aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp2338
1 files changed, 2338 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
new file mode 100644
index 000000000000..b5948475e1f7
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonLoopIdiomRecognition.cpp
@@ -0,0 +1,2338 @@
+//===--- HexagonLoopIdiomRecognition.cpp ----------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "hexagon-lir"
+
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include <algorithm>
+#include <array>
+
+using namespace llvm;
+
+static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
+ cl::Hidden, cl::init(false),
+ cl::desc("Disable generation of memcpy in loop idiom recognition"));
+
+static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
+ cl::Hidden, cl::init(false),
+ cl::desc("Disable generation of memmove in loop idiom recognition"));
+
+static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
+ cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
+ "check guarding the memmove."));
+
+static cl::opt<unsigned> CompileTimeMemSizeThreshold(
+ "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
+ cl::desc("Threshold (in bytes) to perform the transformation, if the "
+ "runtime loop count (mem transfer size) is known at compile-time."));
+
+static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
+ cl::Hidden, cl::init(true),
+ cl::desc("Only enable generating memmove in non-nested loops"));
+
+cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
+ cl::Hidden, cl::init(false),
+ cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
+
+static const char *HexagonVolatileMemcpyName
+ = "hexagon_memcpy_forward_vp4cp4n2";
+
+
+namespace llvm {
+ void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
+ Pass *createHexagonLoopIdiomPass();
+}
+
+namespace {
+ class HexagonLoopIdiomRecognize : public LoopPass {
+ public:
+ static char ID;
+ explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
+ initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
+ }
+ StringRef getPassName() const override {
+ return "Recognize Hexagon-specific loop idioms";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addPreserved<TargetLibraryInfoWrapperPass>();
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ private:
+ unsigned getStoreSizeInBytes(StoreInst *SI);
+ int getSCEVStride(const SCEVAddRecExpr *StoreEv);
+ bool isLegalStore(Loop *CurLoop, StoreInst *SI);
+ void collectStores(Loop *CurLoop, BasicBlock *BB,
+ SmallVectorImpl<StoreInst*> &Stores);
+ bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
+ bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
+ bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
+ SmallVectorImpl<BasicBlock*> &ExitBlocks);
+ bool runOnCountableLoop(Loop *L);
+
+ AliasAnalysis *AA;
+ const DataLayout *DL;
+ DominatorTree *DT;
+ LoopInfo *LF;
+ const TargetLibraryInfo *TLI;
+ ScalarEvolution *SE;
+ bool HasMemcpy, HasMemmove;
+ };
+}
+
+char HexagonLoopIdiomRecognize::ID = 0;
+
+INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
+ "Recognize Hexagon-specific loop idioms", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
+ "Recognize Hexagon-specific loop idioms", false, false)
+
+
+namespace {
+ struct Simplifier {
+ typedef std::function<Value* (Instruction*, LLVMContext&)> Rule;
+
+ void addRule(const Rule &R) { Rules.push_back(R); }
+
+ private:
+ struct WorkListType {
+ WorkListType() = default;
+
+ void push_back(Value* V) {
+ // Do not push back duplicates.
+ if (!S.count(V)) { Q.push_back(V); S.insert(V); }
+ }
+ Value *pop_front_val() {
+ Value *V = Q.front(); Q.pop_front(); S.erase(V);
+ return V;
+ }
+ bool empty() const { return Q.empty(); }
+
+ private:
+ std::deque<Value*> Q;
+ std::set<Value*> S;
+ };
+
+ typedef std::set<Value*> ValueSetType;
+ std::vector<Rule> Rules;
+
+ public:
+ struct Context {
+ typedef DenseMap<Value*,Value*> ValueMapType;
+
+ Value *Root;
+ ValueSetType Used; // The set of all cloned values used by Root.
+ ValueSetType Clones; // The set of all cloned values.
+ LLVMContext &Ctx;
+
+ Context(Instruction *Exp)
+ : Ctx(Exp->getParent()->getParent()->getContext()) {
+ initialize(Exp);
+ }
+ ~Context() { cleanup(); }
+ void print(raw_ostream &OS, const Value *V) const;
+
+ Value *materialize(BasicBlock *B, BasicBlock::iterator At);
+
+ private:
+ void initialize(Instruction *Exp);
+ void cleanup();
+
+ template <typename FuncT> void traverse(Value *V, FuncT F);
+ void record(Value *V);
+ void use(Value *V);
+ void unuse(Value *V);
+
+ bool equal(const Instruction *I, const Instruction *J) const;
+ Value *find(Value *Tree, Value *Sub) const;
+ Value *subst(Value *Tree, Value *OldV, Value *NewV);
+ void replace(Value *OldV, Value *NewV);
+ void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
+
+ friend struct Simplifier;
+ };
+
+ Value *simplify(Context &C);
+ };
+
+ struct PE {
+ PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
+ const Simplifier::Context &C;
+ const Value *V;
+ };
+
+ raw_ostream &operator<< (raw_ostream &OS, const PE &P) LLVM_ATTRIBUTE_USED;
+ raw_ostream &operator<< (raw_ostream &OS, const PE &P) {
+ P.C.print(OS, P.V ? P.V : P.C.Root);
+ return OS;
+ }
+}
+
+
+template <typename FuncT>
+void Simplifier::Context::traverse(Value *V, FuncT F) {
+ WorkListType Q;
+ Q.push_back(V);
+
+ while (!Q.empty()) {
+ Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
+ if (!U || U->getParent())
+ continue;
+ if (!F(U))
+ continue;
+ for (Value *Op : U->operands())
+ Q.push_back(Op);
+ }
+}
+
+
+void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
+ const auto *U = dyn_cast<const Instruction>(V);
+ if (!U) {
+ OS << V << '(' << *V << ')';
+ return;
+ }
+
+ if (U->getParent()) {
+ OS << U << '(';
+ U->printAsOperand(OS, true);
+ OS << ')';
+ return;
+ }
+
+ unsigned N = U->getNumOperands();
+ if (N != 0)
+ OS << U << '(';
+ OS << U->getOpcodeName();
+ for (const Value *Op : U->operands()) {
+ OS << ' ';
+ print(OS, Op);
+ }
+ if (N != 0)
+ OS << ')';
+}
+
+
+void Simplifier::Context::initialize(Instruction *Exp) {
+ // Perform a deep clone of the expression, set Root to the root
+ // of the clone, and build a map from the cloned values to the
+ // original ones.
+ ValueMapType M;
+ BasicBlock *Block = Exp->getParent();
+ WorkListType Q;
+ Q.push_back(Exp);
+
+ while (!Q.empty()) {
+ Value *V = Q.pop_front_val();
+ if (M.find(V) != M.end())
+ continue;
+ if (Instruction *U = dyn_cast<Instruction>(V)) {
+ if (isa<PHINode>(U) || U->getParent() != Block)
+ continue;
+ for (Value *Op : U->operands())
+ Q.push_back(Op);
+ M.insert({U, U->clone()});
+ }
+ }
+
+ for (std::pair<Value*,Value*> P : M) {
+ Instruction *U = cast<Instruction>(P.second);
+ for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
+ auto F = M.find(U->getOperand(i));
+ if (F != M.end())
+ U->setOperand(i, F->second);
+ }
+ }
+
+ auto R = M.find(Exp);
+ assert(R != M.end());
+ Root = R->second;
+
+ record(Root);
+ use(Root);
+}
+
+
+void Simplifier::Context::record(Value *V) {
+ auto Record = [this](Instruction *U) -> bool {
+ Clones.insert(U);
+ return true;
+ };
+ traverse(V, Record);
+}
+
+
+void Simplifier::Context::use(Value *V) {
+ auto Use = [this](Instruction *U) -> bool {
+ Used.insert(U);
+ return true;
+ };
+ traverse(V, Use);
+}
+
+
+void Simplifier::Context::unuse(Value *V) {
+ if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
+ return;
+
+ auto Unuse = [this](Instruction *U) -> bool {
+ if (!U->use_empty())
+ return false;
+ Used.erase(U);
+ return true;
+ };
+ traverse(V, Unuse);
+}
+
+
+Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
+ if (Tree == OldV)
+ return NewV;
+ if (OldV == NewV)
+ return Tree;
+
+ WorkListType Q;
+ Q.push_back(Tree);
+ while (!Q.empty()) {
+ Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
+ // If U is not an instruction, or it's not a clone, skip it.
+ if (!U || U->getParent())
+ continue;
+ for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
+ Value *Op = U->getOperand(i);
+ if (Op == OldV) {
+ U->setOperand(i, NewV);
+ unuse(OldV);
+ } else {
+ Q.push_back(Op);
+ }
+ }
+ }
+ return Tree;
+}
+
+
+void Simplifier::Context::replace(Value *OldV, Value *NewV) {
+ if (Root == OldV) {
+ Root = NewV;
+ use(Root);
+ return;
+ }
+
+ // NewV may be a complex tree that has just been created by one of the
+ // transformation rules. We need to make sure that it is commoned with
+ // the existing Root to the maximum extent possible.
