aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp778
1 files changed, 778 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
new file mode 100644
index 000000000000..e346ebd6a000
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -0,0 +1,778 @@
+//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some loop unrolling utilities. It does not define any
+// actual pass or policy, but provides a single function to perform loop
+// unrolling.
+//
+// The process of unrolling can produce extraneous basic blocks linked with
+// unconditional branches. This will be corrected in the future.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+// TODO: Should these be here or in LoopUnroll?
+STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
+STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
+
+static cl::opt<bool>
+UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
+ cl::desc("Allow runtime unrolled loops to be unrolled "
+ "with epilog instead of prolog."));
+
+/// Convert the instruction operands from referencing the current values into
+/// those specified by VMap.
+static inline void remapInstruction(Instruction *I,
+ ValueToValueMapTy &VMap) {
+ for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
+ Value *Op = I->getOperand(op);
+ ValueToValueMapTy::iterator It = VMap.find(Op);
+ if (It != VMap.end())
+ I->setOperand(op, It->second);
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
+ if (It != VMap.end())
+ PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
+ }
+ }
+}
+
+/// Folds a basic block into its predecessor if it only has one predecessor, and
+/// that predecessor only has one successor.
+/// The LoopInfo Analysis that is passed will be kept consistent. If folding is
+/// successful references to the containing loop must be removed from
+/// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
+/// references to the eliminated BB. The argument ForgottenLoops contains a set
+/// of loops that have already been forgotten to prevent redundant, expensive
+/// calls to ScalarEvolution::forgetLoop. Returns the new combined block.
+static BasicBlock *
+foldBlockIntoPredecessor(BasicBlock *BB, LoopInfo *LI, ScalarEvolution *SE,
+ SmallPtrSetImpl<Loop *> &ForgottenLoops,
+ DominatorTree *DT) {
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ BasicBlock *OnlyPred = BB->getSinglePredecessor();
+ if (!OnlyPred) return nullptr;
+
+ if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
+ return nullptr;
+
+ DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
+
+ // Resolve any PHI nodes at the start of the block. They are all
+ // guaranteed to have exactly one entry if they exist, unless there are
+ // multiple duplicate (but guaranteed to be equal) entries for the
+ // incoming edges. This occurs when there are multiple edges from
+ // OnlyPred to OnlySucc.
+ FoldSingleEntryPHINodes(BB);
+
+ // Delete the unconditional branch from the predecessor...
+ OnlyPred->getInstList().pop_back();
+
+ // Make all PHI nodes that referred to BB now refer to Pred as their
+ // source...
+ BB->replaceAllUsesWith(OnlyPred);
+
+ // Move all definitions in the successor to the predecessor...
+ OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
+
+ // OldName will be valid until erased.
+ StringRef OldName = BB->getName();
+
+ // Erase the old block and update dominator info.
+ if (DT)
+ if (DomTreeNode *DTN = DT->getNode(BB)) {
+ DomTreeNode *PredDTN = DT->getNode(OnlyPred);
+ SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
+ for (auto *DI : Children)
+ DT->changeImmediateDominator(DI, PredDTN);
+
+ DT->eraseNode(BB);
+ }
+
+ // ScalarEvolution holds references to loop exit blocks.
+ if (SE) {
+ if (Loop *L = LI->getLoopFor(BB)) {
+ if (ForgottenLoops.insert(L).second)
+ SE->forgetLoop(L);
+ }
+ }
+ LI->removeBlock(BB);
+
+ // Inherit predecessor's name if it exists...
+ if (!OldName.empty() && !OnlyPred->hasName())
+ OnlyPred->setName(OldName);
+
+ BB->eraseFromParent();
+
+ return OnlyPred;
+}
+
+/// Check if unrolling created a situation where we need to insert phi nodes to
+/// preserve LCSSA form.
+/// \param Blocks is a vector of basic blocks representing unrolled loop.
+/// \param L is the outer loop.
+/// It's possible that some of the blocks are in L, and some are not. In this
+/// case, if there is a use is outside L, and definition is inside L, we need to
+/// insert a phi-node, otherwise LCSSA will be broken.
+/// The function is just a helper function for llvm::UnrollLoop that returns
+/// true if this situation occurs, indicating that LCSSA needs to be fixed.
