aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h808
1 files changed, 808 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h b/contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
new file mode 100644
index 000000000000..f1f66d86cb73
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h
@@ -0,0 +1,808 @@
+//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+///
+/// This file provides internal interfaces used to implement the InstCombine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
+#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/TargetFolder.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <cassert>
+#include <cstdint>
+
+#define DEBUG_TYPE "instcombine"
+
+namespace llvm {
+
+class APInt;
+class AssumptionCache;
+class CallSite;
+class DataLayout;
+class DominatorTree;
+class GEPOperator;
+class GlobalVariable;
+class LoopInfo;
+class OptimizationRemarkEmitter;
+class TargetLibraryInfo;
+class User;
+
+/// Assign a complexity or rank value to LLVM Values. This is used to reduce
+/// the amount of pattern matching needed for compares and commutative
+/// instructions. For example, if we have:
+/// icmp ugt X, Constant
+/// or
+/// xor (add X, Constant), cast Z
+///
+/// We do not have to consider the commuted variants of these patterns because
+/// canonicalization based on complexity guarantees the above ordering.
+///
+/// This routine maps IR values to various complexity ranks:
+/// 0 -> undef
+/// 1 -> Constants
+/// 2 -> Other non-instructions
+/// 3 -> Arguments
+/// 4 -> Cast and (f)neg/not instructions
+/// 5 -> Other instructions
+static inline unsigned getComplexity(Value *V) {
+ if (isa<Instruction>(V)) {
+ if (isa<CastInst>(V) || BinaryOperator::isNeg(V) ||
+ BinaryOperator::isFNeg(V) || BinaryOperator::isNot(V))
+ return 4;
+ return 5;
+ }
+ if (isa<Argument>(V))
+ return 3;
+ return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
+}
+
+/// Predicate canonicalization reduces the number of patterns that need to be
+/// matched by other transforms. For example, we may swap the operands of a
+/// conditional branch or select to create a compare with a canonical (inverted)
+/// predicate which is then more likely to be matched with other values.
+static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
+ switch (Pred) {
+ case CmpInst::ICMP_NE:
+ case CmpInst::ICMP_ULE:
+ case CmpInst::ICMP_SLE:
+ case CmpInst::ICMP_UGE:
+ case CmpInst::ICMP_SGE:
+ // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_OGE:
+ return false;
+ default:
+ return true;
+ }
+}
+
+/// Return the source operand of a potentially bitcasted value while optionally
+/// checking if it has one use. If there is no bitcast or the one use check is
+/// not met, return the input value itself.
+static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
+ if (auto *BitCast = dyn_cast<BitCastInst>(V))
+ if (!OneUseOnly || BitCast->hasOneUse())
+ return BitCast->getOperand(0);
+
+ // V is not a bitcast or V has more than one use and OneUseOnly is true.
+ return V;
+}
+
+/// \brief Add one to a Constant
+static inline Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+
+/// \brief Subtract one from a Constant
+static inline Constant *SubOne(Constant *C) {
+ return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
+}
+
+/// \brief Return true if the specified value is free to invert (apply ~ to).
+/// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
+/// is true, work under the assumption that the caller intends to remove all
+/// uses of V and only keep uses of ~V.
+static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
+ // ~(~(X)) -> X.
+ if (BinaryOperator::isNot(V))
+ return true;
+
+ // Constants can be considered to be not'ed values.
+ if (isa<ConstantInt>(V))
+ return true;
+
+ // A vector of constant integers can be inverted easily.
+ if (V->getType()->isVectorTy() && isa<Constant>(V)) {
+ unsigned NumElts = V->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
+ if (!Elt)
+ return false;
+
+ if (isa<UndefValue>(Elt))
+ continue;
+
+ if (!isa<ConstantInt>(Elt))
+ return false;
+ }
+ return true;
+ }
+
+ // Compares can be inverted if all of their uses are being modified to use the
+ // ~V.
+ if (isa<CmpInst>(V))
+ return WillInvertAllUses;
+
+ // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
+ // - Constant) - A` if we are willing to invert all of the uses.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
+ if (BO->getOpcode() == Instruction::Add ||
+ BO->getOpcode() == Instruction::Sub)
+ if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
+ return WillInvertAllUses;
+
+ return false;
+}
+
+/// \brief Specific patterns of overflow check idioms that we match.
