aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/Local.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/Local.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/Local.cpp2156
1 files changed, 2156 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/Local.cpp b/contrib/llvm/lib/Transforms/Utils/Local.cpp
new file mode 100644
index 000000000000..ebd528bc8ec1
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/Local.cpp
@@ -0,0 +1,2156 @@
+//===-- Local.cpp - Functions to perform local transformations ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions perform various local transformations to the
+// program.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "local"
+
+STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
+
+//===----------------------------------------------------------------------===//
+// Local constant propagation.
+//
+
+/// ConstantFoldTerminator - If a terminator instruction is predicated on a
+/// constant value, convert it into an unconditional branch to the constant
+/// destination. This is a nontrivial operation because the successors of this
+/// basic block must have their PHI nodes updated.
+/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
+/// conditions and indirectbr addresses this might make dead if
+/// DeleteDeadConditions is true.
+bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
+ const TargetLibraryInfo *TLI) {
+ TerminatorInst *T = BB->getTerminator();
+ IRBuilder<> Builder(T);
+
+ // Branch - See if we are conditional jumping on constant
+ if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
+ if (BI->isUnconditional()) return false; // Can't optimize uncond branch
+ BasicBlock *Dest1 = BI->getSuccessor(0);
+ BasicBlock *Dest2 = BI->getSuccessor(1);
+
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
+ // Are we branching on constant?
+ // YES. Change to unconditional branch...
+ BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
+ BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
+
+ //cerr << "Function: " << T->getParent()->getParent()
+ // << "\nRemoving branch from " << T->getParent()
+ // << "\n\nTo: " << OldDest << endl;
+
+ // Let the basic block know that we are letting go of it. Based on this,
+ // it will adjust it's PHI nodes.
+ OldDest->removePredecessor(BB);
+
+ // Replace the conditional branch with an unconditional one.
+ Builder.CreateBr(Destination);
+ BI->eraseFromParent();
+ return true;
+ }
+
+ if (Dest2 == Dest1) { // Conditional branch to same location?
+ // This branch matches something like this:
+ // br bool %cond, label %Dest, label %Dest
+ // and changes it into: br label %Dest
+
+ // Let the basic block know that we are letting go of one copy of it.
+ assert(BI->getParent() && "Terminator not inserted in block!");
+ Dest1->removePredecessor(BI->getParent());
+
+ // Replace the conditional branch with an unconditional one.
+ Builder.CreateBr(Dest1);
+ Value *Cond = BI->getCondition();
+ BI->eraseFromParent();
+ if (DeleteDeadConditions)
+ RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
+ return true;
+ }
+ return false;
+ }
+
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
+ // If we are switching on a constant, we can convert the switch to an
+ // unconditional branch.
+ ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
+ BasicBlock *DefaultDest = SI->getDefaultDest();
+ BasicBlock *TheOnlyDest = DefaultDest;
+
+ // If the default is unreachable, ignore it when searching for TheOnlyDest.
+ if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
+ SI->getNumCases() > 0) {
+ TheOnlyDest = SI->case_begin()->getCaseSuccessor();
+ }
+
+ // Figure out which case it goes to.
+ for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
+ // Found case matching a constant operand?
+ if (i->getCaseValue() == CI) {
+ TheOnlyDest = i->getCaseSuccessor();
+ break;
+ }
+
+ // Check to see if this branch is going to the same place as the default
+ // dest. If so, eliminate it as an explicit compare.
+ if (i->getCaseSuccessor() == DefaultDest) {
+ MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
+ unsigned NCases = SI->getNumCases();
+ // Fold the case metadata into the default if there will be any branches
+ // left, unless the metadata doesn't match the switch.
+ if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
+ // Collect branch weights into a vector.
+ SmallVector<uint32_t, 8> Weights;
+ for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
+ ++MD_i) {
+ auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
+ Weights.push_back(CI->getValue().getZExtValue());
+ }
+ // Merge weight of this case to the default weight.
+ unsigned idx = i->getCaseIndex();
+ Weights[0] += Weights[idx+1];
+ // Remove weight for this case.
+ std::swap(Weights[idx+1], Weights.back());
+ Weights.pop_back();
+ SI->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BB->getContext()).
+ createBranchWeights(Weights));
+ }
+ // Remove this entry.
+ DefaultDest->removePredecessor(SI->getParent());
+ i = SI->removeCase(i);
+ e = SI->case_end();
+ continue;
+ }
+
+ // Otherwise, check to see if the switch only branches to one destination.
+ // We do this by reseting "TheOnlyDest" to null when we find two non-equal
+ // destinations.
+ if (i->getCaseSuccessor() != TheOnlyDest)
+ TheOnlyDest = nullptr;
+
+ // Increment this iterator as we haven't removed the case.
+ ++i;
+ }
+
+ if (CI && !TheOnlyDest) {
+ // Branching on a constant, but not any of the cases, go to the default
+ // successor.
+ TheOnlyDest = SI->getDefaultDest();
+ }
+
+ // If we found a single destination that we can fold the switch into, do so
+ // now.
+ if (TheOnlyDest) {
+ // Insert the new branch.
+ Builder.CreateBr(TheOnlyDest);
+ BasicBlock *BB = SI->getParent();
+
+ // Remove entries from PHI nodes which we no longer branch to...
+ for (BasicBlock *Succ : SI->successors()) {
+ // Found case matching a constant operand?
+ if (Succ == TheOnlyDest)
+ TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
+ else
+ Succ->removePredecessor(BB);
+ }
+
+ // Delete the old switch.
+ Value *Cond = SI->getCondition();
+ SI->eraseFromParent();
+ if (DeleteDeadConditions)
+ RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
+ return true;
+ }
+
+ if (SI->getNumCases() == 1) {
+ // Otherwise, we can fold this switch into a conditional branch
+ // instruction if it has only one non-default destination.
+ auto FirstCase = *SI->case_begin();
+ Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
+ FirstCase.getCaseValue(), "cond");
+
+ // Insert the new branch.
+ BranchInst *NewBr = Builder.CreateCondBr(Cond,
+ FirstCase.getCaseSuccessor(),
+ SI->getDefaultDest());
+ MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
+ if (MD && MD->getNumOperands() == 3) {
+ ConstantInt *SICase =
+ mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
+ ConstantInt *SIDef =
+ mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
+ assert(SICase && SIDef);
+ // The TrueWeight should be the weight for the single case of SI.
+ NewBr->setMetadata(LLVMContext::MD_prof,
+ MDBuilder(BB->getContext()).
+ createBranchWeights(SICase->getValue().getZExtValue(),
+ SIDef->getValue().getZExtValue()));
+ }
+
+ // Update make.implicit metadata to the newly-created conditional branch.
+ MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
+ if (MakeImplicitMD)
+ NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
+
+ // Delete the old switch.
+ SI->eraseFromParent();
+ return true;
+ }
+ return false;
+ }
+
+ if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
+ // indirectbr blockaddress(@F, @BB) -> br label @BB
+ if (BlockAddress *BA =
+ dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
+ BasicBlock *TheOnlyDest = BA->getBasicBlock();
+ // Insert the new branch.
+ Builder.CreateBr(TheOnlyDest);
+
+ for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
+ if (IBI->getDestination(i) == TheOnlyDest)
+ TheOnlyDest = nullptr;
+ else
+ IBI->getDestination(i)->removePredecessor(IBI->getParent());
+ }
+ Value *Address = IBI->getAddress();
+ IBI->eraseFromParent();
+ if (DeleteDeadConditions)
+ RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
+
+ // If we didn't find our destination in the IBI successor list, then we
+ // have undefined behavior. Replace the unconditional branch with an
+ // 'unreachable' instruction.
+ if (TheOnlyDest) {
+ BB->getTerminator()->eraseFromParent();
+ new UnreachableInst(BB->getContext(), BB);
+ }
+
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Local dead code elimination.
+//
+
+/// isInstructionTriviallyDead - Return true if the result produced by the
+/// instruction is not used, and the instruction has no side effects.
+///
+bool llvm::isInstructionTriviallyDead(Instruction *I,
+ const TargetLibraryInfo *TLI) {
+ if (!I->use_empty())
+ return false;
+ return wouldInstructionBeTriviallyDead(I, TLI);
+}
+
+bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
+ const TargetLibraryInfo *TLI) {
+ if (isa<TerminatorInst>(I))
+ return false;
+
+ // We don't want the landingpad-like instructions removed by anything this
+ // general.
+ if (I->isEHPad())
+ return false;
+
+ // We don't want debug info removed by anything this general, unless
+ // debug info is empty.
