diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h | 808 |
1 files changed, 808 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h b/contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h new file mode 100644 index 000000000000..f1f66d86cb73 --- /dev/null +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineInternal.h @@ -0,0 +1,808 @@ +//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +/// \file +/// +/// This file provides internal interfaces used to implement the InstCombine. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H +#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/TargetFolder.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" +#include "llvm/Transforms/Utils/Local.h" +#include <cassert> +#include <cstdint> + +#define DEBUG_TYPE "instcombine" + +namespace llvm { + +class APInt; +class AssumptionCache; +class CallSite; +class DataLayout; +class DominatorTree; +class GEPOperator; +class GlobalVariable; +class LoopInfo; +class OptimizationRemarkEmitter; +class TargetLibraryInfo; +class User; + +/// Assign a complexity or rank value to LLVM Values. This is used to reduce +/// the amount of pattern matching needed for compares and commutative +/// instructions. For example, if we have: +/// icmp ugt X, Constant +/// or +/// xor (add X, Constant), cast Z +/// +/// We do not have to consider the commuted variants of these patterns because +/// canonicalization based on complexity guarantees the above ordering. +/// +/// This routine maps IR values to various complexity ranks: +/// 0 -> undef +/// 1 -> Constants +/// 2 -> Other non-instructions +/// 3 -> Arguments +/// 4 -> Cast and (f)neg/not instructions +/// 5 -> Other instructions +static inline unsigned getComplexity(Value *V) { + if (isa<Instruction>(V)) { + if (isa<CastInst>(V) || BinaryOperator::isNeg(V) || + BinaryOperator::isFNeg(V) || BinaryOperator::isNot(V)) + return 4; + return 5; + } + if (isa<Argument>(V)) + return 3; + return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; +} + +/// Predicate canonicalization reduces the number of patterns that need to be +/// matched by other transforms. For example, we may swap the operands of a +/// conditional branch or select to create a compare with a canonical (inverted) +/// predicate which is then more likely to be matched with other values. +static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) { + switch (Pred) { + case CmpInst::ICMP_NE: + case CmpInst::ICMP_ULE: + case CmpInst::ICMP_SLE: + case CmpInst::ICMP_UGE: + case CmpInst::ICMP_SGE: + // TODO: There are 16 FCMP predicates. Should others be (not) canonical? + case CmpInst::FCMP_ONE: + case CmpInst::FCMP_OLE: + case CmpInst::FCMP_OGE: + return false; + default: + return true; + } +} + +/// Return the source operand of a potentially bitcasted value while optionally +/// checking if it has one use. If there is no bitcast or the one use check is +/// not met, return the input value itself. +static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) { + if (auto *BitCast = dyn_cast<BitCastInst>(V)) + if (!OneUseOnly || BitCast->hasOneUse()) + return BitCast->getOperand(0); + + // V is not a bitcast or V has more than one use and OneUseOnly is true. + return V; +} + +/// \brief Add one to a Constant +static inline Constant *AddOne(Constant *C) { + return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); +} + +/// \brief Subtract one from a Constant +static inline Constant *SubOne(Constant *C) { + return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); +} + +/// \brief Return true if the specified value is free to invert (apply ~ to). +/// This happens in cases where the ~ can be eliminated. If WillInvertAllUses +/// is true, work under the assumption that the caller intends to remove all +/// uses of V and only keep uses of ~V. +static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) { + // ~(~(X)) -> X. + if (BinaryOperator::isNot(V)) + return true; + + // Constants can be considered to be not'ed values. + if (isa<ConstantInt>(V)) + return true; + + // A vector of constant integers can be inverted easily. + if (V->getType()->isVectorTy() && isa<Constant>(V)) { + unsigned NumElts = V->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + Constant *Elt = cast<Constant>(V)->getAggregateElement(i); + if (!Elt) + return false; + + if (isa<UndefValue>(Elt)) + continue; + + if (!isa<ConstantInt>(Elt)) + return false; + } + return true; + } + + // Compares can be inverted if all of their uses are being modified to use the + // ~V. + if (isa<CmpInst>(V)) + return WillInvertAllUses; + + // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1 + // - Constant) - A` if we are willing to invert all of the uses. + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) + if (BO->getOpcode() == Instruction::Add || + BO->getOpcode() == Instruction::Sub) + if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1))) + return