diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp | 1419 | 
1 files changed, 1419 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp new file mode 100644 index 000000000000..2a86eb598d4d --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp @@ -0,0 +1,1419 @@ +//===- InlineFunction.cpp - Code to perform function inlining -------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements inlining of a function into a call site, resolving +// parameters and the return value as appropriate. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Support/CommandLine.h" +#include <algorithm> +using namespace llvm; + +static cl::opt<bool> +EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), +  cl::Hidden, +  cl::desc("Convert noalias attributes to metadata during inlining.")); + +static cl::opt<bool> +PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", +  cl::init(true), cl::Hidden, +  cl::desc("Convert align attributes to assumptions during inlining.")); + +bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, +                          bool InsertLifetime) { +  return InlineFunction(CallSite(CI), IFI, InsertLifetime); +} +bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, +                          bool InsertLifetime) { +  return InlineFunction(CallSite(II), IFI, InsertLifetime); +} + +namespace { +  /// A class for recording information about inlining through an invoke. +  class InvokeInliningInfo { +    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. +    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. +    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke. +    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts. +    SmallVector<Value*, 8> UnwindDestPHIValues; + +  public: +    InvokeInliningInfo(InvokeInst *II) +      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), +        CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { +      // If there are PHI nodes in the unwind destination block, we need to keep +      // track of which values came into them from the invoke before removing +      // the edge from this block. +      llvm::BasicBlock *InvokeBB = II->getParent(); +      BasicBlock::iterator I = OuterResumeDest->begin(); +      for (; isa<PHINode>(I); ++I) { +        // Save the value to use for this edge. +        PHINode *PHI = cast<PHINode>(I); +        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); +      } + +      CallerLPad = cast<LandingPadInst>(I); +    } + +    /// getOuterResumeDest - The outer unwind destination is the target of +    /// unwind edges introduced for calls within the inlined function. +    BasicBlock *getOuterResumeDest() const { +      return OuterResumeDest; +    } + +    BasicBlock *getInnerResumeDest(); + +    LandingPadInst *getLandingPadInst() const { return CallerLPad; } + +    /// forwardResume - Forward the 'resume' instruction to the caller's landing +    /// pad block. When the landing pad block has only one predecessor, this is +    /// a simple branch. When there is more than one predecessor, we need to +    /// split the landing pad block after the landingpad instruction and jump +    /// to there. +    void forwardResume(ResumeInst *RI, +                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); + +    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind +    /// destination block for the given basic block, using the values for the +    /// original invoke's source block. +    void addIncomingPHIValuesFor(BasicBlock *BB) const { +      addIncomingPHIValuesForInto(BB, OuterResumeDest); +    } + +    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { +      BasicBlock::iterator I = dest->begin(); +      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { +        PHINode *phi = cast<PHINode>(I); +        phi->addIncoming(UnwindDestPHIValues[i], src); +      } +    } +  }; +} + +/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. +BasicBlock *InvokeInliningInfo::getInnerResumeDest() { +  if (InnerResumeDest) return InnerResumeDest; + +  // Split the landing pad. +  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; +  InnerResumeDest = +    OuterResumeDest->splitBasicBlock(SplitPoint, +                                     OuterResumeDest->getName() + ".body"); + +  // The number of incoming edges we expect to the inner landing pad. +  const unsigned PHICapacity = 2; + +  // Create corresponding new PHIs for all the PHIs in the outer landing pad. +  BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); +  BasicBlock::iterator I = OuterResumeDest->begin(); +  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { +    PHINode *OuterPHI = cast<PHINode>(I); +    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, +                                        OuterPHI->getName() + ".lpad-body", +                                        InsertPoint); +    OuterPHI->replaceAllUsesWith(InnerPHI); +    InnerPHI->addIncoming(OuterPHI, OuterResumeDest); +  } + +  // Create a PHI for the exception values. +  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, +                                     "eh.lpad-body", InsertPoint); +  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); +  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); + +  // All done. +  return InnerResumeDest; +} + +/// forwardResume - Forward the 'resume' instruction to the caller's landing pad +/// block. When the landing pad block has only one predecessor, this is a simple +/// branch. When there is more than one predecessor, we need to split the +/// landing pad block after the landingpad instruction and jump to there. +void InvokeInliningInfo::forwardResume(ResumeInst *RI, +                               SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { +  BasicBlock *Dest = getInnerResumeDest(); +  BasicBlock *Src = RI->getParent(); + +  BranchInst::Create(Dest, Src); + +  // Update the PHIs in the destination. They were inserted in an order which +  // makes this work. +  addIncomingPHIValuesForInto(Src, Dest); + +  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); +  RI->eraseFromParent(); +} + +/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into +/// an invoke, we have to turn all of the calls that can throw into +/// invokes.  This function analyze BB to see if there are any calls, and if so, +/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI +/// nodes in that block with the values specified in InvokeDestPHIValues. +static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, +                                                   InvokeInliningInfo &Invoke) { +  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { +    Instruction *I = BBI++; + +    // We only need to check for function calls: inlined invoke +    // instructions require no special handling. +    CallInst *CI = dyn_cast<CallInst>(I); + +    // If this call cannot unwind, don't convert it to an invoke. +    // Inline asm calls cannot throw. +    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) +      continue; + +    // Convert this function call into an invoke instruction.  