+static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
+ LoopInfo *LI) {
+ for (BasicBlock *BB : Blocks) {
+ if (LI->getLoopFor(BB) == L)
+ continue;
+ for (Instruction &I : *BB) {
+ for (Use &U : I.operands()) {
+ if (auto Def = dyn_cast<Instruction>(U)) {
+ Loop *DefLoop = LI->getLoopFor(Def->getParent());
+ if (!DefLoop)
+ continue;
+ if (DefLoop->contains(L))
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+}
+
+/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
+/// and adds a mapping from the original loop to the new loop to NewLoops.
+/// Returns nullptr if no new loop was created and a pointer to the
+/// original loop OriginalBB was part of otherwise.
+const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
+ BasicBlock *ClonedBB, LoopInfo *LI,
+ NewLoopsMap &NewLoops) {
+ // Figure out which loop New is in.
+ const Loop *OldLoop = LI->getLoopFor(OriginalBB);
+ assert(OldLoop && "Should (at least) be in the loop being unrolled!");
+
+ Loop *&NewLoop = NewLoops[OldLoop];
+ if (!NewLoop) {
+ // Found a new sub-loop.
+ assert(OriginalBB == OldLoop->getHeader() &&
+ "Header should be first in RPO");
+
+ NewLoop = new Loop();
+ Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
+
+ if (NewLoopParent)
+ NewLoopParent->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+
+ NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
+ return OldLoop;
+ } else {
+ NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
+ return nullptr;
+ }
+}
+
+/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
+/// if unrolling was successful, or false if the loop was unmodified. Unrolling
+/// can only fail when the loop's latch block is not terminated by a conditional
+/// branch instruction. However, if the trip count (and multiple) are not known,
+/// loop unrolling will mostly produce more code that is no faster.
+///
+/// TripCount is the upper bound of the iteration on which control exits
+/// LatchBlock. Control may exit the loop prior to TripCount iterations either
+/// via an early branch in other loop block or via LatchBlock terminator. This
+/// is relaxed from the general definition of trip count which is the number of
+/// times the loop header executes. Note that UnrollLoop assumes that the loop
+/// counter test is in LatchBlock in order to remove unnecesssary instances of
+/// the test. If control can exit the loop from the LatchBlock's terminator
+/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
+///
+/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
+/// needs to be preserved. It is needed when we use trip count upper bound to
+/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
+/// conditional branch needs to be preserved.
+///
+/// Similarly, TripMultiple divides the number of times that the LatchBlock may
+/// execute without exiting the loop.
+///
+/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
+/// have a runtime (i.e. not compile time constant) trip count. Unrolling these
+/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
+/// iterations before branching into the unrolled loop. UnrollLoop will not
+/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
+/// AllowExpensiveTripCount is false.
+///
+/// If we want to perform PGO-based loop peeling, PeelCount is set to the
+/// number of iterations we want to peel off.
+///
+/// The LoopInfo Analysis that is passed will be kept consistent.
+///
+/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
+/// DominatorTree if they are non-null.
+bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool Force,
+ bool AllowRuntime, bool AllowExpensiveTripCount,
+ bool PreserveCondBr, bool PreserveOnlyFirst,
+ unsigned TripMultiple, unsigned PeelCount, LoopInfo *LI,
+ ScalarEvolution *SE, DominatorTree *DT,
+ AssumptionCache *AC, OptimizationRemarkEmitter *ORE,
+ bool PreserveLCSSA) {
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
+ return false;
+ }
+
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ if (!LatchBlock) {
+ DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
+ return false;
+ }
+
+ // Loops with indirectbr cannot be cloned.
+ if (!L->isSafeToClone()) {
+ DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
+ return false;
+ }
+
+ BasicBlock *Header = L->getHeader();
+ BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
+
+ if (!BI || BI->isUnconditional()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ DEBUG(dbgs() <<
+ " Can't unroll; loop not terminated by a conditional branch.\n");
+ return false;
+ }
+
+ if (Header->hasAddressTaken()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ DEBUG(dbgs() <<
+ " Won't unroll loop: address of header block is taken.\n");
+ return false;
+ }
+
+ if (TripCount != 0)
+ DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
+ if (TripMultiple != 1)
+ DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
+
+ // Effectively "DCE" unrolled iterations that are beyond the tripcount
+ // and will never be executed.
