aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp1378
1 files changed, 1378 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
new file mode 100644
index 000000000000..0ed33945ef40
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/LoopUtils.cpp
@@ -0,0 +1,1378 @@
+//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines common loop utility functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/ADT/ScopeExit.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "loop-utils"
+
+bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
+ SmallPtrSetImpl<Instruction *> &Set) {
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
+ if (!Set.count(dyn_cast<Instruction>(*Use)))
+ return false;
+ return true;
+}
+
+bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
+ switch (Kind) {
+ default:
+ break;
+ case RK_IntegerAdd:
+ case RK_IntegerMult:
+ case RK_IntegerOr:
+ case RK_IntegerAnd:
+ case RK_IntegerXor:
+ case RK_IntegerMinMax:
+ return true;
+ }
+ return false;
+}
+
+bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
+ return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
+}
+
+bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
+ switch (Kind) {
+ default:
+ break;
+ case RK_IntegerAdd:
+ case RK_IntegerMult:
+ case RK_FloatAdd:
+ case RK_FloatMult:
+ return true;
+ }
+ return false;
+}
+
+Instruction *
+RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
+ SmallPtrSetImpl<Instruction *> &Visited,
+ SmallPtrSetImpl<Instruction *> &CI) {
+ if (!Phi->hasOneUse())
+ return Phi;
+
+ const APInt *M = nullptr;
+ Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
+
+ // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
+ // with a new integer type of the corresponding bit width.
+ if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
+ int32_t Bits = (*M + 1).exactLogBase2();
+ if (Bits > 0) {
+ RT = IntegerType::get(Phi->getContext(), Bits);
+ Visited.insert(Phi);
+ CI.insert(J);
+ return J;
+ }
+ }
+ return Phi;
+}
+
+bool RecurrenceDescriptor::getSourceExtensionKind(
+ Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
+ SmallPtrSetImpl<Instruction *> &Visited,
+ SmallPtrSetImpl<Instruction *> &CI) {
+
+ SmallVector<Instruction *, 8> Worklist;
+ bool FoundOneOperand = false;
+ unsigned DstSize = RT->getPrimitiveSizeInBits();
+ Worklist.push_back(Exit);
+
+ // Traverse the instructions in the reduction expression, beginning with the
+ // exit value.
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+ for (Use &U : I->operands()) {
+
+ // Terminate the traversal if the operand is not an instruction, or we
+ // reach the starting value.
+ Instruction *J = dyn_cast<Instruction>(U.get());
+ if (!J || J == Start)
+ continue;
+
+ // Otherwise, investigate the operation if it is also in the expression.
+ if (Visited.count(J)) {
+ Worklist.push_back(J);
+ continue;
+ }
+
+ // If the operand is not in Visited, it is not a reduction operation, but
+ // it does feed into one. Make sure it is either a single-use sign- or
+ // zero-extend instruction.
+ CastInst *Cast = dyn_cast<CastInst>(J);
+ bool IsSExtInst = isa<SExtInst>(J);
+ if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
+ return false;
+
+ // Ensure the source type of the extend is no larger than the reduction
+ // type. It is not necessary for the types to be identical.
+ unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
+ if (SrcSize > DstSize)
+ return false;
+
+ // Furthermore, ensure that all such extends are of the same kind.
+ if (FoundOneOperand) {
+ if (IsSigned != IsSExtInst)
+ return false;
+ } else {
+ FoundOneOperand = true;
+ IsSigned = IsSExtInst;
+ }
+
+ // Lastly, if the source type of the extend matches the reduction type,
+ // add the extend to CI so that we can avoid accounting for it in the
+ // cost model.
+ if (SrcSize == DstSize)
+ CI.insert(Cast);
+ }
+ }
+ return true;
+}
+
+bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
+ Loop *TheLoop, bool HasFunNoNaNAttr,
+ RecurrenceDescriptor &RedDes) {
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Reduction variables are only found in the loop header block.
+ if (Phi->getParent() != TheLoop->getHeader())
+ return false;
+
+ // Obtain the reduction start value from the value that comes from the loop
+ // preheader.
+ Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
+
+ // ExitInstruction is the single value which is used outside the loop.
+ // We only allow for a single reduction value to be used outside the loop.
+ // This includes users of the reduction, variables (which form a cycle
+ // which ends in the phi node).
+ Instruction *ExitInstruction = nullptr;
+ // Indicates that we found a reduction operation in our scan.
+ bool FoundReduxOp = false;
+
+ // We start with the PHI node and scan for all of the users of this
+ // instruction. All users must be instructions that can be used as reduction
+ // variables (such as ADD). We must have a single out-of-block user. The cycle
+ // must include the original PHI.
+ bool FoundStartPHI = false;
+
+ // To recognize min/max patterns formed by a icmp select sequence, we store
+ // the number of instruction we saw from the recognized min/max pattern,
+ // to make sure we only see exactly the two instructions.
+ unsigned NumCmpSelectPatternInst = 0;
+ InstDesc ReduxDesc(false, nullptr);
+
+ // Data used for determining if the recurrence has been type-promoted.