First, split the +    // basic block. +    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); + +    // Delete the unconditional branch inserted by splitBasicBlock +    BB->getInstList().pop_back(); + +    // Create the new invoke instruction. +    ImmutableCallSite CS(CI); +    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); +    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, +                                        Invoke.getOuterResumeDest(), +                                        InvokeArgs, CI->getName(), BB); +    II->setDebugLoc(CI->getDebugLoc()); +    II->setCallingConv(CI->getCallingConv()); +    II->setAttributes(CI->getAttributes()); +     +    // Make sure that anything using the call now uses the invoke!  This also +    // updates the CallGraph if present, because it uses a WeakVH. +    CI->replaceAllUsesWith(II); + +    // Delete the original call +    Split->getInstList().pop_front(); + +    // Update any PHI nodes in the exceptional block to indicate that there is +    // now a new entry in them. +    Invoke.addIncomingPHIValuesFor(BB); +    return; +  } +} + +/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls +/// in the body of the inlined function into invokes. +/// +/// II is the invoke instruction being inlined.  FirstNewBlock is the first +/// block of the inlined code (the last block is the end of the function), +/// and InlineCodeInfo is information about the code that got inlined. +static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, +                                ClonedCodeInfo &InlinedCodeInfo) { +  BasicBlock *InvokeDest = II->getUnwindDest(); + +  Function *Caller = FirstNewBlock->getParent(); + +  // The inlined code is currently at the end of the function, scan from the +  // start of the inlined code to its end, checking for stuff we need to +  // rewrite. +  InvokeInliningInfo Invoke(II); + +  // Get all of the inlined landing pad instructions. +  SmallPtrSet<LandingPadInst*, 16> InlinedLPads; +  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) +    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) +      InlinedLPads.insert(II->getLandingPadInst()); + +  // Append the clauses from the outer landing pad instruction into the inlined +  // landing pad instructions. +  LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); +  for (LandingPadInst *InlinedLPad : InlinedLPads) { +    unsigned OuterNum = OuterLPad->getNumClauses(); +    InlinedLPad->reserveClauses(OuterNum); +    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) +      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); +    if (OuterLPad->isCleanup()) +      InlinedLPad->setCleanup(true); +  } + +  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ +    if (InlinedCodeInfo.ContainsCalls) +      HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); + +    // Forward any resumes that are remaining here. +    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) +      Invoke.forwardResume(RI, InlinedLPads); +  } + +  // Now that everything is happy, we have one final detail.  The PHI nodes in +  // the exception destination block still have entries due to the original +  // invoke instruction. Eliminate these entries (which might even delete the +  // PHI node) now. +  InvokeDest->removePredecessor(II->getParent()); +} + +/// CloneAliasScopeMetadata - When inlining a function that contains noalias +/// scope metadata, this metadata needs to be cloned so that the inlined blocks +/// have different "unqiue scopes" at every call site. Were this not done, then +/// aliasing scopes from a function inlined into a caller multiple times could +/// not be differentiated (and this would lead to miscompiles because the +/// non-aliasing property communicated by the metadata could have +/// call-site-specific control dependencies). +static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { +  const Function *CalledFunc = CS.getCalledFunction(); +  SetVector<const MDNode *> MD; + +  // Note: We could only clone the metadata if it is already used in the +  // caller. I'm omitting that check here because it might confuse +  // inter-procedural alias analysis passes. We can revisit this if it becomes +  // an efficiency or overhead problem. + +  for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); +       I != IE; ++I) +    for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { +      if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) +        MD.insert(M); +      if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) +        MD.insert(M); +    } + +  if (MD.empty()) +    return; + +  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to +  // the set. +  SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); +  while (!Queue.empty()) { +    const MDNode *M = cast<MDNode>(Queue.pop_back_val()); +    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) +      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) +        if (MD.insert(M1)) +          Queue.push_back(M1); +  } + +  // Now we have a complete set of all metadata in the chains used to specify +  // the noalias scopes and the lists of those scopes. +  SmallVector<MDNode *, 16> DummyNodes; +  DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; +  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); +       I != IE; ++I) { +    MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), None); +    DummyNodes.push_back(Dummy); +    MDMap[*I].reset(Dummy); +  } + +  // Create new metadata nodes to replace the dummy nodes, replacing old +  // metadata references with either a dummy node or an already-created new +  // node. +  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); +       I != IE; ++I) { +    SmallVector<Metadata *, 4> NewOps; +    for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { +      const Metadata *V = (*I)->getOperand(i); +      if (const MDNode *M = dyn_cast<MDNode>(V)) +        NewOps.push_back(MDMap[M]); +      else +        NewOps.push_back(const_cast<Metadata *>(V)); +    } + +    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); +    MDNodeFwdDecl *TempM = cast<MDNodeFwdDecl>(MDMap[*I]); + +    TempM->replaceAllUsesWith(NewM); +  } + +  // Now replace the metadata in the new inlined instructions with the +  // repacements from the map. +  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); +       VMI != VMIE; ++VMI) { +    if (!VMI->second) +      continue; + +    Instruction *NI = dyn_cast<Instruction>(VMI->second); +    if (!NI) +      continue; + +    if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { +      MDNode *NewMD = MDMap[M]; +      // If the call site also had alias scope metadata (a list of scopes to +      // which instructions inside it might belong), propagate those scopes to +      // the inlined instructions. +      if (MDNode *CSM = +              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) +        NewMD = MDNode::concatenate(NewMD, CSM); +      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); +    } else if (NI->mayReadOrWriteMemory()) { +      if (MDNode *M = +              CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) +        NI->setMetadata(LLVMContext::MD_alias_scope, M); +    } + +    if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { +      MDNode *NewMD = MDMap[M]; +      // If the call site also had noalias metadata (a list of scopes with +      // which instructions inside it don't alias), propagate those scopes to +      // the inlined instructions. +      if (MDNode *CSM = +              CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) +        NewMD = MDNode::concatenate(NewMD, CSM); +      NI->setMetadata(LLVMContext::MD_noalias, NewMD); +    } else if (NI->mayReadOrWriteMemory()) { +      if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) +        NI->setMetadata(LLVMContext::MD_noalias, M); +    } +  } + +  // Now that everything has been replaced, delete the dummy nodes. +  for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i) +    MDNode::deleteTemporary(DummyNodes[i]); +} + +/// AddAliasScopeMetadata - If the inlined function has noalias arguments, then +/// add new alias scopes for each noalias argument, tag the mapped noalias +/// parameters with noalias metadata specifying the new scope, and tag all +/// non-derived loads, stores and memory intrinsics with the new alias scopes. +static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, +                                  const DataLayout *DL, AliasAnalysis *AA) { +  if (!EnableNoAliasConversion) +    return; + +  const Function *CalledFunc = CS.getCalledFunction(); +  SmallVector<const Argument *, 4> NoAliasArgs; + +  for (Function::const_arg_iterator I = CalledFunc->arg_begin(), +       E = CalledFunc->arg_end(); I != E; ++I) { +    if (I->hasNoAliasAttr() && !I->hasNUses(0)) +      NoAliasArgs.push_back(I); +  } + +  if (NoAliasArgs.empty()) +    return; + +  // To do a good job, if a noalias variable is captured, we need to know if +  // the capture point dominates the particular use we're considering. +  DominatorTree DT; +  DT.recalculate(const_cast<Function&>(*CalledFunc)); + +  // noalias indicates that pointer values based on the argument do not alias +  // pointer values which are not based on it. So we add a new "scope" for each +  // noalias function argument. Accesses using pointers based on that argument +  // become part of that alias scope, accesses using pointers not based on that +  // argument are tagged as noalias with that scope. + +  DenseMap<const Argument *, MDNode *> NewScopes; +  MDBuilder MDB(CalledFunc->getContext()); + +  // Create a new scope domain for this function. +  MDNode *NewDomain = +    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); +  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { +    const Argument *A = NoAliasArgs[i]; + +    std::string Name = CalledFunc->getName(); +    if (A->hasName()) { +      Name += ": %"; +      Name += A->getName(); +    } else { +      Name += ": argument "; +      Name += utostr(i); +    } + +    // Note: We always create a new anonymous root here. This is true regardless +    // of the linkage of the callee because the aliasing "scope" is not just a +    // property of the callee, but also all control dependencies in the caller. +    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); +    NewScopes.insert(std::make_pair(A, NewScope)); +  } + +  // Iterate over all new instructions in the map; for all memory-access +  // instructions, add the alias scope metadata. +  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); +       VMI != VMIE; ++VMI) { +    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { +      if (!VMI->second) +        continue; + +      Instruction *NI = dyn_cast<Instruction>(VMI->second); +      if (!NI) +        continue; + +      bool IsArgMemOnlyCall = false, IsFuncCall = false; +      SmallVector<const Value *, 2> PtrArgs; + +      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) +        PtrArgs.push_back(LI->getPointerOperand()); +      else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) +        PtrArgs.push_back(SI->getPointerOperand()); +      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) +        PtrArgs.push_back(VAAI->getPointerOperand()); +      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) +        PtrArgs.push_back(CXI->getPointerOperand()); +      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) +        PtrArgs.push_back(RMWI->getPointerOperand()); +      else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { +        // If we know that the call does not access memory, then we'll still +        // know that about the inlined clone of this call site, and we don't +        // need to add metadata. +        if (ICS.doesNotAccessMemory()) +          continue; + +        IsFuncCall = true; +        if (AA) { +          AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS); +          if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees || +              MRB == AliasAnalysis::OnlyReadsArgumentPointees) +            IsArgMemOnlyCall = true; +        } + +        for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), +             AE = ICS.arg_end(); AI != AE; ++AI) { +          // We need to check the underlying objects of all arguments, not just +          // the pointer arguments, because we might be passing pointers as +          // integers, etc. +          // However, if we know that the call only accesses pointer arguments, +          // then we only need to check the pointer arguments. +          if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) +            continue; + +          PtrArgs.push_back(*AI); +        } +      } + +      // If we found no pointers, then this instruction is not suitable for +      // pairing with an instruction to receive aliasing metadata. +      // However, if this is a call, this we might just alias with none of the +      // noalias arguments. +      if (PtrArgs.empty() && !IsFuncCall) +        continue; + +      // It is possible that there is only one underlying object, but you +      // need to go through several PHIs to see it, and thus could be +      // repeated in the Objects list. +      SmallPtrSet<const Value *, 4> ObjSet; +      SmallVector<Metadata *, 4> Scopes, NoAliases; + +      SmallSetVector<const Argument *, 4> NAPtrArgs; +      for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { +        SmallVector<Value *, 4> Objects; +        GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), +                             Objects, DL, /* MaxLookup = */ 0); + +        for (Value *O : Objects) +          ObjSet.insert(O); +      } + +      // Figure out if we're derived from anything that is not a noalias +      // argument. +      bool CanDeriveViaCapture = false, UsesAliasingPtr = false; +      for (const Value *V : ObjSet) { +        // Is this value a constant that cannot be derived from any pointer +        // value (we need to exclude constant expressions, for example, that +        // are formed from arithmetic on global symbols). +        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || +                             isa<ConstantPointerNull>(V) || +                             isa<ConstantDataVector>(V) || isa<UndefValue>(V); +        if (IsNonPtrConst) +          continue; + +        // If this is anything other than a noalias argument, then we cannot +        // completely describe the aliasing properties using alias.scope +        // metadata (and, thus, won't add any). +        if (const Argument *A = dyn_cast<Argument>(V)) { +          if (!A->hasNoAliasAttr()) +            UsesAliasingPtr = true; +        } else { +          UsesAliasingPtr = true; +        } + +        // If this is not some identified function-local object (which