+ // Identify all subtrees of NewV (including NewV itself) that have
+ // equivalent counterparts in Root, and replace those subtrees with
+ // these counterparts.
+ WorkListType Q;
+ Q.push_back(NewV);
+ while (!Q.empty()) {
+ Value *V = Q.pop_front_val();
+ Instruction *U = dyn_cast<Instruction>(V);
+ if (!U || U->getParent())
+ continue;
+ if (Value *DupV = find(Root, V)) {
+ if (DupV != V)
+ NewV = subst(NewV, V, DupV);
+ } else {
+ for (Value *Op : U->operands())
+ Q.push_back(Op);
+ }
+ }
+
+ // Now, simply replace OldV with NewV in Root.
+ Root = subst(Root, OldV, NewV);
+ use(Root);
+}
+
+
+void Simplifier::Context::cleanup() {
+ for (Value *V : Clones) {
+ Instruction *U = cast<Instruction>(V);
+ if (!U->getParent())
+ U->dropAllReferences();
+ }
+
+ for (Value *V : Clones) {
+ Instruction *U = cast<Instruction>(V);
+ if (!U->getParent())
+ delete U;
+ }
+}
+
+
+bool Simplifier::Context::equal(const Instruction *I,
+ const Instruction *J) const {
+ if (I == J)
+ return true;
+ if (!I->isSameOperationAs(J))
+ return false;
+ if (isa<PHINode>(I))
+ return I->isIdenticalTo(J);
+
+ for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
+ Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
+ if (OpI == OpJ)
+ continue;
+ auto *InI = dyn_cast<const Instruction>(OpI);
+ auto *InJ = dyn_cast<const Instruction>(OpJ);
+ if (InI && InJ) {
+ if (!equal(InI, InJ))
+ return false;
+ } else if (InI != InJ || !InI)
+ return false;
+ }
+ return true;
+}
+
+
+Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
+ Instruction *SubI = dyn_cast<Instruction>(Sub);
+ WorkListType Q;
+ Q.push_back(Tree);
+
+ while (!Q.empty()) {
+ Value *V = Q.pop_front_val();
+ if (V == Sub)
+ return V;
+ Instruction *U = dyn_cast<Instruction>(V);
+ if (!U || U->getParent())
+ continue;
+ if (SubI && equal(SubI, U))
+ return U;
+ assert(!isa<PHINode>(U));
+ for (Value *Op : U->operands())
+ Q.push_back(Op);
+ }
+ return nullptr;
+}
+
+
+void Simplifier::Context::link(Instruction *I, BasicBlock *B,
+ BasicBlock::iterator At) {
+ if (I->getParent())
+ return;
+
+ for (Value *Op : I->operands()) {
+ if (Instruction *OpI = dyn_cast<Instruction>(Op))
+ link(OpI, B, At);
+ }
+
+ B->getInstList().insert(At, I);
+}
+
+
+Value *Simplifier::Context::materialize(BasicBlock *B,
+ BasicBlock::iterator At) {
+ if (Instruction *RootI = dyn_cast<Instruction>(Root))
+ link(RootI, B, At);
+ return Root;
+}
+
+
+Value *Simplifier::simplify(Context &C) {
+ WorkListType Q;
+ Q.push_back(C.Root);
+ unsigned Count = 0;
+ const unsigned Limit = 100000;
+
+ while (!Q.empty()) {
+ if (Count++ >= Limit)
+ break;
+ Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
+ if (!U || U->getParent() || !C.Used.count(U))
+ continue;
+ bool Changed = false;
+ for (Rule &R : Rules) {
+ Value *W = R(U, C.Ctx);
+ if (!W)
+ continue;
+ Changed = true;
+ C.record(W);
+ C.replace(U, W);
+ Q.push_back(C.Root);
+ break;
+ }
+ if (!Changed) {
+ for (Value *Op : U->operands())
+ Q.push_back(Op);
+ }
+ }
+ assert(Count < Limit && "Infinite loop in HLIR/simplify?");
+ return C.Root;
+}
+
+
+//===----------------------------------------------------------------------===//
+//
+// Implementation of PolynomialMultiplyRecognize
+//
+//===----------------------------------------------------------------------===//
+
+namespace {
+ class PolynomialMultiplyRecognize {
+ public:
+ explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
+ const DominatorTree &dt, const TargetLibraryInfo &tli,
+ ScalarEvolution &se)
+ : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
+
+ bool recognize();
+ private:
+ typedef SetVector<Value*> ValueSeq;
+
+ IntegerType *getPmpyType() const {
+ LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
+ return IntegerType::get(Ctx, 32);
+ }
+ bool isPromotableTo(Value *V, IntegerType *Ty);
+ void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
+ bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
+
+ Value *getCountIV(BasicBlock *BB);
+ bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
+ void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
+ ValueSeq &Late);
+ bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
+ bool commutesWithShift(Instruction *I);
+ bool highBitsAreZero(Value *V, unsigned IterCount);
+ bool keepsHighBitsZero(Value *V, unsigned IterCount);
+ bool isOperandShifted(Instruction *I, Value *Op);
+ bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
+ unsigned IterCount);
+ void cleanupLoopBody(BasicBlock *LoopB);
+
+ struct ParsedValues {
+ ParsedValues() : M(nullptr), P(nullptr), Q(nullptr), R(nullptr),
+ X(nullptr), Res(nullptr), IterCount(0), Left(false), Inv(false) {}
+ Value *M, *P, *Q, *R, *X;
+ Instruction *Res;
+ unsigned IterCount;
+ bool Left, Inv;
+ };
+
+ bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
+ bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
+ bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
+ Value *CIV, ParsedValues &PV, bool PreScan);
+ unsigned getInverseMxN(unsigned QP);
+ Value *generate(BasicBlock::iterator At, ParsedValues &PV);
+
+ void setupSimplifier();
+
+ Simplifier Simp;
+ Loop *CurLoop;
+ const DataLayout &DL;
+ const DominatorTree &DT;
+ const TargetLibraryInfo &TLI;
+ ScalarEvolution &SE;
+ };
+}
+
+
+Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
+ pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
+ if (std::distance(PI, PE) != 2)
+ return nullptr;
+ BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
+
+ for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
+ auto *PN = cast<PHINode>(I);
+ Value *InitV = PN->getIncomingValueForBlock(PB);
+ if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
+ continue;
+ Value *IterV = PN->getIncomingValueForBlock(BB);
+ if (!isa<BinaryOperator>(IterV))
+ continue;
+ auto *BO = dyn_cast<BinaryOperator>(IterV);
+ if (BO->getOpcode() != Instruction::Add)
+ continue;
+ Value *IncV = nullptr;
+ if (BO->getOperand(0) == PN)
+ IncV = BO->getOperand(1);
+ else if (BO->getOperand(1) == PN)
+ IncV = BO->getOperand(0);
+ if (IncV == nullptr)
+ continue;
+
+ if (auto *T = dyn_cast<ConstantInt>(IncV))
+ if (T->getZExtValue() == 1)
+ return PN;
+ }
+ return nullptr;
+}
+
+
+static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
+ for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
+ Use &TheUse = UI.getUse();
+ ++UI;
+ if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
+ if (BB == II->getParent())
+ II->replaceUsesOfWith(I, J);
+ }
+}
+
+
+bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
+ Value *CIV, ParsedValues &PV) {
+ // Match the following:
+ // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
+ // select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
+ // The condition may also check for equality with the masked value, i.e
+ // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
+ // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
+
+ Value *CondV = SelI->getCondition();
+ Value *TrueV = SelI->getTrueValue();
+ Value *FalseV = SelI->getFalseValue();
+
+ using namespace PatternMatch;
+
+ CmpInst::Predicate P;
+ Value *A = nullptr, *B = nullptr, *C = nullptr;
+
+ if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
+ !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
+ return false;
+ if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
+ return false;
+ // Matched: select (A & B) == C ? ... : ...
+ // select (A & B) != C ? ... : ...
+
+ Value *X = nullptr, *Sh1 = nullptr;
+ // Check (A & B) for (X & (1 << i)):
+ if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
+ Sh1 = A;
+ X = B;
+ } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
+ Sh1 = B;
+ X = A;
+ } else {
+ // TODO: Could also check for an induction variable containing single
+ // bit shifted left by 1 in each iteration.
+ return false;
+ }
+
+ bool TrueIfZero;
+
+ // Check C against the possible values for comparison: 0 and (1 << i):
+ if (match(C, m_Zero()))
+ TrueIfZero = (P == CmpInst::ICMP_EQ);
+ else if (C == Sh1)
+ TrueIfZero = (P == CmpInst::ICMP_NE);
+ else
+ return false;
+
+ // So far, matched:
+ // select (X & (1 << i)) ? ... : ...