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
+ if (DDI->getAddress())
+ return false;
+ return true;
+ }
+ if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
+ if (DVI->getValue())
+ return false;
+ return true;
+ }
+
+ if (!I->mayHaveSideEffects())
+ return true;
+
+ // Special case intrinsics that "may have side effects" but can be deleted
+ // when dead.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ // Safe to delete llvm.stacksave if dead.
+ if (II->getIntrinsicID() == Intrinsic::stacksave)
+ return true;
+
+ // Lifetime intrinsics are dead when their right-hand is undef.
+ if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
+ II->getIntrinsicID() == Intrinsic::lifetime_end)
+ return isa<UndefValue>(II->getArgOperand(1));
+
+ // Assumptions are dead if their condition is trivially true. Guards on
+ // true are operationally no-ops. In the future we can consider more
+ // sophisticated tradeoffs for guards considering potential for check
+ // widening, but for now we keep things simple.
+ if (II->getIntrinsicID() == Intrinsic::assume ||
+ II->getIntrinsicID() == Intrinsic::experimental_guard) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
+ return !Cond->isZero();
+
+ return false;
+ }
+ }
+
+ if (isAllocLikeFn(I, TLI))
+ return true;
+
+ if (CallInst *CI = isFreeCall(I, TLI))
+ if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
+ return C->isNullValue() || isa<UndefValue>(C);
+
+ if (CallSite CS = CallSite(I))
+ if (isMathLibCallNoop(CS, TLI))
+ return true;
+
+ return false;
+}
+
+/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
+/// trivially dead instruction, delete it. If that makes any of its operands
+/// trivially dead, delete them too, recursively. Return true if any
+/// instructions were deleted.
+bool
+llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
+ const TargetLibraryInfo *TLI) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
+ return false;
+
+ SmallVector<Instruction*, 16> DeadInsts;
+ DeadInsts.push_back(I);
+
+ do {
+ I = DeadInsts.pop_back_val();
+
+ // Null out all of the instruction's operands to see if any operand becomes
+ // dead as we go.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ Value *OpV = I->getOperand(i);
+ I->setOperand(i, nullptr);
+
+ if (!OpV->use_empty()) continue;
+
+ // If the operand is an instruction that became dead as we nulled out the
+ // operand, and if it is 'trivially' dead, delete it in a future loop
+ // iteration.
+ if (Instruction *OpI = dyn_cast<Instruction>(OpV))
+ if (isInstructionTriviallyDead(OpI, TLI))
+ DeadInsts.push_back(OpI);
+ }
+
+ I->eraseFromParent();
+ } while (!DeadInsts.empty());
+
+ return true;
+}
+
+/// areAllUsesEqual - Check whether the uses of a value are all the same.
+/// This is similar to Instruction::hasOneUse() except this will also return
+/// true when there are no uses or multiple uses that all refer to the same
+/// value.
+static bool areAllUsesEqual(Instruction *I) {
+ Value::user_iterator UI = I->user_begin();
+ Value::user_iterator UE = I->user_end();
+ if (UI == UE)
+ return true;
+
+ User *TheUse = *UI;
+ for (++UI; UI != UE; ++UI) {
+ if (*UI != TheUse)
+ return false;
+ }
+ return true;
+}
+
+/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
+/// dead PHI node, due to being a def-use chain of single-use nodes that
+/// either forms a cycle or is terminated by a trivially dead instruction,
+/// delete it. If that makes any of its operands trivially dead, delete them
+/// too, recursively. Return true if a change was made.
+bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
+ const TargetLibraryInfo *TLI) {
+ SmallPtrSet<Instruction*, 4> Visited;
+ for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
+ I = cast<Instruction>(*I->user_begin())) {
+ if (I->use_empty())
+ return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
+
+ // If we find an instruction more than once, we're on a cycle that
+ // won't prove fruitful.
+ if (!Visited.insert(I).second) {
+ // Break the cycle and delete the instruction and its operands.
+ I->replaceAllUsesWith(UndefValue::get(I->getType()));
+ (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool
+simplifyAndDCEInstruction(Instruction *I,
+ SmallSetVector<Instruction *, 16> &WorkList,
+ const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ if (isInstructionTriviallyDead(I, TLI)) {
+ // Null out all of the instruction's operands to see if any operand becomes
+ // dead as we go.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ Value *OpV = I->getOperand(i);
+ I->setOperand(i, nullptr);
+
+ if (!OpV->use_empty() || I == OpV)
+ continue;
+
+ // If the operand is an instruction that became dead as we nulled out the
+ // operand, and if it is 'trivially' dead, delete it in a future loop
+ // iteration.
+ if (Instruction *OpI = dyn_cast<Instruction>(OpV))
+ if (isInstructionTriviallyDead(OpI, TLI))
+ WorkList.insert(OpI);
+ }
+
+ I->eraseFromParent();
+
+ return true;
+ }
+
+ if (Value *SimpleV = SimplifyInstruction(I, DL)) {
+ // Add the users to the worklist. CAREFUL: an instruction can use itself,
+ // in the case of a phi node.
+ for (User *U : I->users()) {
+ if (U != I) {
+ WorkList.insert(cast<Instruction>(U));
+ }
+ }
+
+ // Replace the instruction with its simplified value.
+ bool Changed = false;
+ if (!I->use_empty()) {
+ I->replaceAllUsesWith(SimpleV);
+ Changed = true;
+ }
+ if (isInstructionTriviallyDead(I, TLI)) {
+ I->eraseFromParent();
+ Changed = true;
+ }
+ return Changed;
+ }
+ return false;
+}
+
+/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
+/// simplify any instructions in it and recursively delete dead instructions.
+///
+/// This returns true if it changed the code, note that it can delete
+/// instructions in other blocks as well in this block.
+bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
+ const TargetLibraryInfo *TLI) {
+ bool MadeChange = false;
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+
+#ifndef NDEBUG
+ // In debug builds, ensure that the terminator of the block is never replaced
+ // or deleted by these simplifications. The idea of simplification is that it
+ // cannot introduce new instructions, and there is no way to replace the
+ // terminator of a block without introducing a new instruction.
+ AssertingVH<Instruction> TerminatorVH(&BB->back());
+#endif
+
+ SmallSetVector<Instruction *, 16> WorkList;
+ // Iterate over the original function, only adding insts to the worklist
+ // if they actually need to be revisited. This avoids having to pre-init
+ // the worklist with the entire function's worth of instructions.
+ for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
+ BI != E;) {
+ assert(!BI->isTerminator());
+ Instruction *I = &*BI;
+ ++BI;
+
+ // We're visiting this instruction now, so make sure it's not in the
+ // worklist from an earlier visit.
+ if (!WorkList.count(I))
+ MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
+ }
+
+ while (!WorkList.empty()) {
+ Instruction *I = WorkList.pop_back_val();
+ MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
+ }
+ return MadeChange;
+}
+
+//===----------------------------------------------------------------------===//
+// Control Flow Graph Restructuring.
+//
+
+
+/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
+/// method is called when we're about to delete Pred as a predecessor of BB. If
+/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
+///
+/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
+/// nodes that collapse into identity values. For example, if we have:
+/// x = phi(1, 0, 0, 0)
+/// y = and x, z
+///
+/// .. and delete the predecessor corresponding to the '1', this will attempt to
+/// recursively fold the and to 0.
+void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
+ // This only adjusts blocks with PHI nodes.
+ if (!isa<PHINode>(BB->begin()))
+ return;
+
+ // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
+ // them down. This will leave us with single entry phi nodes and other phis
+ // that can be removed.
+ BB->removePredecessor(Pred, true);
+
+ WeakTrackingVH PhiIt = &BB->front();
+ while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
+ PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
+ Value *OldPhiIt = PhiIt;
+
+ if (!recursivelySimplifyInstruction(PN))
+ continue;
+
+ // If recursive simplification ended up deleting the next PHI node we would
+ // iterate to, then our iterator is invalid, restart scanning from the top
+ // of the block.
+ if (PhiIt != OldPhiIt) PhiIt = &BB->front();
+ }
+}
+
+
+/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
+/// predecessor is known to have one successor (DestBB!). Eliminate the edge
+/// between them, moving the instructions in the predecessor into DestBB and
+/// deleting the predecessor block.
+///
+void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
+ // If BB has single-entry PHI nodes, fold them.
+ while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
+ Value *NewVal = PN->getIncomingValue(0);
+ // Replace self referencing PHI with undef, it must be dead.
