diff options
Diffstat (limited to 'contrib/llvm/lib/MC/MCAssembler.cpp')
| -rw-r--r-- | contrib/llvm/lib/MC/MCAssembler.cpp | 988 |
1 files changed, 988 insertions, 0 deletions
diff --git a/contrib/llvm/lib/MC/MCAssembler.cpp b/contrib/llvm/lib/MC/MCAssembler.cpp new file mode 100644 index 000000000000..01d165944bec --- /dev/null +++ b/contrib/llvm/lib/MC/MCAssembler.cpp @@ -0,0 +1,988 @@ +//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "llvm/MC/MCAssembler.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/MC/MCAsmBackend.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCAsmLayout.h" +#include "llvm/MC/MCCodeEmitter.h" +#include "llvm/MC/MCCodeView.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDwarf.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCFixup.h" +#include "llvm/MC/MCFixupKindInfo.h" +#include "llvm/MC/MCFragment.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCObjectWriter.h" +#include "llvm/MC/MCSection.h" +#include "llvm/MC/MCSectionELF.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/MC/MCValue.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LEB128.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <cstring> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "assembler" + +namespace { +namespace stats { + +STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); +STATISTIC(EmittedRelaxableFragments, + "Number of emitted assembler fragments - relaxable"); +STATISTIC(EmittedDataFragments, + "Number of emitted assembler fragments - data"); +STATISTIC(EmittedCompactEncodedInstFragments, + "Number of emitted assembler fragments - compact encoded inst"); +STATISTIC(EmittedAlignFragments, + "Number of emitted assembler fragments - align"); +STATISTIC(EmittedFillFragments, + "Number of emitted assembler fragments - fill"); +STATISTIC(EmittedOrgFragments, + "Number of emitted assembler fragments - org"); +STATISTIC(evaluateFixup, "Number of evaluated fixups"); +STATISTIC(FragmentLayouts, "Number of fragment layouts"); +STATISTIC(ObjectBytes, "Number of emitted object file bytes"); +STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); +STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); +STATISTIC(PaddingFragmentsRelaxations, + "Number of Padding Fragments relaxations"); +STATISTIC(PaddingFragmentsBytes, + "Total size of all padding from adding Fragments"); + +} // end namespace stats +} // end anonymous namespace + +// FIXME FIXME FIXME: There are number of places in this file where we convert +// what is a 64-bit assembler value used for computation into a value in the +// object file, which may truncate it. We should detect that truncation where +// invalid and report errors back. + +/* *** */ + +MCAssembler::MCAssembler(MCContext &Context, MCAsmBackend &Backend, + MCCodeEmitter &Emitter, MCObjectWriter &Writer) + : Context(Context), Backend(Backend), Emitter(Emitter), Writer(Writer), + BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false), + IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) { + VersionInfo.Major = 0; // Major version == 0 for "none specified" +} + +MCAssembler::~MCAssembler() = default; + +void MCAssembler::reset() { + Sections.clear(); + Symbols.clear(); + IndirectSymbols.clear(); + DataRegions.clear(); + LinkerOptions.clear(); + FileNames.clear(); + ThumbFuncs.clear(); + BundleAlignSize = 0; + RelaxAll = false; + SubsectionsViaSymbols = false; + IncrementalLinkerCompatible = false; + ELFHeaderEFlags = 0; + LOHContainer.reset(); + VersionInfo.Major = 0; + + // reset objects owned by us + getBackend().reset(); + getEmitter().reset(); + getWriter().reset(); + getLOHContainer().reset(); +} + +bool MCAssembler::registerSection(MCSection &Section) { + if (Section.isRegistered()) + return false; + Sections.push_back(&Section); + Section.setIsRegistered(true); + return true; +} + +bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { + if (ThumbFuncs.count(Symbol)) + return true; + + if (!Symbol->isVariable()) + return false; + + const MCExpr *Expr = Symbol->getVariableValue(); + + MCValue V; + if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) + return false; + + if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) + return false; + + const MCSymbolRefExpr *Ref = V.getSymA(); + if (!Ref) + return false; + + if (Ref->getKind() != MCSymbolRefExpr::VK_None) + return false; + + const MCSymbol &Sym = Ref->getSymbol(); + if (!isThumbFunc(&Sym)) + return false; + + ThumbFuncs.insert(Symbol); // Cache