+enum OverflowCheckFlavor {
+ OCF_UNSIGNED_ADD,
+ OCF_SIGNED_ADD,
+ OCF_UNSIGNED_SUB,
+ OCF_SIGNED_SUB,
+ OCF_UNSIGNED_MUL,
+ OCF_SIGNED_MUL,
+
+ OCF_INVALID
+};
+
+/// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
+/// intrinsic.
+static inline OverflowCheckFlavor
+IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
+ switch (ID) {
+ default:
+ return OCF_INVALID;
+ case Intrinsic::uadd_with_overflow:
+ return OCF_UNSIGNED_ADD;
+ case Intrinsic::sadd_with_overflow:
+ return OCF_SIGNED_ADD;
+ case Intrinsic::usub_with_overflow:
+ return OCF_UNSIGNED_SUB;
+ case Intrinsic::ssub_with_overflow:
+ return OCF_SIGNED_SUB;
+ case Intrinsic::umul_with_overflow:
+ return OCF_UNSIGNED_MUL;
+ case Intrinsic::smul_with_overflow:
+ return OCF_SIGNED_MUL;
+ }
+}
+
+/// \brief The core instruction combiner logic.
+///
+/// This class provides both the logic to recursively visit instructions and
+/// combine them.
+class LLVM_LIBRARY_VISIBILITY InstCombiner
+ : public InstVisitor<InstCombiner, Instruction *> {
+ // FIXME: These members shouldn't be public.
+public:
+ /// \brief A worklist of the instructions that need to be simplified.
+ InstCombineWorklist &Worklist;
+
+ /// \brief An IRBuilder that automatically inserts new instructions into the
+ /// worklist.
+ using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
+ BuilderTy &Builder;
+
+private:
+ // Mode in which we are running the combiner.
+ const bool MinimizeSize;
+
+ /// Enable combines that trigger rarely but are costly in compiletime.
+ const bool ExpensiveCombines;
+
+ AliasAnalysis *AA;
+
+ // Required analyses.
+ AssumptionCache &AC;
+ TargetLibraryInfo &TLI;
+ DominatorTree &DT;
+ const DataLayout &DL;
+ const SimplifyQuery SQ;
+ OptimizationRemarkEmitter &ORE;
+
+ // Optional analyses. When non-null, these can both be used to do better
+ // combining and will be updated to reflect any changes.
+ LoopInfo *LI;
+
+ bool MadeIRChange = false;
+
+public:
+ InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
+ bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
+ AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
+ OptimizationRemarkEmitter &ORE, const DataLayout &DL,
+ LoopInfo *LI)
+ : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
+ ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
+ DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {}
+
+ /// \brief Run the combiner over the entire worklist until it is empty.
+ ///
+ /// \returns true if the IR is changed.
+ bool run();
+
+ AssumptionCache &getAssumptionCache() const { return AC; }
+
+ const DataLayout &getDataLayout() const { return DL; }
+
+ DominatorTree &getDominatorTree() const { return DT; }
+
+ LoopInfo *getLoopInfo() const { return LI; }
+
+ TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
+
+ // Visitation implementation - Implement instruction combining for different
+ // instruction types. The semantics are as follows:
+ // Return Value:
+ // null - No change was made
+ // I - Change was made, I is still valid, I may be dead though
+ // otherwise - Change was made, replace I with returned instruction
+ //
+ Instruction *visitAdd(BinaryOperator &I);
+ Instruction *visitFAdd(BinaryOperator &I);
+ Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
+ Instruction *visitSub(BinaryOperator &I);
+ Instruction *visitFSub(BinaryOperator &I);
+ Instruction *visitMul(BinaryOperator &I);
+ Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
+ Instruction *InsertBefore);
+ Instruction *visitFMul(BinaryOperator &I);
+ Instruction *visitURem(BinaryOperator &I);
+ Instruction *visitSRem(BinaryOperator &I);
+ Instruction *visitFRem(BinaryOperator &I);
+ bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
+ Instruction *commonRemTransforms(BinaryOperator &I);
+ Instruction *commonIRemTransforms(BinaryOperator &I);
+ Instruction *commonDivTransforms(BinaryOperator &I);