+ // including variations of the check against zero/non-zero value.
+
+ Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
+ if (TrueIfZero) {
+ ShouldSameV = TrueV;
+ ShouldXoredV = FalseV;
+ } else {
+ ShouldSameV = FalseV;
+ ShouldXoredV = TrueV;
+ }
+
+ Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
+ Value *T = nullptr;
+ if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
+ // Matched: select +++ ? ... : Y ^ Z
+ // select +++ ? Y ^ Z : ...
+ // where +++ denotes previously checked matches.
+ if (ShouldSameV == Y)
+ T = Z;
+ else if (ShouldSameV == Z)
+ T = Y;
+ else
+ return false;
+ R = ShouldSameV;
+ // Matched: select +++ ? R : R ^ T
+ // select +++ ? R ^ T : R
+ // depending on TrueIfZero.
+
+ } else if (match(ShouldSameV, m_Zero())) {
+ // Matched: select +++ ? 0 : ...
+ // select +++ ? ... : 0
+ if (!SelI->hasOneUse())
+ return false;
+ T = ShouldXoredV;
+ // Matched: select +++ ? 0 : T
+ // select +++ ? T : 0
+
+ Value *U = *SelI->user_begin();
+ if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
+ !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
+ return false;
+ // Matched: xor (select +++ ? 0 : T), R
+ // xor (select +++ ? T : 0), R
+ } else
+ return false;
+
+ // The xor input value T is isolated into its own match so that it could
+ // be checked against an induction variable containing a shifted bit
+ // (todo).
+ // For now, check against (Q << i).
+ if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
+ !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
+ return false;
+ // Matched: select +++ ? R : R ^ (Q << i)
+ // select +++ ? R ^ (Q << i) : R
+
+ PV.X = X;
+ PV.Q = Q;
+ PV.R = R;
+ PV.Left = true;
+ return true;
+}
+
+
+bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
+ ParsedValues &PV) {
+ // Match the following:
+ // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
+ // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
+ // The condition may also check for equality with the masked value, i.e
+ // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
+ // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
+
+ Value *CondV = SelI->getCondition();
+ Value *TrueV = SelI->getTrueValue();
+ Value *FalseV = SelI->getFalseValue();
+
+ using namespace PatternMatch;
+
+ Value *C = nullptr;
+ CmpInst::Predicate P;
+ bool TrueIfZero;
+
+ if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
+ match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
+ if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
+ return false;
+ // Matched: select C == 0 ? ... : ...
+ // select C != 0 ? ... : ...
+ TrueIfZero = (P == CmpInst::ICMP_EQ);
+ } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
+ match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
+ if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
+ return false;
+ // Matched: select C == 1 ? ... : ...
+ // select C != 1 ? ... : ...
+ TrueIfZero = (P == CmpInst::ICMP_NE);
+ } else
+ return false;
+
+ Value *X = nullptr;
+ if (!match(C, m_And(m_Value(X), m_One())) &&
+ !match(C, m_And(m_One(), m_Value(X))))
+ return false;
+ // Matched: select (X & 1) == +++ ? ... : ...
+ // select (X & 1) != +++ ? ... : ...
+
+ Value *R = nullptr, *Q = nullptr;
+ if (TrueIfZero) {
+ // The select's condition is true if the tested bit is 0.
+ // TrueV must be the shift, FalseV must be the xor.
+ if (!match(TrueV, m_LShr(m_Value(R), m_One())))
+ return false;
+ // Matched: select +++ ? (R >> 1) : ...
+ if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
+ !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
+ return false;
+ // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
+ // with commuting ^.
+ } else {
+ // The select's condition is true if the tested bit is 1.
+ // TrueV must be the xor, FalseV must be the shift.
+ if (!match(FalseV, m_LShr(m_Value(R), m_One())))
+ return false;
+ // Matched: select +++ ? ... : (R >> 1)
+ if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
+ !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
+ return false;
+ // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
+ // with commuting ^.
+ }
+
+ PV.X = X;
+ PV.Q = Q;
+ PV.R = R;
+ PV.Left = false;
+ return true;
+}
+
+
+bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
+ BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
+ bool PreScan) {
+ using namespace PatternMatch;
+ // The basic pattern for R = P.Q is:
+ // for i = 0..31
+ // R = phi (0, R')
+ // if (P & (1 << i)) ; test-bit(P, i)
+ // R' = R ^ (Q << i)
+ //
+ // Similarly, the basic pattern for R = (P/Q).Q - P
+ // for i = 0..31
+ // R = phi(P, R')
+ // if (R & (1 << i))
+ // R' = R ^ (Q << i)
+
+ // There exist idioms, where instead of Q being shifted left, P is shifted
+ // right. This produces a result that is shifted right by 32 bits (the
+ // non-shifted result is 64-bit).
+ //
+ // For R = P.Q, this would be:
+ // for i = 0..31
+ // R = phi (0, R')
+ // if ((P >> i) & 1)
+ // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must
+ // else ; be shifted by 1, not i.
+ // R' = R >> 1
+ //
+ // And for the inverse:
+ // for i = 0..31
+ // R = phi (P, R')
+ // if (R & 1)
+ // R' = (R >> 1) ^ Q
+ // else
+ // R' = R >> 1
+
+ // The left-shifting idioms share the same pattern:
+ // select (X & (1 << i)) ? R ^ (Q << i) : R
+ // Similarly for right-shifting idioms:
+ // select (X & 1) ? (R >> 1) ^ Q
+
+ if (matchLeftShift(SelI, CIV, PV)) {
+ // If this is a pre-scan, getting this far is sufficient.
+ if (PreScan)
+ return true;
+
+ // Need to make sure that the SelI goes back into R.
+ auto *RPhi = dyn_cast<PHINode>(PV.R);
+ if (!RPhi)
+ return false;
+ if (SelI != RPhi->getIncomingValueForBlock(LoopB))
+ return false;
+ PV.Res = SelI;
+
+ // If X is loop invariant, it must be the input polynomial, and the
+ // idiom is the basic polynomial multiply.
+ if (CurLoop->isLoopInvariant(PV.X)) {
+ PV.P = PV.X;
+ PV.Inv = false;
+ } else {
+ // X is not loop invariant. If X == R, this is the inverse pmpy.
+ // Otherwise, check for an xor with an invariant value. If the
+ // variable argument to the xor is R, then this is still a valid
+ // inverse pmpy.
+ PV.Inv = true;
+ if (PV.X != PV.R) {
+ Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
+ if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
+ return false;
+ auto *I1 = dyn_cast<Instruction>(X1);
+ auto *I2 = dyn_cast<Instruction>(X2);
+ if (!I1 || I1->getParent() != LoopB) {
+ Var = X2;
+ Inv = X1;
+ } else if (!I2 || I2->getParent() != LoopB) {
+ Var = X1;
+ Inv = X2;
+ } else
+ return false;
+ if (Var != PV.R)
+ return false;
+ PV.M = Inv;
+ }
+ // The input polynomial P still needs to be determined. It will be
+ // the entry value of R.
+ Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
+ PV.P = EntryP;
+ }
+
+ return true;
+ }
+
+ if (matchRightShift(SelI, PV)) {
+ // If this is an inverse pattern, the Q polynomial must be known at
+ // compile time.
+ if (PV.Inv && !isa<ConstantInt>(PV.Q))
+ return false;
+ if (PreScan)
+ return true;
+ // There is no exact matching of right-shift pmpy.
+ return false;
+ }
+
+ return false;
+}
+
+
+bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
+ IntegerType *DestTy) {
+ IntegerType *T = dyn_cast<IntegerType>(Val->getType());
+ if (!T || T->getBitWidth() > DestTy->getBitWidth())
+ return false;
+ if (T->getBitWidth() == DestTy->getBitWidth())
+ return true;
+ // Non-instructions are promotable. The reason why an instruction may not
+ // be promotable is that it may produce a different result if its operands
+ // and the result are promoted, for example, it may produce more non-zero
+ // bits. While it would still be possible to represent the proper result
+ // in a wider type, it may require adding additional instructions (which
+ // we don't want to do).
+ Instruction *In = dyn_cast<Instruction>(Val);
+ if (!In)
+ return true;
+ // The bitwidth of the source type is smaller than the destination.
+ // Check if the individual operation can be promoted.
+ switch (In->getOpcode()) {
+ case Instruction::PHI:
+ case Instruction::ZExt:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::LShr: // Shift right is ok.
+ case Instruction::Select:
+ return true;
+ case Instruction::ICmp:
+ if (CmpInst *CI = cast<CmpInst>(In))
+ return CI->isEquality() || CI->isUnsigned();
+ llvm_unreachable("Cast failed unexpectedly");
+ case Instruction::Add:
+ return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
+ }
+ return false;
+}
+
+
+void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
+ IntegerType *DestTy, BasicBlock *LoopB) {
+ // Leave boolean values alone.