WillInvertAllUses; + + return false; +} + +/// \brief Specific patterns of overflow check idioms that we match. +enum OverflowCheckFlavor { + OCF_UNSIGNED_ADD, + OCF_SIGNED_ADD, + OCF_UNSIGNED_SUB, + OCF_SIGNED_SUB, + OCF_UNSIGNED_MUL, + OCF_SIGNED_MUL, + + OCF_INVALID +}; + +/// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op +/// intrinsic. +static inline OverflowCheckFlavor +IntrinsicIDToOverflowCheckFlavor(unsigned ID) { + switch (ID) { + default: + return OCF_INVALID; + case Intrinsic::uadd_with_overflow: + return OCF_UNSIGNED_ADD; + case Intrinsic::sadd_with_overflow: + return OCF_SIGNED_ADD; + case Intrinsic::usub_with_overflow: + return OCF_UNSIGNED_SUB; + case Intrinsic::ssub_with_overflow: + return OCF_SIGNED_SUB; + case Intrinsic::umul_with_overflow: + return OCF_UNSIGNED_MUL; + case Intrinsic::smul_with_overflow: + return OCF_SIGNED_MUL; + } +} + +/// \brief The core instruction combiner logic. +/// +/// This class provides both the logic to recursively visit instructions and +/// combine them. +class LLVM_LIBRARY_VISIBILITY InstCombiner + : public InstVisitor<InstCombiner, Instruction *> { + // FIXME: These members shouldn't be public. +public: + /// \brief A worklist of the instructions that need to be simplified. + InstCombineWorklist &Worklist; + + /// \brief An IRBuilder that automatically inserts new instructions into the + /// worklist. + using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>; + BuilderTy &Builder; + +private: + // Mode in which we are running the combiner. + const bool MinimizeSize; + + /// Enable combines that trigger rarely but are costly in compiletime. + const bool ExpensiveCombines; + + AliasAnalysis *AA; + + // Required analyses. + AssumptionCache &AC; + TargetLibraryInfo &TLI; + DominatorTree &DT; + const DataLayout &DL; + const SimplifyQuery SQ; + OptimizationRemarkEmitter &ORE; + + // Optional analyses. When non-null, these can both be used to do better + // combining and will be updated to reflect any changes. + LoopInfo *LI; + + bool MadeIRChange = false; + +public: + InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder, + bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA, + AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, + OptimizationRemarkEmitter &ORE, const DataLayout &DL, + LoopInfo *LI) + : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize), + ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT), + DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), LI(LI) {} + + /// \brief Run the combiner over the entire worklist until it is empty. + /// + /// \returns true if the IR is changed. + bool run(); + + AssumptionCache &getAssumptionCache() const { return AC; } + + const DataLayout &getDataLayout() const { return DL; } + + DominatorTree &getDominatorTree() const { return DT; } + + LoopInfo *getLoopInfo() const { return LI; } + + TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } + + // Visitation implementation - Implement instruction combining for different + // instruction types. The semantics are as follows: + // Return Value: + // null - No change was made + // I - Change was made, I is still valid, I may be dead though + // otherwise - Change was made, replace I with returned instruction + // + Instruction *visitAdd(BinaryOperator &I); + Instruction *visitFAdd(BinaryOperator &I); + Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty); + Instruction *visitSub(BinaryOperator &I); + Instruction *visitFSub(BinaryOperator &I); + Instruction *visitMul(BinaryOperator &I); + Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C, + Instruction *InsertBefore); + Instruction *visitFMul(BinaryOperator &I); + Instruction *visitURem(BinaryOperator &I); + Instruction *visitSRem(BinaryOperator &I); + Instruction *visitFRem(BinaryOperator &I); + bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I); + Instruction *commonRemTransforms(BinaryOperator &I); + Instruction *commonIRemTransforms(BinaryOperator &I); + Instruction *commonDivTransforms(BinaryOperator &I); + Instruction *commonIDivTransforms(BinaryOperator &I); + Instruction *visitUDiv(BinaryOperator &I); + Instruction *visitSDiv(BinaryOperator &I); + Instruction *visitFDiv(BinaryOperator &I); + Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted); + Instruction *visitAnd(BinaryOperator &I); + Instruction *visitOr(BinaryOperator &I); + Instruction *visitXor(BinaryOperator &I); + Instruction *visitShl(BinaryOperator &I); + Instruction *visitAShr(BinaryOperator &I); + Instruction *visitLShr(BinaryOperator &I); + Instruction *commonShiftTransforms(BinaryOperator &I); + Instruction *visitFCmpInst(FCmpInst &I); + Instruction *visitICmpInst(ICmpInst &I); + Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1, + BinaryOperator &I); + Instruction *commonCastTransforms(CastInst &CI); + Instruction *commonPointerCastTransforms(CastInst &CI); + Instruction *visitTrunc(TruncInst &CI); + Instruction *visitZExt(ZExtInst &CI); + Instruction *visitSExt(SExtInst &CI); + Instruction *visitFPTrunc(FPTruncInst &CI); + Instruction *visitFPExt(CastInst &CI); + Instruction *visitFPToUI(FPToUIInst &FI); + Instruction *visitFPToSI(FPToSIInst &FI); + Instruction *visitUIToFP(CastInst &CI); + Instruction *visitSIToFP(CastInst &CI); + Instruction *visitPtrToInt(PtrToIntInst &CI); + Instruction *visitIntToPtr(IntToPtrInst &CI); + Instruction *visitBitCast(BitCastInst &CI); + Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI); + Instruction *FoldItoFPtoI(Instruction &FI); + Instruction *visitSelectInst(SelectInst &SI); + Instruction *visitCallInst(CallInst &CI); + Instruction *visitInvokeInst(InvokeInst &II); + + Instruction *SliceUpIllegalIntegerPHI(PHINode &PN); + Instruction *visitPHINode(PHINode &PN); + Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); + Instruction *visitAllocaInst(AllocaInst &AI); + Instruction *visitAllocSite(Instruction &FI); + Instruction *visitFree(CallInst &FI); + Instruction *visitLoadInst(LoadInst &LI); + Instruction *visitStoreInst(StoreInst &SI); + Instruction *visitBranchInst(BranchInst &BI); + Instruction *visitFenceInst(FenceInst &FI); + Instruction *visitSwitchInst(SwitchInst &SI); + Instruction *visitReturnInst(ReturnInst &RI); + Instruction *visitInsertValueInst(InsertValueInst &IV); + Instruction *visitInsertElementInst(InsertElementInst &IE); + Instruction *visitExtractElementInst(ExtractElementInst &EI); + Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); + Instruction *visitExtractValueInst(ExtractValueInst &EV); + Instruction *visitLandingPadInst(LandingPadInst &LI); + Instruction *visitVAStartInst(VAStartInst &I); + Instruction *visitVACopyInst(VACopyInst &I); + + /// Specify what to return for unhandled instructions. + Instruction *visitInstruction(Instruction &I) { return nullptr; } + + /// True when DB dominates all uses of DI except UI. + /// UI must be in the same block as DI. + /// The routine checks that the DI parent and DB are different. + bool dominatesAllUses(const Instruction *DI, const Instruction *UI, + const BasicBlock *DB) const; + + /// Try to replace select with select operand SIOpd in SI-ICmp sequence. + bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, + const unsigned SIOpd); + + /// Try to replace instruction \p I with value \p V which are pointers + /// in different address space. + /// \return true if successful. + bool replacePointer(Instruction &I, Value *V); + +private: + bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const; + bool shouldChangeType(Type *From, Type *To) const; + Value *dyn_castNegVal(Value *V) const; + Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const; + Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset, + SmallVectorImpl<Value *> &NewIndices); + + /// Classify whether a cast is worth optimizing. + /// + /// This is a helper to decide whether the simplification of + /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed. + /// + /// \param CI The cast we are interested in. + /// + /// \return true if this cast actually results in any code being generated and + /// if it cannot already be eliminated by some other transformation. + bool shouldOptimizeCast(CastInst *CI); + + /// \brief Try to optimize a sequence of instructions checking if an operation + /// on LHS and RHS overflows. + /// + /// If this overflow check is done via one of the overflow check intrinsics, + /// then CtxI has to be the call instruction calling that intrinsic. If this + /// overflow check is done by arithmetic followed by a compare, then CtxI has + /// to be the arithmetic instruction. + /// + /// If a simplification is possible, stores the simplified result of the + /// operation in OperationResult and result of the overflow check in + /// OverflowResult, and return true. If no simplification is possible, + /// returns false. + bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS, + Instruction &CtxI, Value *&OperationResult, + Constant *&OverflowResult); + + Instruction *visitCallSite(CallSite CS); + Instruction *tryOptimizeCall(CallInst *CI); + bool transformConstExprCastCall(CallSite CS); + Instruction *transformCallThroughTrampoline(CallSite CS, + IntrinsicInst *Tramp); + + /// Transform (zext icmp) to bitwise / integer operations in order to + /// eliminate it. + /// + /// \param ICI The icmp of the (zext icmp) pair we are interested in. + /// \parem CI The zext of the (zext icmp) pair we are interested in. + /// \param DoTransform Pass false to just test whether the given (zext icmp) + /// would be transformed. Pass true to actually perform the transformation. + /// + /// \return null if the transformation cannot be performed. If the + /// transformation can be performed the new instruction that replaces the + /// (zext icmp) pair will be returned (if \p DoTransform is false the + /// unmodified \p ICI will be returned in this case). + Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI, + bool DoTransform = true); + + Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI); + + bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS, + const Instruction &CxtI) const { + return computeOverflowForSignedAdd(LHS, RHS, &CxtI) == + OverflowResult::NeverOverflows; + } + + bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS, + const Instruction &CxtI) const { + return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) == + OverflowResult::NeverOverflows; + } + + bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS, + const Instruction &CxtI) const; + bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS, + const Instruction &CxtI) const; + bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS, + const Instruction &CxtI) const; + + bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS, + const Instruction &CxtI) const { + return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) == + OverflowResult::NeverOverflows; + } + + Value *EmitGEPOffset(User *GEP); + Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN); + Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask); + Instruction *foldCastedBitwiseLogic(BinaryOperator &I); + Instruction *narrowBinOp(TruncInst &Trunc); + Instruction *narrowRotate(TruncInst &Trunc); + Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN); + + /// Determine if a pair of casts can be replaced by a single cast. + /// + /// \param CI1 The first of a pair of casts. + /// \param CI2 The second of a pair of casts. + /// + /// \return 0 if the cast pair cannot be eliminated, otherwise returns an + /// Instruction::CastOps value for a cast that can replace the pair, casting + /// CI1->getSrcTy() to CI2->getDstTy(). + /// + /// \see CastInst::isEliminableCastPair + Instruction::CastOps isEliminableCastPair(const CastInst *CI1, + const CastInst *CI2); + + Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI); + Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI); + Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS); + + /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp). + /// NOTE: Unlike most of instcombine, this returns a Value which should + /// already be inserted into the function. + Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd); + + Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS, + bool JoinedByAnd, Instruction &CxtI); +public: + /// \brief Inserts an instruction \p New before instruction \p Old + /// + /// Also adds the new instruction to the worklist and returns \p New so that + /// it is suitable for use as the return from the visitation patterns. + Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { + assert(New && !New->getParent() && + "New instruction already inserted into a basic block!"); + BasicBlock *BB = Old.getParent(); + BB->getInstList().insert(Old.getIterator(), New); // Insert inst + Worklist.Add(New); + return New; + } + + /// \brief Same as InsertNewInstBefore, but also sets the debug loc. + Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { + New->setDebugLoc(Old.getDebugLoc()); + return InsertNewInstBefore(New, Old); + } + + /// \brief A combiner-aware RAUW-like routine. + /// + /// This method is to be used when an instruction is found to be dead, + /// replaceable with another preexisting expression. Here we add all uses of + /// I to the worklist, replace all uses of I with the new value, then return + /// I, so that the inst combiner will know that I was modified. + Instruction *replaceInstUsesWith(Instruction &I, Value *V) { + // If there are no uses to replace, then we return nullptr to indicate that + // no changes were made to the program. + if (I.use_empty()) return nullptr; + + Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist. + + // If we are replacing the instruction with itself, this must be in a + // segment of unreachable code, so just clobber the instruction. + if (&I == V) + V = UndefValue::get(I.getType()); + + DEBUG(dbgs() << "IC: Replacing " << I << "\n" + << " with " << *V << '\n'); + + I.replaceAllUsesWith(V); + return &I; + } + + /// Creates a result tuple for an overflow intrinsic \p II with a given + /// \p Result and a constant \p Overflow value. + Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result, + Constant *Overflow) { + Constant *V[] = {UndefValue::get(Result->getType()), Overflow}; + StructType *ST = cast<StructType>(II->getType()); + Constant *Struct = ConstantStruct::get(ST, V); + return InsertValueInst::Create(Struct, Result, 0); + } + + /// \brief Combiner aware instruction erasure. + /// + /// When dealing with an instruction that has side effects or produces a void + /// value, we can't rely on DCE to delete the instruction. Instead, visit + /// methods should return the value returned by this function. + Instruction *eraseInstFromFunction(Instruction &I) { + DEBUG(dbgs() << "IC: ERASE " << I << '\n'); + assert(I.use_empty() && "Cannot erase