+ if (TripCount != 0 && Count > TripCount)
+ Count = TripCount;
+
+ // Don't enter the unroll code if there is nothing to do.
+ if (TripCount == 0 && Count < 2 && PeelCount == 0)
+ return false;
+
+ assert(Count > 0);
+ assert(TripMultiple > 0);
+ assert(TripCount == 0 || TripCount % TripMultiple == 0);
+
+ // Are we eliminating the loop control altogether?
+ bool CompletelyUnroll = Count == TripCount;
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ L->getExitBlocks(ExitBlocks);
+ std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
+
+ // Go through all exits of L and see if there are any phi-nodes there. We just
+ // conservatively assume that they're inserted to preserve LCSSA form, which
+ // means that complete unrolling might break this form. We need to either fix
+ // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
+ // now we just recompute LCSSA for the outer loop, but it should be possible
+ // to fix it in-place.
+ bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
+ any_of(ExitBlocks, [](const BasicBlock *BB) {
+ return isa<PHINode>(BB->begin());
+ });
+
+ // We assume a run-time trip count if the compiler cannot
+ // figure out the loop trip count and the unroll-runtime
+ // flag is specified.
+ bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
+
+ assert((!RuntimeTripCount || !PeelCount) &&
+ "Did not expect runtime trip-count unrolling "
+ "and peeling for the same loop");
+
+ if (PeelCount)
+ peelLoop(L, PeelCount, LI, SE, DT, PreserveLCSSA);
+
+ // Loops containing convergent instructions must have a count that divides
+ // their TripMultiple.
+ DEBUG(
+ {
+ bool HasConvergent = false;
+ for (auto &BB : L->blocks())
+ for (auto &I : *BB)
+ if (auto CS = CallSite(&I))
+ HasConvergent |= CS.isConvergent();
+ assert((!HasConvergent || TripMultiple % Count == 0) &&
+ "Unroll count must divide trip multiple if loop contains a "
+ "convergent operation.");
+ });
+
+ if (RuntimeTripCount && TripMultiple % Count != 0 &&
+ !UnrollRuntimeLoopRemainder(L, Count, AllowExpensiveTripCount,
+ UnrollRuntimeEpilog, LI, SE, DT,
+ PreserveLCSSA)) {
+ if (Force)
+ RuntimeTripCount = false;
+ else
+ return false;
+ }
+
+ // Notify ScalarEvolution that the loop will be substantially changed,
+ // if not outright eliminated.
+ if (SE)
+ SE->forgetLoop(L);
+
+ // If we know the trip count, we know the multiple...
+ unsigned BreakoutTrip = 0;
+ if (TripCount != 0) {
+ BreakoutTrip = TripCount % Count;
+ TripMultiple = 0;
+ } else {
+ // Figure out what multiple to use.
+ BreakoutTrip = TripMultiple =
+ (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
+ }
+
+ using namespace ore;
+ // Report the unrolling decision.
+ if (CompletelyUnroll) {
+ DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
+ << " with trip count " << TripCount << "!\n");
+ ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
+ L->getHeader())
+ << "completely unrolled loop with "
+ << NV("UnrollCount", TripCount) << " iterations");
+ } else if (PeelCount) {
+ DEBUG(dbgs() << "PEELING loop %" << Header->getName()
+ << " with iteration count " << PeelCount << "!\n");
+ ORE->emit(OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
+ L->getHeader())
+ << " peeled loop by " << NV("PeelCount", PeelCount)
+ << " iterations");
+ } else {
+ OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
+ L->getHeader());
+ Diag << "unrolled loop by a factor of " << NV("UnrollCount", Count);
+
+ DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
+ << " by " << Count);
+ if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
+ DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
+ ORE->emit(Diag << " with a breakout at trip "
+ << NV("BreakoutTrip", BreakoutTrip));
+ } else if (TripMultiple != 1) {
+ DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
+ ORE->emit(Diag << " with " << NV("TripMultiple", TripMultiple)
+ << " trips per branch");
+ } else if (RuntimeTripCount) {
+ DEBUG(dbgs() << " with run-time trip count");
+ ORE->emit(Diag << " with run-time trip count");
+ }
+ DEBUG(dbgs() << "!\n");
+ }
+
+ bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
+ BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
+
+ // For the first iteration of the loop, we should use the precloned values for
+ // PHI nodes. Insert associations now.
