diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp | 875 | 
1 files changed, 875 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp new file mode 100644 index 000000000000..c514c9c9cd4a --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp @@ -0,0 +1,875 @@ +//===- CodeExtractor.cpp - Pull code region into a new function -----------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the interface to tear out a code region, such as an +// individual loop or a parallel section, into a new function, replacing it with +// a call to the new function. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/CodeExtractor.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BlockFrequencyInfoImpl.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/RegionInfo.h" +#include "llvm/Analysis/RegionIterator.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Verifier.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <algorithm> +#include <set> +using namespace llvm; + +#define DEBUG_TYPE "code-extractor" + +// Provide a command-line option to aggregate function arguments into a struct +// for functions produced by the code extractor. This is useful when converting +// extracted functions to pthread-based code, as only one argument (void*) can +// be passed in to pthread_create(). +static cl::opt<bool> +AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, +                 cl::desc("Aggregate arguments to code-extracted functions")); + +/// \brief Test whether a block is valid for extraction. +bool CodeExtractor::isBlockValidForExtraction(const BasicBlock &BB) { +  // Landing pads must be in the function where they were inserted for cleanup. +  if (BB.isEHPad()) +    return false; + +  // Don't hoist code containing allocas, invokes, or vastarts. +  for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { +    if (isa<AllocaInst>(I) || isa<InvokeInst>(I)) +      return false; +    if (const CallInst *CI = dyn_cast<CallInst>(I)) +      if (const Function *F = CI->getCalledFunction()) +        if (F->getIntrinsicID() == Intrinsic::vastart) +          return false; +  } + +  return true; +} + +/// \brief Build a set of blocks to extract if the input blocks are viable. +template <typename IteratorT> +static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin, +                                                       IteratorT BBEnd) { +  SetVector<BasicBlock *> Result; + +  assert(BBBegin != BBEnd); + +  // Loop over the blocks, adding them to our set-vector, and aborting with an +  // empty set if we encounter invalid blocks. +  do { +    if (!Result.insert(*BBBegin)) +      llvm_unreachable("Repeated basic blocks in extraction input"); + +    if (!CodeExtractor::isBlockValidForExtraction(**BBBegin)) { +      Result.clear(); +      return Result; +    } +  } while (++BBBegin != BBEnd); + +#ifndef NDEBUG +  for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()), +                                         E = Result.end(); +       I != E; ++I) +    for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I); +         PI != PE; ++PI) +      assert(Result.count(*PI) && +             "No blocks in this region may have entries from outside the region" +             " except for the first block!"); +#endif + +  return Result; +} + +/// \brief Helper to call buildExtractionBlockSet with an ArrayRef. +static SetVector<BasicBlock *> +buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) { +  return buildExtractionBlockSet(BBs.begin(), BBs.end()); +} + +/// \brief Helper to call buildExtractionBlockSet with a RegionNode. +static SetVector<BasicBlock *> +buildExtractionBlockSet(const RegionNode &RN) { +  if (!RN.isSubRegion()) +    // Just a single BasicBlock. +    return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>()); + +  const Region &R = *RN.getNodeAs<Region>(); + +  return buildExtractionBlockSet(R.block_begin(), R.block_end()); +} + +CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs, +                             BlockFrequencyInfo *BFI, +                             BranchProbabilityInfo *BPI) +    : DT(nullptr), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), +      BPI(BPI), Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {} + +CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, +                             bool AggregateArgs, BlockFrequencyInfo *BFI, +                             BranchProbabilityInfo *BPI) +    : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), +      BPI(BPI), Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {} + +CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, +                             BlockFrequencyInfo *BFI, +                             BranchProbabilityInfo *BPI) +    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), +      BPI(BPI), Blocks(buildExtractionBlockSet(L.getBlocks())), +      