instruction that is used!"); + salvageDebugInfo(I); + + // Make sure that we reprocess all operands now that we reduced their + // use counts. + if (I.getNumOperands() < 8) { + for (Use &Operand : I.operands()) + if (auto *Inst = dyn_cast<Instruction>(Operand)) + Worklist.Add(Inst); + } + Worklist.Remove(&I); + I.eraseFromParent(); + MadeIRChange = true; + return nullptr; // Don't do anything with FI + } + + void computeKnownBits(const Value *V, KnownBits &Known, + unsigned Depth, const Instruction *CxtI) const { + llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT); + } + + KnownBits computeKnownBits(const Value *V, unsigned Depth, + const Instruction *CxtI) const { + return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT); + } + + bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false, + unsigned Depth = 0, + const Instruction *CxtI = nullptr) { + return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT); + } + + bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0, + const Instruction *CxtI = nullptr) const { + return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT); + } + + unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0, + const Instruction *CxtI = nullptr) const { + return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); + } + + OverflowResult computeOverflowForUnsignedMul(const Value *LHS, + const Value *RHS, + const Instruction *CxtI) const { + return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT); + } + + OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, + const Value *RHS, + const Instruction *CxtI) const { + return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); + } + + OverflowResult computeOverflowForSignedAdd(const Value *LHS, + const Value *RHS, + const Instruction *CxtI) const { + return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); + } + + /// Maximum size of array considered when transforming. + uint64_t MaxArraySizeForCombine; + +private: + /// \brief Performs a few simplifications for operators which are associative + /// or commutative. + bool SimplifyAssociativeOrCommutative(BinaryOperator &I); + + /// \brief Tries to simplify binary operations which some other binary + /// operation distributes over. + /// + /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)" + /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A + /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified + /// value, or null if it didn't simplify. + Value *SimplifyUsingDistributiveLaws(BinaryOperator &I); + + // Binary Op helper for select operations where the expression can be + // efficiently reorganized. + Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, + Value *RHS); + + /// This tries to simplify binary operations by factorizing out common terms + /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). + Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *, + Value *, Value *, Value *); + + /// Match a select chain which produces one of three values based on whether + /// the LHS is less than, equal to, or greater than RHS respectively. + /// Return true if we matched a three way compare idiom. The LHS, RHS, Less, + /// Equal and Greater values are saved in the matching process and returned to + /// the caller. + bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS, + ConstantInt *&Less, ConstantInt *&Equal, + ConstantInt *&Greater); + + /// \brief Attempts to replace V with a simpler value based on the demanded + /// bits. + Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known, + unsigned Depth, Instruction *CxtI); + bool SimplifyDemandedBits(Instruction *I, unsigned Op, + const APInt &DemandedMask, KnownBits &Known, + unsigned Depth = 0); + + /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne + /// bits. It also tries to handle simplifications that can be done based on + /// DemandedMask, but without modifying the Instruction. + Value *SimplifyMultipleUseDemandedBits(Instruction *I, + const APInt &DemandedMask, + KnownBits &Known, + unsigned Depth, Instruction *CxtI); + + /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded + /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence. + Value *simplifyShrShlDemandedBits( + Instruction *Shr, const APInt &ShrOp1, Instruction *Shl, + const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known); + + /// \brief Tries to simplify operands to an integer instruction based on its + /// demanded bits. + bool SimplifyDemandedInstructionBits(Instruction &Inst); + + Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, + APInt &UndefElts, unsigned Depth = 0); + + Value *SimplifyVectorOp(BinaryOperator &Inst); + + + /// Given a binary operator, cast instruction, or select which has a PHI node + /// as operand #0, see if we can fold the instruction into the PHI (which is + /// only possible if all operands to the PHI are constants). + Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN); + + /// Given