diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h | 1077 | 
1 files changed, 1077 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h new file mode 100644 index 000000000000..5f9cdb69daf7 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h @@ -0,0 +1,1077 @@ +//===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements routines for translating from LLVM IR into SelectionDAG IR. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H +#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H + +#include "StatepointLowering.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <utility> +#include <vector> + +namespace llvm { + +class AllocaInst; +class AtomicCmpXchgInst; +class AtomicRMWInst; +class BasicBlock; +class BranchInst; +class CallInst; +class CatchPadInst; +class CatchReturnInst; +class CatchSwitchInst; +class CleanupPadInst; +class CleanupReturnInst; +class Constant; +class ConstantInt; +class ConstrainedFPIntrinsic; +class DbgValueInst; +class DataLayout; +class DIExpression; +class DILocalVariable; +class DILocation; +class FenceInst; +class FunctionLoweringInfo; +class GCFunctionInfo; +class GCRelocateInst; +class GCResultInst; +class IndirectBrInst; +class InvokeInst; +class LandingPadInst; +class LLVMContext; +class LoadInst; +class MachineBasicBlock; +class PHINode; +class ResumeInst; +class ReturnInst; +class SDDbgValue; +class StoreInst; +class SwitchInst; +class TargetLibraryInfo; +class TargetMachine; +class Type; +class VAArgInst; +class UnreachableInst; +class Use; +class User; +class Value; + +//===----------------------------------------------------------------------===// +/// SelectionDAGBuilder - This is the common target-independent lowering +/// implementation that is parameterized by a TargetLowering object. +/// +class SelectionDAGBuilder { +  /// CurInst - The current instruction being visited +  const Instruction *CurInst = nullptr; + +  DenseMap<const Value*, SDValue> NodeMap; + +  /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used +  /// to preserve debug information for incoming arguments. +  DenseMap<const Value*, SDValue> UnusedArgNodeMap; + +  /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap. +  class DanglingDebugInfo { +    const DbgValueInst* DI = nullptr; +    DebugLoc dl; +    unsigned SDNodeOrder = 0; + +  public: +    DanglingDebugInfo() = default; +    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) +        : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {} + +    const DbgValueInst* getDI() { return DI; } +    DebugLoc getdl() { return dl; } +    unsigned getSDNodeOrder() { return SDNodeOrder; } +  }; + +  /// DanglingDebugInfoVector - Helper type for DanglingDebugInfoMap. +  typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector; + +  /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not +  /// yet seen the referent.  We defer handling these until we do see it. +  DenseMap<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap; + +public: +  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch +  /// them up and then emit token factor nodes when possible.  This allows us to +  /// get simple disambiguation between loads without worrying about alias +  /// analysis. +  SmallVector<SDValue, 8> PendingLoads; + +  /// State used while lowering a statepoint sequence (gc_statepoint, +  /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details. +  StatepointLoweringState StatepointLowering; + +private: +  /// PendingExports - CopyToReg nodes that copy values to virtual registers +  /// for export to other blocks need to be emitted before any terminator +  /// instruction, but they have no other ordering requirements. We bunch them +  /// up and the emit a single tokenfactor for them just before terminator +  /// instructions. +  SmallVector<SDValue, 8> PendingExports; + +  /// SDNodeOrder - A unique monotonically increasing number used to order the +  /// SDNodes we create. +  unsigned SDNodeOrder; + +  enum CaseClusterKind { +    /// A cluster of adjacent case labels with the same destination, or just one +    /// case. +    CC_Range, +    /// A cluster of cases suitable for jump table lowering. +    CC_JumpTable, +    /// A cluster of cases suitable for bit test lowering. +    CC_BitTests +  }; + +  /// A cluster of case labels. +  struct CaseCluster { +    CaseClusterKind Kind; +    const ConstantInt *Low, *High; +    union { +      MachineBasicBlock *MBB; +      unsigned JTCasesIndex; +      unsigned BTCasesIndex; +    }; +    BranchProbability Prob; + +    static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, +                             MachineBasicBlock *MBB, BranchProbability Prob) { +      CaseCluster C; +      C.Kind = CC_Range; +      C.Low = Low; +      C.High = High; +      C.MBB = MBB; +      C.Prob = Prob; +      return C; +    } + +    static CaseCluster jumpTable(const ConstantInt *Low, +                                 const ConstantInt *High, unsigned JTCasesIndex, +                                 BranchProbability Prob) { +      CaseCluster C; +      C.Kind = CC_JumpTable; +      C.Low = Low; +      C.High = High; +      C.JTCasesIndex = JTCasesIndex; +      C.Prob = Prob; +      return C; +    } + +    static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High, +                                unsigned BTCasesIndex, BranchProbability Prob) { +      CaseCluster C; +      C.Kind = CC_BitTests; +      C.Low = Low; +      