aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp698
1 files changed, 698 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
new file mode 100644
index 000000000000..d3ea1564115b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
@@ -0,0 +1,698 @@
+//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some loop unrolling utilities for loops with run-time
+// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
+// trip counts.
+//
+// The functions in this file are used to generate extra code when the
+// run-time trip count modulo the unroll factor is not 0. When this is the
+// case, we need to generate code to execute these 'left over' iterations.
+//
+// The current strategy generates an if-then-else sequence prior to the
+// unrolled loop to execute the 'left over' iterations before or after the
+// unrolled loop.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <algorithm>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+STATISTIC(NumRuntimeUnrolled,
+ "Number of loops unrolled with run-time trip counts");
+
+/// Connect the unrolling prolog code to the original loop.
+/// The unrolling prolog code contains code to execute the
+/// 'extra' iterations if the run-time trip count modulo the
+/// unroll count is non-zero.
+///
+/// This function performs the following:
+/// - Create PHI nodes at prolog end block to combine values
+/// that exit the prolog code and jump around the prolog.
+/// - Add a PHI operand to a PHI node at the loop exit block
+/// for values that exit the prolog and go around the loop.
+/// - Branch around the original loop if the trip count is less
+/// than the unroll factor.
+///
+static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
+ BasicBlock *PrologExit, BasicBlock *PreHeader,
+ BasicBlock *NewPreHeader, ValueToValueMapTy &VMap,
+ DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) {
+ BasicBlock *Latch = L->getLoopLatch();
+ assert(Latch && "Loop must have a latch");
+ BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
+
+ // Create a PHI node for each outgoing value from the original loop
+ // (which means it is an outgoing value from the prolog code too).
+ // The new PHI node is inserted in the prolog end basic block.
+ // The new PHI node value is added as an operand of a PHI node in either
+ // the loop header or the loop exit block.
+ for (BasicBlock *Succ : successors(Latch)) {
+ for (Instruction &BBI : *Succ) {
+ PHINode *PN = dyn_cast<PHINode>(&BBI);
+ // Exit when we passed all PHI nodes.
+ if (!PN)
+ break;
+ // Add a new PHI node to the prolog end block and add the
+ // appropriate incoming values.
+ PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
+ PrologExit->getFirstNonPHI());
+ // Adding a value to the new PHI node from the original loop preheader.
+ // This is the value that skips all the prolog code.
+ if (L->contains(PN)) {
+ NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
+ PreHeader);
+ } else {
+ NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
+ }
+
+ Value *V = PN->getIncomingValueForBlock(Latch);
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ if (L->contains(I)) {
+ V = VMap.lookup(I);
+ }
+ }
+ // Adding a value to the new PHI node from the last prolog block
+ // that was created.
+ NewPN->addIncoming(V, PrologLatch);
+
+ // Update the existing PHI node operand with the value from the
+ // new PHI node. How this is done depends on if the existing
+ // PHI node is in the original loop block, or the exit block.
+ if (L->contains(PN)) {
+ PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
+ } else {
+ PN->addIncoming(NewPN, PrologExit);
+ }
+ }
+ }
+
+ // Make sure that created prolog loop is in simplified form
+ SmallVector<BasicBlock *, 4> PrologExitPreds;
+ Loop *PrologLoop = LI->getLoopFor(PrologLatch);
+ if (PrologLoop) {
+ for (BasicBlock *PredBB : predecessors(PrologExit))
+ if (PrologLoop->contains(PredBB))
+ PrologExitPreds.push_back(PredBB);
+
+ SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
+ PreserveLCSSA);
+ }
+
+ // Create a branch around the original loop, which is taken if there are no
+ // iterations remaining to be executed after running the prologue.
+ Instruction *InsertPt = PrologExit->getTerminator();
+ IRBuilder<> B(InsertPt);
+
+ assert(Count != 0 && "nonsensical Count!");
+
+ // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
+ // This means %xtraiter is (BECount + 1) and all of the iterations of this
+ // loop were executed by the prologue. Note that if BECount <u (Count - 1)
+ // then (BECount + 1) cannot unsigned-overflow.