+ Instruction *commonIDivTransforms(BinaryOperator &I);
+ Instruction *visitUDiv(BinaryOperator &I);
+ Instruction *visitSDiv(BinaryOperator &I);
+ Instruction *visitFDiv(BinaryOperator &I);
+ Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
+ Instruction *visitAnd(BinaryOperator &I);
+ Instruction *visitOr(BinaryOperator &I);
+ Instruction *visitXor(BinaryOperator &I);
+ Instruction *visitShl(BinaryOperator &I);
+ Instruction *visitAShr(BinaryOperator &I);
+ Instruction *visitLShr(BinaryOperator &I);
+ Instruction *commonShiftTransforms(BinaryOperator &I);
+ Instruction *visitFCmpInst(FCmpInst &I);
+ Instruction *visitICmpInst(ICmpInst &I);
+ Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
+ BinaryOperator &I);
+ Instruction *commonCastTransforms(CastInst &CI);
+ Instruction *commonPointerCastTransforms(CastInst &CI);
+ Instruction *visitTrunc(TruncInst &CI);
+ Instruction *visitZExt(ZExtInst &CI);
+ Instruction *visitSExt(SExtInst &CI);
+ Instruction *visitFPTrunc(FPTruncInst &CI);
+ Instruction *visitFPExt(CastInst &CI);
+ Instruction *visitFPToUI(FPToUIInst &FI);
+ Instruction *visitFPToSI(FPToSIInst &FI);
+ Instruction *visitUIToFP(CastInst &CI);
+ Instruction *visitSIToFP(CastInst &CI);
+ Instruction *visitPtrToInt(PtrToIntInst &CI);
+ Instruction *visitIntToPtr(IntToPtrInst &CI);
+ Instruction *visitBitCast(BitCastInst &CI);
+ Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
+ Instruction *FoldItoFPtoI(Instruction &FI);
+ Instruction *visitSelectInst(SelectInst &SI);
+ Instruction *visitCallInst(CallInst &CI);
+ Instruction *visitInvokeInst(InvokeInst &II);
+
+ Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
+ Instruction *visitPHINode(PHINode &PN);
+ Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
+ Instruction *visitAllocaInst(AllocaInst &AI);
+ Instruction *visitAllocSite(Instruction &FI);
+ Instruction *visitFree(CallInst &FI);
+ Instruction *visitLoadInst(LoadInst &LI);
+ Instruction *visitStoreInst(StoreInst &SI);
+ Instruction *visitBranchInst(BranchInst &BI);
+ Instruction *visitFenceInst(FenceInst &FI);
+ Instruction *visitSwitchInst(SwitchInst &SI);
+ Instruction *visitReturnInst(ReturnInst &RI);
+ Instruction *visitInsertValueInst(InsertValueInst &IV);
+ Instruction *visitInsertElementInst(InsertElementInst &IE);
+ Instruction *visitExtractElementInst(ExtractElementInst &EI);
+ Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
+ Instruction *visitExtractValueInst(ExtractValueInst &EV);
+ Instruction *visitLandingPadInst(LandingPadInst &LI);
+ Instruction *visitVAStartInst(VAStartInst &I);
+ Instruction *visitVACopyInst(VACopyInst &I);
+
+ /// Specify what to return for unhandled instructions.
+ Instruction *visitInstruction(Instruction &I) { return nullptr; }
+
+ /// True when DB dominates all uses of DI except UI.
+ /// UI must be in the same block as DI.
+ /// The routine checks that the DI parent and DB are different.
+ bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
+ const BasicBlock *DB) const;
+
+ /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
+ bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
+ const unsigned SIOpd);
+
+ /// Try to replace instruction \p I with value \p V which are pointers
+ /// in different address space.
+ /// \return true if successful.
+ bool replacePointer(Instruction &I, Value *V);
+
+private:
+ bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
+ bool shouldChangeType(Type *From, Type *To) const;
+ Value *dyn_castNegVal(Value *V) const;
+ Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
+ Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
+ SmallVectorImpl<Value *> &NewIndices);
+
+ /// Classify whether a cast is worth optimizing.
+ ///
+ /// This is a helper to decide whether the simplification of
+ /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
+ ///
+ /// \param CI The cast we are interested in.