+ Type *RecurrenceType = Phi->getType();
+ SmallPtrSet<Instruction *, 4> CastInsts;
+ Instruction *Start = Phi;
+ bool IsSigned = false;
+
+ SmallPtrSet<Instruction *, 8> VisitedInsts;
+ SmallVector<Instruction *, 8> Worklist;
+
+ // Return early if the recurrence kind does not match the type of Phi. If the
+ // recurrence kind is arithmetic, we attempt to look through AND operations
+ // resulting from the type promotion performed by InstCombine. Vector
+ // operations are not limited to the legal integer widths, so we may be able
+ // to evaluate the reduction in the narrower width.
+ if (RecurrenceType->isFloatingPointTy()) {
+ if (!isFloatingPointRecurrenceKind(Kind))
+ return false;
+ } else {
+ if (!isIntegerRecurrenceKind(Kind))
+ return false;
+ if (isArithmeticRecurrenceKind(Kind))
+ Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
+ }
+
+ Worklist.push_back(Start);
+ VisitedInsts.insert(Start);
+
+ // A value in the reduction can be used:
+ // - By the reduction:
+ // - Reduction operation:
+ // - One use of reduction value (safe).
+ // - Multiple use of reduction value (not safe).
+ // - PHI:
+ // - All uses of the PHI must be the reduction (safe).
+ // - Otherwise, not safe.
+ // - By instructions outside of the loop (safe).
+ // * One value may have several outside users, but all outside
+ // uses must be of the same value.
+ // - By an instruction that is not part of the reduction (not safe).
+ // This is either:
+ // * An instruction type other than PHI or the reduction operation.
+ // * A PHI in the header other than the initial PHI.
+ while (!Worklist.empty()) {
+ Instruction *Cur = Worklist.back();
+ Worklist.pop_back();
+
+ // No Users.
+ // If the instruction has no users then this is a broken chain and can't be
+ // a reduction variable.
+ if (Cur->use_empty())
+ return false;
+
+ bool IsAPhi = isa<PHINode>(Cur);
+
+ // A header PHI use other than the original PHI.
+ if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
+ return false;
+
+ // Reductions of instructions such as Div, and Sub is only possible if the
+ // LHS is the reduction variable.
+ if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
+ !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
+ !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
+ return false;
+
+ // Any reduction instruction must be of one of the allowed kinds. We ignore
+ // the starting value (the Phi or an AND instruction if the Phi has been
+ // type-promoted).
+ if (Cur != Start) {
+ ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
+ if (!ReduxDesc.isRecurrence())
+ return false;
+ }
+
+ // A reduction operation must only have one use of the reduction value.
+ if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
+ hasMultipleUsesOf(Cur, VisitedInsts))
+ return false;
+
+ // All inputs to a PHI node must be a reduction value.
+ if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
+ return false;
+
+ if (Kind == RK_IntegerMinMax &&
+ (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+ if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
+ ++NumCmpSelectPatternInst;
+
+ // Check whether we found a reduction operator.
+ FoundReduxOp |= !IsAPhi && Cur != Start;
+
+ // Process users of current instruction. Push non-PHI nodes after PHI nodes
+ // onto the stack. This way we are going to have seen all inputs to PHI
+ // nodes once we get to them.
+ SmallVector<Instruction *, 8> NonPHIs;
+ SmallVector<Instruction *, 8> PHIs;
+ for (User *U : Cur->users()) {
+ Instruction *UI = cast<Instruction>(U);
+
+ // Check if we found the exit user.
+ BasicBlock *Parent = UI->getParent();
+ if (!TheLoop->contains(Parent)) {
+ // If we already know this instruction is used externally, move on to
+ // the next user.
+ if (ExitInstruction == Cur)
+ continue;
+
+ // Exit if you find multiple values used outside or if the header phi
+ // node is being used. In this case the user uses the value of the
+ // previous iteration, in which case we would loose "VF-1" iterations of
+ // the reduction operation if we vectorize.
+ if (ExitInstruction != nullptr || Cur == Phi)
+ return false;
+
+ // The instruction used by an outside user must be the last instruction
+ // before we feed back to the reduction phi. Otherwise, we loose VF-1
+ // operations on the value.
+ if (!is_contained(Phi->operands(), Cur))
+ return false;
+
+ ExitInstruction = Cur;
+ continue;
+ }
+
+ // Process instructions only once (termination). Each reduction cycle
+ // value must only be used once, except by phi nodes and min/max
+ // reductions which are represented as a cmp followed by a select.
+ InstDesc IgnoredVal(false, nullptr);
+ if (VisitedInsts.insert(UI).second) {
+ if (isa<PHINode>(UI))
+ PHIs.push_back(UI);
+ else
+ NonPHIs.push_back(UI);
+ } else if (!isa<PHINode>(UI) &&
+ ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
+ !isa<SelectInst>(UI)) ||
+ !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
+ return false;
+
+ // Remember that we completed the cycle.
+ if (UI == Phi)
+ FoundStartPHI = true;
+ }
+ Worklist.append(PHIs.begin(), PHIs.end());
+ Worklist.append(NonPHIs.begin(), NonPHIs.end());
+ }
+
+ // This means we have seen one but not the other instruction of the
+ // pattern or more than just a select and cmp.