cannot +        // directly alias a noalias argument), or some other argument (which, +        // by definition, also cannot alias a noalias argument), then we could +        // alias a noalias argument that has been captured). +        if (!isa<Argument>(V) && +            !isIdentifiedFunctionLocal(const_cast<Value*>(V))) +          CanDeriveViaCapture = true; +      } + +      // A function call can always get captured noalias pointers (via other +      // parameters, globals, etc.). +      if (IsFuncCall && !IsArgMemOnlyCall) +        CanDeriveViaCapture = true; + +      // First, we want to figure out all of the sets with which we definitely +      // don't alias. Iterate over all noalias set, and add those for which: +      //   1. The noalias argument is not in the set of objects from which we +      //      definitely derive. +      //   2. The noalias argument has not yet been captured. +      // An arbitrary function that might load pointers could see captured +      // noalias arguments via other noalias arguments or globals, and so we +      // must always check for prior capture. +      for (const Argument *A : NoAliasArgs) { +        if (!ObjSet.count(A) && (!CanDeriveViaCapture || +                                 // It might be tempting to skip the +                                 // PointerMayBeCapturedBefore check if +                                 // A->hasNoCaptureAttr() is true, but this is +                                 // incorrect because nocapture only guarantees +                                 // that no copies outlive the function, not +                                 // that the value cannot be locally captured. +                                 !PointerMayBeCapturedBefore(A, +                                   /* ReturnCaptures */ false, +                                   /* StoreCaptures */ false, I, &DT))) +          NoAliases.push_back(NewScopes[A]); +      } + +      if (!NoAliases.empty()) +        NI->setMetadata(LLVMContext::MD_noalias, +                        MDNode::concatenate( +                            NI->getMetadata(LLVMContext::MD_noalias), +                            MDNode::get(CalledFunc->getContext(), NoAliases))); + +      // Next, we want to figure out all of the sets to which we might belong. +      // We might belong to a set if the noalias argument is in the set of +      // underlying objects. If there is some non-noalias argument in our list +      // of underlying objects, then we cannot add a scope because the fact +      // that some access does not alias with any set of our noalias arguments +      // cannot itself guarantee that it does not alias with this access +      // (because there is some pointer of unknown origin involved and the +      // other access might also depend on this pointer). We also cannot add +      // scopes to arbitrary functions unless we know they don't access any +      // non-parameter pointer-values. +      bool CanAddScopes = !UsesAliasingPtr; +      if (CanAddScopes && IsFuncCall) +        CanAddScopes = IsArgMemOnlyCall; + +      if (CanAddScopes) +        for (const Argument *A : NoAliasArgs) { +          if (ObjSet.count(A)) +            Scopes.push_back(NewScopes[A]); +        } + +      if (!Scopes.empty()) +        NI->setMetadata( +            LLVMContext::MD_alias_scope, +            MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), +                                MDNode::get(CalledFunc->getContext(), Scopes))); +    } +  } +} + +/// If the inlined function has non-byval align arguments, then +/// add @llvm.assume-based alignment assumptions to preserve this information. +static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { +  if (!PreserveAlignmentAssumptions || !IFI.DL) +    return; + +  // To avoid inserting redundant assumptions, we should check for assumptions +  // already in the caller. To do this, we might need a DT of the caller. +  DominatorTree DT; +  bool DTCalculated = false; + +  Function *CalledFunc = CS.getCalledFunction(); +  for (Function::arg_iterator I = CalledFunc->arg_begin(), +                              E = CalledFunc->arg_end(); +       I != E; ++I) { +    unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0; +    if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) { +      if (!DTCalculated) { +        DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent() +                                               ->getParent())); +        DTCalculated = true; +      } + +      // If we can already prove the asserted alignment in the context of the +      // caller, then don't bother inserting the assumption. +      Value *Arg = CS.getArgument(I->getArgNo()); +      if (getKnownAlignment(Arg, IFI.DL, +                            &IFI.ACT->getAssumptionCache(*CalledFunc), +                            CS.getInstruction(), &DT) >= Align) +        continue; + +      IRBuilder<>(CS.getInstruction()).CreateAlignmentAssumption(*IFI.DL, Arg, +                                                                 Align); +    } +  } +} + +/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee +/// into the caller, update the specified callgraph to reflect the changes we +/// made.  Note that it's possible that not all code was copied over, so only +/// some edges of the callgraph may remain. +static void UpdateCallGraphAfterInlining(CallSite CS, +                                         Function::iterator FirstNewBlock, +                                         ValueToValueMapTy &VMap, +                                         InlineFunctionInfo &IFI) { +  CallGraph &CG = *IFI.CG; +  const Function *Caller = CS.getInstruction()->getParent()->getParent(); +  const Function *Callee = CS.getCalledFunction(); +  CallGraphNode *CalleeNode = CG[Callee]; +  CallGraphNode *CallerNode = CG[Caller]; + +  // Since we inlined some uninlined call sites in the callee into the caller, +  // add edges from the caller to all of the callees of the callee. +  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); + +  // Consider the case where CalleeNode == CallerNode. +  CallGraphNode::CalledFunctionsVector CallCache; +  if (CalleeNode == CallerNode) { +    CallCache.assign(I, E); +    I = CallCache.begin(); +    E = CallCache.end(); +  } + +  for (; I != E; ++I) { +    const Value *OrigCall = I->first; + +    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); +    // Only copy the edge if the call was inlined! +    if (VMI == VMap.end() || VMI->second == nullptr) +      continue; +     +    // If the call was inlined, but then constant folded, there is no edge to +    // add.  Check for this case. +    Instruction *NewCall = dyn_cast<Instruction>(VMI->second); +    if (!NewCall) continue; + +    // Remember that this call site got inlined for the client of +    // InlineFunction. +    IFI.InlinedCalls.push_back(NewCall); + +    // It's possible that inlining the callsite will cause it to go from an +    // indirect to a direct call by resolving a function pointer.  If this +    // happens, set the callee of the new call site to a more precise +    // destination.  