C.High = High; +      C.BTCasesIndex = BTCasesIndex; +      C.Prob = Prob; +      return C; +    } +  }; + +  using CaseClusterVector = std::vector<CaseCluster>; +  using CaseClusterIt = CaseClusterVector::iterator; + +  struct CaseBits { +    uint64_t Mask = 0; +    MachineBasicBlock* BB = nullptr; +    unsigned Bits = 0; +    BranchProbability ExtraProb; + +    CaseBits() = default; +    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits, +             BranchProbability Prob): +      Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) {} +  }; + +  using CaseBitsVector = std::vector<CaseBits>; + +  /// Sort Clusters and merge adjacent cases. +  void sortAndRangeify(CaseClusterVector &Clusters); + +  /// CaseBlock - This structure is used to communicate between +  /// SelectionDAGBuilder and SDISel for the code generation of additional basic +  /// blocks needed by multi-case switch statements. +  struct CaseBlock { +    // CC - the condition code to use for the case block's setcc node +    ISD::CondCode CC; + +    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. +    // Emit by default LHS op RHS. MHS is used for range comparisons: +    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). +    const Value *CmpLHS, *CmpMHS, *CmpRHS; + +    // TrueBB/FalseBB - the block to branch to if the setcc is true/false. +    MachineBasicBlock *TrueBB, *FalseBB; + +    // ThisBB - the block into which to emit the code for the setcc and branches +    MachineBasicBlock *ThisBB; + +    /// The debug location of the instruction this CaseBlock was +    /// produced from. +    SDLoc DL; + +    // TrueProb/FalseProb - branch weights. +    BranchProbability TrueProb, FalseProb; + +    CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs, +              const Value *cmpmiddle, MachineBasicBlock *truebb, +              MachineBasicBlock *falsebb, MachineBasicBlock *me, +              SDLoc dl, +              BranchProbability trueprob = BranchProbability::getUnknown(), +              BranchProbability falseprob = BranchProbability::getUnknown()) +        : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), +          TrueBB(truebb), FalseBB(falsebb), ThisBB(me), DL(dl), +          TrueProb(trueprob), FalseProb(falseprob) {} +  }; + +  struct JumpTable { +    /// Reg - the virtual register containing the index of the jump table entry +    //. to jump to. +    unsigned Reg; +    /// JTI - the JumpTableIndex for this jump table in the function. +    unsigned JTI; +    /// MBB - the MBB into which to emit the code for the indirect jump. +    MachineBasicBlock *MBB; +    /// Default - the MBB of the default bb, which is a successor of the range +    /// check MBB.  This is when updating PHI nodes in successors. +    MachineBasicBlock *Default; + +    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, +              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} +  }; +  struct JumpTableHeader { +    APInt First; +    APInt Last; +    const Value *SValue; +    MachineBasicBlock *HeaderBB; +    bool Emitted; + +    JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H, +                    bool E = false) +        : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H), +          Emitted(E) {} +  }; +  using JumpTableBlock = std::pair<JumpTableHeader, JumpTable>; + +  struct BitTestCase { +    uint64_t Mask; +    MachineBasicBlock *ThisBB; +    MachineBasicBlock *TargetBB; +    BranchProbability ExtraProb; + +    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr, +                BranchProbability Prob): +      Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) {} +  }; + +  using BitTestInfo = SmallVector<BitTestCase, 3>; + +  struct BitTestBlock { +    APInt First; +    APInt Range; +    const Value *SValue; +    unsigned Reg; +    MVT RegVT; +    bool Emitted; +    bool ContiguousRange; +    MachineBasicBlock *Parent; +    MachineBasicBlock *Default; +    BitTestInfo Cases; +    BranchProbability Prob; +    BranchProbability DefaultProb; + +    BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT, +                 bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D, +                 BitTestInfo C, BranchProbability Pr) +        : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg), +          RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D), +          Cases(std::move(C)), Prob(Pr) {} +  }; + +  /// Return the range of value in [First..Last]. +  uint64_t getJumpTableRange(const CaseClusterVector &Clusters, unsigned First, +                             unsigned Last) const; + +  /// Return the number of cases in [First..Last]. +  uint64_t getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, +                                unsigned First, unsigned Last) const; + +  /// Build a jump table cluster from Clusters[First..Last]. Returns false if it +  /// decides it's not a good idea. +  bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First, +                      unsigned Last, const SwitchInst *SI, +                      MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster); + +  /// Find clusters of cases suitable for jump table lowering. +  void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI, +                      MachineBasicBlock *DefaultMBB); + +  /// Build a bit test cluster from Clusters[First..Last]. Returns false if it +  /// decides it's not a good idea. +  bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last, +                     const SwitchInst *SI, CaseCluster &BTCluster); + +  /// Find clusters of cases suitable for bit test lowering. +  void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI); + +  struct SwitchWorkListItem { +    MachineBasicBlock *MBB; +    CaseClusterIt FirstCluster; +    CaseClusterIt LastCluster; +    const ConstantInt *GE; +    const ConstantInt *LT; +    BranchProbability DefaultProb; +  }; +  using SwitchWorkList = SmallVector<SwitchWorkListItem, 4>; + +  /// Determine the rank by weight of CC in [First,Last]. If CC has more weight +  /// than each cluster in the range, its rank is 0. +  static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First, +                                  CaseClusterIt Last); + +  /// Emit comparison and split W into two subtrees. +  void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W, +                     Value *Cond, MachineBasicBlock *SwitchMBB); + +  /// Lower W. +  void lowerWorkItem(SwitchWorkListItem W, Value *Cond, +                     MachineBasicBlock *SwitchMBB, +                     MachineBasicBlock *DefaultMBB); + +  /// Peel the top probability case if it exceeds the threshold +  MachineBasicBlock *peelDominantCaseCluster(const SwitchInst &SI, +                                             CaseClusterVector &Clusters, +                                             BranchProbability &PeeledCaseProb); + +  /// A class which encapsulates all of the information needed to generate a +  /// stack protector check and signals to isel via its state being initialized +  /// that a stack protector needs to be generated. +  /// +  /// *NOTE* The following is a high level documentation of SelectionDAG Stack +  /// Protector Generation. The reason that it is placed here is for a lack of +  /// other good places to stick it. +  /// +  /// High Level Overview of SelectionDAG Stack Protector Generation: +  /// +  /// Previously, generation of stack protectors was done exclusively in the +  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated +  /// splitting basic blocks at the IR level to create the success/failure basic +  /// blocks in the tail of the basic block in question. As a result of this, +  /// calls that would have qualified for the sibling call optimization were no +  /// longer eligible for optimization since said calls were no longer right in +  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst +  /// instruction). +  /// +  /// Then it was noticed that since the sibling call optimization causes the +  /// callee to reuse the caller's stack, if we could delay the generation of +  /// the stack protector check until later in CodeGen after the sibling call +  /// decision was made, we get both the tail call optimization and the stack +  /// protector check! +  /// +  /// A few goals in solving this problem were: +  /// +  ///   1. Preserve the architecture independence of stack protector generation. +  /// +  ///   2. Preserve the normal IR level stack protector check for platforms like +  ///      OpenBSD for which we support platform-specific stack protector +  ///      generation. +  /// +  /// The main problem that guided the present solution is that one can not +  /// solve this problem in an architecture independent manner at the IR level +  /// only. This is because: +  /// +  ///   1. The decision on whether or not to perform a sibling call on certain +  ///      platforms (for instance i386) requires lower level information +  ///      related to available registers that can not be known at the IR level. +  /// +  ///   2. Even if the previous point were not true, the decision on whether to +  ///      perform a tail call is done in LowerCallTo in SelectionDAG which +  ///      occurs after the Stack Protector Pass. As a result, one would need to +  ///      put the relevant callinst into the stack protector check success +  ///      basic block (where the return inst is placed) and then move it back +  ///      later at SelectionDAG/MI time before the stack protector check if the +  ///      tail call optimization failed. The MI level option was nixed +  ///      immediately since it would require platform-specific pattern +  ///      matching. The SelectionDAG level option was nixed because +  ///      SelectionDAG only processes one IR level basic block at a time +  ///      implying one could not create a DAG Combine to move the callinst. +  /// +  /// To get around this problem a few things were realized: +  /// +  ///   1. While one can not handle multiple IR level basic blocks at the +  ///      SelectionDAG Level, one can generate multiple machine basic blocks +  ///      for one IR level basic block. This is how we handle bit tests and +  ///      switches. +  /// +  ///   2. At the MI level, tail calls are represented via a special return +  ///      MIInst called "tcreturn". Thus if we know the basic block in which we +  ///      wish to insert the stack protector check, we get the correct behavior +  ///      by always inserting the stack protector check right before the return +  ///      statement. This is a "magical transformation" since no matter where +  ///      the stack protector check intrinsic is, we always insert the stack +  ///      protector check code at the end of the BB. +  /// +  /// Given the aforementioned constraints, the following solution was devised: +  /// +  ///   1. On platforms that do not support SelectionDAG stack protector check +  ///      generation, allow for the normal IR level stack protector check +  ///      generation to continue. +  /// +  ///   2. On platforms that do support SelectionDAG stack protector check +  ///      generation: +  /// +  ///     a. Use the IR level stack protector pass to decide if a stack +  ///        protector is required/which BB we insert the stack protector check +  ///        in by reusing the logic already therein. If we wish to generate a +  ///        stack protector check in a basic block, we place a special IR +  ///        intrinsic called llvm.stackprotectorcheck right before the BB's +  ///        returninst or if there is a callinst that could potentially be +  ///        sibling call optimized, before the call inst. +  /// +  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB +  ///        normally via SelectBasicBlock. In said process, when we visit the +  ///        stack protector check, we do not actually emit anything into the +  ///        BB. Instead, we just initialize the stack protector descriptor +  ///        class (which involves stashing information/creating the success +  ///        mbbb and the failure mbb if we have not created one for this +  ///        function yet) and export the guard variable that we are going to +  ///        compare. +  /// +  ///     c. After we finish selecting the basic block, in FinishBasicBlock if +  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is +  ///        initialized, we produce the validation code with one of these +  ///        techniques: +  ///          1) with a call to a guard check function +  ///          2) with inlined instrumentation +  /// +  ///        1) We insert a call to the check function before the terminator. +  /// +  ///        2) We first find a splice point in the parent basic block +  ///        before the terminator and then splice the terminator of said basic +  ///        block into the success basic block. Then we code-gen a new tail for +  ///        the parent basic block consisting of the two loads, the comparison, +  ///        and finally two branches to the success/failure basic blocks. We +  ///        conclude by code-gening the failure basic block if we have not +  ///        code-gened it already (all stack protector checks we generate in +  ///        the same function, use the same failure basic block). +  class StackProtectorDescriptor { +  public: +    StackProtectorDescriptor() = default; + +    /// Returns true if all fields of the stack protector descriptor are +    /// initialized implying that we should/are ready to emit a stack protector. +    bool shouldEmitStackProtector() const { +      return ParentMBB && SuccessMBB && FailureMBB; +    } + +    bool shouldEmitFunctionBasedCheckStackProtector() const { +      return ParentMBB && !SuccessMBB && !FailureMBB; +    } + +    /// Initialize the stack protector descriptor structure for a new basic +    /// block. +    void initialize(const BasicBlock *BB, MachineBasicBlock *MBB, +                    bool FunctionBasedInstrumentation) { +      // Make sure we are not initialized yet. +      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is " +             "already initialized!"); +      ParentMBB = MBB; +      if (!FunctionBasedInstrumentation) { +        SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true); +        FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB); +      } +    } + +    /// Reset state that changes when we handle different basic blocks. +    /// +    /// This currently includes: +    /// +    /// 1. The specific basic block we are generating a +    /// stack protector for (ParentMBB). +    /// +    /// 2. The successor machine basic block that will contain the tail of +    /// parent mbb after we create the stack protector check (SuccessMBB). This +    /// BB is visited only on stack protector check success. +    void resetPerBBState() { +      ParentMBB = nullptr; +      SuccessMBB = nullptr; +    } + +    /// Reset state that only changes when we switch functions. +    /// +    /// This currently includes: +    /// +    /// 1. FailureMBB since we reuse the failure code path for all stack +    /// protector checks created in an individual function. +    /// +    /// 2.The guard variable since the guard variable we are checking against is +    /// always the same. +    void resetPerFunctionState() { +      FailureMBB = nullptr; +    } + +    MachineBasicBlock *getParentMBB() { return ParentMBB; } +    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; } +    MachineBasicBlock *getFailureMBB() { return FailureMBB; } + +  private: +    /// The basic block for which we are generating the stack protector. +    /// +    /// As a result of stack protector generation, we will splice the +    /// terminators of this basic block into the successor mbb SuccessMBB and +    /// replace it with a compare/branch to the successor mbbs +    /// SuccessMBB/FailureMBB depending on whether or not the stack protector +    /// was violated. +    MachineBasicBlock *ParentMBB = nullptr; + +    /// A basic block visited on stack protector check success that contains the +    /// terminators of ParentMBB. +    MachineBasicBlock *SuccessMBB = nullptr; + +    /// This basic block visited on stack protector check failure that will +    /// contain a call to __stack_chk_fail(). +    