      default: +        ExtOp = ISD::ANY_EXTEND; +        break; +      case ISD::SDIV: +      case ISD::SREM: +        ExtOp = ISD::SIGN_EXTEND; +        break; +      case ISD::UDIV: +      case ISD::UREM: +        ExtOp = ISD::ZERO_EXTEND; +        break; +      } +      TruncOp = ISD::TRUNCATE; +    } +    // Promote each of the values to the new type. +    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); +    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); +    // Perform the larger operation, then convert back +    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); +    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); +    break; +  } +  case ISD::UMUL_LOHI: +  case ISD::SMUL_LOHI: { +    // Promote to a multiply in a wider integer type. +    unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND +                                                         : ISD::SIGN_EXTEND; +    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); +    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); +    Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2); + +    auto &DL = DAG.getDataLayout(); +    unsigned OriginalSize = OVT.getScalarSizeInBits(); +    Tmp2 = DAG.getNode( +        ISD::SRL, dl, NVT, Tmp1, +        DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT))); +    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); +    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2)); +    break; +  } +  case ISD::SELECT: { +    unsigned ExtOp, TruncOp; +    if (Node->getValueType(0).isVector() || +        Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { +      ExtOp   = ISD::BITCAST; +      TruncOp = ISD::BITCAST; +    } else if (Node->getValueType(0).isInteger()) { +      ExtOp   = ISD::ANY_EXTEND; +      TruncOp = ISD::TRUNCATE; +    } else { +      ExtOp   = ISD::FP_EXTEND; +      TruncOp = ISD::FP_ROUND; +    } +    Tmp1 = Node->getOperand(0); +    // Promote each of the values to the new type. +    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); +    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); +    // Perform the larger operation, then round down. +    Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); +    if (TruncOp != ISD::FP_ROUND) +      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); +    else +      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, +                         DAG.getIntPtrConstant(0, dl)); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::VECTOR_SHUFFLE: { +    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); + +    // Cast the two input vectors. +    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); +    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); + +    // Convert the shuffle mask to the right # elements. +    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); +    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); +    Results.push_back(Tmp1); +    break; +  } +  case ISD::SETCC: { +    unsigned ExtOp = ISD::FP_EXTEND; +    if (NVT.isInteger()) { +      ISD::CondCode CCCode = +        cast<CondCodeSDNode>(Node->getOperand(2))->get(); +      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; +    } +    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); +    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); +    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), +                                  Tmp1, Tmp2, Node->getOperand(2))); +    break; +  } +  case ISD::BR_CC: { +    unsigned ExtOp = ISD::FP_EXTEND; +    if (NVT.isInteger()) { +      ISD::CondCode CCCode = +        cast<CondCodeSDNode>(Node->getOperand(1))->get(); +      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; +    } +    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); +    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); +    Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), +                                  Node->getOperand(0), Node->getOperand(1), +                                  Tmp1, Tmp2, Node->getOperand(4))); +    break; +  } +  case ISD::FADD: +  case ISD::FSUB: +  case ISD::FMUL: +  case ISD::FDIV: +  case ISD::FREM: +  case ISD::FMINNUM: +  case ISD::FMAXNUM: +  case ISD::FPOW: +    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); +    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); +    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, +                       Node->getFlags()); +    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, +                                  Tmp3, DAG.getIntPtrConstant(0, dl))); +    break; +  case ISD::FMA: +    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); +    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); +    Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); +    Results.push_back( +        DAG.getNode(ISD::FP_ROUND, dl, OVT, +                    DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), +                    DAG.getIntPtrConstant(0, dl))); +    break; +  case ISD::FCOPYSIGN: +  case ISD::FPOWI: { +    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); +    Tmp2 = Node->getOperand(1); +    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); + +    // fcopysign doesn't change anything but the sign bit, so +    //   (fp_round (fcopysign (fpext a), b)) +    // is as precise as +    //   (fp_round (fpext a)) +    // which is a no-op. Mark it as a TRUNCating FP_ROUND. +    const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); +    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, +                                  Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); +    break; +  } +  case ISD::FFLOOR: +  case ISD::FCEIL: +  case ISD::FRINT: +  case ISD::FNEARBYINT: +  case ISD::FROUND: +  case ISD::FTRUNC: +  case ISD::FNEG: +  case ISD::FSQRT: +  case ISD::FSIN: +  case ISD::FCOS: +  case ISD::FLOG: +  case ISD::FLOG2: +  case ISD::FLOG10: +  case ISD::FABS: +  case ISD::FEXP: +  case ISD::FEXP2: +    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); +    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); +    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, +                                  Tmp2, DAG.getIntPtrConstant(0, dl))); +    break; +  case ISD::BUILD_VECTOR: { +    MVT EltVT = OVT.getVectorElementType(); +    MVT NewEltVT = NVT.getVectorElementType(); + +    // Handle bitcasts to a different vector type with the same total bit size +    // +    // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 +    //  => +    //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) + +    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && +           "Invalid promote type for build_vector"); +    assert(NewEltVT.bitsLT(EltVT) && "not handled"); + +    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); + +    SmallVector<SDValue, 8> NewOps; +    