+ Value *BrLoopExit =
+ B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
+ BasicBlock *Exit = L->getUniqueExitBlock();
+ assert(Exit && "Loop must have a single exit block only");
+ // Split the exit to maintain loop canonicalization guarantees
+ SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
+ SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
+ PreserveLCSSA);
+ // Add the branch to the exit block (around the unrolled loop)
+ B.CreateCondBr(BrLoopExit, Exit, NewPreHeader);
+ InsertPt->eraseFromParent();
+}
+
+/// Connect the unrolling epilog code to the original loop.
+/// The unrolling epilog code contains code to execute the
+/// 'extra' iterations if the run-time trip count modulo the
+/// unroll count is non-zero.
+///
+/// This function performs the following:
+/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
+/// - Create PHI nodes at the unrolling loop exit to combine
+/// values that exit the unrolling loop code and jump around it.
+/// - Update PHI operands in the epilog loop by the new PHI nodes
+/// - Branch around the epilog loop if extra iters (ModVal) is zero.
+///
+static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
+ BasicBlock *Exit, BasicBlock *PreHeader,
+ BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
+ ValueToValueMapTy &VMap, DominatorTree *DT,
+ LoopInfo *LI, bool PreserveLCSSA) {
+ BasicBlock *Latch = L->getLoopLatch();
+ assert(Latch && "Loop must have a latch");
+ BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
+
+ // Loop structure should be the following:
+ //
+ // PreHeader
+ // NewPreHeader
+ // Header
+ // ...
+ // Latch
+ // NewExit (PN)
+ // EpilogPreHeader
+ // EpilogHeader
+ // ...
+ // EpilogLatch
+ // Exit (EpilogPN)
+
+ // Update PHI nodes at NewExit and Exit.
+ for (Instruction &BBI : *NewExit) {
+ PHINode *PN = dyn_cast<PHINode>(&BBI);
+ // Exit when we passed all PHI nodes.
+ if (!PN)
+ break;
+ // PN should be used in another PHI located in Exit block as
+ // Exit was split by SplitBlockPredecessors into Exit and NewExit
+ // Basicaly it should look like:
+ // NewExit:
+ // PN = PHI [I, Latch]
+ // ...
+ // Exit:
+ // EpilogPN = PHI [PN, EpilogPreHeader]
+ //
+ // There is EpilogPreHeader incoming block instead of NewExit as
+ // NewExit was spilt 1 more time to get EpilogPreHeader.
+ assert(PN->hasOneUse() && "The phi should have 1 use");
+ PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
+ assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
+
+ // Add incoming PreHeader from branch around the Loop
+ PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
+
+ Value *V = PN->getIncomingValueForBlock(Latch);
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (I && L->contains(I))
+ // If value comes from an instruction in the loop add VMap value.
+ V = VMap.lookup(I);
+ // For the instruction out of the loop, constant or undefined value
+ // insert value itself.
+ EpilogPN->addIncoming(V, EpilogLatch);
+
+ assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
+ "EpilogPN should have EpilogPreHeader incoming block");
+ // Change EpilogPreHeader incoming block to NewExit.
+ EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
+ NewExit);
+ // Now PHIs should look like:
+ // NewExit:
+ // PN = PHI [I, Latch], [undef, PreHeader]
+ // ...
+ // Exit:
+ // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
+ }
+
+ // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
+ // Update corresponding PHI nodes in epilog loop.
+ for (BasicBlock *Succ : successors(Latch)) {
+ // Skip this as we already updated phis in exit blocks.
+ if (!L->contains(Succ))
+ continue;
+ for (Instruction &BBI : *Succ) {
+ PHINode *PN = dyn_cast<PHINode>(&BBI);
+ // Exit when we passed all PHI nodes.
+ if (!PN)
+ break;
+ // Add new PHI nodes to the loop exit block and update epilog
+ // PHIs with the new PHI values.
+ PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
+ NewExit->getFirstNonPHI());
+ // Adding a value to the new PHI node from the unrolling loop preheader.
+ NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
+ // Adding a value to the new PHI node from the unrolling loop latch.
+ NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
+
+ // Update the existing PHI node operand with the value from the new PHI
+ // node. Corresponding instruction in epilog loop should be PHI.
+ PHINode *VPN = cast<PHINode>(VMap[&BBI]);
+ VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
+ }
+ }
+
+ Instruction *InsertPt = NewExit->getTerminator();
+ IRBuilder<> B(InsertPt);
+ Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
+ assert(Exit && "Loop must have a single exit block only");
+ // Split the exit to maintain loop canonicalization guarantees
+ SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
+ SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
+ PreserveLCSSA);
+ // Add the branch to the exit block (around the unrolling loop)
+ B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
+ InsertPt->eraseFromParent();
+}
+
+/// Create a clone of the blocks in a loop and connect them together.
+/// If CreateRemainderLoop is false, loop structure will not be cloned,
+/// otherwise a new loop will be created including all cloned blocks, and the
+/// iterator of it switches to count NewIter down to 0.
+/// The cloned blocks should be inserted between InsertTop and InsertBot.
+/// If loop structure is cloned InsertTop should be new preheader, InsertBot
+/// new loop exit.
+///
+static void CloneLoopBlocks(Loop *L, Value *NewIter,
+ const bool CreateRemainderLoop,
+ const bool UseEpilogRemainder,
+ BasicBlock *InsertTop, BasicBlock *InsertBot,
+ BasicBlock *Preheader,
+ std::vector<BasicBlock *> &NewBlocks,
+ LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
+ LoopInfo *LI) {
+ StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *Latch = L->getLoopLatch();
+ Function *F = Header->getParent();
+ LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
+ Loop *NewLoop = nullptr;
+ Loop *ParentLoop = L->getParentLoop();
+ if (CreateRemainderLoop) {
+ NewLoop = new Loop();
+ if (ParentLoop)
+ ParentLoop->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+ }
+
+ NewLoopsMap NewLoops;
+ if (NewLoop)
+ NewLoops[L] = NewLoop;
+ else if (ParentLoop)
+ NewLoops[L] = ParentLoop;
+
+ // For each block in the original loop, create a new copy,
+ // and update the value map with the newly created values.
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
+ NewBlocks.push_back(NewBB);
+
+ // If we're unrolling the outermost loop, there's no remainder loop,
+ // and this block isn't in a nested loop, then the new block is not
+ // in any loop. Otherwise, add it to loopinfo.
+ if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
+ addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
+
+ VMap[*BB] = NewBB;
+ if (Header == *BB) {
+ // For the first block, add a CFG connection to this newly
+ // created block.
+ InsertTop->getTerminator()->setSuccessor(0, NewBB);
+ }
+
+ if (Latch == *BB) {
+ // For the last block, if CreateRemainderLoop is false, create a direct
+ // jump to InsertBot. If not, create a loop back to cloned head.
+ VMap.erase((*BB)->getTerminator());
+ BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
+ BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
+ IRBuilder<> Builder(LatchBR);
+ if (!CreateRemainderLoop) {
+ Builder.CreateBr(InsertBot);
+ } else {
+ PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
+ suffix + ".iter",
+ FirstLoopBB->getFirstNonPHI());
+ Value *IdxSub =
+ Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
+ NewIdx->getName() + ".sub");
+ Value *IdxCmp =
+ Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
+ Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
+ NewIdx->addIncoming(NewIter, InsertTop);
+ NewIdx->addIncoming(IdxSub, NewBB);
+ }
+ LatchBR->eraseFromParent();
+ }
+ }
+
+ // Change the incoming values to the ones defined in the preheader or
+ // cloned loop.