+ if (!In->getType()->isIntegerTy(1))
+ In->mutateType(DestTy);
+ unsigned DestBW = DestTy->getBitWidth();
+
+ // Handle PHIs.
+ if (PHINode *P = dyn_cast<PHINode>(In)) {
+ unsigned N = P->getNumIncomingValues();
+ for (unsigned i = 0; i != N; ++i) {
+ BasicBlock *InB = P->getIncomingBlock(i);
+ if (InB == LoopB)
+ continue;
+ Value *InV = P->getIncomingValue(i);
+ IntegerType *Ty = cast<IntegerType>(InV->getType());
+ // Do not promote values in PHI nodes of type i1.
+ if (Ty != P->getType()) {
+ // If the value type does not match the PHI type, the PHI type
+ // must have been promoted.
+ assert(Ty->getBitWidth() < DestBW);
+ InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
+ P->setIncomingValue(i, InV);
+ }
+ }
+ } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
+ Value *Op = Z->getOperand(0);
+ if (Op->getType() == Z->getType())
+ Z->replaceAllUsesWith(Op);
+ Z->eraseFromParent();
+ return;
+ }
+
+ // Promote immediates.
+ for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
+ if (CI->getType()->getBitWidth() < DestBW)
+ In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
+ }
+}
+
+
+bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
+ BasicBlock *ExitB) {
+ assert(LoopB);
+ // Skip loops where the exit block has more than one predecessor. The values
+ // coming from the loop block will be promoted to another type, and so the
+ // values coming into the exit block from other predecessors would also have
+ // to be promoted.
+ if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
+ return false;
+ IntegerType *DestTy = getPmpyType();
+ // Check if the exit values have types that are no wider than the type
+ // that we want to promote to.
+ unsigned DestBW = DestTy->getBitWidth();
+ for (Instruction &In : *ExitB) {
+ PHINode *P = dyn_cast<PHINode>(&In);
+ if (!P)
+ break;
+ if (P->getNumIncomingValues() != 1)
+ return false;
+ assert(P->getIncomingBlock(0) == LoopB);
+ IntegerType *T = dyn_cast<IntegerType>(P->getType());
+ if (!T || T->getBitWidth() > DestBW)
+ return false;
+ }
+
+ // Check all instructions in the loop.
+ for (Instruction &In : *LoopB)
+ if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
+ return false;
+
+ // Perform the promotion.
+ std::vector<Instruction*> LoopIns;
+ std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
+ [](Instruction &In) { return &In; });
+ for (Instruction *In : LoopIns)
+ promoteTo(In, DestTy, LoopB);
+
+ // Fix up the PHI nodes in the exit block.
+ Instruction *EndI = ExitB->getFirstNonPHI();
+ BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
+ for (auto I = ExitB->begin(); I != End; ++I) {
+ PHINode *P = dyn_cast<PHINode>(I);
+ if (!P)
+ break;
+ Type *Ty0 = P->getIncomingValue(0)->getType();
+ Type *PTy = P->getType();
+ if (PTy != Ty0) {
+ assert(Ty0 == DestTy);
+ // In order to create the trunc, P must have the promoted type.
+ P->mutateType(Ty0);
+ Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
+ // In order for the RAUW to work, the types of P and T must match.
+ P->mutateType(PTy);
+ P->replaceAllUsesWith(T);
+ // Final update of the P's type.
+ P->mutateType(Ty0);
+ cast<Instruction>(T)->setOperand(0, P);
+ }
+ }
+
+ return true;
+}
+
+
+bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
+ ValueSeq &Cycle) {
+ // Out = ..., In, ...
+ if (Out == In)
+ return true;
+
+ auto *BB = cast<Instruction>(Out)->getParent();
+ bool HadPhi = false;
+
+ for (auto U : Out->users()) {
+ auto *I = dyn_cast<Instruction>(&*U);
+ if (I == nullptr || I->getParent() != BB)
+ continue;
+ // Make sure that there are no multi-iteration cycles, e.g.
+ // p1 = phi(p2)
+ // p2 = phi(p1)
+ // The cycle p1->p2->p1 would span two loop iterations.
+ // Check that there is only one phi in the cycle.
+ bool IsPhi = isa<PHINode>(I);
+ if (IsPhi && HadPhi)
+ return false;
+ HadPhi |= IsPhi;
+ if (Cycle.count(I))
+ return false;
+ Cycle.insert(I);
+ if (findCycle(I, In, Cycle))
+ break;
+ Cycle.remove(I);
+ }
+ return !Cycle.empty();
+}
+
+
+void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
+ ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
+ // All the values in the cycle that are between the phi node and the
+ // divider instruction will be classified as "early", all other values
+ // will be "late".
+
+ bool IsE = true;
+ unsigned I, N = Cycle.size();
+ for (I = 0; I < N; ++I) {
+ Value *V = Cycle[I];
+ if (DivI == V)
+ IsE = false;
+ else if (!isa<PHINode>(V))
+ continue;
+ // Stop if found either.
+ break;
+ }
+ // "I" is the index of either DivI or the phi node, whichever was first.
+ // "E" is "false" or "true" respectively.
+ ValueSeq &First = !IsE ? Early : Late;
+ for (unsigned J = 0; J < I; ++J)
+ First.insert(Cycle[J]);
+
+ ValueSeq &Second = IsE ? Early : Late;
+ Second.insert(Cycle[I]);
+ for (++I; I < N; ++I) {
+ Value *V = Cycle[I];
+ if (DivI == V || isa<PHINode>(V))
+ break;
+ Second.insert(V);
+ }
+
+ for (; I < N; ++I)
+ First.insert(Cycle[I]);
+}
+
+
+bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
+ ValueSeq &Early, ValueSeq &Late) {
+ // Select is an exception, since the condition value does not have to be
+ // classified in the same way as the true/false values. The true/false
+ // values do have to be both early or both late.
+ if (UseI->getOpcode() == Instruction::Select) {
+ Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
+ if (Early.count(TV) || Early.count(FV)) {
+ if (Late.count(TV) || Late.count(FV))
+ return false;
+ Early.insert(UseI);
+ } else if (Late.count(TV) || Late.count(FV)) {
+ if (Early.count(TV) || Early.count(FV))
+ return false;
+ Late.insert(UseI);
+ }
+ return true;
+ }
+
+ // Not sure what would be the example of this, but the code below relies
+ // on having at least one operand.
+ if (UseI->getNumOperands() == 0)
+ return true;
+
+ bool AE = true, AL = true;
+ for (auto &I : UseI->operands()) {
+ if (Early.count(&*I))
+ AL = false;
+ else if (Late.count(&*I))
+ AE = false;
+ }
+ // If the operands appear "all early" and "all late" at the same time,
+ // then it means that none of them are actually classified as either.
+ // This is harmless.
+ if (AE && AL)
+ return true;
+ // Conversely, if they are neither "all early" nor "all late", then
+ // we have a mixture of early and late operands that is not a known
+ // exception.
+ if (!AE && !AL)
+ return false;
+
+ // Check that we have covered the two special cases.
+ assert(AE != AL);
+
+ if (AE)
+ Early.insert(UseI);
+ else
+ Late.insert(UseI);
+ return true;
+}
+
+
+bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::LShr:
+ case Instruction::Shl:
+ case Instruction::Select:
+ case Instruction::ICmp:
+ case Instruction::PHI:
+ break;
+ default:
+ return false;
+ }
+ return true;
+}
+
+
+bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
+ unsigned IterCount) {
+ auto *T = dyn_cast<IntegerType>(V->getType());
+ if (!T)
+ return false;
+
+ unsigned BW = T->getBitWidth();
+ APInt K0(BW, 0), K1(BW, 0);
+ computeKnownBits(V, K0, K1, DL);
+ return K0.countLeadingOnes() >= IterCount;
+}
+
+
+bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
+ unsigned IterCount) {
+ // Assume that all inputs to the value have the high bits zero.
+ // Check if the value itself preserves the zeros in the high bits.
+ if (auto *C = dyn_cast<ConstantInt>(V))
+ return C->getValue().countLeadingZeros() >= IterCount;
+
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ switch (I->getOpcode()) {
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::LShr:
+ case Instruction::Select:
+ case Instruction::ICmp:
+ case Instruction::PHI:
+ case Instruction::ZExt:
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
+ unsigned Opc = I->getOpcode();
+ if (Opc == Instruction::Shl || Opc == Instruction::LShr)
+ return Op != I->getOperand(1);
+ return true;
+}
+
+
+bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
+ BasicBlock *ExitB, unsigned IterCount) {
+ Value *CIV = getCountIV(LoopB);
+ if (CIV == nullptr)
+ return false;
+ auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
+ if (CIVTy == nullptr)
+ return false;
+
+ ValueSeq RShifts;
+ ValueSeq Early, Late, Cycled;
+
+ // Find all value cycles that contain logical right shifts by 1.