it. + return true; +} + +bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { + // Non-temporary labels should always be visible to the linker. + if (!Symbol.isTemporary()) + return true; + + // Absolute temporary labels are never visible. + if (!Symbol.isInSection()) + return false; + + if (Symbol.isUsedInReloc()) + return true; + + return false; +} + +const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const { + // Linker visible symbols define atoms. + if (isSymbolLinkerVisible(S)) + return &S; + + // Absolute and undefined symbols have no defining atom. + if (!S.isInSection()) + return nullptr; + + // Non-linker visible symbols in sections which can't be atomized have no + // defining atom. + if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols( + *S.getFragment()->getParent())) + return nullptr; + + // Otherwise, return the atom for the containing fragment. + return S.getFragment()->getAtom(); +} + +bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, + const MCFixup &Fixup, const MCFragment *DF, + MCValue &Target, uint64_t &Value) const { + ++stats::evaluateFixup; + + // FIXME: This code has some duplication with recordRelocation. We should + // probably merge the two into a single callback that tries to evaluate a + // fixup and records a relocation if one is needed. + + // On error claim to have completely evaluated the fixup, to prevent any + // further processing from being done. + const MCExpr *Expr = Fixup.getValue(); + MCContext &Ctx = getContext(); + Value = 0; + if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) { + Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); + return true; + } + if (const MCSymbolRefExpr *RefB = Target.getSymB()) { + if (RefB->getKind() != MCSymbolRefExpr::VK_None) { + Ctx.reportError(Fixup.getLoc(), + "unsupported subtraction of qualified symbol"); + return true; + } + } + + bool IsPCRel = Backend.getFixupKindInfo( + Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel; + + bool IsResolved; + if (IsPCRel) { + if (Target.getSymB()) { + IsResolved = false; + } else if (!Target.getSymA()) { + IsResolved = false; + } else { + const MCSymbolRefExpr *A = Target.getSymA(); + const MCSymbol &SA = A->getSymbol(); + if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { + IsResolved = false; + } else { + IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl( + *this, SA, *DF, false, true); + } + } + } else { + IsResolved = Target.isAbsolute(); + } + + Value = Target.getConstant(); + + if (const MCSymbolRefExpr *A = Target.getSymA()) { + const MCSymbol &Sym = A->getSymbol(); + if (Sym.isDefined()) + Value += Layout.getSymbolOffset(Sym); + } + if (const MCSymbolRefExpr *B = Target.getSymB()) { + const MCSymbol &Sym = B->getSymbol(); + if (Sym.isDefined()) + Value -= Layout.getSymbolOffset(Sym); + } + + bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags & + MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; + assert((ShouldAlignPC ? IsPCRel : true) && + "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); + + if (IsPCRel) { + uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); + + // A number of ARM fixups in Thumb mode require that the effective PC + // address be determined as the 32-bit aligned version of the actual offset. + if (ShouldAlignPC) Offset &= ~0x3; + Value -= Offset; + } + + // Let the backend force a relocation if needed. + if (IsResolved && Backend.shouldForceRelocation(*this, Fixup, Target)) + IsResolved = false; + + return IsResolved; +} + +uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, + const MCFragment &F) const { + switch (F.getKind()) { + case MCFragment::FT_Data: + return cast<MCDataFragment>(F).getContents().size(); + case MCFragment::FT_Relaxable: + return cast<MCRelaxableFragment>(F).getContents().size(); + case MCFragment::FT_CompactEncodedInst: + return cast<MCCompactEncodedInstFragment>(F).getContents().size(); + case MCFragment::FT_Fill: + return cast<MCFillFragment>(F).getSize(); + + case MCFragment::FT_LEB: + return cast<MCLEBFragment>(F).getContents().size(); + + case MCFragment::FT_Padding: + return cast<MCPaddingFragment>(F).getSize(); + + case MCFragment::FT_SymbolId: + return 4; + + case MCFragment::FT_Align: { + const MCAlignFragment &AF = cast<MCAlignFragment>(F); + unsigned Offset = Layout.getFragmentOffset(&AF); + unsigned Size = OffsetToAlignment(Offset, AF.getAlignment()); + // If we are padding with nops, force the padding