+ if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
+ PN->replaceAllUsesWith(NewVal);
+ PN->eraseFromParent();
+ }
+
+ BasicBlock *PredBB = DestBB->getSinglePredecessor();
+ assert(PredBB && "Block doesn't have a single predecessor!");
+
+ // Zap anything that took the address of DestBB. Not doing this will give the
+ // address an invalid value.
+ if (DestBB->hasAddressTaken()) {
+ BlockAddress *BA = BlockAddress::get(DestBB);
+ Constant *Replacement =
+ ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
+ BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
+ BA->getType()));
+ BA->destroyConstant();
+ }
+
+ // Anything that branched to PredBB now branches to DestBB.
+ PredBB->replaceAllUsesWith(DestBB);
+
+ // Splice all the instructions from PredBB to DestBB.
+ PredBB->getTerminator()->eraseFromParent();
+ DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
+
+ // If the PredBB is the entry block of the function, move DestBB up to
+ // become the entry block after we erase PredBB.
+ if (PredBB == &DestBB->getParent()->getEntryBlock())
+ DestBB->moveAfter(PredBB);
+
+ if (DT) {
+ BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
+ DT->changeImmediateDominator(DestBB, PredBBIDom);
+ DT->eraseNode(PredBB);
+ }
+ // Nuke BB.
+ PredBB->eraseFromParent();
+}
+
+/// CanMergeValues - Return true if we can choose one of these values to use
+/// in place of the other. Note that we will always choose the non-undef
+/// value to keep.
+static bool CanMergeValues(Value *First, Value *Second) {
+ return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
+}
+
+/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
+/// almost-empty BB ending in an unconditional branch to Succ, into Succ.
+///
+/// Assumption: Succ is the single successor for BB.
+///
+static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
+ assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
+
+ DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
+ << Succ->getName() << "\n");
+ // Shortcut, if there is only a single predecessor it must be BB and merging
+ // is always safe
+ if (Succ->getSinglePredecessor()) return true;
+
+ // Make a list of the predecessors of BB
+ SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
+
+ // Look at all the phi nodes in Succ, to see if they present a conflict when
+ // merging these blocks
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+
+ // If the incoming value from BB is again a PHINode in
+ // BB which has the same incoming value for *PI as PN does, we can
+ // merge the phi nodes and then the blocks can still be merged
+ PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
+ if (BBPN && BBPN->getParent() == BB) {
+ for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
+ BasicBlock *IBB = PN->getIncomingBlock(PI);
+ if (BBPreds.count(IBB) &&
+ !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
+ PN->getIncomingValue(PI))) {
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with "
+ << BBPN->getName() << " with regard to common predecessor "
+ << IBB->getName() << "\n");
+ return false;
+ }
+ }
+ } else {
+ Value* Val = PN->getIncomingValueForBlock(BB);
+ for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
+ // See if the incoming value for the common predecessor is equal to the
+ // one for BB, in which case this phi node will not prevent the merging
+ // of the block.
+ BasicBlock *IBB = PN->getIncomingBlock(PI);
+ if (BBPreds.count(IBB) &&
+ !CanMergeValues(Val, PN->getIncomingValue(PI))) {
+ DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
+ << Succ->getName() << " is conflicting with regard to common "
+ << "predecessor " << IBB->getName() << "\n");
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+typedef SmallVector<BasicBlock *, 16> PredBlockVector;
+typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
+
+/// \brief Determines the value to use as the phi node input for a block.
+///
+/// Select between \p OldVal any value that we know flows from \p BB
+/// to a particular phi on the basis of which one (if either) is not
+/// undef. Update IncomingValues based on the selected value.
+///
+/// \param OldVal The value we are considering selecting.
+/// \param BB The block that the value flows in from.
+/// \param IncomingValues A map from block-to-value for other phi inputs
+/// that we have examined.
+///
+/// \returns the selected value.
+static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
+ IncomingValueMap &IncomingValues) {
+ if (!isa<UndefValue>(OldVal)) {
+ assert((!IncomingValues.count(BB) ||
+ IncomingValues.find(BB)->second == OldVal) &&
+ "Expected OldVal to match incoming value from BB!");
+
+ IncomingValues.insert(std::make_pair(BB, OldVal));
+ return OldVal;
+ }
+
+ IncomingValueMap::const_iterator It = IncomingValues.find(BB);
+ if (It != IncomingValues.end()) return It->second;
+
+ return OldVal;
+}
+
+/// \brief Create a map from block to value for the operands of a
+/// given phi.
+///
+/// Create a map from block to value for each non-undef value flowing
+/// into \p PN.
+///
+/// \param PN The phi we are collecting the map for.
+/// \param IncomingValues [out] The map from block to value for this phi.
+static void gatherIncomingValuesToPhi(PHINode *PN,
+ IncomingValueMap &IncomingValues) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *BB = PN->getIncomingBlock(i);
+ Value *V = PN->getIncomingValue(i);
+
+ if (!isa<UndefValue>(V))
+ IncomingValues.insert(std::make_pair(BB, V));
+ }
+}
+
+/// \brief Replace the incoming undef values to a phi with the values
+/// from a block-to-value map.
+///
+/// \param PN The phi we are replacing the undefs in.
+/// \param IncomingValues A map from block to value.
+static void replaceUndefValuesInPhi(PHINode *PN,
+ const IncomingValueMap &IncomingValues) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *V = PN->getIncomingValue(i);
+
+ if (!isa<UndefValue>(V)) continue;
+
+ BasicBlock *BB = PN->getIncomingBlock(i);
+ IncomingValueMap::const_iterator It = IncomingValues.find(BB);
+ if (It == IncomingValues.end()) continue;
+
+ PN->setIncomingValue(i, It->second);
+ }
+}
+
+/// \brief Replace a value flowing from a block to a phi with
+/// potentially multiple instances of that value flowing from the
+/// block's predecessors to the phi.
+///
+/// \param BB The block with the value flowing into the phi.
+/// \param BBPreds The predecessors of BB.
+/// \param PN The phi that we are updating.
+static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
+ const PredBlockVector &BBPreds,
+ PHINode *PN) {
+ Value *OldVal = PN->removeIncomingValue(BB, false);
+ assert(OldVal && "No entry in PHI for Pred BB!");
+
+ IncomingValueMap IncomingValues;
+
+ // We are merging two blocks - BB, and the block containing PN - and
+ // as a result we need to redirect edges from the predecessors of BB
+ // to go to the block containing PN, and update PN
+ // accordingly. Since we allow merging blocks in the case where the
+ // predecessor and successor blocks both share some predecessors,
+ // and where some of those common predecessors might have undef
+ // values flowing into PN, we want to rewrite those values to be
+ // consistent with the non-undef values.
+
+ gatherIncomingValuesToPhi(PN, IncomingValues);
+
+ // If this incoming value is one of the PHI nodes in BB, the new entries
+ // in the PHI node are the entries from the old PHI.
+ if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
+ PHINode *OldValPN = cast<PHINode>(OldVal);
+ for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
+ // Note that, since we are merging phi nodes and BB and Succ might
+ // have common predecessors, we could end up with a phi node with
+ // identical incoming branches. This will be cleaned up later (and
+ // will trigger asserts if we try to clean it up now, without also
+ // simplifying the corresponding conditional branch).
+ BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
+ Value *PredVal = OldValPN->getIncomingValue(i);
+ Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
+ IncomingValues);
+
+ // And add a new incoming value for this predecessor for the
+ // newly retargeted branch.
+ PN->addIncoming(Selected, PredBB);
+ }
+ } else {
+ for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
+ // Update existing incoming values in PN for this
+ // predecessor of BB.
+ BasicBlock *PredBB = BBPreds[i];
+ Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
+ IncomingValues);
+
+ // And add a new incoming value for this predecessor for the
+ // newly retargeted branch.
+ PN->addIncoming(Selected, PredBB);
+ }
+ }
+
+ replaceUndefValuesInPhi(PN, IncomingValues);
+}
+
+/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
+/// unconditional branch, and contains no instructions other than PHI nodes,
+/// potential side-effect free intrinsics and the branch. If possible,
+/// eliminate BB by rewriting all the predecessors to branch to the successor
+/// block and return true. If we can't transform, return false.
+bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
+ assert(BB != &BB->getParent()->getEntryBlock() &&
+ "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
+
+ // We can't eliminate infinite loops.
+ BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
+ if (BB == Succ) return false;
+
+ // Check to see if merging these blocks would cause conflicts for any of the
+ // phi nodes in BB or Succ. If not, we can safely merge.