This can also happen if the call graph node of the caller +    // was just unnecessarily imprecise. +    if (!I->second->getFunction()) +      if (Function *F = CallSite(NewCall).getCalledFunction()) { +        // Indirect call site resolved to direct call. +        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); + +        continue; +      } + +    CallerNode->addCalledFunction(CallSite(NewCall), I->second); +  } +   +  // Update the call graph by deleting the edge from Callee to Caller.  We must +  // do this after the loop above in case Caller and Callee are the same. +  CallerNode->removeCallEdgeFor(CS); +} + +static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, +                                    BasicBlock *InsertBlock, +                                    InlineFunctionInfo &IFI) { +  Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); +  IRBuilder<> Builder(InsertBlock->begin()); + +  Value *Size; +  if (IFI.DL == nullptr) +    Size = ConstantExpr::getSizeOf(AggTy); +  else +    Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy)); + +  // Always generate a memcpy of alignment 1 here because we don't know +  // the alignment of the src pointer.  Other optimizations can infer +  // better alignment. +  Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); +} + +/// HandleByValArgument - When inlining a call site that has a byval argument, +/// we have to make the implicit memcpy explicit by adding it. +static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, +                                  const Function *CalledFunc, +                                  InlineFunctionInfo &IFI, +                                  unsigned ByValAlignment) { +  PointerType *ArgTy = cast<PointerType>(Arg->getType()); +  Type *AggTy = ArgTy->getElementType(); + +  Function *Caller = TheCall->getParent()->getParent(); + +  // If the called function is readonly, then it could not mutate the caller's +  // copy of the byval'd memory.  In this case, it is safe to elide the copy and +  // temporary. +  if (CalledFunc->onlyReadsMemory()) { +    // If the byval argument has a specified alignment that is greater than the +    // passed in pointer, then we either have to round up the input pointer or +    // give up on this transformation. +    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment. +      return Arg; + +    // If the pointer is already known to be sufficiently aligned, or if we can +    // round it up to a larger alignment, then we don't need a temporary. +    if (getOrEnforceKnownAlignment(Arg, ByValAlignment, IFI.DL, +                                   &IFI.ACT->getAssumptionCache(*Caller), +                                   TheCall) >= ByValAlignment) +      return Arg; +     +    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad +    // for code quality, but rarely happens and is required for correctness. +  } + +  // Create the alloca.  If we have DataLayout, use nice alignment. +  unsigned Align = 1; +  if (IFI.DL) +    Align = IFI.DL->getPrefTypeAlignment(AggTy); +   +  // If the byval had an alignment specified, we *must* use at least that +  // alignment, as it is required by the byval argument (and uses of the +  // pointer inside the callee). +  Align = std::max(Align, ByValAlignment); +   +  Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),  +                                    &*Caller->begin()->begin()); +  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); +   +  // Uses of the argument in the function should use our new alloca +  // instead. +  return NewAlloca; +} + +// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime +// intrinsic. +static bool isUsedByLifetimeMarker(Value *V) { +  for (User *U : V->users()) { +    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { +      switch (II->getIntrinsicID()) { +      default: break; +      case Intrinsic::lifetime_start: +      case Intrinsic::lifetime_end: +        return true; +      } +    } +  } +  return false; +} + +// hasLifetimeMarkers - Check whether the given alloca already has +// lifetime.start or lifetime.end intrinsics. +static bool hasLifetimeMarkers(AllocaInst *AI) { +  Type *Ty = AI->getType(); +  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), +                                       Ty->getPointerAddressSpace()); +  if (Ty == Int8PtrTy) +    return isUsedByLifetimeMarker(AI); + +  // Do a scan to find all the casts to i8*. +  for (User *U : AI->users()) { +    if (U->getType() != Int8PtrTy) continue; +    if (U->stripPointerCasts() != AI) continue; +    if (isUsedByLifetimeMarker(U)) +      return true; +  } +  return false; +} + +/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to +/// recursively update InlinedAtEntry of a DebugLoc. +static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,  +                                    const DebugLoc &InlinedAtDL, +                                    LLVMContext &Ctx) { +  if (MDNode *IA = DL.getInlinedAt(Ctx)) { +    DebugLoc NewInlinedAtDL  +      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); +    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), +                         NewInlinedAtDL.getAsMDNode(Ctx)); +  } + +  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), +                       InlinedAtDL.getAsMDNode(Ctx)); +} + +/// fixupLineNumbers - Update inlined instructions' line numbers to  +/// to encode location where these instructions are inlined. +static void fixupLineNumbers(Function *Fn, Function::iterator FI, +                             Instruction *TheCall) { +  DebugLoc TheCallDL = TheCall->getDebugLoc(); +  if (TheCallDL.isUnknown()) +    return; + +  for (; FI != Fn->end(); ++FI) { +    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); +         BI != BE; ++BI) { +      DebugLoc DL = BI->getDebugLoc(); +      if (DL.isUnknown()) { +        // If the inlined instruction has no line number, make it look as if it +        // originates from the call location. This is important for +        // ((__always_inline__, __nodebug__)) functions which must use caller +        // location for all instructions in their function body. + +        // Don't update static allocas, as they may get moved later. +        if (auto *AI = dyn_cast<AllocaInst>(BI)) +          if (isa<Constant>(AI->getArraySize())) +            continue; + +        BI->setDebugLoc(TheCallDL); +      } else { +        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); +        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { +          LLVMContext &Ctx = BI->getContext(); +          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); +          DVI->setOperand(2, MetadataAsValue::get( +                                 Ctx, createInlinedVariable(DVI->getVariable(), +                                                            InlinedAt, Ctx))); +        } else if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI)) { +          LLVMContext &Ctx = BI->getContext(); +          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); +          DDI->setOperand(1, MetadataAsValue::get( +                                 Ctx, createInlinedVariable(DDI->getVariable(), +                                                            InlinedAt, Ctx))); +        } +      } +    } +  } +} + +/// InlineFunction - This function inlines the called function into the basic +/// block of the caller.  This returns false if it is not possible to inline +/// this call.  