to be larger than the + // minimum nop size. + if (Size > 0 && AF.hasEmitNops()) { + while (Size % getBackend().getMinimumNopSize()) + Size += AF.getAlignment(); + } + if (Size > AF.getMaxBytesToEmit()) + return 0; + return Size; + } + + case MCFragment::FT_Org: { + const MCOrgFragment &OF = cast<MCOrgFragment>(F); + MCValue Value; + if (!OF.getOffset().evaluateAsValue(Value, Layout)) { + getContext().reportError(OF.getLoc(), + "expected assembly-time absolute expression"); + return 0; + } + + uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); + int64_t TargetLocation = Value.getConstant(); + if (const MCSymbolRefExpr *A = Value.getSymA()) { + uint64_t Val; + if (!Layout.getSymbolOffset(A->getSymbol(), Val)) { + getContext().reportError(OF.getLoc(), "expected absolute expression"); + return 0; + } + TargetLocation += Val; + } + int64_t Size = TargetLocation - FragmentOffset; + if (Size < 0 || Size >= 0x40000000) { + getContext().reportError( + OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + + "' (at offset '" + Twine(FragmentOffset) + "')"); + return 0; + } + return Size; + } + + case MCFragment::FT_Dwarf: + return cast<MCDwarfLineAddrFragment>(F).getContents().size(); + case MCFragment::FT_DwarfFrame: + return cast<MCDwarfCallFrameFragment>(F).getContents().size(); + case MCFragment::FT_CVInlineLines: + return cast<MCCVInlineLineTableFragment>(F).getContents().size(); + case MCFragment::FT_CVDefRange: + return cast<MCCVDefRangeFragment>(F).getContents().size(); + case MCFragment::FT_Dummy: + llvm_unreachable("Should not have been added"); + } + + llvm_unreachable("invalid fragment kind"); +} + +void MCAsmLayout::layoutFragment(MCFragment *F) { + MCFragment *Prev = F->getPrevNode(); + + // We should never try to recompute something which is valid. + assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); + // We should never try to compute the fragment layout if its predecessor + // isn't valid. + assert((!Prev || isFragmentValid(Prev)) && + "Attempt to compute fragment before its predecessor!"); + + ++stats::FragmentLayouts; + + // Compute fragment offset and size. + if (Prev) + F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); + else + F->Offset = 0; + LastValidFragment[F->getParent()] = F; + + // If bundling is enabled and this fragment has instructions in it, it has to + // obey the bundling restrictions. With padding, we'll have: + // + // + // BundlePadding + // ||| + // ------------------------------------- + // Prev |##########| F | + // ------------------------------------- + // ^ + // | + // F->Offset + // + // The fragment's offset will point to after the padding, and its computed + // size won't include the padding. + // + // When the -mc-relax-all flag is used, we optimize bundling by writting the + // padding directly into fragments when the instructions are emitted inside + // the streamer. When the fragment is larger than the bundle size, we need to + // ensure that it's bundle aligned. This means that if we end up with + // multiple fragments, we must emit bundle padding between fragments. + // + // ".align N" is an example of a directive that introduces multiple + // fragments. We could add a special case to handle ".align N" by emitting + // within-fragment padding (which would produce less padding when N is less + // than the bundle size), but for now we don't. + // + if (Assembler.isBundlingEnabled() && F->hasInstructions()) { + assert(isa<MCEncodedFragment>(F) && + "Only MCEncodedFragment implementations have instructions"); + uint64_t FSize = Assembler.computeFragmentSize(*this, *F); + + if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize()) + report_fatal_error("Fragment can't be larger than a bundle size"); + + uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F, + F->Offset, FSize); + if (RequiredBundlePadding > UINT8_MAX) + report_fatal_error("Padding cannot exceed 255 bytes"); + F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); + F->Offset += RequiredBundlePadding; + } +} + +void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) { + bool New = !Symbol.isRegistered(); + if (Created) + *Created = New; + if (New) { + Symbol.setIsRegistered(true); + Symbols.push_back(&Symbol); + } +} + +void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize, + MCObjectWriter *OW) const { + // Should NOP padding be written out before this fragment? + unsigned BundlePadding = F.getBundlePadding(); + if (BundlePadding > 0) { + assert(isBundlingEnabled() && + "Writing bundle padding with disabled bundling"); + assert(F.hasInstructions() && + "Writing bundle padding for a fragment without instructions"); + + unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); + if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { + // If the padding itself crosses a bundle boundary, it must be emitted + // in 2 pieces, since even nop instructions must not cross boundaries. + // v--------------v <- BundleAlignSize + // v---------v <- BundlePadding + // ---------------------------- + // | Prev |####|####| F | + // ---------------------------- + // ^-------------------^ <- TotalLength + unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); + if (!getBackend().writeNopData(DistanceToBoundary, OW)) + report_fatal_error("unable to write NOP sequence of " + + Twine(DistanceToBoundary) + " bytes"); + BundlePadding -= DistanceToBoundary; + } + if (!getBackend().writeNopData(BundlePadding, OW)) + report_fatal_error("unable to write NOP sequence of " + + Twine(BundlePadding) + " bytes"); + } +} + +/// \brief Write the fragment \p F to the output file. +static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout, + const MCFragment &F) { + MCObjectWriter *OW = &Asm.getWriter(); + + // FIXME: Embed in fragments instead? + uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); + + Asm.writeFragmentPadding(F, FragmentSize, OW); + + // This variable (and its dummy usage) is to participate in the assert at + // the end of the function. + uint64_t Start = OW->getStream().tell(); + (void) Start; + + ++stats::EmittedFragments; + + switch (F.getKind()) { + case MCFragment::FT_Align: { + ++stats::EmittedAlignFragments; + const MCAlignFragment &AF = cast<MCAlignFragment>(F); + assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); + + uint64_t Count = FragmentSize / AF.getValueSize(); + + // FIXME: This error shouldn't actually occur (the front end should emit + // multiple .align directives to enforce the semantics it wants), but is + // severe enough that we want to report it. How to handle this? + if (Count * AF.getValueSize() != FragmentSize) + report_fatal_error("undefined .align directive, value size '" + + Twine(AF.getValueSize()) + + "' is not a divisor of padding size '" + + Twine(FragmentSize) + "'"); + + // See if we are aligning with nops, and if so do that first to try to fill + // the Count bytes. Then if that did not fill any bytes or there are any + // bytes left to fill use the Value and ValueSize to fill the rest. + // If we are aligning with nops, ask that target to emit the right data. + if (AF.hasEmitNops()) { + if (!Asm.getBackend().writeNopData(Count, OW)) + report_fatal_error("unable to write nop sequence of " + + Twine(Count) + " bytes"); + break; + } + + // Otherwise, write out in multiples of the value size. + for (uint64_t i = 0; i != Count; ++i) { + switch (AF.getValueSize()) { + default: llvm_unreachable("Invalid size!"); + case 1: OW->write8 (uint8_t (AF.getValue())); break; + case 2: OW->write16(uint16_t(AF.getValue())); break; + case 4: OW->write32(uint32_t(AF.getValue())); break; + case 8: OW->write64(uint64_t(AF.getValue())); break; + } + } + break; + } + + case MCFragment::FT_Data: + ++stats::EmittedDataFragments; + OW->writeBytes(cast<MCDataFragment>(F).getContents()); + break; + + case MCFragment::FT_Relaxable: + ++stats::EmittedRelaxableFragments; + OW->writeBytes(cast<MCRelaxableFragment>(F).getContents()); + break; + + case MCFragment::FT_CompactEncodedInst: + ++stats::EmittedCompactEncodedInstFragments; + OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents()); + break; + + case MCFragment::FT_Fill: { + ++stats::EmittedFillFragments; + const MCFillFragment &FF = cast<MCFillFragment>(F); + uint8_t V = FF.getValue(); + const unsigned MaxChunkSize = 16; + char Data[MaxChunkSize]; + memcpy(Data, &V, 1); + for (unsigned I = 1; I < MaxChunkSize; ++I) + Data[I] = Data[0]; + + uint64_t Size = FF.getSize(); + for (unsigned ChunkSize = MaxChunkSize; ChunkSize; ChunkSize /= 2) { + StringRef Ref(Data, ChunkSize); + for (uint64_t I = 0, E = Size / ChunkSize; I != E; ++I) + OW->writeBytes(Ref); + Size = Size % ChunkSize; + } + break; + } + + case MCFragment::FT_LEB: { + const MCLEBFragment &LF = cast<MCLEBFragment>(F); + OW->writeBytes(LF.getContents()); + break; + } + + case MCFragment::FT_Padding: { + if (!Asm.getBackend().writeNopData(FragmentSize, OW)) + report_fatal_error("unable