MachineBasicBlock *FailureMBB = nullptr; + +    /// Add a successor machine basic block to ParentMBB. If the successor mbb +    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic +    /// block will be created. Assign a large weight if IsLikely is true. +    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB, +                                       MachineBasicBlock *ParentMBB, +                                       bool IsLikely, +                                       MachineBasicBlock *SuccMBB = nullptr); +  }; + +private: +  const TargetMachine &TM; + +public: +  /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling +  /// nodes without a corresponding SDNode. +  static const unsigned LowestSDNodeOrder = 1; + +  SelectionDAG &DAG; +  const DataLayout *DL = nullptr; +  AliasAnalysis *AA = nullptr; +  const TargetLibraryInfo *LibInfo; + +  /// SwitchCases - Vector of CaseBlock structures used to communicate +  /// SwitchInst code generation information. +  std::vector<CaseBlock> SwitchCases; + +  /// JTCases - Vector of JumpTable structures used to communicate +  /// SwitchInst code generation information. +  std::vector<JumpTableBlock> JTCases; + +  /// BitTestCases - Vector of BitTestBlock structures used to communicate +  /// SwitchInst code generation information. +  std::vector<BitTestBlock> BitTestCases; + +  /// A StackProtectorDescriptor structure used to communicate stack protector +  /// information in between SelectBasicBlock and FinishBasicBlock. +  StackProtectorDescriptor SPDescriptor; + +  // Emit PHI-node-operand constants only once even if used by multiple +  // PHI nodes. +  DenseMap<const Constant *, unsigned> ConstantsOut; + +  /// FuncInfo - Information about the function as a whole. +  /// +  FunctionLoweringInfo &FuncInfo; + +  /// GFI - Garbage collection metadata for the function. +  GCFunctionInfo *GFI; + +  /// LPadToCallSiteMap - Map a landing pad to the call site indexes. +  DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap; + +  /// HasTailCall - This is set to true if a call in the current +  /// block has been translated as a tail call. In this case, +  /// no subsequent DAG nodes should be created. +  bool HasTailCall = false; + +  LLVMContext *Context; + +  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, +                      CodeGenOpt::Level ol) +    : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag), +      FuncInfo(funcinfo) {} + +  void init(GCFunctionInfo *gfi, AliasAnalysis *AA, +            const TargetLibraryInfo *li); + +  /// Clear out the current SelectionDAG and the associated state and prepare +  /// this SelectionDAGBuilder object to be used for a new block. This doesn't +  /// clear out information about additional blocks that are needed to complete +  /// switch lowering or PHI node updating; that information is cleared out as +  /// it is consumed. +  void clear(); + +  /// Clear the dangling debug information map. This function is separated from +  /// the clear so that debug information that is dangling in a basic block can +  /// be properly resolved in a different basic block. This allows the +  /// SelectionDAG to resolve dangling debug information attached to PHI nodes. +  void clearDanglingDebugInfo(); + +  /// Return the current virtual root of the Selection DAG, flushing any +  /// PendingLoad items. This must be done before emitting a store or any other +  /// node that may need to be ordered after any prior load instructions. +  SDValue getRoot(); + +  /// Similar to getRoot, but instead of flushing all the PendingLoad items, +  /// flush all the PendingExports items. It is necessary to do this before +  /// emitting a terminator instruction. +  SDValue getControlRoot(); + +  SDLoc getCurSDLoc() const { +    return SDLoc(CurInst, SDNodeOrder); +  } + +  DebugLoc getCurDebugLoc() const { +    return CurInst ? CurInst->getDebugLoc() : DebugLoc(); +  } + +  void CopyValueToVirtualRegister(const Value *V, unsigned Reg); + +  void visit(const Instruction &I); + +  void visit(unsigned Opcode, const User &I); + +  /// getCopyFromRegs - If there was virtual register allocated for the value V +  /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. +  SDValue getCopyFromRegs(const Value *V, Type *Ty); + +  /// If we have dangling debug info that describes \p Variable, or an +  /// overlapping part of variable considering the \p Expr, then this method +  /// weill drop that debug info as it isn't valid any longer. +  void dropDanglingDebugInfo(const DILocalVariable *Variable, +                             const DIExpression *Expr); + +  // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, +  // generate the debug data structures now that we've seen its definition. +  void resolveDanglingDebugInfo(const Value *V, SDValue Val); + +  SDValue getValue(const Value *V); +  bool findValue(const Value *V) const; + +  /// Return the SDNode for the specified IR value if it exists. +  SDNode *getNodeForIRValue(const Value *V) { +    if (NodeMap.find(V) == NodeMap.end()) +      return nullptr; +    return NodeMap[V].getNode(); +  } + +  SDValue getNonRegisterValue(const Value *V); +  SDValue getValueImpl(const Value *V); + +  void setValue(const Value *V, SDValue NewN) { +    SDValue &N = NodeMap[V]; +    assert(!N.getNode() && "Already set a value for this node!"); +    N = NewN; +  } + +  void setUnusedArgValue(const Value *V, SDValue NewN) { +    SDValue &N = UnusedArgNodeMap[V]; +    assert(!N.getNode() && "Already set a value for this node!"); +    N = NewN; +  } + +  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, +                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB, +                            MachineBasicBlock *SwitchBB, +                            Instruction::BinaryOps Opc, BranchProbability TProb, +                            BranchProbability FProb, bool InvertCond); +  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, +                                    MachineBasicBlock *FBB, +                                    MachineBasicBlock *CurBB, +                                    MachineBasicBlock *SwitchBB, +                                    BranchProbability TProb, BranchProbability FProb, +                                    bool InvertCond); +  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases); +  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); +  void CopyToExportRegsIfNeeded(const Value *V); +  void ExportFromCurrentBlock(const Value *V); +  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, +                   const BasicBlock *EHPadBB = nullptr); + +  // Lower range metadata from 0 to N to assert zext to an integer of nearest +  // floor power of two. +  SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, +                                 SDValue Op); + +  void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, +                                ImmutableCallSite CS, unsigned ArgIdx, +                                unsigned NumArgs, SDValue Callee, +                                Type *ReturnTy, bool IsPatchPoint); + +  std::pair<SDValue, SDValue> +  lowerInvokable(TargetLowering::CallLoweringInfo &CLI, +                 const BasicBlock *EHPadBB = nullptr); + +  /// UpdateSplitBlock - When an MBB was split during scheduling, update the +  /// references that need to refer to the last resulting block. +  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); + +  /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes +  /// of lowering into a STATEPOINT node. +  struct StatepointLoweringInfo { +    /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set +    /// of gc pointers this STATEPOINT has to relocate. +    SmallVector<const Value *, 16> Bases; +    SmallVector<const Value *, 16> Ptrs; + +    /// The set of gc.relocate calls associated with this gc.statepoint. +    SmallVector<const GCRelocateInst *, 16> GCRelocates; + +    /// The full list of gc arguments to the gc.statepoint being lowered. +    ArrayRef<const Use> GCArgs; + +    /// The gc.statepoint instruction. +    const Instruction *StatepointInstr = nullptr; + +    /// The list of gc transition arguments present in the gc.statepoint being +    /// lowered. +    ArrayRef<const Use> GCTransitionArgs; + +    /// The ID that the resulting STATEPOINT instruction has to report. +    unsigned ID = -1; + +    /// Information regarding the underlying call instruction. +    TargetLowering::CallLoweringInfo CLI; + +    /// The deoptimization state associated with this gc.statepoint call, if +    /// any. +    ArrayRef<const Use> DeoptState; + +    /// Flags associated with the meta arguments being lowered. +    uint64_t StatepointFlags = -1; + +    /// The number of patchable bytes the call needs to get lowered into. +    unsigned NumPatchBytes = -1; + +    /// The exception handling unwind destination, in case this represents an +    /// invoke of gc.statepoint. +    const BasicBlock *EHPadBB = nullptr; + +    explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {} +  }; + +  /// Lower \p SLI into a STATEPOINT instruction. +  SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI); + +  // This function is responsible for the whole statepoint lowering process. +  // It uniformly handles invoke and call statepoints. +  void LowerStatepoint(ImmutableStatepoint ISP, +                       const BasicBlock *EHPadBB = nullptr); + +  void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee, +                                    const BasicBlock *EHPadBB); + +  void LowerDeoptimizeCall(const CallInst *CI); +  void LowerDeoptimizingReturn(); + +  void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee, +                                        const BasicBlock *EHPadBB, +                                        bool VarArgDisallowed, +                                        bool ForceVoidReturnTy); + +  /// Returns the type of FrameIndex and TargetFrameIndex nodes. +  MVT getFrameIndexTy() { +    return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()); +  } + +private: +  // Terminator instructions. +  void visitRet(const ReturnInst &I); +  void visitBr(const BranchInst &I); +  void visitSwitch(const SwitchInst &I); +  void visitIndirectBr(const IndirectBrInst &I); +  void visitUnreachable(const UnreachableInst &I); +  void visitCleanupRet(const CleanupReturnInst &I); +  void visitCatchSwitch(const CatchSwitchInst &I); +  void visitCatchRet(const CatchReturnInst &I); +  void visitCatchPad(const CatchPadInst &I); +  void visitCleanupPad(const CleanupPadInst &CPI); + +  BranchProbability getEdgeProbability(const MachineBasicBlock *Src, +                                       const MachineBasicBlock *Dst) const; +  void addSuccessorWithProb( +      MachineBasicBlock *Src, MachineBasicBlock *Dst, +      BranchProbability Prob = BranchProbability::getUnknown()); + +public: +  void visitSwitchCase(CaseBlock &CB, +                       MachineBasicBlock *SwitchBB); +  void visitSPDescriptorParent(StackProtectorDescriptor &SPD, +                               MachineBasicBlock *ParentBB); +  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD); +  void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB); +  void visitBitTestCase(BitTestBlock &BB, +                        MachineBasicBlock* NextMBB, +                        BranchProbability BranchProbToNext, +                        unsigned Reg, +                        BitTestCase &B, +                        MachineBasicBlock *SwitchBB); +  void visitJumpTable(JumpTable &JT); +  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, +                            MachineBasicBlock *SwitchBB); + +private: +  // These all get lowered before this pass. +  void visitInvoke(const InvokeInst &I); +  void visitResume(const ResumeInst &I); + +  void visitUnary(const User &I, unsigned Opcode); +  void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); } + +  void visitBinary(const User &I, unsigned Opcode); +  void visitShift(const User &I, unsigned Opcode); +  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); } +  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } +  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); } +  void visitFSub(const User &I); +  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); } +  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } +  void visitURem(const User &I) { visitBinary(I, ISD::UREM); } +  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } +  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } +  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } +  void visitSDiv(const User &I); +  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } +  void visitAnd (const User &I) { visitBinary(I, ISD::AND); } +  void visitOr  (const User &I) { visitBinary(I, ISD::OR); } +  void visitXor (const User &I) { visitBinary(I, ISD::XOR); } +  void visitShl (const User &I) { visitShift(I, ISD::SHL); } +  void visitLShr(const User &I) { visitShift(I, ISD::SRL); } +  void visitAShr(const User &I) { visitShift(I, ISD::SRA); } +  void visitICmp(const User &I); +  void visitFCmp(const User &I); +  // Visit the conversion instructions +  void visitTrunc(const User &I); +  void visitZExt(const User &I); +  void visitSExt(const User &I); +  void visitFPTrunc(const User &I); +  void visitFPExt(const User &I); +  void visitFPToUI(const User &I); +  void visitFPToSI(const User &I); +  void visitUIToFP(const User &I); +  void visitSIToFP(const User &I); +  void visitPtrToInt(const User &I); +  void visitIntToPtr(const User &I); +  void visitBitCast(const User &I); +  void visitAddrSpaceCast(const User &I); + +  void visitExtractElement(const User &I); +  void visitInsertElement(const User &I); +  void visitShuffleVector(const User &I); + +  void visitExtractValue(const User &I); +  void visitInsertValue(const User &I); +  void visitLandingPad(const LandingPadInst &LP); + +  void visitGetElementPtr(const User &I); +  void visitSelect(const User &I); + +  void visitAlloca(const AllocaInst &I); +  void visitLoad(const LoadInst &I); +  void visitStore(const StoreInst &I); +  void visitMaskedLoad(const CallInst &I, bool IsExpanding = false); +  void visitMaskedStore(const CallInst &I, bool IsCompressing = false); +  void visitMaskedGather(const CallInst &I); +  void visitMaskedScatter(const CallInst &I); +  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); +  void visitAtomicRMW(const AtomicRMWInst &I); +  void visitFence(const FenceInst &I); +  void visitPHI(const PHINode &I); +  void visitCall(const CallInst &I); +  bool visitMemCmpCall(const CallInst &I); +  bool visitMemPCpyCall(const CallInst &I); +  bool visitMemChrCall(const CallInst &I); +  bool visitStrCpyCall(const CallInst &I, bool isStpcpy); +  bool visitStrCmpCall(const CallInst &I); +  bool visitStrLenCall(const CallInst &I); +  bool visitStrNLenCall(const CallInst &I); +  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode); +  bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode); +  void visitAtomicLoad(const LoadInst &I); +  void visitAtomicStore(const StoreInst &I); +  void visitLoadFromSwiftError(const LoadInst &I); +  void visitStoreToSwiftError(const StoreInst &I); + +  void visitInlineAsm(ImmutableCallSite CS); +  const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); +  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); +  void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI); + +  void visitVAStart(const CallInst &I); +  void visitVAArg(const VAArgInst &I); +  void visitVAEnd(const CallInst &I); +  void visitVACopy(const CallInst &I); +  void visitStackmap(const CallInst &I); +  void visitPatchpoint(ImmutableCallSite CS, +                       const BasicBlock *EHPadBB = nullptr); + +  // These two are implemented in StatepointLowering.cpp +  void visitGCRelocate(const GCRelocateInst &Relocate); +  void visitGCResult(const GCResultInst &I); + +  void visitVectorReduce(const CallInst &I, unsigned Intrinsic); + +  void visitUserOp1(const Instruction &I) { +    llvm_unreachable("UserOp1 should not exist at instruction selection time!"); +  } +  void visitUserOp2(const Instruction &I) { +    llvm_unreachable("UserOp2 should not exist at instruction selection time!"); +  } + +  void processIntegerCallValue(const