+ if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
+ NumCmpSelectPatternInst != 2)
+ return false;
+
+ if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
+ return false;
+
+ // If we think Phi may have been type-promoted, we also need to ensure that
+ // all source operands of the reduction are either SExtInsts or ZEstInsts. If
+ // so, we will be able to evaluate the reduction in the narrower bit width.
+ if (Start != Phi)
+ if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
+ IsSigned, VisitedInsts, CastInsts))
+ return false;
+
+ // We found a reduction var if we have reached the original phi node and we
+ // only have a single instruction with out-of-loop users.
+
+ // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
+ // is saved as part of the RecurrenceDescriptor.
+
+ // Save the description of this reduction variable.
+ RecurrenceDescriptor RD(
+ RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
+ ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
+ RedDes = RD;
+
+ return true;
+}
+
+/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
+/// pattern corresponding to a min(X, Y) or max(X, Y).
+RecurrenceDescriptor::InstDesc
+RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
+
+ assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
+ "Expect a select instruction");
+ Instruction *Cmp = nullptr;
+ SelectInst *Select = nullptr;
+
+ // We must handle the select(cmp()) as a single instruction. Advance to the
+ // select.
+ if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
+ if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
+ return InstDesc(false, I);
+ return InstDesc(Select, Prev.getMinMaxKind());
+ }
+
+ // Only handle single use cases for now.
+ if (!(Select = dyn_cast<SelectInst>(I)))
+ return InstDesc(false, I);
+ if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
+ !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
+ return InstDesc(false, I);
+ if (!Cmp->hasOneUse())
+ return InstDesc(false, I);
+
+ Value *CmpLeft;
+ Value *CmpRight;
+
+ // Look for a min/max pattern.
+ if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_UIntMin);
+ else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_UIntMax);
+ else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_SIntMax);
+ else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_SIntMin);
+ else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMin);
+ else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMax);
+ else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMin);
+ else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
+ return InstDesc(Select, MRK_FloatMax);
+
+ return InstDesc(false, I);
+}
+
+RecurrenceDescriptor::InstDesc
+RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
+ InstDesc &Prev, bool HasFunNoNaNAttr) {
+ bool FP = I->getType()->isFloatingPointTy();
+ Instruction *UAI = Prev.getUnsafeAlgebraInst();
+ if (!UAI && FP && !I->hasUnsafeAlgebra())
+ UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
+
+ switch (I->getOpcode()) {
+ default:
+ return InstDesc(false, I);
+ case Instruction::PHI:
+ return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
+ case Instruction::Sub:
+ case Instruction::Add:
+ return InstDesc(Kind == RK_IntegerAdd, I);
+ case Instruction::Mul:
+ return InstDesc(Kind == RK_IntegerMult, I);
+ case Instruction::And:
+ return InstDesc(Kind == RK_IntegerAnd, I);
+ case Instruction::Or:
+ return InstDesc(Kind == RK_IntegerOr, I);
+ case Instruction::Xor:
+ return InstDesc(Kind == RK_IntegerXor, I);
+ case Instruction::FMul:
+ return InstDesc(Kind == RK_FloatMult, I, UAI);
+ case Instruction::FSub:
+ case Instruction::FAdd:
+ return InstDesc(Kind == RK_FloatAdd, I, UAI);
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ case Instruction::Select:
+ if (Kind != RK_IntegerMinMax &&
+ (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
+ return InstDesc(false, I);
+ return isMinMaxSelectCmpPattern(I, Prev);
+ }
+}
+
+bool RecurrenceDescriptor::hasMultipleUsesOf(
+ Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
+ unsigned NumUses = 0;
+ for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
+ ++Use) {
+ if (Insts.count(dyn_cast<Instruction>(*Use)))
+ ++NumUses;
+ if (NumUses > 1)
+ return true;
+ }
+
+ return false;
+}
+bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
+ RecurrenceDescriptor &RedDes) {
+
+ BasicBlock *Header = TheLoop->getHeader();
+ Function &F = *Header->getParent();
+ bool HasFunNoNaNAttr =
+ F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
+
+ if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
+ RedDes)) {
+ DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
+ DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
+ return true;
+ }
+ // Not a reduction of known type.
+ return false;
+}
+
+bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
+ DominatorTree *DT) {
+
+ // Ensure the phi node is in the loop header and has two incoming values.
+ if (Phi->getParent() != TheLoop->getHeader() ||
+ Phi->getNumIncomingValues() != 2)
+ return false;
+
+ // Ensure the loop has a preheader and a single latch block. The loop
+ // vectorizer will need the latch to set up the next iteration of the loop.
+ auto *Preheader = TheLoop->getLoopPreheader();
+ auto *Latch = TheLoop->getLoopLatch();
+ if (!Preheader || !Latch)
+ return false;
+
+ // Ensure the phi node's incoming blocks are the loop preheader and latch.
+ if (Phi->getBasicBlockIndex(Preheader) < 0 ||
+ Phi->getBasicBlockIndex(Latch) < 0)
+ return false;
+
+ // Get the previous value. The previous value comes from the latch edge while
+ // the initial value comes form the preheader edge.
+ auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
+ if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
+ return false;
+
+ // Ensure every user of the phi node is dominated by the previous value.
+ // The dominance requirement ensures the loop vectorizer will not need to
+ // vectorize the initial value prior to the first iteration of the loop.
+ for (User *U : Phi->users())
+ if (auto *I = dyn_cast<Instruction>(U)) {
+ if (!DT->dominates(Previous, I))
+ return false;
+ }
+
+ return true;
+}
+
+/// This function returns the identity element (or neutral element) for
+/// the operation K.
+Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
+ Type *Tp) {
+ switch (K) {
+ case RK_IntegerXor:
+ case RK_IntegerAdd:
+ case RK_IntegerOr:
+ // Adding, Xoring, Oring zero to a number does not change it.
+ return ConstantInt::get(Tp, 0);
+ case RK_IntegerMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantInt::get(Tp, 1);
+ case RK_IntegerAnd:
+ // AND-ing a number with an all-1 value does not change it.
+ return ConstantInt::get(Tp, -1, true);
+ case RK_FloatMult:
+ // Multiplying a number by 1 does not change it.
+ return ConstantFP::get(Tp, 1.0L);
+ case RK_FloatAdd:
+ // Adding zero to a number does not change it.
+ return ConstantFP::get(Tp, 0.0L);
+ default:
+ llvm_unreachable("Unknown recurrence kind");
+ }
+}
+
+/// This function translates the recurrence kind to an LLVM binary operator.
+unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
+ switch (Kind) {
+ case RK_IntegerAdd:
+ return Instruction::Add;
+ case RK_IntegerMult:
+ return Instruction::Mul;
+ case RK_IntegerOr:
+ return Instruction::Or;
+ case RK_IntegerAnd:
+ return Instruction::And;
+ case RK_IntegerXor:
+ return Instruction::Xor;
+ case RK_FloatMult:
+ return Instruction::FMul;
+ case RK_FloatAdd:
+ return Instruction::FAdd;
+ case RK_IntegerMinMax:
+ return Instruction::ICmp;
+ case RK_FloatMinMax:
+ return Instruction::FCmp;
+ default:
+ llvm_unreachable("Unknown recurrence operation");
+ }
+}
+
+Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
+ MinMaxRecurrenceKind RK,
+ Value *Left, Value *Right) {
+ CmpInst::Predicate P = CmpInst::ICMP_NE;
+ switch (RK) {
+ default:
+ llvm_unreachable("Unknown min/max recurrence kind");
+ case MRK_UIntMin:
+ P = CmpInst::ICMP_ULT;
+ break;
+ case MRK_UIntMax:
+ P = CmpInst::ICMP_UGT;
+ break;
+ case MRK_SIntMin:
+ P = CmpInst::ICMP_SLT;
+ break;
+ case MRK_SIntMax:
+ P = CmpInst::ICMP_SGT;
+ break;
+ case MRK_FloatMin:
+ P = CmpInst::FCMP_OLT;
+ break;
+ case MRK_FloatMax:
+ P = CmpInst::FCMP_OGT;
+ break;
+ }
+
+ // We only match FP sequences with unsafe algebra, so we can unconditionally
+ // set it on any generated instructions.
+ IRBuilder<>::FastMathFlagGuard FMFG(Builder);
+ FastMathFlags FMF;
+ FMF.setUnsafeAlgebra();
+ Builder.setFastMathFlags(FMF);
+
+ Value *Cmp;
+ if (RK == MRK_FloatMin || RK == MRK_FloatMax)
+ Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
+ else
+ Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
+
+ Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
+ return Select;
+}
+
+InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
+ const SCEV *Step, BinaryOperator *BOp)
+ : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
+ assert(IK != IK_NoInduction && "Not an induction");
+
+ // Start value type should match the induction kind and the value
+ // itself should not be null.
+ assert(StartValue && "StartValue is null");
+ assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
+ "StartValue is not a pointer for pointer induction");
+ assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
+ "StartValue is not an integer for integer induction");
+
+ // Check the Step Value. It should be non-zero integer value.
+ assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
+ "Step value is zero");
+
+ assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
+ "Step value should be constant for pointer induction");
+ assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
+ "StepValue is not an integer");
+
+ assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
+ "StepValue is not FP for FpInduction");
+ assert((IK != IK_FpInduction || (InductionBinOp &&
+ (InductionBinOp->getOpcode() == Instruction::FAdd ||
+ InductionBinOp->getOpcode() == Instruction::FSub))) &&
+ "Binary opcode should be specified for FP induction");
+}
+
+int InductionDescriptor::getConsecutiveDirection() const {
+ ConstantInt *ConstStep = getConstIntStepValue();
+ if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
+ return ConstStep->getSExtValue();
+ return 0;
+}
+
+ConstantInt *InductionDescriptor::getConstIntStepValue() const {
+ if (isa<SCEVConstant>(Step))
+ return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
+ return nullptr;
+}
+
+Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
+ ScalarEvolution *SE,
+ const DataLayout& DL) const {
+
+ SCEVExpander Exp(*SE, DL, "induction");
+ assert(Index->getType() == Step->getType() &&
+ "Index type does not match StepValue type");
+ switch (IK) {
+ case IK_IntInduction: {
+ assert(Index->getType() == StartValue->getType() &&
+ "Index type does not match StartValue type");
+
+ // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
+ // and calculate (Start + Index * Step) for all cases, without
+ // special handling for "isOne" and "isMinusOne".