+ if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
+
+ // Check for cases where Succ has multiple predecessors and a PHI node in BB
+ // has uses which will not disappear when the PHI nodes are merged. It is
+ // possible to handle such cases, but difficult: it requires checking whether
+ // BB dominates Succ, which is non-trivial to calculate in the case where
+ // Succ has multiple predecessors. Also, it requires checking whether
+ // constructing the necessary self-referential PHI node doesn't introduce any
+ // conflicts; this isn't too difficult, but the previous code for doing this
+ // was incorrect.
+ //
+ // Note that if this check finds a live use, BB dominates Succ, so BB is
+ // something like a loop pre-header (or rarely, a part of an irreducible CFG);
+ // folding the branch isn't profitable in that case anyway.
+ if (!Succ->getSinglePredecessor()) {
+ BasicBlock::iterator BBI = BB->begin();
+ while (isa<PHINode>(*BBI)) {
+ for (Use &U : BBI->uses()) {
+ if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
+ if (PN->getIncomingBlock(U) != BB)
+ return false;
+ } else {
+ return false;
+ }
+ }
+ ++BBI;
+ }
+ }
+
+ DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
+
+ if (isa<PHINode>(Succ->begin())) {
+ // If there is more than one pred of succ, and there are PHI nodes in
+ // the successor, then we need to add incoming edges for the PHI nodes
+ //
+ const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
+
+ // Loop over all of the PHI nodes in the successor of BB.
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+
+ redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
+ }
+ }
+
+ if (Succ->getSinglePredecessor()) {
+ // BB is the only predecessor of Succ, so Succ will end up with exactly
+ // the same predecessors BB had.
+
+ // Copy over any phi, debug or lifetime instruction.
+ BB->getTerminator()->eraseFromParent();
+ Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
+ BB->getInstList());
+ } else {
+ while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
+ // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
+ assert(PN->use_empty() && "There shouldn't be any uses here!");
+ PN->eraseFromParent();
+ }
+ }
+
+ // If the unconditional branch we replaced contains llvm.loop metadata, we
+ // add the metadata to the branch instructions in the predecessors.
+ unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
+ Instruction *TI = BB->getTerminator();
+ if (TI)
+ if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *Pred = *PI;
+ Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
+ }
+
+ // Everything that jumped to BB now goes to Succ.
+ BB->replaceAllUsesWith(Succ);
+ if (!Succ->hasName()) Succ->takeName(BB);
+ BB->eraseFromParent(); // Delete the old basic block.
+ return true;
+}
+
+/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
+/// nodes in this block. This doesn't try to be clever about PHI nodes
+/// which differ only in the order of the incoming values, but instcombine
+/// orders them so it usually won't matter.
+///
+bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
+ // This implementation doesn't currently consider undef operands
+ // specially. Theoretically, two phis which are identical except for
+ // one having an undef where the other doesn't could be collapsed.
+
+ struct PHIDenseMapInfo {
+ static PHINode *getEmptyKey() {
+ return DenseMapInfo<PHINode *>::getEmptyKey();
+ }
+ static PHINode *getTombstoneKey() {
+ return DenseMapInfo<PHINode *>::getTombstoneKey();
+ }
+ static unsigned getHashValue(PHINode *PN) {
+ // Compute a hash value on the operands. Instcombine will likely have
+ // sorted them, which helps expose duplicates, but we have to check all
+ // the operands to be safe in case instcombine hasn't run.
+ return static_cast<unsigned>(hash_combine(
+ hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
+ hash_combine_range(PN->block_begin(), PN->block_end())));
+ }
+ static bool isEqual(PHINode *LHS, PHINode *RHS) {
+ if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
+ RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return LHS == RHS;
+ return LHS->isIdenticalTo(RHS);
+ }
+ };
+
+ // Set of unique PHINodes.
+ DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
+
+ // Examine each PHI.
+ bool Changed = false;
+ for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
+ auto Inserted = PHISet.insert(PN);
+ if (!Inserted.second) {
+ // A duplicate. Replace this PHI with its duplicate.
+ PN->replaceAllUsesWith(*Inserted.first);
+ PN->eraseFromParent();
+ Changed = true;
+
+ // The RAUW can change PHIs that we already visited. Start over from the
+ // beginning.
+ PHISet.clear();
+ I = BB->begin();
+ }
+ }
+
+ return Changed;
+}
+
+/// enforceKnownAlignment - If the specified pointer points to an object that
+/// we control, modify the object's alignment to PrefAlign. This isn't
+/// often possible though. If alignment is important, a more reliable approach
+/// is to simply align all global variables and allocation instructions to
+/// their preferred alignment from the beginning.
+///
+static unsigned enforceKnownAlignment(Value *V, unsigned Align,
+ unsigned PrefAlign,
+ const DataLayout &DL) {
+ assert(PrefAlign > Align);
+
+ V = V->stripPointerCasts();
+
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ // TODO: ideally, computeKnownBits ought to have used
+ // AllocaInst::getAlignment() in its computation already, making
+ // the below max redundant. But, as it turns out,
+ // stripPointerCasts recurses through infinite layers of bitcasts,
+ // while computeKnownBits is not allowed to traverse more than 6
+ // levels.
+ Align = std::max(AI->getAlignment(), Align);
+ if (PrefAlign <= Align)
+ return Align;
+
+ // If the preferred alignment is greater than the natural stack alignment
+ // then don't round up. This avoids dynamic stack realignment.
+ if (DL.exceedsNaturalStackAlignment(PrefAlign))
+ return Align;
+ AI->setAlignment(PrefAlign);
+ return PrefAlign;
+ }
+
+ if (auto *GO = dyn_cast<GlobalObject>(V)) {
+ // TODO: as above, this shouldn't be necessary.
+ Align = std::max(GO->getAlignment(), Align);
+ if (PrefAlign <= Align)
+ return Align;
+
+ // If there is a large requested alignment and we can, bump up the alignment
+ // of the global. If the memory we set aside for the global may not be the
+ // memory used by the final program then it is impossible for us to reliably
+ // enforce the preferred alignment.
+ if (!GO->canIncreaseAlignment())
+ return Align;
+
+ GO->setAlignment(PrefAlign);
+ return PrefAlign;
+ }
+
+ return Align;
+}
+
+unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
+ const DataLayout &DL,
+ const Instruction *CxtI,
+ AssumptionCache *AC,
+ const DominatorTree *DT) {
+ assert(V->getType()->isPointerTy() &&
+ "getOrEnforceKnownAlignment expects a pointer!");
+
+ KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
+ unsigned TrailZ = Known.countMinTrailingZeros();
+
+ // Avoid trouble with ridiculously large TrailZ values, such as
+ // those computed from a null pointer.
+ TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
+
+ unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ);
+
+ // LLVM doesn't support alignments larger than this currently.
+ Align = std::min(Align, +Value::MaximumAlignment);
+
+ if (PrefAlign > Align)
+ Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
+
+ // We don't need to make any adjustment.
+ return Align;
+}
+
+///===---------------------------------------------------------------------===//
+/// Dbg Intrinsic utilities
+///
+
+/// See if there is a dbg.value intrinsic for DIVar before I.
+static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
+ Instruction *I) {
+ // Since we can't guarantee that the original dbg.declare instrinsic
+ // is removed by LowerDbgDeclare(), we need to make sure that we are
+ // not inserting the same dbg.value intrinsic over and over.
+ llvm::BasicBlock::InstListType::iterator PrevI(I);
+ if (PrevI != I->getParent()->getInstList().begin()) {
+ --PrevI;
+ if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
+ if (DVI->getValue() == I->getOperand(0) &&
+ DVI->getOffset() == 0 &&
+ DVI->getVariable() == DIVar &&
+ DVI->getExpression() == DIExpr)
+ return true;
+ }
+ return false;
+}
+
+/// See if there is a dbg.value intrinsic for DIVar for the PHI node.
+static bool PhiHasDebugValue(DILocalVariable *DIVar,
+ DIExpression *DIExpr,
+ PHINode *APN) {
+ // Since we can't guarantee that the original dbg.declare instrinsic
+ // is removed by LowerDbgDeclare(), we need to make sure that we are
+ // not inserting the same dbg.value intrinsic over and over.
+ SmallVector<DbgValueInst *, 1> DbgValues;
+ findDbgValues(DbgValues, APN);
+ for (auto *DVI : DbgValues) {
+ assert(DVI->getValue() == APN);
+ assert(DVI->getOffset() == 0);
+ if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
+ return true;
+ }
+ return false;
+}
+
+/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
+/// that has an associated llvm.dbg.decl intrinsic.
+void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
+ StoreInst *SI, DIBuilder &Builder) {
+ auto *DIVar = DDI->getVariable();
+ assert(DIVar && "Missing variable");
+ auto *DIExpr = DDI->getExpression();
+ Value *DV = SI->getOperand(0);
+
+ // If an argument is zero extended then use argument directly. The ZExt
+ // may be zapped by an optimization pass in future.