The program is still in a well defined state if this occurs +/// though. +/// +/// Note that this only does one level of inlining.  For example, if the +/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now +/// exists in the instruction stream.  Similarly this will inline a recursive +/// function by one level. +bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, +                          bool InsertLifetime) { +  Instruction *TheCall = CS.getInstruction(); +  assert(TheCall->getParent() && TheCall->getParent()->getParent() && +         "Instruction not in function!"); + +  // If IFI has any state in it, zap it before we fill it in. +  IFI.reset(); +   +  const Function *CalledFunc = CS.getCalledFunction(); +  if (!CalledFunc ||              // Can't inline external function or indirect +      CalledFunc->isDeclaration() || // call, or call to a vararg function! +      CalledFunc->getFunctionType()->isVarArg()) return false; + +  // If the call to the callee cannot throw, set the 'nounwind' flag on any +  // calls that we inline. +  bool MarkNoUnwind = CS.doesNotThrow(); + +  BasicBlock *OrigBB = TheCall->getParent(); +  Function *Caller = OrigBB->getParent(); + +  // GC poses two hazards to inlining, which only occur when the callee has GC: +  //  1. If the caller has no GC, then the callee's GC must be propagated to the +  //     caller. +  //  2. If the caller has a differing GC, it is invalid to inline. +  if (CalledFunc->hasGC()) { +    if (!Caller->hasGC()) +      Caller->setGC(CalledFunc->getGC()); +    else if (CalledFunc->getGC() != Caller->getGC()) +      return false; +  } + +  // Get the personality function from the callee if it contains a landing pad. +  Value *CalleePersonality = nullptr; +  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); +       I != E; ++I) +    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { +      const BasicBlock *BB = II->getUnwindDest(); +      const LandingPadInst *LP = BB->getLandingPadInst(); +      CalleePersonality = LP->getPersonalityFn(); +      break; +    } + +  // Find the personality function used by the landing pads of the caller. If it +  // exists, then check to see that it matches the personality function used in +  // the callee. +  if (CalleePersonality) { +    for (Function::const_iterator I = Caller->begin(), E = Caller->end(); +         I != E; ++I) +      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { +        const BasicBlock *BB = II->getUnwindDest(); +        const LandingPadInst *LP = BB->getLandingPadInst(); + +        // If the personality functions match, then we can perform the +        // inlining. Otherwise, we can't inline. +        // TODO: This isn't 100% true. Some personality functions are proper +        //       supersets of others and can be used in place of the other. +        if (LP->getPersonalityFn() != CalleePersonality) +          return false; + +        break; +      } +  } + +  // Get an iterator to the last basic block in the function, which will have +  // the new function inlined after it. +  Function::iterator LastBlock = &Caller->back(); + +  // Make sure to capture all of the return instructions from the cloned +  // function. +  SmallVector<ReturnInst*, 8> Returns; +  ClonedCodeInfo InlinedFunctionInfo; +  Function::iterator FirstNewBlock; + +  { // Scope to destroy VMap after cloning. +    ValueToValueMapTy VMap; +    // Keep a list of pair (dst, src) to emit byval initializations. +    SmallVector<std::pair<Value*, Value*>, 4> ByValInit; + +    assert(CalledFunc->arg_size() == CS.arg_size() && +           "No varargs calls can be inlined!"); + +    // Calculate the vector of arguments to pass into the function cloner, which +    // matches up the formal to the actual argument values. +    CallSite::arg_iterator AI = CS.arg_begin(); +    unsigned ArgNo = 0; +    for (Function::const_arg_iterator I = CalledFunc->arg_begin(), +         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { +      Value *ActualArg = *AI; + +      // When byval arguments actually inlined, we need to make the copy implied +      // by them explicit.  However, we don't do this if the callee is readonly +      // or readnone, because the copy would be unneeded: the callee doesn't +      // modify the struct. +      if (CS.isByValArgument(ArgNo)) { +        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, +                                        CalledFunc->getParamAlignment(ArgNo+1)); +        if (ActualArg != *AI) +          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); +      } + +      VMap[I] = ActualArg; +    } + +    // Add alignment assumptions if necessary. We do this before the inlined +    // instructions are actually cloned into the caller so that we can easily +    // check what will be known at the start of the inlined code. +    AddAlignmentAssumptions(CS, IFI); + +    // We want the inliner to prune the code as it copies.  We would LOVE to +    // have no dead or constant instructions leftover after inlining occurs +    // (which can happen, e.g., because an argument was constant), but we'll be +    // happy with whatever the cloner can do. +    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,  +                              /*ModuleLevelChanges=*/false, Returns, ".i", +                              &InlinedFunctionInfo, IFI.DL, TheCall); + +    // Remember the first block that is newly cloned over. +    FirstNewBlock = LastBlock; ++FirstNewBlock; + +    // Inject byval arguments initialization. +    for (std::pair<Value*, Value*> &Init : ByValInit) +      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), +                              FirstNewBlock, IFI); + +    // Update the callgraph if requested. +    if (IFI.CG) +      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); + +    // Update inlined instructions' line number information. +    fixupLineNumbers(Caller, FirstNewBlock, TheCall); + +    // Clone existing noalias metadata if necessary. +    CloneAliasScopeMetadata(CS, VMap); + +    // Add noalias metadata if necessary. +    AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA); + +    // FIXME: We could register any cloned assumptions instead of clearing the +    // whole function's cache. +    if (IFI.ACT) +      IFI.ACT->getAssumptionCache(*Caller).clear(); +  } + +  // If there are any alloca instructions in the block that used to be the entry +  // block for the callee, move them to the entry block of the caller.  First +  // calculate which instruction they should be inserted before.  We insert the +  // instructions at the end of the current alloca list. +  { +    BasicBlock::iterator InsertPoint = Caller->begin()->begin(); +    for (BasicBlock::iterator I = FirstNewBlock->begin(), +         E = FirstNewBlock->end(); I != E; ) { +      AllocaInst *AI = dyn_cast<AllocaInst>(I++); +      if (!AI) continue; +       +      // If the alloca is now dead, remove it.  This often occurs due to code +      // specialization. +      if (AI->use_empty()) { +        AI->eraseFromParent(); +        continue; +      } + +      if (!isa<Constant>(AI->getArraySize())) +        continue; +       +      // Keep track of the static allocas that we inline into the caller. +      IFI.StaticAllocas.push_back(AI); +       +      // Scan for the block of allocas that we can move over, and move them +      // all at once. +      while (isa<AllocaInst>(I) && +             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { +        IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); +        ++I; +      } + +      // Transfer all of the allocas over in a block.  