NumExitBlocks(~0U) {} + +CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN, +                             bool AggregateArgs, BlockFrequencyInfo *BFI, +                             BranchProbabilityInfo *BPI) +    : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), +      BPI(BPI), Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {} + +/// definedInRegion - Return true if the specified value is defined in the +/// extracted region. +static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { +  if (Instruction *I = dyn_cast<Instruction>(V)) +    if (Blocks.count(I->getParent())) +      return true; +  return false; +} + +/// definedInCaller - Return true if the specified value is defined in the +/// function being code extracted, but not in the region being extracted. +/// These values must be passed in as live-ins to the function. +static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { +  if (isa<Argument>(V)) return true; +  if (Instruction *I = dyn_cast<Instruction>(V)) +    if (!Blocks.count(I->getParent())) +      return true; +  return false; +} + +void CodeExtractor::findInputsOutputs(ValueSet &Inputs, +                                      ValueSet &Outputs) const { +  for (BasicBlock *BB : Blocks) { +    // If a used value is defined outside the region, it's an input.  If an +    // instruction is used outside the region, it's an output. +    for (Instruction &II : *BB) { +      for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE; +           ++OI) +        if (definedInCaller(Blocks, *OI)) +          Inputs.insert(*OI); + +      for (User *U : II.users()) +        if (!definedInRegion(Blocks, U)) { +          Outputs.insert(&II); +          break; +        } +    } +  } +} + +/// severSplitPHINodes - If a PHI node has multiple inputs from outside of the +/// region, we need to split the entry block of the region so that the PHI node +/// is easier to deal with. +void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { +  unsigned NumPredsFromRegion = 0; +  unsigned NumPredsOutsideRegion = 0; + +  if (Header != &Header->getParent()->getEntryBlock()) { +    PHINode *PN = dyn_cast<PHINode>(Header->begin()); +    if (!PN) return;  // No PHI nodes. + +    // If the header node contains any PHI nodes, check to see if there is more +    // than one entry from outside the region.  If so, we need to sever the +    // header block into two. +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (Blocks.count(PN->getIncomingBlock(i))) +        ++NumPredsFromRegion; +      else +        ++NumPredsOutsideRegion; + +    // If there is one (or fewer) predecessor from outside the region, we don't +    // need to do anything special. +    if (NumPredsOutsideRegion <= 1) return; +  } + +  // Otherwise, we need to split the header block into two pieces: one +  // containing PHI nodes merging values from outside of the region, and a +  // second that contains all of the code for the block and merges back any +  // incoming values from inside of the region. +  BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator(); +  BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, +                                              Header->getName()+".ce"); + +  // We only want to code extract the second block now, and it becomes the new +  // header of the region. +  BasicBlock *OldPred = Header; +  Blocks.remove(OldPred); +  Blocks.insert(NewBB); +  Header = NewBB; + +  // Okay, update dominator sets. The blocks that dominate the new one are the +  // blocks that dominate TIBB plus the new block itself. +  if (DT) +    DT->splitBlock(NewBB); + +  // Okay, now we need to adjust the PHI nodes and any branches from within the +  // region to go to the new header block instead of the old header block. +  if (NumPredsFromRegion) { +    PHINode *PN = cast<PHINode>(OldPred->begin()); +    // Loop over all of the predecessors of OldPred that are in the region, +    // changing them to branch to NewBB instead. +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (Blocks.count(PN->getIncomingBlock(i))) { +        TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); +        TI->replaceUsesOfWith(OldPred, NewBB); +      } + +    // Okay, everything within the region is now branching to the right block, we +    // just have to update the PHI nodes now, inserting PHI nodes into NewBB. +    for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { +      PHINode *PN = cast<PHINode>(AfterPHIs); +      // Create a new PHI node in the new region, which has an incoming value +      // from OldPred of PN. +      PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, +                                       PN->getName() + ".ce", &NewBB->front()); +      NewPN->addIncoming(PN, OldPred); + +      // Loop over all of the incoming value in PN, moving them to NewPN if they +      // are from the extracted region. +      