+ ///
+ /// \return true if this cast actually results in any code being generated and
+ /// if it cannot already be eliminated by some other transformation.
+ bool shouldOptimizeCast(CastInst *CI);
+
+ /// \brief Try to optimize a sequence of instructions checking if an operation
+ /// on LHS and RHS overflows.
+ ///
+ /// If this overflow check is done via one of the overflow check intrinsics,
+ /// then CtxI has to be the call instruction calling that intrinsic. If this
+ /// overflow check is done by arithmetic followed by a compare, then CtxI has
+ /// to be the arithmetic instruction.
+ ///
+ /// If a simplification is possible, stores the simplified result of the
+ /// operation in OperationResult and result of the overflow check in
+ /// OverflowResult, and return true. If no simplification is possible,
+ /// returns false.
+ bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
+ Instruction &CtxI, Value *&OperationResult,
+ Constant *&OverflowResult);
+
+ Instruction *visitCallSite(CallSite CS);
+ Instruction *tryOptimizeCall(CallInst *CI);
+ bool transformConstExprCastCall(CallSite CS);
+ Instruction *transformCallThroughTrampoline(CallSite CS,
+ IntrinsicInst *Tramp);
+
+ /// Transform (zext icmp) to bitwise / integer operations in order to
+ /// eliminate it.
+ ///
+ /// \param ICI The icmp of the (zext icmp) pair we are interested in.
+ /// \parem CI The zext of the (zext icmp) pair we are interested in.
+ /// \param DoTransform Pass false to just test whether the given (zext icmp)
+ /// would be transformed. Pass true to actually perform the transformation.
+ ///
+ /// \return null if the transformation cannot be performed. If the
+ /// transformation can be performed the new instruction that replaces the
+ /// (zext icmp) pair will be returned (if \p DoTransform is false the
+ /// unmodified \p ICI will be returned in this case).
+ Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
+ bool DoTransform = true);
+
+ Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
+
+ bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
+ const Instruction &CxtI) const {
+ return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
+ OverflowResult::NeverOverflows;
+ }
+
+ bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
+ const Instruction &CxtI) const {
+ return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
+ OverflowResult::NeverOverflows;
+ }
+
+ bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
+ const Instruction &CxtI) const;
+ bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
+ const Instruction &CxtI) const;
+ bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
+ const Instruction &CxtI) const;
+
+ bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
+ const Instruction &CxtI) const {
+ return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
+ OverflowResult::NeverOverflows;
+ }
+
+ Value *EmitGEPOffset(User *GEP);
+ Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
+ Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
+ Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
+ Instruction *narrowBinOp(TruncInst &Trunc);
+ Instruction *narrowRotate(TruncInst &Trunc);
+ Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
+
+ /// Determine if a pair of casts can be replaced by a single cast.
+ ///
+ /// \param CI1 The first of a pair of casts.
+ /// \param CI2 The second of a pair of casts.
+ ///
+ /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
+ /// Instruction::CastOps value for a cast that can replace the pair, casting
+ /// CI1->getSrcTy() to CI2->getDstTy().
+ ///
+ /// \see CastInst::isEliminableCastPair
+ Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
+ const CastInst *CI2);
+
+ Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
+ Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
+ Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS);
+
+ /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
+ /// NOTE: Unlike most of instcombine, this returns a Value which should
+ /// already be inserted into the function.
+ Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
+
+ Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
+ bool JoinedByAnd, Instruction &CxtI);
+public:
+ /// \brief Inserts an instruction \p New before instruction \p Old
+ ///
+ /// Also adds the new instruction to the worklist and returns \p New so that
+ /// it is suitable for use as the return from the visitation patterns.
+ Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
+ assert(New && !New->getParent() &&
+ "New instruction already inserted into a basic block!");
+ BasicBlock *BB = Old.getParent();
+ BB->getInstList().insert(Old.getIterator(), New); // Insert inst
+ Worklist.Add(New);
+ return New;
+ }
+
+ /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
+ Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
+ New->setDebugLoc(Old.getDebugLoc());
+ return InsertNewInstBefore(New, Old);
+ }
+
+ /// \brief A combiner-aware RAUW-like routine.
+ ///
+ /// This method is to be used when an instruction is found to be dead,
+ /// replaceable with another preexisting expression. Here we add all uses of
+ /// I to the worklist, replace all uses of I with the new value, then return
+ /// I, so that the inst combiner will know that I was modified.
+ Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
+ // If there are no uses to replace, then we return nullptr to indicate that
+ // no changes were made to the program.
+ if (I.use_empty()) return nullptr;
+
+ Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
+
+ // If we are replacing the instruction with itself, this must be in a
+ // segment of unreachable code, so just clobber the instruction.
+ if (&I == V)
+ V = UndefValue::get(I.getType());
+
+ DEBUG(dbgs() << "IC: Replacing " << I << "\n"
+ << " with " << *V << '\n');
+
+ I.replaceAllUsesWith(V);
+ return &I;
+ }
+
+ /// Creates a result tuple for an overflow intrinsic \p II with a given
+ /// \p Result and a constant \p Overflow value.
+ Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
+ Constant *Overflow) {
+ Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
+ StructType *ST = cast<StructType>(II->getType());
+ Constant *Struct = ConstantStruct::get(ST, V);
+ return InsertValueInst::Create(Struct, Result, 0);
+ }
+
+ /// \brief Combiner aware instruction erasure.
+ ///
+ /// When dealing with an instruction that has side effects or produces a void
+ /// value, we can't rely on DCE to delete the instruction. Instead, visit
+ /// methods should return the value returned by this function.
+ Instruction *eraseInstFromFunction(Instruction &I) {
+ DEBUG(dbgs() << "IC: ERASE " << I << '\n');
+ assert(I.use_empty() && "Cannot erase instruction that is used!");
+ salvageDebugInfo(I);
+
+ // Make sure that we reprocess all operands now that we reduced their
+ // use counts.
+ if (I.getNumOperands() < 8) {
+ for (Use &Operand : I.operands())
+ if (auto *Inst = dyn_cast<Instruction>(Operand))
+ Worklist.Add(Inst);
+ }
+ Worklist.Remove(&I);
+ I.eraseFromParent();
+ MadeIRChange = true;
+ return nullptr; // Don't do anything with FI
+ }
+
+ void computeKnownBits(const Value *V, KnownBits &Known,
+ unsigned Depth, const Instruction *CxtI) const {
+ llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
+ }
+
+ KnownBits computeKnownBits(const Value *V, unsigned Depth,
+ const Instruction *CxtI) const {
+ return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
+ }
+
+ bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
+ unsigned Depth = 0,
+ const Instruction *CxtI = nullptr) {
+ return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
+ }
+
+ bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
+ const Instruction *CxtI = nullptr) const {
+ return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
+ }
+
+ unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
+ const Instruction *CxtI = nullptr) const {
+ return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
+ }
+
+ OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
+ const Value *RHS,
+ const Instruction *CxtI) const {
+ return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
+ }
+
+ OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
+ const Value *RHS,
+ const Instruction *CxtI) const {
+ return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
+ }
+
+ OverflowResult computeOverflowForSignedAdd(const Value *LHS,
+ const Value *RHS,
+ const Instruction *CxtI) const {
+ return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
+ }
+
+ /// Maximum size of array considered when transforming.
+ uint64_t MaxArraySizeForCombine;
+
+private:
+ /// \brief Performs a few simplifications for operators which are associative
+ /// or commutative.
+ bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
+
+ /// \brief Tries to simplify binary operations which some other binary
+ /// operation distributes over.
+ ///
+ /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
+ /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
+ /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
+ /// value, or null if it didn't simplify.
+ Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
+
+ // Binary Op helper for select operations where the expression can be
+ // efficiently reorganized.
+ Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
+ Value *RHS);
+
+ /// This tries to simplify binary operations by factorizing out common terms
+ /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
+ Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
+ Value *, Value *, Value *);
+
+ /// Match a select chain which produces one of three values based on whether
+ /// the LHS is less than, equal to, or greater than RHS respectively.
+ /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
+ /// Equal and Greater values are saved in the matching process and returned to
+ /// the caller.
+ bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
+ ConstantInt *&Less, ConstantInt *&Equal,
+ ConstantInt *&Greater);
+
+ /// \brief Attempts to replace V with a simpler value based on the demanded
+ /// bits.
+ Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
+ unsigned Depth, Instruction *CxtI);
+ bool SimplifyDemandedBits(Instruction *I, unsigned Op,
+ const APInt &DemandedMask, KnownBits &Known,
+ unsigned Depth = 0);
+
+ /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
+ /// bits. It also tries to handle simplifications that can be done based on
+ /// DemandedMask, but without modifying the Instruction.
+ Value *SimplifyMultipleUseDemandedBits(Instruction *I,
+ const APInt &DemandedMask,
+ KnownBits &Known,
+ unsigned Depth, Instruction *CxtI);
+
+ /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
+ /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
+ Value *simplifyShrShlDemandedBits(
+ Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
+ const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
+
+ /// \brief Tries to simplify operands to an integer instruction based on its
+ /// demanded bits.
+ bool SimplifyDemandedInstructionBits(Instruction &Inst);
+
+ Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
+ APInt &UndefElts, unsigned Depth = 0);
+
+ Value *SimplifyVectorOp(BinaryOperator &Inst);
+
+
+ /// Given a binary operator, cast instruction, or select which has a PHI node
+ /// as operand #0, see if we can fold the instruction into the PHI (which is
+ /// only possible if all operands to the PHI are constants).
+ Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
+
+ /// Given an instruction with a select as one operand and a constant as the
+ /// other operand, try to fold the binary operator into the select arguments.
+ /// This also works for Cast instructions, which obviously do not have a
+ /// second operand.
+ Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
+
+ /// This is a convenience wrapper function for the above two functions.
+ Instruction *foldOpWithConstantIntoOperand(BinaryOperator &I);
+
+ Instruction *foldAddWithConstant(BinaryOperator &Add);
+
+ /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
+ /// its operands.
+ Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
+ Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
+
+ /// If an integer typed PHI has only one use which is an IntToPtr operation,
+ /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
+ /// insert a new pointer typed PHI and replace the original one.
+ Instruction *FoldIntegerTypedPHI(PHINode &PN);
+
+ /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
+ /// folded operation.
+ void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
+
+ Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond, Instruction &I);
+ Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
+ const Value *Other);
+ Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
+ GlobalVariable *GV, CmpInst &ICI,
+ ConstantInt *AndCst = nullptr);
+ Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
+ Constant *RHSC);
+ Instruction *foldICmpAddOpConst(Value *X, ConstantInt *CI,
+ ICmpInst::Predicate Pred);
+ Instruction *foldICmpWithCastAndCast(ICmpInst &ICI);
+
+ Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
+ Instruction *foldICmpWithConstant(ICmpInst &Cmp);
+ Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
+ Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
+ Instruction *foldICmpBinOp(ICmpInst &Cmp);
+ Instruction *foldICmpEquality(ICmpInst &Cmp);
+ Instruction *foldICmpWithZero(ICmpInst &Cmp);
+
+ Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
+ ConstantInt *C);
+ Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
+ const APInt &C);
+ Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
+ const APInt &C);
+ Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
+ const APInt &C);
+ Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
+ const APInt &C);
+ Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
+ const APInt &C);
+ Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
+ const APInt &C);
+ Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
+ const APInt &C);
+ Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
+ const APInt &C);
+ Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
+ const APInt &C);
+ Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
+ const APInt &C);
+ Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
+ const APInt &C);
+ Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
+ const APInt &C1);
+ Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
+ const APInt &C1, const APInt &C2);
+ Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
+ const APInt &C2);
+ Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
+ const APInt &C2);
+
+ Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
+ BinaryOperator *BO,
+ const APInt &C);
+ Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt &C);
+
+ // Helpers of visitSelectInst().
+ Instruction *foldSelectExtConst(SelectInst &Sel);
+ Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
+ Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
+ Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
+ Value *A, Value *B, Instruction &Outer,
+ SelectPatternFlavor SPF2, Value *C);
+ Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
+
+ Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
+ ConstantInt *AndRHS, BinaryOperator &TheAnd);
+
+ Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
+ bool isSigned, bool Inside);
+ Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
+ Instruction *MatchBSwap(BinaryOperator &I);
+ bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
+
+ Instruction *SimplifyElementUnorderedAtomicMemCpy(AtomicMemCpyInst *AMI);
+ Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
+ Instruction *SimplifyMemSet(MemSetInst *MI);
+
+ Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
+
+ /// \brief Returns a value X such that Val = X * Scale, or null if none.
+ ///
+ /// If the multiplication is known not to overflow then NoSignedWrap is set.
+ Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
+};
+
+} // end namespace llvm
+
+#undef DEBUG_TYPE
+
+#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H