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
+ if (!CreateRemainderLoop) {
+ if (UseEpilogRemainder) {
+ unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
+ NewPHI->setIncomingBlock(idx, InsertTop);
+ NewPHI->removeIncomingValue(Latch, false);
+ } else {
+ VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
+ cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
+ }
+ } else {
+ unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
+ NewPHI->setIncomingBlock(idx, InsertTop);
+ BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
+ idx = NewPHI->getBasicBlockIndex(Latch);
+ Value *InVal = NewPHI->getIncomingValue(idx);
+ NewPHI->setIncomingBlock(idx, NewLatch);
+ if (Value *V = VMap.lookup(InVal))
+ NewPHI->setIncomingValue(idx, V);
+ }
+ }
+ if (NewLoop) {
+ // Add unroll disable metadata to disable future unrolling for this loop.
+ SmallVector<Metadata *, 4> MDs;
+ // Reserve first location for self reference to the LoopID metadata node.
+ MDs.push_back(nullptr);
+ MDNode *LoopID = NewLoop->getLoopID();
+ if (LoopID) {
+ // First remove any existing loop unrolling metadata.
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ bool IsUnrollMetadata = false;
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (MD) {
+ const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
+ }
+ if (!IsUnrollMetadata)
+ MDs.push_back(LoopID->getOperand(i));
+ }
+ }
+
+ LLVMContext &Context = NewLoop->getHeader()->getContext();
+ SmallVector<Metadata *, 1> DisableOperands;
+ DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
+ MDNode *DisableNode = MDNode::get(Context, DisableOperands);
+ MDs.push_back(DisableNode);
+
+ MDNode *NewLoopID = MDNode::get(Context, MDs);
+ // Set operand 0 to refer to the loop id itself.
+ NewLoopID->replaceOperandWith(0, NewLoopID);
+ NewLoop->setLoopID(NewLoopID);
+ }
+}
+
+/// Insert code in the prolog/epilog code when unrolling a loop with a
+/// run-time trip-count.
+///
+/// This method assumes that the loop unroll factor is total number
+/// of loop bodies in the loop after unrolling. (Some folks refer
+/// to the unroll factor as the number of *extra* copies added).
+/// We assume also that the loop unroll factor is a power-of-two. So, after
+/// unrolling the loop, the number of loop bodies executed is 2,
+/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
+/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
+/// the switch instruction is generated.
+///
+/// ***Prolog case***
+/// extraiters = tripcount % loopfactor
+/// if (extraiters == 0) jump Loop:
+/// else jump Prol:
+/// Prol: LoopBody;
+/// extraiters -= 1 // Omitted if unroll factor is 2.
+/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
+/// if (tripcount < loopfactor) jump End:
+/// Loop:
+/// ...
+/// End:
+///
+/// ***Epilog case***
+/// extraiters = tripcount % loopfactor
+/// if (tripcount < loopfactor) jump LoopExit:
+/// unroll_iters = tripcount - extraiters
+/// Loop: LoopBody; (executes unroll_iter times);
+/// unroll_iter -= 1
+/// if (unroll_iter != 0) jump Loop:
+/// LoopExit:
+/// if (extraiters == 0) jump EpilExit:
+/// Epil: LoopBody; (executes extraiters times)
+/// extraiters -= 1 // Omitted if unroll factor is 2.
+/// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
+/// EpilExit:
+
+bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
+ bool AllowExpensiveTripCount,
+ bool UseEpilogRemainder,
+ LoopInfo *LI, ScalarEvolution *SE,
+ DominatorTree *DT, bool PreserveLCSSA) {
+ // for now, only unroll loops that contain a single exit
+ if (!L->getExitingBlock())
+ return false;
+
+ // Make sure the loop is in canonical form, and there is a single
+ // exit block only.
+ if (!L->isLoopSimplifyForm())
+ return false;
+ BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop
+ if (!Exit)
+ return false;
+
+ // Use Scalar Evolution to compute the trip count. This allows more loops to
+ // be unrolled than relying on induction var simplification.
+ if (!SE)
+ return false;
+
+ // Only unroll loops with a computable trip count, and the trip count needs
+ // to be an int value (allowing a pointer type is a TODO item).