for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { +      SDValue Op = Node->getOperand(I); +      NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); +    } + +    SDLoc SL(Node); +    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); +    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); +    Results.push_back(CvtVec); +    break; +  } +  case ISD::EXTRACT_VECTOR_ELT: { +    MVT EltVT = OVT.getVectorElementType(); +    MVT NewEltVT = NVT.getVectorElementType(); + +    // Handle bitcasts to a different vector type with the same total bit size. +    // +    // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 +    //  => +    //  v4i32:castx = bitcast x:v2i64 +    // +    // i64 = bitcast +    //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), +    //                       (i32 (extract_vector_elt castx, (2 * y + 1))) +    // + +    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && +           "Invalid promote type for extract_vector_elt"); +    assert(NewEltVT.bitsLT(EltVT) && "not handled"); + +    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); +    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); + +    SDValue Idx = Node->getOperand(1); +    EVT IdxVT = Idx.getValueType(); +    SDLoc SL(Node); +    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); +    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); + +    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); + +    SmallVector<SDValue, 8> NewOps; +    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { +      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); +      SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); + +      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, +                                CastVec, TmpIdx); +      NewOps.push_back(Elt); +    } + +    SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps); +    Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); +    break; +  } +  case ISD::INSERT_VECTOR_ELT: { +    MVT EltVT = OVT.getVectorElementType(); +    MVT NewEltVT = NVT.getVectorElementType(); + +    // Handle bitcasts to a different vector type with the same total bit size +    // +    // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 +    //  => +    //  v4i32:castx = bitcast x:v2i64 +    //  v2i32:casty = bitcast y:i64 +    // +    // v2i64 = bitcast +    //   (v4i32 insert_vector_elt +    //       (v4i32 insert_vector_elt v4i32:castx, +    //                                (extract_vector_elt casty, 0), 2 * z), +    //        (extract_vector_elt casty, 1), (2 * z + 1)) + +    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && +           "Invalid promote type for insert_vector_elt"); +    assert(NewEltVT.bitsLT(EltVT) && "not handled"); + +    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); +    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); + +    SDValue Val = Node->getOperand(1); +    SDValue Idx = Node->getOperand(2); +    EVT IdxVT = Idx.getValueType(); +    SDLoc SL(Node); + +    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); +    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); + +    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); +    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); + +    SDValue NewVec = CastVec; +    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { +      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); +      SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); + +      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, +                                CastVal, IdxOffset); + +      NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, +                           NewVec, Elt, InEltIdx); +    } + +    Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); +    break; +  } +  case ISD::SCALAR_TO_VECTOR: { +    MVT EltVT = OVT.getVectorElementType(); +    MVT NewEltVT = NVT.getVectorElementType(); + +    // Handle bitcasts to different vector type with the same total bit size. +    // +    // e.g. v2i64 = scalar_to_vector x:i64 +    //   => +    //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) +    // + +    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); +    SDValue Val = Node->getOperand(0); +    SDLoc SL(Node); + +    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); +    SDValue Undef = DAG.getUNDEF(MidVT); + +    SmallVector<SDValue, 8> NewElts; +    NewElts.push_back(CastVal); +    for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) +      NewElts.push_back(Undef); + +    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); +    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); +    Results.push_back(CvtVec); +    break; +  } +  } + +  // Replace the original node with the legalized result. +  if (!Results.empty()) { +    LLVM_DEBUG(dbgs() << "Successfully promoted node\n"); +    ReplaceNode(Node, Results.data()); +  } else +    LLVM_DEBUG(dbgs() << "Could not promote node\n"); +} + +/// This is the entry point for the file. +void SelectionDAG::Legalize() { +  AssignTopologicalOrder(); + +  SmallPtrSet<SDNode *, 16> LegalizedNodes; +  // Use a delete listener to remove nodes which were deleted during +  // legalization from LegalizeNodes. This is needed to handle the situation +  // where a new node is allocated by the object pool to the same address of a +  // previously deleted node. +  DAGNodeDeletedListener DeleteListener( +      *this, +      [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); }); + +  SelectionDAGLegalize Legalizer(*this, LegalizedNodes); + +  // Visit all the nodes. We start in topological order, so that we see +  // nodes with their original operands intact. Legalization can produce +  // new nodes which may themselves need to be legalized. Iterate until all +  // nodes have been legalized. +  while (true) { +    bool AnyLegalized = false; +    for (auto NI = allnodes_end(); NI != allnodes_begin();) { +      --NI; + +      SDNode *N = &*NI; +      if (N->use_empty() && N != getRoot().getNode()) { +        ++NI; +        DeleteNode(N); +        continue; +      } + +      if (LegalizedNodes.insert(N).second) { +        AnyLegalized = true; +        Legalizer.LegalizeOp(N); + +        if (N->use_empty() && N != getRoot().getNode()) { +          ++NI; +          DeleteNode(N); +        } +      } +    } +    if (!AnyLegalized) +      break; + +  } + +  // Remove dead nodes now. +  RemoveDeadNodes(); +} + +bool SelectionDAG::LegalizeOp(SDNode *N, +                              SmallSetVector<SDNode *, 16> &UpdatedNodes) { +  SmallPtrSet<SDNode *, 16> LegalizedNodes; +  SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); + +  // Directly insert the node in question, and legalize it. This will recurse +  // as needed through operands. +  LegalizedNodes.insert(N); +  Legalizer.LegalizeOp(N); + +  return LegalizedNodes.count(N); +} | 