Using splice means +      // that the instructions aren't removed from the symbol table, then +      // reinserted. +      Caller->getEntryBlock().getInstList().splice(InsertPoint, +                                                   FirstNewBlock->getInstList(), +                                                   AI, I); +    } +  } + +  bool InlinedMustTailCalls = false; +  if (InlinedFunctionInfo.ContainsCalls) { +    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; +    if (CallInst *CI = dyn_cast<CallInst>(TheCall)) +      CallSiteTailKind = CI->getTailCallKind(); + +    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; +         ++BB) { +      for (Instruction &I : *BB) { +        CallInst *CI = dyn_cast<CallInst>(&I); +        if (!CI) +          continue; + +        // We need to reduce the strength of any inlined tail calls.  For +        // musttail, we have to avoid introducing potential unbounded stack +        // growth.  For example, if functions 'f' and 'g' are mutually recursive +        // with musttail, we can inline 'g' into 'f' so long as we preserve +        // musttail on the cloned call to 'f'.  If either the inlined call site +        // or the cloned call site is *not* musttail, the program already has +        // one frame of stack growth, so it's safe to remove musttail.  Here is +        // a table of example transformations: +        // +        //    f -> musttail g -> musttail f  ==>  f -> musttail f +        //    f -> musttail g ->     tail f  ==>  f ->     tail f +        //    f ->          g -> musttail f  ==>  f ->          f +        //    f ->          g ->     tail f  ==>  f ->          f +        CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); +        ChildTCK = std::min(CallSiteTailKind, ChildTCK); +        CI->setTailCallKind(ChildTCK); +        InlinedMustTailCalls |= CI->isMustTailCall(); + +        // Calls inlined through a 'nounwind' call site should be marked +        // 'nounwind'. +        if (MarkNoUnwind) +          CI->setDoesNotThrow(); +      } +    } +  } + +  // Leave lifetime markers for the static alloca's, scoping them to the +  // function we just inlined. +  if (InsertLifetime && !IFI.StaticAllocas.empty()) { +    IRBuilder<> builder(FirstNewBlock->begin()); +    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { +      AllocaInst *AI = IFI.StaticAllocas[ai]; + +      // If the alloca is already scoped to something smaller than the whole +      // function then there's no need to add redundant, less accurate markers. +      if (hasLifetimeMarkers(AI)) +        continue; + +      // Try to determine the size of the allocation. +      ConstantInt *AllocaSize = nullptr; +      if (ConstantInt *AIArraySize = +          dyn_cast<ConstantInt>(AI->getArraySize())) { +        if (IFI.DL) { +          Type *AllocaType = AI->getAllocatedType(); +          uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); +          uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); +          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); +          // Check that array size doesn't saturate uint64_t and doesn't +          // overflow when it's multiplied by type size. +          if (AllocaArraySize != ~0ULL && +              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { +            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), +                                          AllocaArraySize * AllocaTypeSize); +          } +        } +      } + +      builder.CreateLifetimeStart(AI, AllocaSize); +      for (ReturnInst *RI : Returns) { +        // Don't insert llvm.lifetime.end calls between a musttail call and a +        // return.  The return kills all local allocas. +        if (InlinedMustTailCalls && +            RI->getParent()->getTerminatingMustTailCall()) +          continue; +        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); +      } +    } +  } + +  // If the inlined code contained dynamic alloca instructions, wrap the inlined +  // code with llvm.stacksave/llvm.stackrestore intrinsics. +  if (InlinedFunctionInfo.ContainsDynamicAllocas) { +    Module *M = Caller->getParent(); +    // Get the two intrinsics we care about. +    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); +    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); + +    // Insert the llvm.stacksave. +    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) +      .CreateCall(StackSave, "savedstack"); + +    // Insert a call to llvm.stackrestore before any return instructions in the +    // inlined function. +    for (ReturnInst *RI : Returns) { +      // Don't insert llvm.stackrestore calls between a musttail call and a +      // return.  The return will restore the stack pointer. +      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) +        continue; +      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); +    } +  } + +  // If we are inlining for an invoke instruction, we must make sure to rewrite +  // any call instructions into invoke instructions. +  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) +    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); + +  // Handle any inlined musttail call sites.  In order for a new call site to be +  // musttail, the source of the clone and the inlined call site must have been +  // musttail.  Therefore it's safe to return without merging control into the +  // phi below. +  if (InlinedMustTailCalls) { +    // Check if we need to bitcast the result of any musttail calls. +    Type *NewRetTy = Caller->getReturnType(); +    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; + +    // Handle the returns preceded by musttail calls separately. +    SmallVector<ReturnInst *, 8> NormalReturns; +    for (ReturnInst *RI : Returns) { +      CallInst *ReturnedMustTail = +          RI->getParent()->getTerminatingMustTailCall(); +      if (!ReturnedMustTail) { +        NormalReturns.push_back(RI); +        continue; +      } +      if (!NeedBitCast) +        continue; + +      // Delete the old return and any preceding bitcast. +      BasicBlock *CurBB = RI->getParent(); +      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); +      RI->eraseFromParent(); +      if (OldCast) +        OldCast->eraseFromParent(); + +      // Insert a new bitcast and return with the right type. +      IRBuilder<> Builder(CurBB); +      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); +    } + +    // Leave behind the normal returns so we can merge control flow. +    std::swap(Returns, NormalReturns); +  } + +  // If we cloned in _exactly one_ basic block, and if that block ends in a +  // return instruction, we splice the body of the inlined callee directly into +  // the calling basic block. +  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { +    // Move all of the instructions right before the call. +    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), +                                 FirstNewBlock->begin(), FirstNewBlock->end()); +    // Remove the cloned basic block. +    