Instruction &I, +                               SDValue Value, bool IsSigned); + +  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); + +  void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message); + +  /// If V is an function argument then create corresponding DBG_VALUE machine +  /// instruction for it now. At the end of instruction selection, they will be +  /// inserted to the entry BB. +  bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable, +                                DIExpression *Expr, DILocation *DL, +                                bool IsDbgDeclare, const SDValue &N); + +  /// Return the next block after MBB, or nullptr if there is none. +  MachineBasicBlock *NextBlock(MachineBasicBlock *MBB); + +  /// Update the DAG and DAG builder with the relevant information after +  /// a new root node has been created which could be a tail call. +  void updateDAGForMaybeTailCall(SDValue MaybeTC); + +  /// Return the appropriate SDDbgValue based on N. +  SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable, +                          DIExpression *Expr, const DebugLoc &dl, +                          unsigned DbgSDNodeOrder); +}; + +/// RegsForValue - This struct represents the registers (physical or virtual) +/// that a particular set of values is assigned, and the type information about +/// the value. The most common situation is to represent one value at a time, +/// but struct or array values are handled element-wise as multiple values.  The +/// splitting of aggregates is performed recursively, so that we never have +/// aggregate-typed registers. The values at this point do not necessarily have +/// legal types, so each value may require one or more registers of some legal +/// type. +/// +struct RegsForValue { +  /// The value types of the values, which may not be legal, and +  /// may need be promoted or synthesized from one or more registers. +  SmallVector<EVT, 4> ValueVTs; + +  /// The value types of the registers. This is the same size as ValueVTs and it +  /// records, for each value, what the type of the assigned register or +  /// registers are. (Individual values are never synthesized from more than one +  /// type of register.) +  /// +  /// With virtual registers, the contents of RegVTs is redundant with TLI's +  /// getRegisterType member function, however when with physical registers +  /// it is necessary to have a separate record of the types. +  SmallVector<MVT, 4> RegVTs; + +  /// This list holds the registers assigned to the values. +  /// Each legal or promoted value requires one register, and each +  /// expanded value requires multiple registers. +  SmallVector<unsigned, 4> Regs; + +  /// This list holds the number of registers for each value. +  SmallVector<unsigned, 4> RegCount; + +  /// Records if this value needs to be treated in an ABI dependant manner, +  /// different to normal type legalization. +  Optional<CallingConv::ID> CallConv; + +  RegsForValue() = default; +  RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt, +               Optional<CallingConv::ID> CC = None); +  RegsForValue(LLVMContext &Context, const TargetLowering &TLI, +               const DataLayout &DL, unsigned Reg, Type *Ty, +               Optional<CallingConv::ID> CC); + +  bool isABIMangled() const { +    return CallConv.hasValue(); +  } + +  /// Add the specified values to this one. +  void append(const RegsForValue &RHS) { +    ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); +    RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); +    Regs.append(RHS.Regs.begin(), RHS.Regs.end()); +    RegCount.push_back(RHS.Regs.size()); +  } + +  /// Emit a series of CopyFromReg nodes that copies from this value and returns +  /// the result as a ValueVTs value. This uses Chain/Flag as the input and +  /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no +  /// flag is used. +  SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, +                          const SDLoc &dl, SDValue &Chain, SDValue *Flag, +                          const Value *V = nullptr) const; + +  /// Emit a series of CopyToReg nodes that copies the specified value into the +  /// registers specified by this object. This uses Chain/Flag as the input and +  /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no +  /// flag is used. If V is not nullptr, then it is used in printing better +  /// diagnostic messages on error. +  void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, +                     SDValue &Chain, SDValue *Flag, const Value *V = nullptr, +                     ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; + +  /// Add this value to the specified inlineasm node operand list. This adds the +  /// code marker, matching input operand index (if applicable), and includes +  /// the number of values added into it. +  void AddInlineAsmOperands(unsigned Code, bool HasMatching, +                            unsigned MatchingIdx, const SDLoc &dl, +                            SelectionDAG &DAG, std::vector<SDValue> &Ops) const; + +  /// Check if the total RegCount is greater than one. +  bool occupiesMultipleRegs() const { +    return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1; +  } + +  /// Return a list of registers and their sizes. +  SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const; +}; + +} // end namespace llvm + +#endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H | 