+ // But in the real life the result code getting worse. We mix SCEV
+ // expressions and ADD/SUB operations and receive redundant
+ // intermediate values being calculated in different ways and
+ // Instcombine is unable to reduce them all.
+
+ if (getConstIntStepValue() &&
+ getConstIntStepValue()->isMinusOne())
+ return B.CreateSub(StartValue, Index);
+ if (getConstIntStepValue() &&
+ getConstIntStepValue()->isOne())
+ return B.CreateAdd(StartValue, Index);
+ const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
+ SE->getMulExpr(Step, SE->getSCEV(Index)));
+ return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
+ }
+ case IK_PtrInduction: {
+ assert(isa<SCEVConstant>(Step) &&
+ "Expected constant step for pointer induction");
+ const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
+ Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
+ return B.CreateGEP(nullptr, StartValue, Index);
+ }
+ case IK_FpInduction: {
+ assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
+ assert(InductionBinOp &&
+ (InductionBinOp->getOpcode() == Instruction::FAdd ||
+ InductionBinOp->getOpcode() == Instruction::FSub) &&
+ "Original bin op should be defined for FP induction");
+
+ Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
+
+ // Floating point operations had to be 'fast' to enable the induction.
+ FastMathFlags Flags;
+ Flags.setUnsafeAlgebra();
+
+ Value *MulExp = B.CreateFMul(StepValue, Index);
+ if (isa<Instruction>(MulExp))
+ // We have to check, the MulExp may be a constant.
+ cast<Instruction>(MulExp)->setFastMathFlags(Flags);
+
+ Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
+ MulExp, "induction");
+ if (isa<Instruction>(BOp))
+ cast<Instruction>(BOp)->setFastMathFlags(Flags);
+
+ return BOp;
+ }
+ case IK_NoInduction:
+ return nullptr;
+ }
+ llvm_unreachable("invalid enum");
+}
+
+bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
+ ScalarEvolution *SE,
+ InductionDescriptor &D) {
+
+ // Here we only handle FP induction variables.
+ assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
+
+ if (TheLoop->getHeader() != Phi->getParent())
+ return false;
+
+ // The loop may have multiple entrances or multiple exits; we can analyze
+ // this phi if it has a unique entry value and a unique backedge value.
+ if (Phi->getNumIncomingValues() != 2)
+ return false;
+ Value *BEValue = nullptr, *StartValue = nullptr;
+ if (TheLoop->contains(Phi->getIncomingBlock(0))) {
+ BEValue = Phi->getIncomingValue(0);
+ StartValue = Phi->getIncomingValue(1);
+ } else {
+ assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
+ "Unexpected Phi node in the loop");
+ BEValue = Phi->getIncomingValue(1);
+ StartValue = Phi->getIncomingValue(0);
+ }
+
+ BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
+ if (!BOp)
+ return false;
+
+ Value *Addend = nullptr;
+ if (BOp->getOpcode() == Instruction::FAdd) {
+ if (BOp->getOperand(0) == Phi)
+ Addend = BOp->getOperand(1);
+ else if (BOp->getOperand(1) == Phi)
+ Addend = BOp->getOperand(0);
+ } else if (BOp->getOpcode() == Instruction::FSub)
+ if (BOp->getOperand(0) == Phi)
+ Addend = BOp->getOperand(1);
+
+ if (!Addend)
+ return false;
+
+ // The addend should be loop invariant
+ if (auto *I = dyn_cast<Instruction>(Addend))
+ if (TheLoop->contains(I))
+ return false;
+
+ // FP Step has unknown SCEV
+ const SCEV *Step = SE->getUnknown(Addend);
+ D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
+ return true;
+}
+
+bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
+ PredicatedScalarEvolution &PSE,
+ InductionDescriptor &D,
+ bool Assume) {
+ Type *PhiTy = Phi->getType();
+
+ // Handle integer and pointer inductions variables.
+ // Now we handle also FP induction but not trying to make a
+ // recurrent expression from the PHI node in-place.
+
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
+ !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
+ return false;
+
+ if (PhiTy->isFloatingPointTy())
+ return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
+
+ const SCEV *PhiScev = PSE.getSCEV(Phi);
+ const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+
+ // We need this expression to be an AddRecExpr.
+ if (Assume && !AR)
+ AR = PSE.getAsAddRec(Phi);
+
+ if (!AR) {
+ DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return false;
+ }
+
+ return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
+}
+
+bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
+ ScalarEvolution *SE,
+ InductionDescriptor &D,
+ const SCEV *Expr) {
+ Type *PhiTy = Phi->getType();
+ // We only handle integer and pointer inductions variables.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
+ return false;
+
+ // Check that the PHI is consecutive.
+ const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
+
+ if (!AR) {
+ DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
+ return false;
+ }
+
+ if (AR->getLoop() != TheLoop) {
+ // FIXME: We should treat this as a uniform. Unfortunately, we
+ // don't currently know how to handled uniform PHIs.
+ DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
+ return false;
+ }
+
+ Value *StartValue =
+ Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+ // Calculate the pointer stride and check if it is consecutive.
+ // The stride may be a constant or a loop invariant integer value.
+ const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
+ if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
+ return false;
+
+ if (PhiTy->isIntegerTy()) {
+ D = InductionDescriptor(StartValue, IK_IntInduction, Step);
+ return true;
+ }
+
+ assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
+ // Pointer induction should be a constant.
+ if (!ConstStep)
+ return false;
+
+ ConstantInt *CV = ConstStep->getValue();
+ Type *PointerElementType = PhiTy->getPointerElementType();
+ // The pointer stride cannot be determined if the pointer element type is not
+ // sized.
+ if (!PointerElementType->isSized())
+ return false;
+
+ const DataLayout &DL = Phi->getModule()->getDataLayout();
+ int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
+ if (!Size)
+ return false;
+
+ int64_t CVSize = CV->getSExtValue();
+ if (CVSize % Size)
+ return false;
+ auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
+ true /* signed */);
+ D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
+ return true;
+}
+
+bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
+ bool PreserveLCSSA) {
+ bool Changed = false;
+
+ // We re-use a vector for the in-loop predecesosrs.
+ SmallVector<BasicBlock *, 4> InLoopPredecessors;
+
+ auto RewriteExit = [&](BasicBlock *BB) {
+ assert(InLoopPredecessors.empty() &&
+ "Must start with an empty predecessors list!");
+ auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
+
+ // See if there are any non-loop predecessors of this exit block and
+ // keep track of the in-loop predecessors.
+ bool IsDedicatedExit = true;
+ for (auto *PredBB : predecessors(BB))
+ if (L->contains(PredBB)) {
+ if (isa<IndirectBrInst>(PredBB->getTerminator()))
+ // We cannot rewrite exiting edges from an indirectbr.
+ return false;
+
+ InLoopPredecessors.push_back(PredBB);
+ } else {
+ IsDedicatedExit = false;
+ }
+
+ assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
+
+ // Nothing to do if this is already a dedicated exit.
+ if (IsDedicatedExit)
+ return false;
+
+ auto *NewExitBB = SplitBlockPredecessors(
+ BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
+
+ if (!NewExitBB)
+ DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
+ << *L << "\n");
+ else
+ DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
+ << NewExitBB->getName() << "\n");
+ return true;
+ };
+
+ // Walk the exit blocks directly rather than building up a data structure for
+ // them, but only visit each one once.
+ SmallPtrSet<BasicBlock *, 4> Visited;
+ for (auto *BB : L->blocks())
+ for (auto *SuccBB : successors(BB)) {
+ // We're looking for exit blocks so skip in-loop successors.
+ if (L->contains(SuccBB))
+ continue;
+
+ // Visit each exit block exactly once.
+ if (!Visited.insert(SuccBB).second)
+ continue;
+
+ Changed |= RewriteExit(SuccBB);
+ }
+
+ return Changed;
+}
+
+/// \brief Returns the instructions that use values defined in the loop.
+SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
+ SmallVector<Instruction *, 8> UsedOutside;
+
+ for (auto *Block : L->getBlocks())
+ // FIXME: I believe that this could use copy_if if the Inst reference could
+ // be adapted into a pointer.
+ for (auto &Inst : *Block) {
+ auto Users = Inst.users();
+ if (any_of(Users, [&](User *U) {
+ auto *Use = cast<Instruction>(U);
+ return !L->contains(Use->getParent());
+ }))
+ UsedOutside.push_back(&Inst);
+ }
+
+ return UsedOutside;
+}
+
+void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
+ // By definition, all loop passes need the LoopInfo analysis and the
+ // Dominator tree it depends on. Because they all participate in the loop
+ // pass manager, they must also preserve these.
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+
+ // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
+ // here because users shouldn't directly get them from this header.
+ extern char &LoopSimplifyID;
+ extern char &LCSSAID;
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addPreservedID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addPreservedID(LCSSAID);
+ // This is used in the LPPassManager to perform LCSSA verification on passes
+ // which preserve lcssa form
+ AU.addRequired<LCSSAVerificationPass>();
+ AU.addPreserved<LCSSAVerificationPass>();
+
+ // Loop passes are designed to run inside of a loop pass manager which means
+ // that any function analyses they require must be required by the first loop
+ // pass in the manager (so that it is computed before the loop pass manager
+ // runs) and preserved by all loop pasess in the manager. To make this
+ // reasonably robust, the set needed for most loop passes is maintained here.
+ // If your loop pass requires an analysis not listed here, you will need to
+ // carefully audit the loop pass manager nesting structure that results.
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addPreserved<BasicAAWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addPreserved<SCEVAAWrapperPass>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
+}
+
+/// Manually defined generic "LoopPass" dependency initialization. This is used
+/// to initialize the exact set of passes from above in \c
+/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
+/// with:
+///
+/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
+///
+/// As-if "LoopPass" were a pass.