+ Argument *ExtendedArg = nullptr;
+ if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
+ ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
+ if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
+ ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
+ if (ExtendedArg) {
+ // If this DDI was already describing only a fragment of a variable, ensure
+ // that fragment is appropriately narrowed here.
+ // But if a fragment wasn't used, describe the value as the original
+ // argument (rather than the zext or sext) so that it remains described even
+ // if the sext/zext is optimized away. This widens the variable description,
+ // leaving it up to the consumer to know how the smaller value may be
+ // represented in a larger register.
+ if (auto Fragment = DIExpr->getFragmentInfo()) {
+ unsigned FragmentOffset = Fragment->OffsetInBits;
+ SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(),
+ DIExpr->elements_end() - 3);
+ Ops.push_back(dwarf::DW_OP_LLVM_fragment);
+ Ops.push_back(FragmentOffset);
+ const DataLayout &DL = DDI->getModule()->getDataLayout();
+ Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
+ DIExpr = Builder.createExpression(Ops);
+ }
+ DV = ExtendedArg;
+ }
+ if (!LdStHasDebugValue(DIVar, DIExpr, SI))
+ Builder.insertDbgValueIntrinsic(DV, 0, DIVar, DIExpr, DDI->getDebugLoc(),
+ SI);
+}
+
+/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
+/// that has an associated llvm.dbg.decl intrinsic.
+void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
+ LoadInst *LI, DIBuilder &Builder) {
+ auto *DIVar = DDI->getVariable();
+ auto *DIExpr = DDI->getExpression();
+ assert(DIVar && "Missing variable");
+
+ if (LdStHasDebugValue(DIVar, DIExpr, LI))
+ return;
+
+ // We are now tracking the loaded value instead of the address. In the
+ // future if multi-location support is added to the IR, it might be
+ // preferable to keep tracking both the loaded value and the original
+ // address in case the alloca can not be elided.
+ Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
+ LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
+ DbgValue->insertAfter(LI);
+}
+
+/// Inserts a llvm.dbg.value intrinsic after a phi
+/// that has an associated llvm.dbg.decl intrinsic.
+void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
+ PHINode *APN, DIBuilder &Builder) {
+ auto *DIVar = DDI->getVariable();
+ auto *DIExpr = DDI->getExpression();
+ assert(DIVar && "Missing variable");
+
+ if (PhiHasDebugValue(DIVar, DIExpr, APN))
+ return;
+
+ BasicBlock *BB = APN->getParent();
+ auto InsertionPt = BB->getFirstInsertionPt();
+
+ // The block may be a catchswitch block, which does not have a valid
+ // insertion point.
+ // FIXME: Insert dbg.value markers in the successors when appropriate.
+ if (InsertionPt != BB->end())
+ Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(),
+ &*InsertionPt);
+}
+
+/// Determine whether this alloca is either a VLA or an array.
+static bool isArray(AllocaInst *AI) {
+ return AI->isArrayAllocation() ||
+ AI->getType()->getElementType()->isArrayTy();
+}
+
+/// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
+/// of llvm.dbg.value intrinsics.
+bool llvm::LowerDbgDeclare(Function &F) {
+ DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
+ SmallVector<DbgDeclareInst *, 4> Dbgs;
+ for (auto &FI : F)
+ for (Instruction &BI : FI)
+ if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
+ Dbgs.push_back(DDI);
+
+ if (Dbgs.empty())
+ return false;
+
+ for (auto &I : Dbgs) {
+ DbgDeclareInst *DDI = I;
+ AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
+ // If this is an alloca for a scalar variable, insert a dbg.value
+ // at each load and store to the alloca and erase the dbg.declare.
+ // The dbg.values allow tracking a variable even if it is not
+ // stored on the stack, while the dbg.declare can only describe
+ // the stack slot (and at a lexical-scope granularity). Later
+ // passes will attempt to elide the stack slot.
+ if (AI && !isArray(AI)) {
+ for (auto &AIUse : AI->uses()) {
+ User *U = AIUse.getUser();
+ if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+ if (AIUse.getOperandNo() == 1)
+ ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+ ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
+ } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
+ // This is a call by-value or some other instruction that
+ // takes a pointer to the variable. Insert a *value*
+ // intrinsic that describes the alloca.
+ DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
+ DDI->getExpression(), DDI->getDebugLoc(),
+ CI);
+ }
+ }
+ DDI->eraseFromParent();
+ }
+ }
+ return true;
+}
+
+/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
+/// alloca 'V', if any.
+DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
+ if (auto *L = LocalAsMetadata::getIfExists(V))
+ if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
+ for (User *U : MDV->users())
+ if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
+ return DDI;
+
+ return nullptr;
+}
+
+void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
+ if (auto *L = LocalAsMetadata::getIfExists(V))
+ if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
+ for (User *U : MDV->users())
+ if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
+ DbgValues.push_back(DVI);
+}
+
+
+bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
+ Instruction *InsertBefore, DIBuilder &Builder,
+ bool Deref, int Offset) {
+ DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
+ if (!DDI)
+ return false;
+ DebugLoc Loc = DDI->getDebugLoc();
+ auto *DIVar = DDI->getVariable();
+ auto *DIExpr = DDI->getExpression();
+ assert(DIVar && "Missing variable");
+ DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
+ // Insert llvm.dbg.declare immediately after the original alloca, and remove
+ // old llvm.dbg.declare.
+ Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ DDI->eraseFromParent();
+ return true;
+}
+
+bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
+ DIBuilder &Builder, bool Deref, int Offset) {
+ return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
+ Deref, Offset);
+}
+
+static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
+ DIBuilder &Builder, int Offset) {
+ DebugLoc Loc = DVI->getDebugLoc();
+ auto *DIVar = DVI->getVariable();
+ auto *DIExpr = DVI->getExpression();
+ assert(DIVar && "Missing variable");
+
+ // This is an alloca-based llvm.dbg.value. The first thing it should do with
+ // the alloca pointer is dereference it. Otherwise we don't know how to handle
+ // it and give up.
+ if (!DIExpr || DIExpr->getNumElements() < 1 ||
+ DIExpr->getElement(0) != dwarf::DW_OP_deref)
+ return;
+
+ // Insert the offset immediately after the first deref.
+ // We could just change the offset argument of dbg.value, but it's unsigned...
+ if (Offset) {
+ SmallVector<uint64_t, 4> Ops;
+ Ops.push_back(dwarf::DW_OP_deref);
+ DIExpression::appendOffset(Ops, Offset);
+ Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
+ DIExpr = Builder.createExpression(Ops);
+ }
+
+ Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
+ Loc, DVI);
+ DVI->eraseFromParent();
+}
+
+void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
+ DIBuilder &Builder, int Offset) {
+ if (auto *L = LocalAsMetadata::getIfExists(AI))
+ if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
+ for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
+ Use &U = *UI++;
+ if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
+ replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
+ }
+}
+
+void llvm::salvageDebugInfo(Instruction &I) {
+ SmallVector<DbgValueInst *, 1> DbgValues;
+ auto &M = *I.getModule();
+
+ auto MDWrap = [&](Value *V) {
+ return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
+ };
+
+ if (isa<BitCastInst>(&I)) {
+ findDbgValues(DbgValues, &I);
+ for (auto *DVI : DbgValues) {
+ // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
+ // to use the cast's source.
+ DVI->setOperand(0, MDWrap(I.getOperand(0)));
+ DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
+ }
+ } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ findDbgValues(DbgValues, &I);
+ for (auto *DVI : DbgValues) {
+ unsigned BitWidth =
+ M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
+ APInt Offset(BitWidth, 0);
+ // Rewrite a constant GEP into a DIExpression. Since we are performing
+ // arithmetic to compute the variable's *value* in the DIExpression, we
+ // need to mark the expression with a DW_OP_stack_value.
+ if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
+ auto *DIExpr = DVI->getExpression();
+ DIBuilder DIB(M, /*AllowUnresolved*/ false);
+ // GEP offsets are i32 and thus always fit into an int64_t.
+ DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref,
+ Offset.getSExtValue(),
+ DIExpression::WithStackValue);
+ DVI->setOperand(0, MDWrap(I.getOperand(0)));
+ DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr));
+ DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
+ }
+ }
+ } else if (isa<LoadInst>(&I)) {
+ findDbgValues(DbgValues, &I);
+ for (auto *DVI : DbgValues) {
+ // Rewrite the load into DW_OP_deref.