for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { +        if (Blocks.count(PN->getIncomingBlock(i))) { +          NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); +          PN->removeIncomingValue(i); +          --i; +        } +      } +    } +  } +} + +void CodeExtractor::splitReturnBlocks() { +  for (BasicBlock *Block : Blocks) +    if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { +      BasicBlock *New = +          Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); +      if (DT) { +        // Old dominates New. New node dominates all other nodes dominated +        // by Old. +        DomTreeNode *OldNode = DT->getNode(Block); +        SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), +                                               OldNode->end()); + +        DomTreeNode *NewNode = DT->addNewBlock(New, Block); + +        for (DomTreeNode *I : Children) +          DT->changeImmediateDominator(I, NewNode); +      } +    } +} + +/// constructFunction - make a function based on inputs and outputs, as follows: +/// f(in0, ..., inN, out0, ..., outN) +/// +Function *CodeExtractor::constructFunction(const ValueSet &inputs, +                                           const ValueSet &outputs, +                                           BasicBlock *header, +                                           BasicBlock *newRootNode, +                                           BasicBlock *newHeader, +                                           Function *oldFunction, +                                           Module *M) { +  DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); +  DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); + +  // This function returns unsigned, outputs will go back by reference. +  switch (NumExitBlocks) { +  case 0: +  case 1: RetTy = Type::getVoidTy(header->getContext()); break; +  case 2: RetTy = Type::getInt1Ty(header->getContext()); break; +  default: RetTy = Type::getInt16Ty(header->getContext()); break; +  } + +  std::vector<Type*> paramTy; + +  // Add the types of the input values to the function's argument list +  for (Value *value : inputs) { +    DEBUG(dbgs() << "value used in func: " << *value << "\n"); +    paramTy.push_back(value->getType()); +  } + +  // Add the types of the output values to the function's argument list. +  for (Value *output : outputs) { +    DEBUG(dbgs() << "instr used in func: " << *output << "\n"); +    if (AggregateArgs) +      paramTy.push_back(output->getType()); +    else +      paramTy.push_back(PointerType::getUnqual(output->getType())); +  } + +  DEBUG({ +    dbgs() << "Function type: " << *RetTy << " f("; +    for (Type *i : paramTy) +      dbgs() << *i << ", "; +    dbgs() << ")\n"; +  }); + +  StructType *StructTy; +  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { +    StructTy = StructType::get(M->getContext(), paramTy); +    paramTy.clear(); +    paramTy.push_back(PointerType::getUnqual(StructTy)); +  } +  FunctionType *funcType = +                  FunctionType::get(RetTy, paramTy, false); + +  // Create the new function +  Function *newFunction = Function::Create(funcType, +                                           GlobalValue::InternalLinkage, +                                           oldFunction->getName() + "_" + +                                           header->getName(), M); +  // If the old function is no-throw, so is the new one. +  if (oldFunction->doesNotThrow()) +    newFunction->setDoesNotThrow(); + +  // Inherit the uwtable attribute if we need to. +  if (oldFunction->hasUWTable()) +    newFunction->setHasUWTable(); + +  // Inherit all of the target dependent attributes. +  //  (e.g. If the extracted region contains a call to an x86.sse +  //  instruction we need to make sure that the extracted region has the +  //  "target-features" attribute allowing it to be lowered. +  // FIXME: This should be changed to check to see if a specific +  //           attribute can not be inherited. +  AttributeSet OldFnAttrs = oldFunction->getAttributes().getFnAttributes(); +  AttrBuilder AB(OldFnAttrs, AttributeSet::FunctionIndex); +  for (auto Attr : AB.td_attrs()) +    newFunction->addFnAttr(Attr.first, Attr.second); + +  newFunction->getBasicBlockList().push_back(newRootNode); + +  // Create an iterator to name all of the arguments we inserted. +  Function::arg_iterator AI = newFunction->arg_begin(); + +  // Rewrite all users of the inputs in the extracted region to use the +  // arguments (or appropriate addressing into struct) instead. +  for (unsigned i = 0, e = inputs.size(); i != e; ++i) { +    Value *RewriteVal; +    if (AggregateArgs) { +      Value *Idx[2]; +      Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); +      Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); +      TerminatorInst *TI = newFunction->begin()->getTerminator(); +      GetElementPtrInst *GEP = GetElementPtrInst::Create( +          StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI); +      RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); +    } else +      RewriteVal = &*AI++; + +    std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end()); +    for (User *use : Users) +      if (Instruction *inst = dyn_cast<Instruction>(use)) +        if (Blocks.count(inst->getParent())) +          inst->replaceUsesOfWith(inputs[i], RewriteVal); +  } + +  // Set names for input and output arguments. +  if (!AggregateArgs) { +    AI = newFunction->arg_begin(); +    for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) +      AI->setName(inputs[i]->getName()); +    for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) +      AI->setName(outputs[i]->getName()+".out"); +  } + +  // Rewrite branches to basic blocks outside of the loop to new dummy blocks +  // within the new function. This must be done before we lose track of which +  // blocks were originally in the code region. +  std::vector<User*> Users(header->user_begin(), header->user_end()); +  for (unsigned i = 0, e = Users.size(); i != e; ++i) +    // The BasicBlock which contains the branch is not in the region +    // modify the branch target to a new block +    if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) +      if (!Blocks.count(TI->getParent()) && +          TI->getParent()->getParent() == oldFunction) +        TI->replaceUsesOfWith(header, newHeader); + +  return newFunction; +} + +/// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI +/// that uses the value within the basic block, and return the predecessor +/// block associated with that use, or return 0 if none is found. +static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { +  for (Use &U : Used->uses()) { +     PHINode *P = dyn_cast<PHINode>(U.getUser()); +     if (P && P->getParent() == BB) +       return P->getIncomingBlock(U); +  } + +  return nullptr; +} + +/// emitCallAndSwitchStatement - This method sets up the caller side by adding +/// the call instruction, splitting any PHI nodes in the header block as +/// necessary. +void CodeExtractor:: +emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, +                           ValueSet &inputs, ValueSet &outputs) { +  // Emit a call to the new function, passing in: *pointer to struct (if +  // aggregating parameters), or plan inputs and allocated memory for outputs +  std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; +   +  LLVMContext &Context = newFunction->getContext(); + +  // Add inputs as params, or to be filled into the struct +  for (Value *input : inputs) +    if (AggregateArgs) +      StructValues.push_back(input); +    else +      params.push_back(input); + +  // Create allocas for the outputs +  for (Value *output : outputs) { +    if (AggregateArgs) { +      StructValues.push_back(output); +    } else { +      AllocaInst *alloca = +          new AllocaInst(output->getType(), nullptr, output->getName() + ".loc", +                         &codeReplacer->getParent()->front().front()); +      ReloadOutputs.push_back(alloca); +      params.push_back(alloca); +    } +  } + +  StructType *StructArgTy = nullptr; +  AllocaInst *Struct = nullptr; +  if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { +    std::vector<Type*> ArgTypes; +    for (ValueSet::iterator v = StructValues.begin(), +           ve = StructValues.end(); v != ve; ++v) +      ArgTypes.push_back((*v)->getType()); + +    // Allocate a struct at the beginning of this function +    StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); +    Struct = new AllocaInst(StructArgTy, nullptr, "structArg", +                            &codeReplacer->getParent()->front().front()); +    params.push_back(Struct); + +    for (unsigned i = 0, e = inputs.size(); i != e; ++i) { +      Value *Idx[2]; +      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); +      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); +      GetElementPtrInst *GEP = GetElementPtrInst::Create( +          StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); +      codeReplacer->getInstList().push_back(GEP); +      StoreInst *SI = new StoreInst(StructValues[i], GEP); +      codeReplacer->getInstList().push_back(SI); +    } +  } + +  // Emit the call to the function +  CallInst *call = CallInst::Create(newFunction, params, +                                    NumExitBlocks > 1 ? "targetBlock" : ""); +  codeReplacer->getInstList().push_back(call); + +  Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); +  unsigned FirstOut = inputs.size(); +  if (!AggregateArgs) +    std::advance(OutputArgBegin, inputs.size()); + +  // Reload the outputs passed in by reference +  for (unsigned i = 0, e = outputs.size(); i != e; ++i) { +    Value *Output = nullptr; +    if (AggregateArgs) { +      Value *Idx[2]; +      Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); +      Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); +      GetElementPtrInst *GEP = GetElementPtrInst::Create( +          StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); +      codeReplacer->getInstList().push_back(GEP); +      Output = GEP; +    } else { +      Output = ReloadOutputs[i]; +    } +    LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); +    Reloads.push_back(load); +    codeReplacer->getInstList().push_back(load); +    std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end()); +    for (unsigned u = 0, e = Users.size(); u != e; ++u) { +      Instruction *inst = cast<Instruction>(Users[u]); +      if (!Blocks.count(inst->getParent())) +        inst->replaceUsesOfWith(outputs[i], load); +    } +  } + +  // Now we can emit a switch statement using the call as a value. +  SwitchInst *TheSwitch = +      SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), +                         codeReplacer, 0, codeReplacer); + +  // Since there may be multiple exits from the original region, make the new +  // function return an unsigned, switch on that number.  This loop iterates +  // over all of the blocks in the extracted region, updating any terminator +  // instructions in the to-be-extracted region that branch to blocks that are +  // not in the region to be extracted. +  std::map<BasicBlock*, BasicBlock*> ExitBlockMap; + +  unsigned switchVal = 0; +  for (BasicBlock *Block : Blocks) { +    TerminatorInst *TI = Block->getTerminator(); +    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) +      if (!Blocks.count(TI->getSuccessor(i))) { +        BasicBlock *OldTarget = TI->getSuccessor(i); +        // add a new basic block which returns the appropriate value +        BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; +        if (!NewTarget) { +          // If we don't already have an exit stub for this non-extracted +          // destination, create one now! +          NewTarget = BasicBlock::Create(Context, +                                         OldTarget->getName() + ".exitStub", +                                         newFunction); +          unsigned SuccNum = switchVal++; + +          Value *brVal = nullptr; +          switch (NumExitBlocks) { +          case 0: +          case 1: break;  // No value needed. +          case 2:         // Conditional branch, return a bool +            brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); +            break; +          default: +            brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); +            break; +          } + +          ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); + +          // Update the switch instruction. +          TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), +                                              SuccNum), +                             OldTarget); + +          // Restore values just before we exit +          Function::arg_iterator OAI = OutputArgBegin; +          for (unsigned out = 0, e = outputs.size(); out != e; ++out) { +            // For an invoke, the normal destination is the only one that is +            // dominated by the result of the invocation +            BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); + +            bool DominatesDef = true; + +            BasicBlock *NormalDest = nullptr; +            if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out])) +              NormalDest = Invoke->getNormalDest(); + +            if (NormalDest) { +              DefBlock = NormalDest; + +              // Make sure we are looking at the original successor block, not +              // at a newly inserted exit block, which won't be in the dominator +              // info. +              for (const auto &I : ExitBlockMap) +                if (DefBlock == I.second) { +                  DefBlock = I.first; +                  break; +                } + +              // In the extract block case, if the block we are extracting ends +              // with an invoke instruction, make sure that we don't emit a +              // store of the invoke value for the unwind block. +              if (!DT && DefBlock != OldTarget) +                DominatesDef = false; +            } + +            if (DT) { +              DominatesDef = DT->dominates(DefBlock, OldTarget); +               +              // If the output value is used by a phi in the target block, +              // then we need to test for dominance of the phi's predecessor +              // instead.  