+ ValueToValueMapTy LastValueMap;
+ std::vector<PHINode*> OrigPHINode;
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ OrigPHINode.push_back(cast<PHINode>(I));
+ }
+
+ std::vector<BasicBlock*> Headers;
+ std::vector<BasicBlock*> Latches;
+ Headers.push_back(Header);
+ Latches.push_back(LatchBlock);
+
+ // The current on-the-fly SSA update requires blocks to be processed in
+ // reverse postorder so that LastValueMap contains the correct value at each
+ // exit.
+ LoopBlocksDFS DFS(L);
+ DFS.perform(LI);
+
+ // Stash the DFS iterators before adding blocks to the loop.
+ LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
+
+ std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
+
+ // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
+ // might break loop-simplified form for these loops (as they, e.g., would
+ // share the same exit blocks). We'll keep track of loops for which we can
+ // break this so that later we can re-simplify them.
+ SmallSetVector<Loop *, 4> LoopsToSimplify;
+ for (Loop *SubLoop : *L)
+ LoopsToSimplify.insert(SubLoop);
+
+ for (unsigned It = 1; It != Count; ++It) {
+ std::vector<BasicBlock*> NewBlocks;
+ SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
+ NewLoops[L] = L;
+
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ ValueToValueMapTy VMap;
+ BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
+ Header->getParent()->getBasicBlockList().push_back(New);
+
+ // Tell LI about New.
+ if (*BB == Header) {
+ assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
+ L->addBasicBlockToLoop(New, *LI);
+ } else {
+ const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
+ if (OldLoop) {
+ LoopsToSimplify.insert(NewLoops[OldLoop]);
+
+ // Forget the old loop, since its inputs may have changed.
+ if (SE)
+ SE->forgetLoop(OldLoop);
+ }
+ }
+
+ if (*BB == Header)
+ // Loop over all of the PHI nodes in the block, changing them to use
+ // the incoming values from the previous block.
+ for (PHINode *OrigPHI : OrigPHINode) {
+ PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
+ Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal))
+ if (It > 1 && L->contains(InValI))
+ InVal = LastValueMap[InValI];
+ VMap[OrigPHI] = InVal;
+ New->getInstList().erase(NewPHI);
+ }
+
+ // Update our running map of newest clones
+ LastValueMap[*BB] = New;
+ for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
+ VI != VE; ++VI)
+ LastValueMap[VI->first] = VI->second;
+
+ // Add phi entries for newly created values to all exit blocks.
+ for (BasicBlock *Succ : successors(*BB)) {
+ if (L->contains(Succ))
+ continue;
+ for (BasicBlock::iterator BBI = Succ->begin();
+ PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
+ Value *Incoming = phi->getIncomingValueForBlock(*BB);
+ ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
+ if (It != LastValueMap.end())
+ Incoming = It->second;
+ phi->addIncoming(Incoming, New);
+ }
+ }
+ // Keep track of new headers and latches as we create them, so that
+ // we can insert the proper branches later.
+ if (*BB == Header)
+ Headers.push_back(New);
+ if (*BB == LatchBlock)
+ Latches.push_back(New);
+
+ NewBlocks.push_back(New);
+ UnrolledLoopBlocks.push_back(New);
+
+ // Update DomTree: since we just copy the loop body, and each copy has a
+ // dedicated entry block (copy of the header block), this header's copy
+ // dominates all copied blocks. That means, dominance relations in the
+ // copied body are the same as in the original body.
+ if (DT) {
+ if (*BB == Header)
+ DT->addNewBlock(New, Latches[It - 1]);
+ else {
+ auto BBDomNode = DT->getNode(*BB);
+ auto BBIDom = BBDomNode->getIDom();
+ BasicBlock *OriginalBBIDom = BBIDom->getBlock();
+ DT->addNewBlock(
+ New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
+ }
+ }
+ }
+
+ // Remap all instructions in the most recent iteration
+ for (BasicBlock *NewBlock : NewBlocks) {
+ for (Instruction &I : *NewBlock) {
+ ::remapInstruction(&I, LastValueMap);
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ AC->registerAssumption(II);
+ }
+ }
+ }
+
+ // Loop over the PHI nodes in the original block, setting incoming values.