+ auto *DIExpr = DVI->getExpression();
+ DIBuilder DIB(M, /*AllowUnresolved*/ false);
+ DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
+ DVI->setOperand(0, MDWrap(I.getOperand(0)));
+ DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr));
+ DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
+ }
+ }
+}
+
+unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
+ unsigned NumDeadInst = 0;
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
+ while (EndInst != &BB->front()) {
+ // Delete the next to last instruction.
+ Instruction *Inst = &*--EndInst->getIterator();
+ if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
+ Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
+ if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
+ EndInst = Inst;
+ continue;
+ }
+ if (!isa<DbgInfoIntrinsic>(Inst))
+ ++NumDeadInst;
+ Inst->eraseFromParent();
+ }
+ return NumDeadInst;
+}
+
+unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
+ bool PreserveLCSSA) {
+ BasicBlock *BB = I->getParent();
+ // Loop over all of the successors, removing BB's entry from any PHI
+ // nodes.
+ for (BasicBlock *Successor : successors(BB))
+ Successor->removePredecessor(BB, PreserveLCSSA);
+
+ // Insert a call to llvm.trap right before this. This turns the undefined
+ // behavior into a hard fail instead of falling through into random code.
+ if (UseLLVMTrap) {
+ Function *TrapFn =
+ Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
+ CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
+ CallTrap->setDebugLoc(I->getDebugLoc());
+ }
+ new UnreachableInst(I->getContext(), I);
+
+ // All instructions after this are dead.
+ unsigned NumInstrsRemoved = 0;
+ BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
+ while (BBI != BBE) {
+ if (!BBI->use_empty())
+ BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
+ BB->getInstList().erase(BBI++);
+ ++NumInstrsRemoved;
+ }
+ return NumInstrsRemoved;
+}
+
+/// changeToCall - Convert the specified invoke into a normal call.
+static void changeToCall(InvokeInst *II) {
+ SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ II->getOperandBundlesAsDefs(OpBundles);
+ CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
+ "", II);
+ NewCall->takeName(II);
+ NewCall->setCallingConv(II->getCallingConv());
+ NewCall->setAttributes(II->getAttributes());
+ NewCall->setDebugLoc(II->getDebugLoc());
+ II->replaceAllUsesWith(NewCall);
+
+ // Follow the call by a branch to the normal destination.
+ BranchInst::Create(II->getNormalDest(), II);
+
+ // Update PHI nodes in the unwind destination
+ II->getUnwindDest()->removePredecessor(II->getParent());
+ II->eraseFromParent();
+}
+
+BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
+ BasicBlock *UnwindEdge) {
+ BasicBlock *BB = CI->getParent();
+
+ // Convert this function call into an invoke instruction. First, split the
+ // basic block.
+ BasicBlock *Split =
+ BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
+
+ // Delete the unconditional branch inserted by splitBasicBlock
+ BB->getInstList().pop_back();
+
+ // Create the new invoke instruction.
+ SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
+ SmallVector<OperandBundleDef, 1> OpBundles;
+
+ CI->getOperandBundlesAsDefs(OpBundles);
+
+ // Note: we're round tripping operand bundles through memory here, and that
+ // can potentially be avoided with a cleverer API design that we do not have
+ // as of this time.
+
+ InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
+ InvokeArgs, OpBundles, CI->getName(), BB);
+ II->setDebugLoc(CI->getDebugLoc());
+ II->setCallingConv(CI->getCallingConv());
+ II->setAttributes(CI->getAttributes());
+
+ // Make sure that anything using the call now uses the invoke! This also
+ // updates the CallGraph if present, because it uses a WeakTrackingVH.
+ CI->replaceAllUsesWith(II);
+
+ // Delete the original call
+ Split->getInstList().pop_front();
+ return Split;
+}
+
+static bool markAliveBlocks(Function &F,
+ SmallPtrSetImpl<BasicBlock*> &Reachable) {
+
+ SmallVector<BasicBlock*, 128> Worklist;
+ BasicBlock *BB = &F.front();
+ Worklist.push_back(BB);
+ Reachable.insert(BB);
+ bool Changed = false;
+ do {
+ BB = Worklist.pop_back_val();
+
+ // Do a quick scan of the basic block, turning any obviously unreachable
+ // instructions into LLVM unreachable insts. The instruction combining pass
+ // canonicalizes unreachable insts into stores to null or undef.
+ for (Instruction &I : *BB) {
+ // Assumptions that are known to be false are equivalent to unreachable.
+ // Also, if the condition is undefined, then we make the choice most
+ // beneficial to the optimizer, and choose that to also be unreachable.
+ if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
+ if (II->getIntrinsicID() == Intrinsic::assume) {
+ if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
+ // Don't insert a call to llvm.trap right before the unreachable.
+ changeToUnreachable(II, false);
+ Changed = true;
+ break;
+ }
+ }
+
+ if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
+ // A call to the guard intrinsic bails out of the current compilation
+ // unit if the predicate passed to it is false. If the predicate is a
+ // constant false, then we know the guard will bail out of the current
+ // compile unconditionally, so all code following it is dead.
+ //
+ // Note: unlike in llvm.assume, it is not "obviously profitable" for
+ // guards to treat `undef` as `false` since a guard on `undef` can
+ // still be useful for widening.
+ if (match(II->getArgOperand(0), m_Zero()))
+ if (!isa<UnreachableInst>(II->getNextNode())) {
+ changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
+ Changed = true;
+ break;
+ }
+ }
+ }
+
+ if (auto *CI = dyn_cast<CallInst>(&I)) {
+ Value *Callee = CI->getCalledValue();
+ if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
+ changeToUnreachable(CI, /*UseLLVMTrap=*/false);
+ Changed = true;
+ break;
+ }
+ if (CI->doesNotReturn()) {
+ // If we found a call to a no-return function, insert an unreachable
+ // instruction after it. Make sure there isn't *already* one there
+ // though.
+ if (!isa<UnreachableInst>(CI->getNextNode())) {
+ // Don't insert a call to llvm.trap right before the unreachable.
+ changeToUnreachable(CI->getNextNode(), false);
+ Changed = true;
+ }
+ break;
+ }
+ }
+
+ // Store to undef and store to null are undefined and used to signal that
+ // they should be changed to unreachable by passes that can't modify the
+ // CFG.
+ if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ // Don't touch volatile stores.
+ if (SI->isVolatile()) continue;
+
+ Value *Ptr = SI->getOperand(1);
+
+ if (isa<UndefValue>(Ptr) ||
+ (isa<ConstantPointerNull>(Ptr) &&
+ SI->getPointerAddressSpace() == 0)) {
+ changeToUnreachable(SI, true);
+ Changed = true;
+ break;
+ }
+ }
+ }
+
+ TerminatorInst *Terminator = BB->getTerminator();
+ if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
+ // Turn invokes that call 'nounwind' functions into ordinary calls.
+ Value *Callee = II->getCalledValue();
+ if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
+ changeToUnreachable(II, true);
+ Changed = true;
+ } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
+ if (II->use_empty() && II->onlyReadsMemory()) {
+ // jump to the normal destination branch.
+ BranchInst::Create(II->getNormalDest(), II);
+ II->getUnwindDest()->removePredecessor(II->getParent());
+ II->eraseFromParent();
+ } else
+ changeToCall(II);
+ Changed = true;
+ }
+ } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
+ // Remove catchpads which cannot be reached.
+ struct CatchPadDenseMapInfo {
+ static CatchPadInst *getEmptyKey() {
+ return DenseMapInfo<CatchPadInst *>::getEmptyKey();
+ }
+ static CatchPadInst *getTombstoneKey() {
+ return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
+ }
+ static unsigned getHashValue(CatchPadInst *CatchPad) {
+ return static_cast<unsigned>(hash_combine_range(
+ CatchPad->value_op_begin(), CatchPad->value_op_end()));
+ }
+ static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
+ if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
+ RHS == getEmptyKey() || RHS == getTombstoneKey())
+ return LHS == RHS;
+ return LHS->isIdenticalTo(RHS);
+ }
+ };
+
+ // Set of unique CatchPads.
+ SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
+ CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
+ HandlerSet;
+ detail::DenseSetEmpty Empty;
+ for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
+ E = CatchSwitch->handler_end();
+ I != E; ++I) {
+ BasicBlock *HandlerBB = *I;
+ auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
+ if (!HandlerSet.insert({CatchPad, Empty}).second) {
+ CatchSwitch->removeHandler(I);
+ --I;
+ --E;
+ Changed = true;
+ }
+ }
+ }
+
+ Changed |= ConstantFoldTerminator(BB, true);
+ for (BasicBlock *Successor : successors(BB))
+ if (Reachable.insert(Successor).second)
+ Worklist.push_back(Successor);
+ } while (!Worklist.empty());
+ return Changed;
+}
+
+void llvm::removeUnwindEdge(BasicBlock *BB) {
+ TerminatorInst *TI = BB->getTerminator();
+
+ if (auto *II = dyn_cast<InvokeInst>(TI)) {
+ changeToCall(II);
+ return;
+ }
+
+ TerminatorInst *NewTI;
+ BasicBlock *UnwindDest;
+
+ if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
+ NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
+ UnwindDest = CRI->getUnwindDest();
+ } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
+ auto *NewCatchSwitch = CatchSwitchInst::Create(
+ CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
+ CatchSwitch->getName(), CatchSwitch);
+ for (BasicBlock *PadBB : CatchSwitch->handlers())
+ NewCatchSwitch->addHandler(PadBB);
+
+ NewTI = NewCatchSwitch;
+ UnwindDest = CatchSwitch->getUnwindDest();
+ } else {
+ llvm_unreachable("Could not find unwind successor");
+ }
+
+ NewTI->takeName(TI);
+ NewTI->setDebugLoc(TI->getDebugLoc());
+ UnwindDest->removePredecessor(BB);
+ TI->replaceAllUsesWith(NewTI);
+ TI->eraseFromParent();
+}
+
+/// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
+/// if they are in a dead cycle. Return true if a change was made, false
+/// otherwise.
+bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
+ SmallPtrSet<BasicBlock*, 16> Reachable;
+ bool Changed = markAliveBlocks(F, Reachable);
+
+ // If there are unreachable blocks in the CFG...
+ if (Reachable.size() == F.size())
+ return Changed;
+
+ assert(Reachable.size() < F.size());
+ NumRemoved += F.size()-Reachable.size();
+
+ // Loop over all of the basic blocks that are not reachable, dropping all of
+ // their internal references...
+ for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
+ if (Reachable.count(&*BB))
+ continue;
+
+ for (BasicBlock *Successor : successors(&*BB))
+ if (Reachable.count(Successor))
+ Successor->removePredecessor(&*BB);
+ if (LVI)
+ LVI->eraseBlock(&*BB);
+ BB->dropAllReferences();
+ }
+
+ for (Function::iterator I = ++F.begin(); I != F.end();)
+ if (!Reachable.count(&*I))
+ I = F.getBasicBlockList().erase(I);
+ else
+ ++I;
+
+ return true;
+}
+
+void llvm::combineMetadata(Instruction *K, const Instruction *J,
+ ArrayRef<unsigned> KnownIDs) {
+ SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
+ K->dropUnknownNonDebugMetadata(KnownIDs);
+ K->getAllMetadataOtherThanDebugLoc(Metadata);
+ for (const auto &MD : Metadata) {
+ unsigned Kind = MD.first;
+ MDNode *JMD = J->getMetadata(Kind);
+ MDNode *KMD = MD.second;
+
+ switch (Kind) {
+ default:
+ K->setMetadata(Kind, nullptr); // Remove unknown metadata
+ break;
+ case LLVMContext::MD_dbg:
+ llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
+ case LLVMContext::MD_tbaa:
+ K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
+ break;
+ case LLVMContext::MD_alias_scope:
+ K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
+ break;
+ case LLVMContext::MD_noalias:
+ case LLVMContext::MD_mem_parallel_loop_access:
+ K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
+ break;
+ case LLVMContext::MD_range:
+ K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
+ break;
+ case LLVMContext::MD_fpmath:
+ K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
+ break;
+ case LLVMContext::MD_invariant_load:
+ // Only set the !invariant.load if it is present in both instructions.
+ K->setMetadata(Kind, JMD);
+ break;
+ case LLVMContext::MD_nonnull:
+ // Only set the !nonnull if it is present in both instructions.
+ K->setMetadata(Kind, JMD);
+ break;
+ case LLVMContext::MD_invariant_group:
+ // Preserve !invariant.group in K.
+ break;
+ case LLVMContext::MD_align:
+ K->setMetadata(Kind,
+ MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
+ break;
+ case LLVMContext::MD_dereferenceable:
+ case LLVMContext::MD_dereferenceable_or_null:
+ K->setMetadata(Kind,
+ MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
+ break;
+ }
+ }
+ // Set !invariant.group from J if J has it. If both instructions have it
+ // then we will just pick it from J - even when they are different.
+ // Also make sure that K is load or store - f.e. combining bitcast with load
+ // could produce bitcast with invariant.group metadata, which is invalid.
+ // FIXME: we should try to preserve both invariant.group md if they are
+ // different, but right now instruction can only have one invariant.group.
+ if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
+ if (isa<LoadInst>(K) || isa<StoreInst>(K))
+ K->setMetadata(LLVMContext::MD_invariant_group, JMD);
+}
+
+void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
+ unsigned KnownIDs[] = {
+ LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
+ LLVMContext::MD_noalias, LLVMContext::MD_range,
+ LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
+ LLVMContext::MD_invariant_group, LLVMContext::MD_align,
+ LLVMContext::MD_dereferenceable,
+ LLVMContext::MD_dereferenceable_or_null};
+ combineMetadata(K, J, KnownIDs);
+}
+
+template <typename RootType, typename DominatesFn>
+static unsigned replaceDominatedUsesWith(Value *From, Value *To,
+ const RootType &Root,
+ const DominatesFn &Dominates) {
+ assert(From->getType() == To->getType());
+
+ unsigned Count = 0;
+ for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
+ UI != UE;) {
+ Use &U = *UI++;
+ if (!Dominates(Root, U))
+ continue;
+ U.set(To);
+ DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
+ << *To << " in " << *U << "\n");
+ ++Count;
+ }
+ return Count;
+}
+
+unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
+ assert(From->getType() == To->getType());
+ auto *BB = From->getParent();
+ unsigned Count = 0;
+
+ for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
+ UI != UE;) {
+ Use &U = *UI++;
+ auto *I = cast<Instruction>(U.getUser());
+ if (I->getParent() == BB)
+ continue;
+ U.set(To);
+ ++Count;
+ }
+ return Count;
+}
+
+unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
+ DominatorTree &DT,
+ const BasicBlockEdge &Root) {
+ auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
+ return DT.dominates(Root, U);
+ };
+ return ::replaceDominatedUsesWith(From, To, Root, Dominates);
+}
+
+unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
+ DominatorTree &DT,
+ const BasicBlock *BB) {
+ auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) {
+ auto *I = cast<Instruction>(U.getUser())->getParent();
+ return DT.properlyDominates(BB, I);
+ };
+ return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates);
+}
+
+bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
+ // Check if the function is specifically marked as a gc leaf function.
+ if (CS.hasFnAttr("gc-leaf-function"))
+ return true;
+ if (const Function *F = CS.getCalledFunction()) {
+ if (F->hasFnAttribute("gc-leaf-function"))
+ return true;
+
+ if (auto IID = F->getIntrinsicID())
+ // Most LLVM intrinsics do not take safepoints.
+ return IID != Intrinsic::experimental_gc_statepoint &&
+ IID != Intrinsic::experimental_deoptimize;
+ }
+
+ return false;
+}
+
+namespace {
+/// A potential constituent of a bitreverse or bswap expression. See
+/// collectBitParts for a fuller explanation.
+struct BitPart {
+ BitPart(Value *P, unsigned BW) : Provider(P) {
+ Provenance.resize(BW);
+ }
+
+ /// The Value that this is a bitreverse/bswap of.
+ Value *Provider;
+ /// The "provenance" of each bit. Provenance[A] = B means that bit A
+ /// in Provider becomes bit B in the result of this expression.
+ SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
+
+ enum { Unset = -1 };
+};
+} // end anonymous namespace
+
+/// Analyze the specified subexpression and see if it is capable of providing
+/// pieces of a bswap or bitreverse. The subexpression provides a potential
+/// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
+/// the output of the expression came from a corresponding bit in some other
+/// value. This function is recursive, and the end result is a mapping of
+/// bitnumber to bitnumber. It is the caller's responsibility to validate that
+/// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
+///
+/// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
+/// that the expression deposits the low byte of %X into the high byte of the
+/// result and that all other bits are zero. This expression is accepted and a
+/// BitPart is returned with Provider set to %X and Provenance[24-31] set to
+/// [0-7].
+///
+/// To avoid revisiting values, the BitPart results are memoized into the
+/// provided map. To avoid unnecessary copying of BitParts, BitParts are
+/// constructed in-place in the \c BPS map. Because of this \c BPS needs to
+/// store BitParts objects, not pointers. As we need the concept of a nullptr
+/// BitParts (Value has been analyzed and the analysis failed), we an Optional
+/// type instead to provide the same functionality.