+ for (Instruction &I : *LoopB) {
+ using namespace PatternMatch;
+ Value *V = nullptr;
+ if (!match(&I, m_LShr(m_Value(V), m_One())))
+ continue;
+ ValueSeq C;
+ if (!findCycle(&I, V, C))
+ continue;
+
+ // Found a cycle.
+ C.insert(&I);
+ classifyCycle(&I, C, Early, Late);
+ Cycled.insert(C.begin(), C.end());
+ RShifts.insert(&I);
+ }
+
+ // Find the set of all values affected by the shift cycles, i.e. all
+ // cycled values, and (recursively) all their users.
+ ValueSeq Users(Cycled.begin(), Cycled.end());
+ for (unsigned i = 0; i < Users.size(); ++i) {
+ Value *V = Users[i];
+ if (!isa<IntegerType>(V->getType()))
+ return false;
+ auto *R = cast<Instruction>(V);
+ // If the instruction does not commute with shifts, the loop cannot
+ // be unshifted.
+ if (!commutesWithShift(R))
+ return false;
+ for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
+ auto *T = cast<Instruction>(*I);
+ // Skip users from outside of the loop. They will be handled later.
+ // Also, skip the right-shifts and phi nodes, since they mix early
+ // and late values.
+ if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
+ continue;
+
+ Users.insert(T);
+ if (!classifyInst(T, Early, Late))
+ return false;
+ }
+ }
+
+ if (Users.size() == 0)
+ return false;
+
+ // Verify that high bits remain zero.
+ ValueSeq Internal(Users.begin(), Users.end());
+ ValueSeq Inputs;
+ for (unsigned i = 0; i < Internal.size(); ++i) {
+ auto *R = dyn_cast<Instruction>(Internal[i]);
+ if (!R)
+ continue;
+ for (Value *Op : R->operands()) {
+ auto *T = dyn_cast<Instruction>(Op);
+ if (T && T->getParent() != LoopB)
+ Inputs.insert(Op);
+ else
+ Internal.insert(Op);
+ }
+ }
+ for (Value *V : Inputs)
+ if (!highBitsAreZero(V, IterCount))
+ return false;
+ for (Value *V : Internal)
+ if (!keepsHighBitsZero(V, IterCount))
+ return false;
+
+ // Finally, the work can be done. Unshift each user.
+ IRBuilder<> IRB(LoopB);
+ std::map<Value*,Value*> ShiftMap;
+ typedef std::map<std::pair<Value*,Type*>,Value*> CastMapType;
+ CastMapType CastMap;
+
+ auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
+ IntegerType *Ty) -> Value* {
+ auto H = CM.find(std::make_pair(V, Ty));
+ if (H != CM.end())
+ return H->second;
+ Value *CV = IRB.CreateIntCast(V, Ty, false);
+ CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
+ return CV;
+ };
+
+ for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
+ if (isa<PHINode>(I) || !Users.count(&*I))
+ continue;
+ using namespace PatternMatch;
+ // Match lshr x, 1.
+ Value *V = nullptr;
+ if (match(&*I, m_LShr(m_Value(V), m_One()))) {
+ replaceAllUsesOfWithIn(&*I, V, LoopB);
+ continue;
+ }
+ // For each non-cycled operand, replace it with the corresponding
+ // value shifted left.
+ for (auto &J : I->operands()) {
+ Value *Op = J.get();
+ if (!isOperandShifted(&*I, Op))
+ continue;
+ if (Users.count(Op))
+ continue;
+ // Skip shifting zeros.
+ if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
+ continue;
+ // Check if we have already generated a shift for this value.
+ auto F = ShiftMap.find(Op);
+ Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
+ if (W == nullptr) {
+ IRB.SetInsertPoint(&*I);
+ // First, the shift amount will be CIV or CIV+1, depending on
+ // whether the value is early or late. Instead of creating CIV+1,
+ // do a single shift of the value.
+ Value *ShAmt = CIV, *ShVal = Op;
+ auto *VTy = cast<IntegerType>(ShVal->getType());
+ auto *ATy = cast<IntegerType>(ShAmt->getType());
+ if (Late.count(&*I))
+ ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
+ // Second, the types of the shifted value and the shift amount
+ // must match.
+ if (VTy != ATy) {
+ if (VTy->getBitWidth() < ATy->getBitWidth())
+ ShVal = upcast(CastMap, IRB, ShVal, ATy);
+ else
+ ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
+ }
+ // Ready to generate the shift and memoize it.
+ W = IRB.CreateShl(ShVal, ShAmt);
+ ShiftMap.insert(std::make_pair(Op, W));
+ }
+ I->replaceUsesOfWith(Op, W);
+ }
+ }
+
+ // Update the users outside of the loop to account for having left
+ // shifts. They would normally be shifted right in the loop, so shift
+ // them right after the loop exit.
+ // Take advantage of the loop-closed SSA form, which has all the post-
+ // loop values in phi nodes.
+ IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
+ for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
+ if (!isa<PHINode>(P))
+ break;
+ auto *PN = cast<PHINode>(P);
+ Value *U = PN->getIncomingValueForBlock(LoopB);
+ if (!Users.count(U))
+ continue;
+ Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
+ PN->replaceAllUsesWith(S);
+ // The above RAUW will create
+ // S = lshr S, IterCount
+ // so we need to fix it back into
+ // S = lshr PN, IterCount
+ cast<User>(S)->replaceUsesOfWith(S, PN);
+ }
+
+ return true;
+}
+
+
+void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
+ for (auto &I : *LoopB)
+ if (Value *SV = SimplifyInstruction(&I, DL, &TLI, &DT))
+ I.replaceAllUsesWith(SV);
+
+ for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
+ N = std::next(I);
+ RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
+ }
+}
+
+
+unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
+ // Arrays of coefficients of Q and the inverse, C.
+ // Q[i] = coefficient at x^i.
+ std::array<char,32> Q, C;
+
+ for (unsigned i = 0; i < 32; ++i) {
+ Q[i] = QP & 1;
+ QP >>= 1;
+ }
+ assert(Q[0] == 1);
+
+ // Find C, such that
+ // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
+ //
+ // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
+ // operations * and + are & and ^ respectively.
+ //
+ // Find C[i] recursively, by comparing i-th coefficient in the product
+ // with 0 (or 1 for i=0).
+ //
+ // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
+ C[0] = 1;
+ for (unsigned i = 1; i < 32; ++i) {
+ // Solve for C[i] in:
+ // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
+ // This is equivalent to
+ // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
+ // which is
+ // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
+ unsigned T = 0;
+ for (unsigned j = 0; j < i; ++j)
+ T = T ^ (C[j] & Q[i-j]);
+ C[i] = T;
+ }
+
+ unsigned QV = 0;
+ for (unsigned i = 0; i < 32; ++i)
+ if (C[i])
+ QV |= (1 << i);
+
+ return QV;
+}
+
+
+Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
+ ParsedValues &PV) {
+ IRBuilder<> B(&*At);
+ Module *M = At->getParent()->getParent()->getParent();
+ Value *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
+
+ Value *P = PV.P, *Q = PV.Q, *P0 = P;
+ unsigned IC = PV.IterCount;
+
+ if (PV.M != nullptr)
+ P0 = P = B.CreateXor(P, PV.M);
+
+ // Create a bit mask to clear the high bits beyond IterCount.
+ auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
+
+ if (PV.IterCount != 32)
+ P = B.CreateAnd(P, BMI);
+
+ if (PV.Inv) {
+ auto *QI = dyn_cast<ConstantInt>(PV.Q);
+ assert(QI && QI->getBitWidth() <= 32);
+
+ // Again, clearing bits beyond IterCount.
+ unsigned M = (1 << PV.IterCount) - 1;
+ unsigned Tmp = (QI->getZExtValue() | 1) & M;
+ unsigned QV = getInverseMxN(Tmp) & M;
+ auto *QVI = ConstantInt::get(QI->getType(), QV);
+ P = B.CreateCall(PMF, {P, QVI});
+ P = B.CreateTrunc(P, QI->getType());
+ if (IC != 32)
+ P = B.CreateAnd(P, BMI);
+ }
+
+ Value *R = B.CreateCall(PMF, {P, Q});
+
+ if (PV.M != nullptr)
+ R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
+
+ return R;
+}
+
+
+void PolynomialMultiplyRecognize::setupSimplifier() {
+ Simp.addRule(
+ // Sink zext past bitwise operations.