+ for (PHINode *PN : OrigPHINode) {
+ if (CompletelyUnroll) {
+ PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
+ Header->getInstList().erase(PN);
+ }
+ else if (Count > 1) {
+ Value *InVal = PN->removeIncomingValue(LatchBlock, false);
+ // If this value was defined in the loop, take the value defined by the
+ // last iteration of the loop.
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
+ if (L->contains(InValI))
+ InVal = LastValueMap[InVal];
+ }
+ assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
+ PN->addIncoming(InVal, Latches.back());
+ }
+ }
+
+ // Now that all the basic blocks for the unrolled iterations are in place,
+ // set up the branches to connect them.
+ for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
+ // The original branch was replicated in each unrolled iteration.
+ BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
+
+ // The branch destination.
+ unsigned j = (i + 1) % e;
+ BasicBlock *Dest = Headers[j];
+ bool NeedConditional = true;
+
+ if (RuntimeTripCount && j != 0) {
+ NeedConditional = false;
+ }
+
+ // For a complete unroll, make the last iteration end with a branch
+ // to the exit block.
+ if (CompletelyUnroll) {
+ if (j == 0)
+ Dest = LoopExit;
+ // If using trip count upper bound to completely unroll, we need to keep
+ // the conditional branch except the last one because the loop may exit
+ // after any iteration.
+ assert(NeedConditional &&
+ "NeedCondition cannot be modified by both complete "
+ "unrolling and runtime unrolling");
+ NeedConditional = (PreserveCondBr && j && !(PreserveOnlyFirst && i != 0));
+ } else if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
+ // If we know the trip count or a multiple of it, we can safely use an
+ // unconditional branch for some iterations.
+ NeedConditional = false;
+ }
+
+ if (NeedConditional) {
+ // Update the conditional branch's successor for the following
+ // iteration.
+ Term->setSuccessor(!ContinueOnTrue, Dest);
+ } else {
+ // Remove phi operands at this loop exit
+ if (Dest != LoopExit) {
+ BasicBlock *BB = Latches[i];
+ for (BasicBlock *Succ: successors(BB)) {
+ if (Succ == Headers[i])
+ continue;
+ for (BasicBlock::iterator BBI = Succ->begin();
+ PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
+ Phi->removeIncomingValue(BB, false);
+ }
+ }
+ }
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Dest, Term);
+ Term->eraseFromParent();
+ }
+ }
+ // Update dominators of blocks we might reach through exits.
+ // Immediate dominator of such block might change, because we add more
+ // routes which can lead to the exit: we can now reach it from the copied
+ // iterations too. Thus, the new idom of the block will be the nearest
+ // common dominator of the previous idom and common dominator of all copies of
+ // the previous idom. This is equivalent to the nearest common dominator of
+ // the previous idom and the first latch, which dominates all copies of the
+ // previous idom.
+ if (DT && Count > 1) {
+ for (auto *BB : OriginalLoopBlocks) {
+ auto *BBDomNode = DT->getNode(BB);
+ SmallVector<BasicBlock *, 16> ChildrenToUpdate;
+ for (auto *ChildDomNode : BBDomNode->getChildren()) {
+ auto *ChildBB = ChildDomNode->getBlock();
+ if (!L->contains(ChildBB))
+ ChildrenToUpdate.push_back(ChildBB);
+ }
+ BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, Latches[0]);
+ for (auto *ChildBB : ChildrenToUpdate)
+ DT->changeImmediateDominator(ChildBB, NewIDom);
+ }
+ }
+
+ // Merge adjacent basic blocks, if possible.
+ SmallPtrSet<Loop *, 4> ForgottenLoops;
+ for (BasicBlock *Latch : Latches) {
+ BranchInst *Term = cast<BranchInst>(Latch->getTerminator());
+ if (Term->isUnconditional()) {
+ BasicBlock *Dest = Term->getSuccessor(0);
+ if (BasicBlock *Fold =
+ foldBlockIntoPredecessor(Dest, LI, SE, ForgottenLoops, DT)) {
+ // Dest has been folded into Fold. Update our worklists accordingly.
+ std::replace(Latches.begin(), Latches.end(), Dest, Fold);
+ UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
+ UnrolledLoopBlocks.end(), Dest),
+ UnrolledLoopBlocks.end());
+ }
+ }
+ }
+
+ // FIXME: We only preserve DT info for complete unrolling now. Incrementally
+ // updating domtree after partial loop unrolling should also be easy.