Caller->getBasicBlockList().pop_back(); + +    // If the call site was an invoke instruction, add a branch to the normal +    // destination. +    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { +      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); +      NewBr->setDebugLoc(Returns[0]->getDebugLoc()); +    } + +    // If the return instruction returned a value, replace uses of the call with +    // uses of the returned value. +    if (!TheCall->use_empty()) { +      ReturnInst *R = Returns[0]; +      if (TheCall == R->getReturnValue()) +        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +      else +        TheCall->replaceAllUsesWith(R->getReturnValue()); +    } +    // Since we are now done with the Call/Invoke, we can delete it. +    TheCall->eraseFromParent(); + +    // Since we are now done with the return instruction, delete it also. +    Returns[0]->eraseFromParent(); + +    // We are now done with the inlining. +    return true; +  } + +  // Otherwise, we have the normal case, of more than one block to inline or +  // multiple return sites. + +  // We want to clone the entire callee function into the hole between the +  // "starter" and "ender" blocks.  How we accomplish this depends on whether +  // this is an invoke instruction or a call instruction. +  BasicBlock *AfterCallBB; +  BranchInst *CreatedBranchToNormalDest = nullptr; +  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { + +    // Add an unconditional branch to make this look like the CallInst case... +    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); + +    // Split the basic block.  This guarantees that no PHI nodes will have to be +    // updated due to new incoming edges, and make the invoke case more +    // symmetric to the call case. +    AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, +                                          CalledFunc->getName()+".exit"); + +  } else {  // It's a call +    // If this is a call instruction, we need to split the basic block that +    // the call lives in. +    // +    AfterCallBB = OrigBB->splitBasicBlock(TheCall, +                                          CalledFunc->getName()+".exit"); +  } + +  // Change the branch that used to go to AfterCallBB to branch to the first +  // basic block of the inlined function. +  // +  TerminatorInst *Br = OrigBB->getTerminator(); +  assert(Br && Br->getOpcode() == Instruction::Br && +         "splitBasicBlock broken!"); +  Br->setOperand(0, FirstNewBlock); + + +  // Now that the function is correct, make it a little bit nicer.  In +  // particular, move the basic blocks inserted from the end of the function +  // into the space made by splitting the source basic block. +  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), +                                     FirstNewBlock, Caller->end()); + +  // Handle all of the return instructions that we just cloned in, and eliminate +  // any users of the original call/invoke instruction. +  Type *RTy = CalledFunc->getReturnType(); + +  PHINode *PHI = nullptr; +  if (Returns.size() > 1) { +    // The PHI node should go at the front of the new basic block to merge all +    // possible incoming values. +    if (!TheCall->use_empty()) { +      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), +                            AfterCallBB->begin()); +      // Anything that used the result of the function call should now use the +      // PHI node as their operand. +      TheCall->replaceAllUsesWith(PHI); +    } + +    // Loop over all of the return instructions adding entries to the PHI node +    // as appropriate. +    if (PHI) { +      for (unsigned i = 0, e = Returns.size(); i != e; ++i) { +        ReturnInst *RI = Returns[i]; +        assert(RI->getReturnValue()->getType() == PHI->getType() && +               "Ret value not consistent in function!"); +        PHI->addIncoming(RI->getReturnValue(), RI->getParent()); +      } +    } + + +    // Add a branch to the merge points and remove return instructions. +    DebugLoc Loc; +    for (unsigned i = 0, e = Returns.size(); i != e; ++i) { +      ReturnInst *RI = Returns[i]; +      BranchInst* BI = BranchInst::Create(AfterCallBB, RI); +      Loc = RI->getDebugLoc(); +      BI->setDebugLoc(Loc); +      RI->eraseFromParent(); +    } +    // We need to set the debug location to *somewhere* inside the +    // inlined function. The line number may be nonsensical, but the +    // instruction will at least be associated with the right +    // function. +    if (CreatedBranchToNormalDest) +      CreatedBranchToNormalDest->setDebugLoc(Loc); +  } else if (!Returns.empty()) { +    // Otherwise, if there is exactly one return value, just replace anything +    // using the return value of the call with the computed value. +    if (!TheCall->use_empty()) { +      if (TheCall == Returns[0]->getReturnValue()) +        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +      else +        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); +    } + +    // Update PHI nodes that use the ReturnBB to use the AfterCallBB. +    BasicBlock *ReturnBB = Returns[0]->getParent(); +    ReturnBB->replaceAllUsesWith(AfterCallBB); + +    // Splice the code from the return block into the block that it will return +    // to, which contains the code that was after the call. +    AfterCallBB->getInstList().splice(AfterCallBB->begin(), +                                      ReturnBB->getInstList()); + +    if (CreatedBranchToNormalDest) +      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); + +    // Delete the return instruction now and empty ReturnBB now. +    Returns[0]->eraseFromParent(); +    ReturnBB->eraseFromParent(); +  } else if (!TheCall->use_empty()) { +    // No returns, but something is using the return value of the call.  Just +    // nuke the result. +    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); +  } + +  // Since we are now done with the Call/Invoke, we can delete it. +  TheCall->eraseFromParent(); + +  // If we inlined any musttail calls and the original return is now +  // unreachable, delete it.  It can only contain a bitcast and ret. +  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) +    AfterCallBB->eraseFromParent(); + +  // We should always be able to fold the entry block of the function into the +  // single predecessor of the block... +  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); +  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); + +  // Splice the code entry block into calling block, right before the +  // unconditional branch. +  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes +  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); + +  // Remove the unconditional branch. +  OrigBB->getInstList().erase(Br); + +  // Now we can remove the CalleeEntry block, which is now empty. +  Caller->getBasicBlockList().erase(CalleeEntry); + +  // If we inserted a phi node, check to see if it has a single value (e.g. all +  // the entries are the same or undef).  If so, remove the PHI so it doesn't +  // block other optimizations. +  if (PHI) { +    if (Value *V = SimplifyInstruction(PHI, IFI.DL, nullptr, nullptr, +                                       &IFI.ACT->getAssumptionCache(*Caller))) { +      PHI->replaceAllUsesWith(V); +      PHI->eraseFromParent(); +    } +  } + +  return true; +} | 