+///
+/// Because we pass around references into \c BPS, we must use a container that
+/// does not invalidate internal references (std::map instead of DenseMap).
+///
+static const Optional<BitPart> &
+collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
+ std::map<Value *, Optional<BitPart>> &BPS) {
+ auto I = BPS.find(V);
+ if (I != BPS.end())
+ return I->second;
+
+ auto &Result = BPS[V] = None;
+ auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If this is an or instruction, it may be an inner node of the bswap.
+ if (I->getOpcode() == Instruction::Or) {
+ auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
+ MatchBitReversals, BPS);
+ auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
+ MatchBitReversals, BPS);
+ if (!A || !B)
+ return Result;
+
+ // Try and merge the two together.
+ if (!A->Provider || A->Provider != B->Provider)
+ return Result;
+
+ Result = BitPart(A->Provider, BitWidth);
+ for (unsigned i = 0; i < A->Provenance.size(); ++i) {
+ if (A->Provenance[i] != BitPart::Unset &&
+ B->Provenance[i] != BitPart::Unset &&
+ A->Provenance[i] != B->Provenance[i])
+ return Result = None;
+
+ if (A->Provenance[i] == BitPart::Unset)
+ Result->Provenance[i] = B->Provenance[i];
+ else
+ Result->Provenance[i] = A->Provenance[i];
+ }
+
+ return Result;
+ }
+
+ // If this is a logical shift by a constant, recurse then shift the result.
+ if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
+ unsigned BitShift =
+ cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
+ // Ensure the shift amount is defined.
+ if (BitShift > BitWidth)
+ return Result;
+
+ auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
+ MatchBitReversals, BPS);
+ if (!Res)
+ return Result;
+ Result = Res;
+
+ // Perform the "shift" on BitProvenance.
+ auto &P = Result->Provenance;
+ if (I->getOpcode() == Instruction::Shl) {
+ P.erase(std::prev(P.end(), BitShift), P.end());
+ P.insert(P.begin(), BitShift, BitPart::Unset);
+ } else {
+ P.erase(P.begin(), std::next(P.begin(), BitShift));
+ P.insert(P.end(), BitShift, BitPart::Unset);
+ }
+
+ return Result;
+ }
+
+ // If this is a logical 'and' with a mask that clears bits, recurse then
+ // unset the appropriate bits.
+ if (I->getOpcode() == Instruction::And &&
+ isa<ConstantInt>(I->getOperand(1))) {
+ APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
+ const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
+
+ // Check that the mask allows a multiple of 8 bits for a bswap, for an
+ // early exit.
+ unsigned NumMaskedBits = AndMask.countPopulation();
+ if (!MatchBitReversals && NumMaskedBits % 8 != 0)
+ return Result;
+
+ auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
+ MatchBitReversals, BPS);
+ if (!Res)
+ return Result;
+ Result = Res;
+
+ for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
+ // If the AndMask is zero for this bit, clear the bit.
+ if ((AndMask & Bit) == 0)
+ Result->Provenance[i] = BitPart::Unset;
+ return Result;
+ }
+
+ // If this is a zext instruction zero extend the result.
+ if (I->getOpcode() == Instruction::ZExt) {
+ auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
+ MatchBitReversals, BPS);
+ if (!Res)
+ return Result;
+
+ Result = BitPart(Res->Provider, BitWidth);
+ auto NarrowBitWidth =
+ cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
+ for (unsigned i = 0; i < NarrowBitWidth; ++i)
+ Result->Provenance[i] = Res->Provenance[i];
+ for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
+ Result->Provenance[i] = BitPart::Unset;
+ return Result;
+ }
+ }
+
+ // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
+ // the input value to the bswap/bitreverse.
+ Result = BitPart(V, BitWidth);
+ for (unsigned i = 0; i < BitWidth; ++i)
+ Result->Provenance[i] = i;
+ return Result;
+}
+
+static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
+ unsigned BitWidth) {
+ if (From % 8 != To % 8)
+ return false;
+ // Convert from bit indices to byte indices and check for a byte reversal.
+ From >>= 3;
+ To >>= 3;
+ BitWidth >>= 3;
+ return From == BitWidth - To - 1;
+}
+
+static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
+ unsigned BitWidth) {
+ return From == BitWidth - To - 1;
+}
+
+/// Given an OR instruction, check to see if this is a bitreverse
+/// idiom. If so, insert the new intrinsic and return true.
+bool llvm::recognizeBSwapOrBitReverseIdiom(
+ Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
+ SmallVectorImpl<Instruction *> &InsertedInsts) {
+ if (Operator::getOpcode(I) != Instruction::Or)
+ return false;
+ if (!MatchBSwaps && !MatchBitReversals)
+ return false;
+ IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
+ if (!ITy || ITy->getBitWidth() > 128)
+ return false; // Can't do vectors or integers > 128 bits.
+ unsigned BW = ITy->getBitWidth();
+
+ unsigned DemandedBW = BW;
+ IntegerType *DemandedTy = ITy;
+ if (I->hasOneUse()) {
+ if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
+ DemandedTy = cast<IntegerType>(Trunc->getType());
+ DemandedBW = DemandedTy->getBitWidth();
+ }
+ }
+
+ // Try to find all the pieces corresponding to the bswap.
+ std::map<Value *, Optional<BitPart>> BPS;
+ auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
+ if (!Res)
+ return false;
+ auto &BitProvenance = Res->Provenance;
+
+ // Now, is the bit permutation correct for a bswap or a bitreverse? We can
+ // only byteswap values with an even number of bytes.
+ bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
+ for (unsigned i = 0; i < DemandedBW; ++i) {
+ OKForBSwap &=
+ bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
+ OKForBitReverse &=
+ bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
+ }
+
+ Intrinsic::ID Intrin;
+ if (OKForBSwap && MatchBSwaps)
+ Intrin = Intrinsic::bswap;
+ else if (OKForBitReverse && MatchBitReversals)
+ Intrin = Intrinsic::bitreverse;
+ else
+ return false;
+
+ if (ITy != DemandedTy) {
+ Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
+ Value *Provider = Res->Provider;
+ IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
+ // We may need to truncate the provider.
+ if (DemandedTy != ProviderTy) {
+ auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
+ "trunc", I);
+ InsertedInsts.push_back(Trunc);
+ Provider = Trunc;
+ }
+ auto *CI = CallInst::Create(F, Provider, "rev", I);
+ InsertedInsts.push_back(CI);
+ auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
+ InsertedInsts.push_back(ExtInst);
+ return true;
+ }
+
+ Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
+ InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
+ return true;
+}
+
+// CodeGen has special handling for some string functions that may replace
+// them with target-specific intrinsics. Since that'd skip our interceptors
+// in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
+// we mark affected calls as NoBuiltin, which will disable optimization
+// in CodeGen.
+void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
+ CallInst *CI, const TargetLibraryInfo *TLI) {
+ Function *F = CI->getCalledFunction();
+ LibFunc Func;
+ if (F && !F->hasLocalLinkage() && F->hasName() &&
+ TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
+ !F->doesNotAccessMemory())
+ CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
+}
+
+bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
+ // We can't have a PHI with a metadata type.
+ if (I->getOperand(OpIdx)->getType()->isMetadataTy())
+ return false;
+
+ // Early exit.
+ if (!isa<Constant>(I->getOperand(OpIdx)))
+ return true;
+
+ switch (I->getOpcode()) {
+ default:
+ return true;
+ case Instruction::Call:
+ case Instruction::Invoke:
+ // Many arithmetic intrinsics have no issue taking a
+ // variable, however it's hard to distingish these from
+ // specials such as @llvm.frameaddress that require a constant.
+ if (isa<IntrinsicInst>(I))
+ return false;
+
+ // Constant bundle operands may need to retain their constant-ness for
+ // correctness.
+ if (ImmutableCallSite(I).isBundleOperand(OpIdx))
+ return false;
+ return true;
+ case Instruction::ShuffleVector:
+ // Shufflevector masks are constant.
+ return OpIdx != 2;
+ case Instruction::ExtractValue:
+ case Instruction::InsertValue:
+ // All operands apart from the first are constant.
+ return OpIdx == 0;
+ case Instruction::Alloca:
+ return false;
+ case Instruction::GetElementPtr:
+ if (OpIdx == 0)
+ return true;
+ gep_type_iterator It = gep_type_begin(I);
+ for (auto E = std::next(It, OpIdx); It != E; ++It)
+ if (It.isStruct())
+ return false;
+ return true;
+ }
+}