+ if (DT && !CompletelyUnroll)
+ DT->recalculate(*L->getHeader()->getParent());
+ else if (DT)
+ DEBUG(DT->verifyDomTree());
+
+ // Simplify any new induction variables in the partially unrolled loop.
+ if (SE && !CompletelyUnroll && Count > 1) {
+ SmallVector<WeakVH, 16> DeadInsts;
+ simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
+
+ // Aggressively clean up dead instructions that simplifyLoopIVs already
+ // identified. Any remaining should be cleaned up below.
+ while (!DeadInsts.empty())
+ if (Instruction *Inst =
+ dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
+ RecursivelyDeleteTriviallyDeadInstructions(Inst);
+ }
+
+ // At this point, the code is well formed. We now do a quick sweep over the
+ // inserted code, doing constant propagation and dead code elimination as we
+ // go.
+ const DataLayout &DL = Header->getModule()->getDataLayout();
+ const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
+ for (BasicBlock *BB : NewLoopBlocks) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ if (Value *V = SimplifyInstruction(Inst, DL))
+ if (LI->replacementPreservesLCSSAForm(Inst, V))
+ Inst->replaceAllUsesWith(V);
+ if (isInstructionTriviallyDead(Inst))
+ BB->getInstList().erase(Inst);
+ }
+ }
+
+ // TODO: after peeling or unrolling, previously loop variant conditions are
+ // likely to fold to constants, eagerly propagating those here will require
+ // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
+ // appropriate.
+
+ NumCompletelyUnrolled += CompletelyUnroll;
+ ++NumUnrolled;
+
+ Loop *OuterL = L->getParentLoop();
+ // Update LoopInfo if the loop is completely removed.
+ if (CompletelyUnroll)
+ LI->markAsRemoved(L);
+
+ // After complete unrolling most of the blocks should be contained in OuterL.
+ // However, some of them might happen to be out of OuterL (e.g. if they
+ // precede a loop exit). In this case we might need to insert PHI nodes in
+ // order to preserve LCSSA form.
+ // We don't need to check this if we already know that we need to fix LCSSA
+ // form.
+ // TODO: For now we just recompute LCSSA for the outer loop in this case, but
+ // it should be possible to fix it in-place.
+ if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
+ NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
+
+ // If we have a pass and a DominatorTree we should re-simplify impacted loops
+ // to ensure subsequent analyses can rely on this form. We want to simplify
+ // at least one layer outside of the loop that was unrolled so that any
+ // changes to the parent loop exposed by the unrolling are considered.
+ if (DT) {
+ if (!OuterL && !CompletelyUnroll)
+ OuterL = L;
+ if (OuterL) {
+ // OuterL includes all loops for which we can break loop-simplify, so
+ // it's sufficient to simplify only it (it'll recursively simplify inner
+ // loops too).
+ // TODO: That potentially might be compile-time expensive. We should try
+ // to fix the loop-simplified form incrementally.
+ simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
+
+ // LCSSA must be performed on the outermost affected loop. The unrolled
+ // loop's last loop latch is guaranteed to be in the outermost loop after
+ // LoopInfo's been updated by markAsRemoved.
+ Loop *LatchLoop = LI->getLoopFor(Latches.back());
+ if (!OuterL->contains(LatchLoop))
+ while (OuterL->getParentLoop() != LatchLoop)
+ OuterL = OuterL->getParentLoop();
+
+ if (NeedToFixLCSSA)
+ formLCSSARecursively(*OuterL, *DT, LI, SE);
+ else
+ assert(OuterL->isLCSSAForm(*DT) &&
+ "Loops should be in LCSSA form after loop-unroll.");
+ } else {
+ // Simplify loops for which we might've broken loop-simplify form.
+ for (Loop *SubLoop : LoopsToSimplify)
+ simplifyLoop(SubLoop, DT, LI, SE, AC, PreserveLCSSA);
+ }
+ }
+
+ return true;
+}
+
+/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
+/// node with the given name (for example, "llvm.loop.unroll.count"). If no
+/// such metadata node exists, then nullptr is returned.
+MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (!MD)
+ continue;
+
+ MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ if (!S)
+ continue;
+
+ if (Name.equals(S->getString()))
+ return MD;
+ }
+ return nullptr;
+}