an instruction with a select as one operand and a constant as the + /// other operand, try to fold the binary operator into the select arguments. + /// This also works for Cast instructions, which obviously do not have a + /// second operand. + Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI); + + /// This is a convenience wrapper function for the above two functions. + Instruction *foldOpWithConstantIntoOperand(BinaryOperator &I); + + Instruction *foldAddWithConstant(BinaryOperator &Add); + + /// \brief Try to rotate an operation below a PHI node, using PHI nodes for + /// its operands. + Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); + Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); + Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN); + Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN); + Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN); + + /// If an integer typed PHI has only one use which is an IntToPtr operation, + /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise + /// insert a new pointer typed PHI and replace the original one. + Instruction *FoldIntegerTypedPHI(PHINode &PN); + + /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the + /// folded operation. + void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN); + + Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, + ICmpInst::Predicate Cond, Instruction &I); + Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca, + const Value *Other); + Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, + GlobalVariable *GV, CmpInst &ICI, + ConstantInt *AndCst = nullptr); + Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, + Constant *RHSC); + Instruction *foldICmpAddOpConst(Value *X, ConstantInt *CI, + ICmpInst::Predicate Pred); + Instruction *foldICmpWithCastAndCast(ICmpInst &ICI); + + Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp); + Instruction *foldICmpWithConstant(ICmpInst &Cmp); + Instruction *foldICmpInstWithConstant(ICmpInst &Cmp); + Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp); + Instruction *foldICmpBinOp(ICmpInst &Cmp); + Instruction *foldICmpEquality(ICmpInst &Cmp); + Instruction *foldICmpWithZero(ICmpInst &Cmp); + + Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select, + ConstantInt *C); + Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc, + const APInt &C); + Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And, + const APInt &C); + Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor, + const APInt &C); + Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, + const APInt &C); + Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul, + const APInt &C); + Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl, + const APInt &C); + Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr, + const APInt &C); + Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv, + const APInt &C); + Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div, + const APInt &C); + Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub, + const APInt &C); + Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add, + const APInt &C); + Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And, + const APInt &C1); + Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, + const APInt &C1, const APInt &C2); + Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, + const APInt &C2); + Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, + const APInt &C2); + + Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, + BinaryOperator *BO, + const APInt &C); + Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, const APInt &C); + + // Helpers of visitSelectInst(). + Instruction *foldSelectExtConst(SelectInst &Sel); + Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); + Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *); + Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, + Value *A, Value *B, Instruction &Outer, + SelectPatternFlavor SPF2, Value *C); + Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI); + + Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS, + ConstantInt *AndRHS, BinaryOperator &TheAnd); + + Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, + bool isSigned, bool Inside); + Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI); + Instruction *MatchBSwap(BinaryOperator &I); + bool SimplifyStoreAtEndOfBlock(StoreInst &SI); + + Instruction *SimplifyElementUnorderedAtomicMemCpy(AtomicMemCpyInst *AMI); + Instruction *SimplifyMemTransfer(MemIntrinsic *MI); + Instruction *SimplifyMemSet(MemSetInst *MI); + + Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned); + + /// \brief Returns a value X such that Val = X * Scale, or null if none. + /// + /// If the multiplication is known not to overflow then NoSignedWrap is set. + Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap); +}; + +} // end namespace llvm + +#undef DEBUG_TYPE + +#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H |