+void llvm::initializeLoopPassPass(PassRegistry &Registry) {
+ INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+ INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
+ INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+}
+
+/// \brief Find string metadata for loop
+///
+/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
+/// operand or null otherwise. If the string metadata is not found return
+/// Optional's not-a-value.
+Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
+ StringRef Name) {
+ MDNode *LoopID = TheLoop->getLoopID();
+ // Return none if LoopID is false.
+ if (!LoopID)
+ return None;
+
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ // Iterate over LoopID operands and look for MDString Metadata
+ for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (!MD)
+ continue;
+ MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ if (!S)
+ continue;
+ // Return true if MDString holds expected MetaData.
+ if (Name.equals(S->getString()))
+ switch (MD->getNumOperands()) {
+ case 1:
+ return nullptr;
+ case 2:
+ return &MD->getOperand(1);
+ default:
+ llvm_unreachable("loop metadata has 0 or 1 operand");
+ }
+ }
+ return None;
+}
+
+/// Returns true if the instruction in a loop is guaranteed to execute at least
+/// once.
+bool llvm::isGuaranteedToExecute(const Instruction &Inst,
+ const DominatorTree *DT, const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo) {
+ // We have to check to make sure that the instruction dominates all
+ // of the exit blocks. If it doesn't, then there is a path out of the loop
+ // which does not execute this instruction, so we can't hoist it.
+
+ // If the instruction is in the header block for the loop (which is very
+ // common), it is always guaranteed to dominate the exit blocks. Since this
+ // is a common case, and can save some work, check it now.
+ if (Inst.getParent() == CurLoop->getHeader())
+ // If there's a throw in the header block, we can't guarantee we'll reach
+ // Inst.
+ return !SafetyInfo->HeaderMayThrow;
+
+ // Somewhere in this loop there is an instruction which may throw and make us
+ // exit the loop.
+ if (SafetyInfo->MayThrow)
+ return false;
+
+ // Get the exit blocks for the current loop.
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ CurLoop->getExitBlocks(ExitBlocks);
+
+ // Verify that the block dominates each of the exit blocks of the loop.
+ for (BasicBlock *ExitBlock : ExitBlocks)
+ if (!DT->dominates(Inst.getParent(), ExitBlock))
+ return false;
+
+ // As a degenerate case, if the loop is statically infinite then we haven't
+ // proven anything since there are no exit blocks.
+ if (ExitBlocks.empty())
+ return false;
+
+ // FIXME: In general, we have to prove that the loop isn't an infinite loop.
+ // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
+ // just a special case of this.)
+ return true;
+}
+
+Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
+ // Only support loops with a unique exiting block, and a latch.
+ if (!L->getExitingBlock())
+ return None;
+
+ // Get the branch weights for the the loop's backedge.
+ BranchInst *LatchBR =
+ dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
+ if (!LatchBR || LatchBR->getNumSuccessors() != 2)
+ return None;
+
+ assert((LatchBR->getSuccessor(0) == L->getHeader() ||
+ LatchBR->getSuccessor(1) == L->getHeader()) &&
+ "At least one edge out of the latch must go to the header");
+
+ // To estimate the number of times the loop body was executed, we want to
+ // know the number of times the backedge was taken, vs. the number of times
+ // we exited the loop.
+ uint64_t TrueVal, FalseVal;
+ if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
+ return None;
+
+ if (!TrueVal || !FalseVal)
+ return 0;
+
+ // Divide the count of the backedge by the count of the edge exiting the loop,
+ // rounding to nearest.
+ if (LatchBR->getSuccessor(0) == L->getHeader())
+ return (TrueVal + (FalseVal / 2)) / FalseVal;
+ else
+ return (FalseVal + (TrueVal / 2)) / TrueVal;
+}
+
+/// \brief Adds a 'fast' flag to floating point operations.
+static Value *addFastMathFlag(Value *V) {
+ if (isa<FPMathOperator>(V)) {
+ FastMathFlags Flags;
+ Flags.setUnsafeAlgebra();
+ cast<Instruction>(V)->setFastMathFlags(Flags);
+ }
+ return V;
+}
+
+// Helper to generate a log2 shuffle reduction.
+Value *
+llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
+ RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
+ ArrayRef<Value *> RedOps) {
+ unsigned VF = Src->getType()->getVectorNumElements();
+ // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
+ // and vector ops, reducing the set of values being computed by half each
+ // round.
+ assert(isPowerOf2_32(VF) &&
+ "Reduction emission only supported for pow2 vectors!");
+ Value *TmpVec = Src;
+ SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
+ for (unsigned i = VF; i != 1; i >>= 1) {
+ // Move the upper half of the vector to the lower half.
+ for (unsigned j = 0; j != i / 2; ++j)
+ ShuffleMask[j] = Builder.getInt32(i / 2 + j);
+
+ // Fill the rest of the mask with undef.
+ std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
+ UndefValue::get(Builder.getInt32Ty()));
+
+ Value *Shuf = Builder.CreateShuffleVector(
+ TmpVec, UndefValue::get(TmpVec->getType()),
+ ConstantVector::get(ShuffleMask), "rdx.shuf");
+
+ if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
+ // Floating point operations had to be 'fast' to enable the reduction.
+ TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
+ TmpVec, Shuf, "bin.rdx"));
+ } else {
+ assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
+ "Invalid min/max");
+ TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
+ Shuf);
+ }
+ if (!RedOps.empty())
+ propagateIRFlags(TmpVec, RedOps);
+ }
+ // The result is in the first element of the vector.
+ return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
+}
+
+/// Create a simple vector reduction specified by an opcode and some
+/// flags (if generating min/max reductions).
+Value *llvm::createSimpleTargetReduction(
+ IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
+ Value *Src, TargetTransformInfo::ReductionFlags Flags,
+ ArrayRef<Value *> RedOps) {
+ assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
+
+ Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
+ std::function<Value*()> BuildFunc;
+ using RD = RecurrenceDescriptor;
+ RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
+ // TODO: Support creating ordered reductions.
+ FastMathFlags FMFUnsafe;
+ FMFUnsafe.setUnsafeAlgebra();
+
+ switch (Opcode) {
+ case Instruction::Add:
+ BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
+ break;
+ case Instruction::Mul:
+ BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
+ break;
+ case Instruction::And:
+ BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
+ break;
+ case Instruction::Or:
+ BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
+ break;
+ case Instruction::Xor:
+ BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
+ break;
+ case Instruction::FAdd:
+ BuildFunc = [&]() {
+ auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
+ cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
+ return Rdx;
+ };
+ break;
+ case Instruction::FMul:
+ BuildFunc = [&]() {
+ auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
+ cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
+ return Rdx;
+ };
+ break;
+ case Instruction::ICmp:
+ if (Flags.IsMaxOp) {
+ MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
+ BuildFunc = [&]() {
+ return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
+ };
+ } else {
+ MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
+ BuildFunc = [&]() {
+ return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
+ };
+ }
+ break;
+ case Instruction::FCmp:
+ if (Flags.IsMaxOp) {
+ MinMaxKind = RD::MRK_FloatMax;
+ BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
+ } else {
+ MinMaxKind = RD::MRK_FloatMin;
+ BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
+ }
+ break;
+ default:
+ llvm_unreachable("Unhandled opcode");
+ break;
+ }
+ if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
+ return BuildFunc();
+ return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
+}
+
+/// Create a vector reduction using a given recurrence descriptor.
+Value *llvm::createTargetReduction(IRBuilder<> &Builder,
+ const TargetTransformInfo *TTI,
+ RecurrenceDescriptor &Desc, Value *Src,
+ bool NoNaN) {
+ // TODO: Support in-order reductions based on the recurrence descriptor.
+ RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
+ TargetTransformInfo::ReductionFlags Flags;
+ Flags.NoNaN = NoNaN;
+ auto getSimpleRdx = [&](unsigned Opc) {
+ return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
+ };
+ switch (RecKind) {
+ case RecurrenceDescriptor::RK_FloatAdd:
+ return getSimpleRdx(Instruction::FAdd);
+ case RecurrenceDescriptor::RK_FloatMult:
+ return getSimpleRdx(Instruction::FMul);
+ case RecurrenceDescriptor::RK_IntegerAdd:
+ return getSimpleRdx(Instruction::Add);
+ case RecurrenceDescriptor::RK_IntegerMult:
+ return getSimpleRdx(Instruction::Mul);
+ case RecurrenceDescriptor::RK_IntegerAnd:
+ return getSimpleRdx(Instruction::And);
+ case RecurrenceDescriptor::RK_IntegerOr:
+ return getSimpleRdx(Instruction::Or);
+ case RecurrenceDescriptor::RK_IntegerXor:
+ return getSimpleRdx(Instruction::Xor);
+ case RecurrenceDescriptor::RK_IntegerMinMax: {
+ switch (Desc.getMinMaxRecurrenceKind()) {
+ case RecurrenceDescriptor::MRK_SIntMax:
+ Flags.IsSigned = true;
+ Flags.IsMaxOp = true;
+ break;
+ case RecurrenceDescriptor::MRK_UIntMax:
+ Flags.IsMaxOp = true;
+ break;
+ case RecurrenceDescriptor::MRK_SIntMin:
+ Flags.IsSigned = true;
+ break;
+ case RecurrenceDescriptor::MRK_UIntMin:
+ break;
+ default:
+ llvm_unreachable("Unhandled MRK");
+ }
+ return getSimpleRdx(Instruction::ICmp);
+ }
+ case RecurrenceDescriptor::RK_FloatMinMax: {
+ Flags.IsMaxOp =
+ Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
+ return getSimpleRdx(Instruction::FCmp);
+ }
+ default:
+ llvm_unreachable("Unhandled RecKind");
+ }
+}
+
+void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
+ if (auto *VecOp = dyn_cast<Instruction>(I)) {
+ if (auto *I0 = dyn_cast<Instruction>(VL[0])) {
+ // VecOVp is initialized to the 0th scalar, so start counting from index
+ // '1'.
+ VecOp->copyIRFlags(I0);
+ for (int i = 1, e = VL.size(); i < e; ++i) {
+ if (auto *Scalar = dyn_cast<Instruction>(VL[i]))
+ VecOp->andIRFlags(Scalar);
+ }
+ }
+ }
+}