+ const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
+ if (isa<SCEVCouldNotCompute>(BECountSC) ||
+ !BECountSC->getType()->isIntegerTy())
+ return false;
+
+ unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
+
+ // Add 1 since the backedge count doesn't include the first loop iteration.
+ const SCEV *TripCountSC =
+ SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
+ if (isa<SCEVCouldNotCompute>(TripCountSC))
+ return false;
+
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
+ const DataLayout &DL = Header->getModule()->getDataLayout();
+ SCEVExpander Expander(*SE, DL, "loop-unroll");
+ if (!AllowExpensiveTripCount &&
+ Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
+ return false;
+
+ // This constraint lets us deal with an overflowing trip count easily; see the
+ // comment on ModVal below.
+ if (Log2_32(Count) > BEWidth)
+ return false;
+
+ BasicBlock *Latch = L->getLoopLatch();
+
+ // Loop structure is the following:
+ //
+ // PreHeader
+ // Header
+ // ...
+ // Latch
+ // Exit
+
+ BasicBlock *NewPreHeader;
+ BasicBlock *NewExit = nullptr;
+ BasicBlock *PrologExit = nullptr;
+ BasicBlock *EpilogPreHeader = nullptr;
+ BasicBlock *PrologPreHeader = nullptr;
+
+ if (UseEpilogRemainder) {
+ // If epilog remainder
+ // Split PreHeader to insert a branch around loop for unrolling.
+ NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
+ NewPreHeader->setName(PreHeader->getName() + ".new");
+ // Split Exit to create phi nodes from branch above.
+ SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
+ NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa",
+ DT, LI, PreserveLCSSA);
+ // Split NewExit to insert epilog remainder loop.
+ EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
+ EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
+ } else {
+ // If prolog remainder
+ // Split the original preheader twice to insert prolog remainder loop
+ PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
+ PrologPreHeader->setName(Header->getName() + ".prol.preheader");
+ PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
+ DT, LI);
+ PrologExit->setName(Header->getName() + ".prol.loopexit");
+ // Split PrologExit to get NewPreHeader.
+ NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
+ NewPreHeader->setName(PreHeader->getName() + ".new");
+ }
+ // Loop structure should be the following:
+ // Epilog Prolog
+ //
+ // PreHeader PreHeader
+ // *NewPreHeader *PrologPreHeader
+ // Header *PrologExit
+ // ... *NewPreHeader
+ // Latch Header
+ // *NewExit ...
+ // *EpilogPreHeader Latch
+ // Exit Exit
+
+ // Calculate conditions for branch around loop for unrolling
+ // in epilog case and around prolog remainder loop in prolog case.
+ // Compute the number of extra iterations required, which is:
+ // extra iterations = run-time trip count % loop unroll factor
+ PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
+ Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
+ PreHeaderBR);
+ Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
+ PreHeaderBR);
+ IRBuilder<> B(PreHeaderBR);
+ Value *ModVal;
+ // Calculate ModVal = (BECount + 1) % Count.
+ // Note that TripCount is BECount + 1.
+ if (isPowerOf2_32(Count)) {
+ // When Count is power of 2 we don't BECount for epilog case, however we'll
+ // need it for a branch around unrolling loop for prolog case.
+ ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
+ // 1. There are no iterations to be run in the prolog/epilog loop.
+ // OR
+ // 2. The addition computing TripCount overflowed.
+ //
+ // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
+ // the number of iterations that remain to be run in the original loop is a
+ // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
+ // explicitly check this above).
+ } else {
+ // As (BECount + 1) can potentially unsigned overflow we count
+ // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
+ Value *ModValTmp = B.CreateURem(BECount,
+ ConstantInt::get(BECount->getType(),
+ Count));
+ Value *ModValAdd = B.CreateAdd(ModValTmp,
+ ConstantInt::get(ModValTmp->getType(), 1));
+ // At that point (BECount % Count) + 1 could be equal to Count.