Unfortunately, this a little complicated since we +              // have already rewritten uses of the value to uses of the reload. +              BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],  +                                                          OldTarget); +              if (pred && DT && DT->dominates(DefBlock, pred)) +                DominatesDef = true; +            } + +            if (DominatesDef) { +              if (AggregateArgs) { +                Value *Idx[2]; +                Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); +                Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), +                                          FirstOut+out); +                GetElementPtrInst *GEP = GetElementPtrInst::Create( +                    StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(), +                    NTRet); +                new StoreInst(outputs[out], GEP, NTRet); +              } else { +                new StoreInst(outputs[out], &*OAI, NTRet); +              } +            } +            // Advance output iterator even if we don't emit a store +            if (!AggregateArgs) ++OAI; +          } +        } + +        // rewrite the original branch instruction with this new target +        TI->setSuccessor(i, NewTarget); +      } +  } + +  // Now that we've done the deed, simplify the switch instruction. +  Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); +  switch (NumExitBlocks) { +  case 0: +    // There are no successors (the block containing the switch itself), which +    // means that previously this was the last part of the function, and hence +    // this should be rewritten as a `ret' + +    // Check if the function should return a value +    if (OldFnRetTy->isVoidTy()) { +      ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void +    } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { +      // return what we have +      ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); +    } else { +      // Otherwise we must have code extracted an unwind or something, just +      // return whatever we want. +      ReturnInst::Create(Context,  +                         Constant::getNullValue(OldFnRetTy), TheSwitch); +    } + +    TheSwitch->eraseFromParent(); +    break; +  case 1: +    // Only a single destination, change the switch into an unconditional +    // branch. +    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); +    TheSwitch->eraseFromParent(); +    break; +  case 2: +    BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), +                       call, TheSwitch); +    TheSwitch->eraseFromParent(); +    break; +  default: +    // Otherwise, make the default destination of the switch instruction be one +    // of the other successors. +    TheSwitch->setCondition(call); +    TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); +    // Remove redundant case +    TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); +    break; +  } +} + +void CodeExtractor::moveCodeToFunction(Function *newFunction) { +  Function *oldFunc = (*Blocks.begin())->getParent(); +  Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); +  Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); + +  for (BasicBlock *Block : Blocks) { +    // Delete the basic block from the old function, and the list of blocks +    oldBlocks.remove(Block); + +    // Insert this basic block into the new function +    newBlocks.push_back(Block); +  } +} + +void CodeExtractor::calculateNewCallTerminatorWeights( +    BasicBlock *CodeReplacer, +    DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, +    BranchProbabilityInfo *BPI) { +  typedef BlockFrequencyInfoImplBase::Distribution Distribution; +  typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; + +  // Update the branch weights for the exit block. +  TerminatorInst *TI = CodeReplacer->getTerminator(); +  SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); + +  // Block Frequency distribution with dummy node. +  Distribution BranchDist; + +  // Add each of the frequencies of the successors. +  for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { +    BlockNode ExitNode(i); +    uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); +    if (ExitFreq != 0) +      BranchDist.addExit(ExitNode, ExitFreq); +    else +      BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero()); +  } + +  // Check for no total weight. +  if (BranchDist.Total == 0) +    return; + +  // Normalize the distribution so that they can fit in unsigned. +  BranchDist.normalize(); + +  // Create normalized branch weights and set the metadata. +  for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { +    const auto &Weight = BranchDist.Weights[I]; + +    // Get the weight and update the current BFI. +    BranchWeights[Weight.TargetNode.Index] = Weight.Amount; +    BranchProbability BP(Weight.Amount, BranchDist.Total); +    BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP); +  } +  TI->setMetadata( +      LLVMContext::MD_prof, +      MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); +} + +Function *CodeExtractor::extractCodeRegion() { +  if (!isEligible()) +    return nullptr; + +  ValueSet inputs, outputs; + +  // Assumption: this is a single-entry code region, and the header is the first +  // block in the region. +  BasicBlock *header = *Blocks.begin(); + +  // Calculate the entry frequency of the new function before we change the root +  //   block. +  BlockFrequency EntryFreq; +  if (BFI) { +    assert(BPI && "Both BPI and BFI are required to preserve profile info"); +    for (BasicBlock *Pred : predecessors(header)) { +      if (Blocks.count(Pred)) +        continue; +      EntryFreq += +          BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); +    } +  } + +  // If we have to split PHI nodes or the entry block, do so now. +  severSplitPHINodes(header); + +  // If we have any return instructions in the region, split those blocks so +  // that the return is not in the region. +  splitReturnBlocks(); + +  Function *oldFunction = header->getParent(); + +  // This takes place of the original loop +  BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),  +                                                "codeRepl", oldFunction, +                                                header); + +  // The new function needs a root node because other nodes can branch to the +  // head of the region, but the entry node of a function cannot have preds. +  BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),  +                                               "newFuncRoot"); +  newFuncRoot->getInstList().push_back(BranchInst::Create(header)); + +  // Find inputs to, outputs from the code region. +  findInputsOutputs(inputs, outputs); + +  // Calculate the exit blocks for the extracted region and the total exit +  //  weights for each of those blocks. +  DenseMap<BasicBlock *, BlockFrequency> ExitWeights; +  SmallPtrSet<BasicBlock *, 1> ExitBlocks; +  for (BasicBlock *Block : Blocks) { +    for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE; +         ++SI) { +      if (!Blocks.count(*SI)) { +        // Update the branch weight for this successor. +        if (BFI) { +          BlockFrequency &BF = ExitWeights[*SI]; +          BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI); +        } +        ExitBlocks.insert(*SI); +      } +    } +  } +  NumExitBlocks = ExitBlocks.size(); + +  // Construct new function based on inputs/outputs & add allocas for all defs. +  Function *newFunction = constructFunction(inputs, outputs, header, +                                            newFuncRoot, +                                            codeReplacer, oldFunction, +                                            oldFunction->getParent()); + +  // Update the entry count of the function. +  if (BFI) { +    Optional<uint64_t> EntryCount = +        BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); +    if (EntryCount.hasValue()) +      newFunction->setEntryCount(EntryCount.getValue()); +    BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); +  } + +  emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); + +  moveCodeToFunction(newFunction); + +  // Update the branch weights for the exit block. +  if (BFI && NumExitBlocks > 1) +    calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); + +  // Loop over all of the PHI nodes in the header block, and change any +  // references to the old incoming edge to be the new incoming edge. +  for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { +    PHINode *PN = cast<PHINode>(I); +    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +      if (!Blocks.count(PN->getIncomingBlock(i))) +        PN->setIncomingBlock(i, newFuncRoot); +  } + +  // Look at all successors of the codeReplacer block.  If any of these blocks +  // had PHI nodes in them, we need to update the "from" block to be the code +  // replacer, not the original block in the extracted region. +  std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), +                                 succ_end(codeReplacer)); +  for (unsigned i = 0, e = Succs.size(); i != e; ++i) +    for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { +      PHINode *PN = cast<PHINode>(I); +      std::set<BasicBlock*> ProcessedPreds; +      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) +        if (Blocks.count(PN->getIncomingBlock(i))) { +          if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) +            PN->setIncomingBlock(i, codeReplacer); +          else { +            // There were multiple entries in the PHI for this block, now there +            // is only one, so remove the duplicated entries. +            PN->removeIncomingValue(i, false); +            --i; --e; +          } +        } +    } + +  //cerr << "NEW FUNCTION: " << *newFunction; +  //  verifyFunction(*newFunction); + +  //  cerr << "OLD FUNCTION: " << *oldFunction; +  //  verifyFunction(*oldFunction); + +  DEBUG(if (verifyFunction(*newFunction))  +        report_fatal_error("verifyFunction failed!")); +  return newFunction; +}  | 