to write nop sequence of " + + Twine(FragmentSize) + " bytes"); + break; + } + + case MCFragment::FT_SymbolId: { + const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); + OW->write32(SF.getSymbol()->getIndex()); + break; + } + + case MCFragment::FT_Org: { + ++stats::EmittedOrgFragments; + const MCOrgFragment &OF = cast<MCOrgFragment>(F); + + for (uint64_t i = 0, e = FragmentSize; i != e; ++i) + OW->write8(uint8_t(OF.getValue())); + + break; + } + + case MCFragment::FT_Dwarf: { + const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); + OW->writeBytes(OF.getContents()); + break; + } + case MCFragment::FT_DwarfFrame: { + const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); + OW->writeBytes(CF.getContents()); + break; + } + case MCFragment::FT_CVInlineLines: { + const auto &OF = cast<MCCVInlineLineTableFragment>(F); + OW->writeBytes(OF.getContents()); + break; + } + case MCFragment::FT_CVDefRange: { + const auto &DRF = cast<MCCVDefRangeFragment>(F); + OW->writeBytes(DRF.getContents()); + break; + } + case MCFragment::FT_Dummy: + llvm_unreachable("Should not have been added"); + } + + assert(OW->getStream().tell() - Start == FragmentSize && + "The stream should advance by fragment size"); +} + +void MCAssembler::writeSectionData(const MCSection *Sec, + const MCAsmLayout &Layout) const { + // Ignore virtual sections. + if (Sec->isVirtualSection()) { + assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!"); + + // Check that contents are only things legal inside a virtual section. + for (const MCFragment &F : *Sec) { + switch (F.getKind()) { + default: llvm_unreachable("Invalid fragment in virtual section!"); + case MCFragment::FT_Data: { + // Check that we aren't trying to write a non-zero contents (or fixups) + // into a virtual section. This is to support clients which use standard + // directives to fill the contents of virtual sections. + const MCDataFragment &DF = cast<MCDataFragment>(F); + if (DF.fixup_begin() != DF.fixup_end()) + report_fatal_error("cannot have fixups in virtual section!"); + for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) + if (DF.getContents()[i]) { + if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec)) + report_fatal_error("non-zero initializer found in section '" + + ELFSec->getSectionName() + "'"); + else + report_fatal_error("non-zero initializer found in virtual section"); + } + break; + } + case MCFragment::FT_Align: + // Check that we aren't trying to write a non-zero value into a virtual + // section. + assert((cast<MCAlignFragment>(F).getValueSize() == 0 || + cast<MCAlignFragment>(F).getValue() == 0) && + "Invalid align in virtual section!"); + break; + case MCFragment::FT_Fill: + assert((cast<MCFillFragment>(F).getValue() == 0) && + "Invalid fill in virtual section!"); + break; + } + } + + return; + } + + uint64_t Start = getWriter().getStream().tell(); + (void)Start; + + for (const MCFragment &F : *Sec) + writeFragment(*this, Layout, F); + + assert(getWriter().getStream().tell() - Start == + Layout.getSectionAddressSize(Sec)); +} + +std::tuple<MCValue, uint64_t, bool> +MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, + const MCFixup &Fixup) { + // Evaluate the fixup. + MCValue Target; + uint64_t FixedValue; + bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue); + if (!IsResolved) { + // The fixup was unresolved, we need a relocation. Inform the object + // writer of the relocation, and give it an opportunity to adjust the + // fixup value if need be. + getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue); + } + return std::make_tuple(Target, FixedValue, IsResolved); +} + +void MCAssembler::layout(MCAsmLayout &Layout) { + DEBUG_WITH_TYPE("mc-dump", { + errs() << "assembler backend - pre-layout\n--\n"; + dump(); }); + + // Create dummy fragments and assign section ordinals. + unsigned SectionIndex = 0; + for (MCSection &Sec : *this) { + // Create dummy fragments to eliminate any empty sections, this simplifies + // layout. + if (Sec.getFragmentList().empty()) + new MCDataFragment(&Sec); + + Sec.setOrdinal(SectionIndex++); + } + + // Assign layout order indices to sections and fragments. + for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { + MCSection *Sec = Layout.getSectionOrder()[i]; + Sec->setLayoutOrder(i); + + unsigned FragmentIndex = 0; + for (MCFragment &Frag : *Sec) + Frag.setLayoutOrder(FragmentIndex++); + } + + // Layout until everything fits. + while (layoutOnce(Layout)) + if (getContext().hadError()) + return; + + DEBUG_WITH_TYPE("mc-dump", { + errs() << "assembler backend - post-relaxation\n--\n"; + dump(); }); + + // Finalize the layout, including fragment lowering. + finishLayout(Layout); + + DEBUG_WITH_TYPE("mc-dump", { + errs() << "assembler backend - final-layout\n--\n"; + dump(); }); + + // Allow the object writer a chance to perform post-layout binding (for + // example, to set the index fields in the symbol data). + getWriter().executePostLayoutBinding(*this, Layout); + + // Evaluate and apply the fixups, generating relocation entries as necessary. + for (MCSection &Sec : *this) { + for (MCFragment &Frag : Sec) { + // Data and relaxable fragments both have fixups. So only process + // those here. + // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups + // being templated makes this tricky. + if (isa<MCEncodedFragment>(&Frag) && + isa<MCCompactEncodedInstFragment>(&Frag)) + continue; + if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag)) + continue; + ArrayRef<MCFixup> Fixups; + MutableArrayRef<char> Contents; + if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) { + Fixups = FragWithFixups->getFixups(); + Contents = FragWithFixups->getContents(); + } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) { + Fixups = FragWithFixups->getFixups(); + Contents = FragWithFixups->getContents(); + } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) { + Fixups = FragWithFixups->getFixups(); + Contents = FragWithFixups->getContents(); + } else + llvm_unreachable("Unknown fragment with fixups!"); + for (const MCFixup &Fixup : Fixups) { + uint64_t FixedValue; + bool IsResolved; + MCValue Target; + std::tie(Target, FixedValue, IsResolved) = + handleFixup(Layout, Frag, Fixup); + getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, + IsResolved); + } + } + } +} + +void MCAssembler::Finish() { + // Create the layout object. + MCAsmLayout Layout(*this); + layout(Layout); + + raw_ostream &OS = getWriter().getStream(); + uint64_t StartOffset = OS.tell(); + + // Write the object file. + getWriter().writeObject(*this, Layout); + + stats::ObjectBytes += OS.tell() - StartOffset; +} + +bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, + const MCRelaxableFragment *DF, + const MCAsmLayout &Layout) const { + MCValue Target; + uint64_t Value; + bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value); + if (Target.getSymA() && + Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && + Fixup.getKind() == FK_Data_1) + return false; + return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF, + Layout); +} + +bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, + const MCAsmLayout &Layout) const { + // If this inst doesn't ever need relaxation, ignore it. This occurs when we + // are intentionally pushing out inst fragments, or because we relaxed a + // previous instruction to one that doesn't need relaxation. + if (!getBackend().mayNeedRelaxation(F->getInst())) + return false; + + for (const MCFixup &Fixup : F->getFixups()) + if (fixupNeedsRelaxation(Fixup, F, Layout)) + return true; + + return false; +} + +bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, + MCRelaxableFragment &F) { + if (!fragmentNeedsRelaxation(&F, Layout)) + return false; + + ++stats::RelaxedInstructions; + + // FIXME-PERF: We could immediately lower out instructions if we can tell + // they are fully resolved, to avoid retesting on later passes. + + // Relax the fragment. + + MCInst Relaxed; + getBackend().relaxInstruction(F.getInst(), F.getSubtargetInfo(), Relaxed); + + // Encode the new instruction. + // + // FIXME-PERF: If it matters, we could let the target do this. It can + // probably do so more efficiently in many cases. + SmallVector<MCFixup, 4> Fixups; + SmallString<256> Code; + raw_svector_ostream VecOS(Code); + getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo()); + + // Update the fragment. + F.setInst(Relaxed); + F.getContents() = Code; + F.getFixups() = Fixups; + + return true; +} + +bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout, + MCPaddingFragment &PF) { + uint64_t OldSize = PF.getSize(); + if (!getBackend().relaxFragment(&PF, Layout)) + return false; + uint64_t NewSize = PF.getSize(); + + ++stats::PaddingFragmentsRelaxations; + stats::PaddingFragmentsBytes += NewSize; + stats::PaddingFragmentsBytes -= OldSize; + return true; +} + +bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { + uint64_t OldSize = LF.getContents().size(); + int64_t Value; + bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout); + if (!Abs) + report_fatal_error("sleb128 and uleb128 expressions must be absolute"); + SmallString<8> &Data = LF.getContents(); + Data.clear(); + raw_svector_ostream OSE(Data); + if (LF.isSigned()) + encodeSLEB128(Value, OSE); + else + encodeULEB128(Value, OSE); + return OldSize != LF.getContents().size(); +} + +bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, + MCDwarfLineAddrFragment &DF) { + MCContext &Context = Layout.getAssembler().getContext(); + uint64_t OldSize = DF.getContents().size(); + int64_t AddrDelta; + bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); + assert(Abs && "We created a line delta with an invalid expression"); + (void) Abs; + int64_t LineDelta; + LineDelta = DF.getLineDelta(); + SmallString<8> &Data = DF.getContents(); + Data.clear(); + raw_svector_ostream OSE(Data); + MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta, + AddrDelta, OSE); + return OldSize != Data.size(); +} + +bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, + MCDwarfCallFrameFragment &DF) { + MCContext &Context = Layout.getAssembler().getContext(); + uint64_t OldSize = DF.getContents().size(); + int64_t AddrDelta; + bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); + assert(Abs && "We created call frame with an invalid expression"); + (void) Abs; + SmallString<8> &Data = DF.getContents(); + Data.clear(); + raw_svector_ostream OSE(Data); + MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE); + return OldSize != Data.size(); +} + +bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout, + MCCVInlineLineTableFragment &F) { + unsigned OldSize = F.getContents().size(); + getContext().getCVContext().encodeInlineLineTable(Layout, F); + return OldSize != F.getContents().size(); +} + +bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout, + MCCVDefRangeFragment &F) { + unsigned OldSize = F.getContents().size(); + getContext().getCVContext().encodeDefRange(Layout, F); + return OldSize != F.getContents().size(); +} + +bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) { + // Holds the first fragment which needed relaxing during this layout. It will + // remain NULL if none were relaxed. + // When a fragment is relaxed, all the fragments following it should get + // invalidated because their offset is going to change. + MCFragment *FirstRelaxedFragment = nullptr; + + // Attempt to relax all the fragments in the section. + for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) { + // Check if this is a fragment that needs relaxation. + bool RelaxedFrag = false; + switch(I->getKind()) { + default: + break; + case MCFragment::FT_Relaxable: + assert(!getRelaxAll() && + "Did not expect a MCRelaxableFragment in RelaxAll mode"); + RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I)); + break; + case MCFragment::FT_Dwarf: + RelaxedFrag = relaxDwarfLineAddr(Layout, + *cast<MCDwarfLineAddrFragment>(I)); + break; + case MCFragment::FT_DwarfFrame: + RelaxedFrag = + relaxDwarfCallFrameFragment(Layout, + *cast<MCDwarfCallFrameFragment>(I)); + break; + case MCFragment::FT_LEB: + RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I)); + break; + case MCFragment::FT_Padding: + RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I)); + break; + case MCFragment::FT_CVInlineLines: + RelaxedFrag = + relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I)); + break; + case MCFragment::FT_CVDefRange: + RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I)); + break; + } + if (RelaxedFrag && !FirstRelaxedFragment) + FirstRelaxedFragment = &*I; + } + if (FirstRelaxedFragment) { + Layout.invalidateFragmentsFrom(FirstRelaxedFragment); + return true; + } + return false; +} + +bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { + ++stats::RelaxationSteps; + + bool WasRelaxed = false; + for (iterator it = begin(), ie = end(); it != ie; ++it) { + MCSection &Sec = *it; + while (layoutSectionOnce(Layout, Sec)) + WasRelaxed = true; + } + + return WasRelaxed; +} + +void MCAssembler::finishLayout(MCAsmLayout &Layout) { + // The layout is done. Mark every fragment as valid. + for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { + MCSection &Section = *Layout.getSectionOrder()[i]; + Layout.getFragmentOffset(&*Section.rbegin()); + computeFragmentSize(Layout, *Section.rbegin()); + } + getBackend().finishLayout(*this, Layout); +} |