+ // To handle this case we need to take mod by Count one more time.
+ ModVal = B.CreateURem(ModValAdd,
+ ConstantInt::get(BECount->getType(), Count),
+ "xtraiter");
+ }
+ Value *BranchVal =
+ UseEpilogRemainder ? B.CreateICmpULT(BECount,
+ ConstantInt::get(BECount->getType(),
+ Count - 1)) :
+ B.CreateIsNotNull(ModVal, "lcmp.mod");
+ BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
+ BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
+ // Branch to either remainder (extra iterations) loop or unrolling loop.
+ B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
+ PreHeaderBR->eraseFromParent();
+ Function *F = Header->getParent();
+ // Get an ordered list of blocks in the loop to help with the ordering of the
+ // cloned blocks in the prolog/epilog code
+ LoopBlocksDFS LoopBlocks(L);
+ LoopBlocks.perform(LI);
+
+ //
+ // For each extra loop iteration, create a copy of the loop's basic blocks
+ // and generate a condition that branches to the copy depending on the
+ // number of 'left over' iterations.
+ //
+ std::vector<BasicBlock *> NewBlocks;
+ ValueToValueMapTy VMap;
+
+ // For unroll factor 2 remainder loop will have 1 iterations.
+ // Do not create 1 iteration loop.
+ bool CreateRemainderLoop = (Count != 2);
+
+ // Clone all the basic blocks in the loop. If Count is 2, we don't clone
+ // the loop, otherwise we create a cloned loop to execute the extra
+ // iterations. This function adds the appropriate CFG connections.
+ BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit;
+ BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
+ CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop,
+ InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI);
+
+ // Insert the cloned blocks into the function.
+ F->getBasicBlockList().splice(InsertBot->getIterator(),
+ F->getBasicBlockList(),
+ NewBlocks[0]->getIterator(),
+ F->end());
+
+ // Loop structure should be the following:
+ // Epilog Prolog
+ //
+ // PreHeader PreHeader
+ // NewPreHeader PrologPreHeader
+ // Header PrologHeader
+ // ... ...
+ // Latch PrologLatch
+ // NewExit PrologExit
+ // EpilogPreHeader NewPreHeader
+ // EpilogHeader Header
+ // ... ...
+ // EpilogLatch Latch
+ // Exit Exit
+
+ // Rewrite the cloned instruction operands to use the values created when the
+ // clone is created.
+ for (BasicBlock *BB : NewBlocks) {
+ for (Instruction &I : *BB) {
+ RemapInstruction(&I, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+ }
+ }
+
+ if (UseEpilogRemainder) {
+ // Connect the epilog code to the original loop and update the
+ // PHI functions.
+ ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader,
+ EpilogPreHeader, NewPreHeader, VMap, DT, LI,
+ PreserveLCSSA);
+
+ // Update counter in loop for unrolling.
+ // I should be multiply of Count.
+ IRBuilder<> B2(NewPreHeader->getTerminator());
+ Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
+ BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
+ B2.SetInsertPoint(LatchBR);
+ PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
+ Header->getFirstNonPHI());
+ Value *IdxSub =
+ B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
+ NewIdx->getName() + ".nsub");
+ Value *IdxCmp;
+ if (LatchBR->getSuccessor(0) == Header)
+ IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
+ else
+ IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
+ NewIdx->addIncoming(TestVal, NewPreHeader);
+ NewIdx->addIncoming(IdxSub, Latch);
+ LatchBR->setCondition(IdxCmp);
+ } else {
+ // Connect the prolog code to the original loop and update the
+ // PHI functions.
+ ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader,
+ VMap, DT, LI, PreserveLCSSA);
+ }
+
+ // If this loop is nested, then the loop unroller changes the code in the
+ // parent loop, so the Scalar Evolution pass needs to be run again.
+ if (Loop *ParentLoop = L->getParentLoop())
+ SE->forgetLoop(ParentLoop);
+
+ NumRuntimeUnrolled++;
+ return true;
+}