+ [](Instruction *I, LLVMContext &Ctx) -> Value* {
+ if (I->getOpcode() != Instruction::ZExt)
+ return nullptr;
+ Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
+ if (!T)
+ return nullptr;
+ switch (T->getOpcode()) {
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ break;
+ default:
+ return nullptr;
+ }
+ IRBuilder<> B(Ctx);
+ return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
+ B.CreateZExt(T->getOperand(0), I->getType()),
+ B.CreateZExt(T->getOperand(1), I->getType()));
+ });
+ Simp.addRule(
+ // (xor (and x a) (and y a)) -> (and (xor x y) a)
+ [](Instruction *I, LLVMContext &Ctx) -> Value* {
+ if (I->getOpcode() != Instruction::Xor)
+ return nullptr;
+ Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
+ Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
+ if (!And0 || !And1)
+ return nullptr;
+ if (And0->getOpcode() != Instruction::And ||
+ And1->getOpcode() != Instruction::And)
+ return nullptr;
+ if (And0->getOperand(1) != And1->getOperand(1))
+ return nullptr;
+ IRBuilder<> B(Ctx);
+ return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
+ And0->getOperand(1));
+ });
+ Simp.addRule(
+ // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
+ // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
+ [](Instruction *I, LLVMContext &Ctx) -> Value* {
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
+ if (!BO)
+ return nullptr;
+ Instruction::BinaryOps Op = BO->getOpcode();
+ if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
+ IRBuilder<> B(Ctx);
+ Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
+ Value *Z = BO->getOperand(1);
+ return B.CreateSelect(Sel->getCondition(),
+ B.CreateBinOp(Op, X, Z),
+ B.CreateBinOp(Op, Y, Z));
+ }
+ if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
+ IRBuilder<> B(Ctx);
+ Value *X = BO->getOperand(0);
+ Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
+ return B.CreateSelect(Sel->getCondition(),
+ B.CreateBinOp(Op, X, Y),
+ B.CreateBinOp(Op, X, Z));
+ }
+ return nullptr;
+ });
+ Simp.addRule(
+ // (select c (select c x y) z) -> (select c x z)
+ // (select c x (select c y z)) -> (select c x z)
+ [](Instruction *I, LLVMContext &Ctx) -> Value* {
+ SelectInst *Sel = dyn_cast<SelectInst>(I);
+ if (!Sel)
+ return nullptr;
+ IRBuilder<> B(Ctx);
+ Value *C = Sel->getCondition();
+ if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
+ if (Sel0->getCondition() == C)
+ return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
+ }
+ if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
+ if (Sel1->getCondition() == C)
+ return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
+ }
+ return nullptr;
+ });
+ Simp.addRule(
+ // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
+ [](Instruction *I, LLVMContext &Ctx) -> Value* {
+ if (I->getOpcode() != Instruction::Or)
+ return nullptr;
+ Instruction *LShr = dyn_cast<Instruction>(I->getOperand(0));
+ if (!LShr || LShr->getOpcode() != Instruction::LShr)
+ return nullptr;
+ ConstantInt *One = dyn_cast<ConstantInt>(LShr->getOperand(1));
+ if (!One || One->getZExtValue() != 1)
+ return nullptr;
+ ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
+ if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
+ return nullptr;
+ return IRBuilder<>(Ctx).CreateXor(LShr, Msb);
+ });
+ Simp.addRule(
+ // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
+ [](Instruction *I, LLVMContext &Ctx) -> Value* {
+ if (I->getOpcode() != Instruction::LShr)
+ return nullptr;
+ BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
+ if (!BitOp)
+ return nullptr;
+ switch (BitOp->getOpcode()) {
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ break;
+ default:
+ return nullptr;
+ }
+ IRBuilder<> B(Ctx);
+ Value *S = I->getOperand(1);
+ return B.CreateBinOp(BitOp->getOpcode(),
+ B.CreateLShr(BitOp->getOperand(0), S),
+ B.CreateLShr(BitOp->getOperand(1), S));
+ });
+ Simp.addRule(
+ // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
+ [](Instruction *I, LLVMContext &Ctx) -> Value* {
+ auto IsBitOp = [](unsigned Op) -> bool {
+ switch (Op) {
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ return true;
+ }
+ return false;
+ };
+ BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
+ if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
+ return nullptr;
+ BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
+ if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
+ return nullptr;
+ ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
+ ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
+ if (!CA || !CB)
+ return nullptr;
+ IRBuilder<> B(Ctx);
+ Value *X = BitOp2->getOperand(0);
+ return B.CreateBinOp(BitOp2->getOpcode(), X,
+ B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
+ });
+}
+
+
+bool PolynomialMultiplyRecognize::recognize() {
+ DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
+ << *CurLoop << '\n');
+ // Restrictions:
+ // - The loop must consist of a single block.
+ // - The iteration count must be known at compile-time.
+ // - The loop must have an induction variable starting from 0, and
+ // incremented in each iteration of the loop.
+ BasicBlock *LoopB = CurLoop->getHeader();
+ DEBUG(dbgs() << "Loop header:\n" << *LoopB);
+
+ if (LoopB != CurLoop->getLoopLatch())
+ return false;
+ BasicBlock *ExitB = CurLoop->getExitBlock();
+ if (ExitB == nullptr)
+ return false;
+ BasicBlock *EntryB = CurLoop->getLoopPreheader();
+ if (EntryB == nullptr)
+ return false;
+
+ unsigned IterCount = 0;
+ const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
+ if (isa<SCEVCouldNotCompute>(CT))
+ return false;
+ if (auto *CV = dyn_cast<SCEVConstant>(CT))
+ IterCount = CV->getValue()->getZExtValue() + 1;
+
+ Value *CIV = getCountIV(LoopB);
+ ParsedValues PV;
+ PV.IterCount = IterCount;
+ DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount << '\n');
+
+ setupSimplifier();
+
+ // Perform a preliminary scan of select instructions to see if any of them
+ // looks like a generator of the polynomial multiply steps. Assume that a
+ // loop can only contain a single transformable operation, so stop the
+ // traversal after the first reasonable candidate was found.
+ // XXX: Currently this approach can modify the loop before being 100% sure
+ // that the transformation can be carried out.
+ bool FoundPreScan = false;
+ for (Instruction &In : *LoopB) {
+ SelectInst *SI = dyn_cast<SelectInst>(&In);
+ if (!SI)
+ continue;
+
+ Simplifier::Context C(SI);
+ Value *T = Simp.simplify(C);
+ SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
+ DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
+ if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
+ FoundPreScan = true;
+ if (SelI != SI) {
+ Value *NewSel = C.materialize(LoopB, SI->getIterator());
+ SI->replaceAllUsesWith(NewSel);
+ RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
+ }
+ break;
+ }
+ }
+
+ if (!FoundPreScan) {
+ DEBUG(dbgs() << "Have not found candidates for pmpy\n");
+ return false;
+ }
+
+ if (!PV.Left) {
+ // The right shift version actually only returns the higher bits of
+ // the result (each iteration discards the LSB). If we want to convert it
+ // to a left-shifting loop, the working data type must be at least as
+ // wide as the target's pmpy instruction.
+ if (!promoteTypes(LoopB, ExitB))
+ return false;
+ convertShiftsToLeft(LoopB, ExitB, IterCount);
+ cleanupLoopBody(LoopB);
+ }
+
+ // Scan the loop again, find the generating select instruction.
+ bool FoundScan = false;
+ for (Instruction &In : *LoopB) {
+ SelectInst *SelI = dyn_cast<SelectInst>(&In);
+ if (!SelI)
+ continue;
+ DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
+ FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
+ if (FoundScan)
+ break;
+ }
+ assert(FoundScan);
+
+ DEBUG({
+ StringRef PP = (PV.M ? "(P+M)" : "P");
+ if (!PV.Inv)
+ dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
+ else
+ dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
+ << PP << "\n";
+ dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n";
+ if (PV.M)
+ dbgs() << " M:" << *PV.M << "\n";
+ dbgs() << " Q:" << *PV.Q << "\n";
+ dbgs() << " Iteration count:" << PV.IterCount << "\n";
+ });
+
+ BasicBlock::iterator At(EntryB->getTerminator());
+ Value *PM = generate(At, PV);
+ if (PM == nullptr)
+ return false;
+
+ if (PM->getType() != PV.Res->getType())
+ PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
+
+ PV.Res->replaceAllUsesWith(PM);
+ PV.Res->eraseFromParent();
+ return true;
+}
+
+
+unsigned HexagonLoopIdiomRecognize::getStoreSizeInBytes(StoreInst *SI) {
+ uint64_t SizeInBits = DL->getTypeSizeInBits(SI->getValueOperand()->getType());
+ assert(((SizeInBits & 7) || (SizeInBits >> 32) == 0) &&
+ "Don't overflow unsigned.");
+ return (unsigned)SizeInBits >> 3;
+}
+
+
+int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
+ if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
+ return SC->getAPInt().getSExtValue();
+ return 0;
+}
+
+
+bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
+ // Allow volatile stores if HexagonVolatileMemcpy is enabled.
+ if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
+ return false;
+
+ Value *StoredVal = SI->getValueOperand();
+ Value *StorePtr = SI->getPointerOperand();
+
+ // Reject stores that are so large that they overflow an unsigned.
+ uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
+ if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
+ return false;
+
+ // See if the pointer expression is an AddRec like {base,+,1} on the current
+ // loop, which indicates a strided store. If we have something else, it's a
+ // random store we can't handle.
+ auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
+ if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
+ return false;
+
+ // Check to see if the stride matches the size of the store. If so, then we
+ // know that every byte is touched in the loop.
+ int Stride = getSCEVStride(StoreEv);
+ if (Stride == 0)
+ return false;
+ unsigned StoreSize = getStoreSizeInBytes(SI);
+ if (StoreSize != unsigned(std::abs(Stride)))
+ return false;
+
+ // The store must be feeding a non-volatile load.
+ LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
+ if (!LI || !LI->isSimple())
+ return false;
+
+ // See if the pointer expression is an AddRec like {base,+,1} on the current
+ // loop, which indicates a strided load. If we have something else, it's a
+ // random load we can't handle.
+ Value *LoadPtr = LI->getPointerOperand();
+ auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
+ if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
+ return false;
+
+ // The store and load must share the same stride.
+ if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
+ return false;
+
+ // Success. This store can be converted into a memcpy.
+ return true;
+}
+
+
+/// mayLoopAccessLocation - Return true if the specified loop might access the
+/// specified pointer location, which is a loop-strided access. The 'Access'
+/// argument specifies what the verboten forms of access are (read or write).
+static bool
+mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
+ const SCEV *BECount, unsigned StoreSize,
+ AliasAnalysis &AA,
+ SmallPtrSetImpl<Instruction *> &Ignored) {
+ // Get the location that may be stored across the loop. Since the access
+ // is strided positively through memory, we say that the modified location
+ // starts at the pointer and has infinite size.
+ uint64_t AccessSize = MemoryLocation::UnknownSize;
+
+ // If the loop iterates a fixed number of times, we can refine the access
+ // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
+ if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
+ AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
+
+ // TODO: For this to be really effective, we have to dive into the pointer
+ // operand in the store. Store to &A[i] of 100 will always return may alias
+ // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
+ // which will then no-alias a store to &A[100].
+ MemoryLocation StoreLoc(Ptr, AccessSize);
+
+ for (auto *B : L->blocks())
+ for (auto &I : *B)
+ if (Ignored.count(&I) == 0 && (AA.getModRefInfo(&I, StoreLoc) & Access))
+ return true;
+
+ return false;
+}
+
+
+void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
+ SmallVectorImpl<StoreInst*> &Stores) {
+ Stores.clear();
+ for (Instruction &I : *BB)
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
+ if (isLegalStore(CurLoop, SI))
+ Stores.push_back(SI);
+}
+
+
+bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
+ StoreInst *SI, const SCEV *BECount) {
+ assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
+ "Expected only non-volatile stores, or Hexagon-specific memcpy"
+ "to volatile destination.");
+
+ Value *StorePtr = SI->getPointerOperand();
+ auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
+ unsigned Stride = getSCEVStride(StoreEv);
+ unsigned StoreSize = getStoreSizeInBytes(SI);
+ if (Stride != StoreSize)
+ return false;
+
+ // See if the pointer expression is an AddRec like {base,+,1} on the current
+ // loop, which indicates a strided load. If we have something else, it's a
+ // random load we can't handle.
+ LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
+ auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
+
+ // The trip count of the loop and the base pointer of the addrec SCEV is
+ // guaranteed to be loop invariant, which means that it should dominate the
+ // header. This allows us to insert code for it in the preheader.
+ BasicBlock *Preheader = CurLoop->getLoopPreheader();
+ Instruction *ExpPt = Preheader->getTerminator();
+ IRBuilder<> Builder(ExpPt);
+ SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
+
+ Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
+
+ // Okay, we have a strided store "p[i]" of a loaded value. We can turn
+ // this into a memcpy/memmove in the loop preheader now if we want. However,
+ // this would be unsafe to do if there is anything else in the loop that may
+ // read or write the memory region we're storing to. For memcpy, this
+ // includes the load that feeds the stores. Check for an alias by generating
+ // the base address and checking everything.
+ Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
+ Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
+ Value *LoadBasePtr = nullptr;
+
+ bool Overlap = false;
+ bool DestVolatile = SI->isVolatile();
+ Type *BECountTy = BECount->getType();
+
+ if (DestVolatile) {
+ // The trip count must fit in i32, since it is the type of the "num_words"
+ // argument to hexagon_memcpy_forward_vp4cp4n2.
+ if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
+CleanupAndExit:
+ // If we generated new code for the base pointer, clean up.
+ Expander.clear();
+ if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
+ RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
+ StoreBasePtr = nullptr;
+ }
+ if (LoadBasePtr) {
+ RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
+ LoadBasePtr = nullptr;
+ }
+ return false;
+ }
+ }
+
+ SmallPtrSet<Instruction*, 2> Ignore1;
+ Ignore1.insert(SI);
+ if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
+ StoreSize, *AA, Ignore1)) {
+ // Check if the load is the offending instruction.
+ Ignore1.insert(LI);
+ if (mayLoopAccessLocation(StoreBasePtr, MRI_ModRef, CurLoop, BECount,
+ StoreSize, *AA, Ignore1)) {
+ // Still bad. Nothing we can do.
+ goto CleanupAndExit;
+ }
+ // It worked with the load ignored.
+ Overlap = true;
+ }
+
+ if (!Overlap) {
+ if (DisableMemcpyIdiom || !HasMemcpy)
+ goto CleanupAndExit;
+ } else {
+ // Don't generate memmove if this function will be inlined. This is
+ // because the caller will undergo this transformation after inlining.
+ Function *Func = CurLoop->getHeader()->getParent();
+ if (Func->hasFnAttribute(Attribute::AlwaysInline))
+ goto CleanupAndExit;
+
+ // In case of a memmove, the call to memmove will be executed instead
+ // of the loop, so we need to make sure that there is nothing else in
+ // the loop than the load, store and instructions that these two depend
+ // on.
+ SmallVector<Instruction*,2> Insts;
+ Insts.push_back(SI);
+ Insts.push_back(LI);
+ if (!coverLoop(CurLoop, Insts))
+ goto CleanupAndExit;
+
+ if (DisableMemmoveIdiom || !HasMemmove)
+ goto CleanupAndExit;
+ bool IsNested = CurLoop->getParentLoop() != 0;
+ if (IsNested && OnlyNonNestedMemmove)
+ goto CleanupAndExit;
+ }
+
+ // For a memcpy, we have to make sure that the input array is not being
+ // mutated by the loop.
+ LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
+ Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
+
+ SmallPtrSet<Instruction*, 2> Ignore2;
+ Ignore2.insert(SI);
+ if (mayLoopAccessLocation(LoadBasePtr, MRI_Mod, CurLoop, BECount, StoreSize,
+ *AA, Ignore2))
+ goto CleanupAndExit;
+
+ // Check the stride.
+ bool StridePos = getSCEVStride(LoadEv) >= 0;
+
+ // Currently, the volatile memcpy only emulates traversing memory forward.
+ if (!StridePos && DestVolatile)
+ goto CleanupAndExit;
+
+ bool RuntimeCheck = (Overlap || DestVolatile);
+
+ BasicBlock *ExitB;
+ if (RuntimeCheck) {
+ // The runtime check needs a single exit block.
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+ if (ExitBlocks.size() != 1)
+ goto CleanupAndExit;
+ ExitB = ExitBlocks[0];
+ }
+
+ // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
+ // pointer size if it isn't already.
+ LLVMContext &Ctx = SI->getContext();
+ BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
+ unsigned Alignment = std::min(SI->getAlignment(), LI->getAlignment());
+ DebugLoc DLoc = SI->getDebugLoc();
+
+ const SCEV *NumBytesS =
+ SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
+ if (StoreSize != 1)
+ NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
+ SCEV::FlagNUW);
+ Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
+ if (Instruction *In = dyn_cast<Instruction>(NumBytes))
+ if (Value *Simp = SimplifyInstruction(In, *DL, TLI, DT))
+ NumBytes = Simp;
+
+ CallInst *NewCall;
+
+ if (RuntimeCheck) {
+ unsigned Threshold = RuntimeMemSizeThreshold;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
+ uint64_t C = CI->getZExtValue();
+ if (Threshold != 0 && C < Threshold)
+ goto CleanupAndExit;
+ if (C < CompileTimeMemSizeThreshold)
+ goto CleanupAndExit;
+ }
+
+ BasicBlock *Header = CurLoop->getHeader();
+ Function *Func = Header->getParent();
+ Loop *ParentL = LF->getLoopFor(Preheader);
+ StringRef HeaderName = Header->getName();
+
+ // Create a new (empty) preheader, and update the PHI nodes in the
+ // header to use the new preheader.
+ BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
+ Func, Header);
+ if (ParentL)
+ ParentL->addBasicBlockToLoop(NewPreheader, *LF);
+ IRBuilder<>(NewPreheader).CreateBr(Header);
+ for (auto &In : *Header) {
+ PHINode *PN = dyn_cast<PHINode>(&In);
+ if (!PN)
+ break;
+ int bx = PN->getBasicBlockIndex(Preheader);
+ if (bx >= 0)
+ PN->setIncomingBlock(bx, NewPreheader);
+ }
+ DT->addNewBlock(NewPreheader, Preheader);
+ DT->changeImmediateDominator(Header, NewPreheader);
+
+ // Check for safe conditions to execute memmove.
+ // If stride is positive, copying things from higher to lower addresses
+ // is equivalent to memmove. For negative stride, it's the other way
+ // around. Copying forward in memory with positive stride may not be
+ // same as memmove since we may be copying values that we just stored
+ // in some previous iteration.
+ Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
+ Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
+ Value *LowA = StridePos ? SA : LA;
+ Value *HighA = StridePos ? LA : SA;
+ Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
+ Value *Cond = CmpA;
+
+ // Check for distance between pointers.
+ Value *Dist = Builder.CreateSub(HighA, LowA);
+ Value *CmpD = Builder.CreateICmpSLT(NumBytes, Dist);
+ Value *CmpEither = Builder.CreateOr(Cond, CmpD);
+ Cond = CmpEither;
+
+ if (Threshold != 0) {
+ Type *Ty = NumBytes->getType();
+ Value *Thr = ConstantInt::get(Ty, Threshold);
+ Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
+ Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
+ Cond = CmpBoth;
+ }
+ BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
+ Func, NewPreheader);
+ if (ParentL)
+ ParentL->addBasicBlockToLoop(MemmoveB, *LF);
+ Instruction *OldT = Preheader->getTerminator();
+ Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
+ OldT->eraseFromParent();
+ Preheader->setName(Preheader->getName()+".old");
+ DT->addNewBlock(MemmoveB, Preheader);
+ // Find the new immediate dominator of the exit block.
+ BasicBlock *ExitD = Preheader;
+ for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
+ BasicBlock *PB = *PI;
+ ExitD = DT->findNearestCommonDominator(ExitD, PB);
+ if (!ExitD)
+ break;
+ }
+ // If the prior immediate dominator of ExitB was dominated by the
+ // old preheader, then the old preheader becomes the new immediate
+ // dominator. Otherwise don't change anything (because the newly
+ // added blocks are dominated by the old preheader).
+ if (ExitD && DT->dominates(Preheader, ExitD)) {
+ DomTreeNode *BN = DT->getNode(ExitB);
+ DomTreeNode *DN = DT->getNode(ExitD);
+ BN->setIDom(DN);
+ }
+
+ // Add a call to memmove to the conditional block.
+ IRBuilder<> CondBuilder(MemmoveB);
+ CondBuilder.CreateBr(ExitB);
+ CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
+
+ if (DestVolatile) {
+ Type *Int32Ty = Type::getInt32Ty(Ctx);
+ Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
+ Type *VoidTy = Type::getVoidTy(Ctx);
+ Module *M = Func->getParent();
+ Constant *CF = M->getOrInsertFunction(HexagonVolatileMemcpyName, VoidTy,
+ Int32PtrTy, Int32PtrTy, Int32Ty);
+ Function *Fn = cast<Function>(CF);
+ Fn->setLinkage(Function::ExternalLinkage);
+
+ const SCEV *OneS = SE->getConstant(Int32Ty, 1);
+ const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
+ const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
+ Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
+ MemmoveB->getTerminator());
+ if (Instruction *In = dyn_cast<Instruction>(NumWords))
+ if (Value *Simp = SimplifyInstruction(In, *DL, TLI, DT))
+ NumWords = Simp;
+
+ Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
+ ? StoreBasePtr
+ : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
+ Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
+ ? LoadBasePtr
+ : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
+ NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
+ } else {
+ NewCall = CondBuilder.CreateMemMove(StoreBasePtr, LoadBasePtr,
+ NumBytes, Alignment);
+ }
+ } else {
+ NewCall = Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr,
+ NumBytes, Alignment);
+ // Okay, the memcpy has been formed. Zap the original store and
+ // anything that feeds into it.
+ RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
+ }
+
+ NewCall->setDebugLoc(DLoc);
+
+ DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ")
+ << *NewCall << "\n"
+ << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
+ << " from store ptr=" << *StoreEv << " at: " << *SI << "\n");
+
+ return true;
+}
+
+
+// \brief Check if the instructions in Insts, together with their dependencies
+// cover the loop in the sense that the loop could be safely eliminated once
+// the instructions in Insts are removed.
+bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
+ SmallVectorImpl<Instruction*> &Insts) const {
+ SmallSet<BasicBlock*,8> LoopBlocks;
+ for (auto *B : L->blocks())
+ LoopBlocks.insert(B);
+
+ SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
+
+ // Collect all instructions from the loop that the instructions in Insts
+ // depend on (plus their dependencies, etc.). These instructions will
+ // constitute the expression trees that feed those in Insts, but the trees
+ // will be limited only to instructions contained in the loop.
+ for (unsigned i = 0; i < Worklist.size(); ++i) {
+ Instruction *In = Worklist[i];
+ for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
+ Instruction *OpI = dyn_cast<Instruction>(I);
+ if (!OpI)
+ continue;
+ BasicBlock *PB = OpI->getParent();
+ if (!LoopBlocks.count(PB))
+ continue;
+ Worklist.insert(OpI);
+ }
+ }
+
+ // Scan all instructions in the loop, if any of them have a user outside
+ // of the loop, or outside of the expressions collected above, then either
+ // the loop has a side-effect visible outside of it, or there are
+ // instructions in it that are not involved in the original set Insts.
+ for (auto *B : L->blocks()) {
+ for (auto &In : *B) {
+ if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
+ continue;
+ if (!Worklist.count(&In) && In.mayHaveSideEffects())
+ return false;
+ for (const auto &K : In.users()) {
+ Instruction *UseI = dyn_cast<Instruction>(K);
+ if (!UseI)
+ continue;
+ BasicBlock *UseB = UseI->getParent();
+ if (LF->getLoopFor(UseB) != L)
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+/// runOnLoopBlock - Process the specified block, which lives in a counted loop
+/// with the specified backedge count. This block is known to be in the current
+/// loop and not in any subloops.
+bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
+ const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
+ // We can only promote stores in this block if they are unconditionally
+ // executed in the loop. For a block to be unconditionally executed, it has
+ // to dominate all the exit blocks of the loop. Verify this now.
+ auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
+ return DT->dominates(BB, EB);
+ };
+ if (!std::all_of(ExitBlocks.begin(), ExitBlocks.end(), DominatedByBB))
+ return false;
+
+ bool MadeChange = false;
+ // Look for store instructions, which may be optimized to memset/memcpy.
+ SmallVector<StoreInst*,8> Stores;
+ collectStores(CurLoop, BB, Stores);
+
+ // Optimize the store into a memcpy, if it feeds an similarly strided load.
+ for (auto &SI : Stores)
+ MadeChange |= processCopyingStore(CurLoop, SI, BECount);
+
+ return MadeChange;
+}
+
+
+bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
+ PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
+ if (PMR.recognize())
+ return true;
+
+ if (!HasMemcpy && !HasMemmove)
+ return false;
+
+ const SCEV *BECount = SE->getBackedgeTakenCount(L);
+ assert(!isa<SCEVCouldNotCompute>(BECount) &&
+ "runOnCountableLoop() called on a loop without a predictable"
+ "backedge-taken count");
+
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ bool Changed = false;
+
+ // Scan all the blocks in the loop that are not in subloops.
+ for (auto *BB : L->getBlocks()) {
+ // Ignore blocks in subloops.
+ if (LF->getLoopFor(BB) != L)
+ continue;
+ Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
+ }
+
+ return Changed;
+}
+
+
+bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
+ const Module &M = *L->getHeader()->getParent()->getParent();
+ if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
+ return false;
+
+ if (skipLoop(L))
+ return false;
+
+ // If the loop could not be converted to canonical form, it must have an
+ // indirectbr in it, just give up.
+ if (!L->getLoopPreheader())
+ return false;
+
+ // Disable loop idiom recognition if the function's name is a common idiom.
+ StringRef Name = L->getHeader()->getParent()->getName();
+ if (Name == "memset" || Name == "memcpy" || Name == "memmove")
+ return false;
+
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ DL = &L->getHeader()->getModule()->getDataLayout();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+
+ HasMemcpy = TLI->has(LibFunc_memcpy);
+ HasMemmove = TLI->has(LibFunc_memmove);
+
+ if (SE->hasLoopInvariantBackedgeTakenCount(L))
+ return runOnCountableLoop(L);
+ return false;
+}
+
+
+Pass *llvm::createHexagonLoopIdiomPass() {
+ return new HexagonLoopIdiomRecognize();
+}
+