aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp799
1 files changed, 799 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp b/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp
new file mode 100644
index 000000000000..d47be6ea566b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp
@@ -0,0 +1,799 @@
+//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------===//
+//
+// This file implements the PredicateInfo class.
+//
+//===----------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/PredicateInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DebugCounter.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/OrderedInstructions.h"
+#include <algorithm>
+#define DEBUG_TYPE "predicateinfo"
+using namespace llvm;
+using namespace PatternMatch;
+using namespace llvm::PredicateInfoClasses;
+
+INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
+ "PredicateInfo Printer", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
+ "PredicateInfo Printer", false, false)
+static cl::opt<bool> VerifyPredicateInfo(
+ "verify-predicateinfo", cl::init(false), cl::Hidden,
+ cl::desc("Verify PredicateInfo in legacy printer pass."));
+DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
+ "Controls which variables are renamed with predicateinfo");
+
+namespace {
+// Given a predicate info that is a type of branching terminator, get the
+// branching block.
+const BasicBlock *getBranchBlock(const PredicateBase *PB) {
+ assert(isa<PredicateWithEdge>(PB) &&
+ "Only branches and switches should have PHIOnly defs that "
+ "require branch blocks.");
+ return cast<PredicateWithEdge>(PB)->From;
+}
+
+// Given a predicate info that is a type of branching terminator, get the
+// branching terminator.
+static Instruction *getBranchTerminator(const PredicateBase *PB) {
+ assert(isa<PredicateWithEdge>(PB) &&
+ "Not a predicate info type we know how to get a terminator from.");
+ return cast<PredicateWithEdge>(PB)->From->getTerminator();
+}
+
+// Given a predicate info that is a type of branching terminator, get the
+// edge this predicate info represents
+const std::pair<BasicBlock *, BasicBlock *>
+getBlockEdge(const PredicateBase *PB) {
+ assert(isa<PredicateWithEdge>(PB) &&
+ "Not a predicate info type we know how to get an edge from.");
+ const auto *PEdge = cast<PredicateWithEdge>(PB);
+ return std::make_pair(PEdge->From, PEdge->To);
+}
+}
+
+namespace llvm {
+namespace PredicateInfoClasses {
+enum LocalNum {
+ // Operations that must appear first in the block.
+ LN_First,
+ // Operations that are somewhere in the middle of the block, and are sorted on
+ // demand.
+ LN_Middle,
+ // Operations that must appear last in a block, like successor phi node uses.
+ LN_Last
+};
+
+// Associate global and local DFS info with defs and uses, so we can sort them
+// into a global domination ordering.
+struct ValueDFS {
+ int DFSIn = 0;
+ int DFSOut = 0;
+ unsigned int LocalNum = LN_Middle;
+ // Only one of Def or Use will be set.
+ Value *Def = nullptr;
+ Use *U = nullptr;
+ // Neither PInfo nor EdgeOnly participate in the ordering
+ PredicateBase *PInfo = nullptr;
+ bool EdgeOnly = false;
+};
+
+// Perform a strict weak ordering on instructions and arguments.
+static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
+ const Value *B) {
+ auto *ArgA = dyn_cast_or_null<Argument>(A);
+ auto *ArgB = dyn_cast_or_null<Argument>(B);
+ if (ArgA && !ArgB)
+ return true;
+ if (ArgB && !ArgA)
+ return false;
+ if (ArgA && ArgB)
+ return ArgA->getArgNo() < ArgB->getArgNo();
+ return OI.dominates(cast<Instruction>(A), cast<Instruction>(B));
+}
+
+// This compares ValueDFS structures, creating OrderedBasicBlocks where
+// necessary to compare uses/defs in the same block. Doing so allows us to walk
+// the minimum number of instructions necessary to compute our def/use ordering.
+struct ValueDFS_Compare {
+ OrderedInstructions &OI;
+ ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {}
+
+ bool operator()(const ValueDFS &A, const ValueDFS &B) const {
+ if (&A == &B)
+ return false;
+ // The only case we can't directly compare them is when they in the same
+ // block, and both have localnum == middle. In that case, we have to use
+ // comesbefore to see what the real ordering is, because they are in the
+ // same basic block.
+
+ bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
+
+ // We want to put the def that will get used for a given set of phi uses,
+ // before those phi uses.
+ // So we sort by edge, then by def.
+ // Note that only phi nodes uses and defs can come last.
+ if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
+ return comparePHIRelated(A, B);
+
+ if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
+ return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
+ std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
+ return localComesBefore(A, B);
+ }
+
+ // For a phi use, or a non-materialized def, return the edge it represents.
+ const std::pair<BasicBlock *, BasicBlock *>
+ getBlockEdge(const ValueDFS &VD) const {
+ if (!VD.Def && VD.U) {
+ auto *PHI = cast<PHINode>(VD.U->getUser());
+ return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
+ }
+ // This is really a non-materialized def.
+ return ::getBlockEdge(VD.PInfo);
+ }
+
+ // For two phi related values, return the ordering.
+ bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
+ auto &ABlockEdge = getBlockEdge(A);
+ auto &BBlockEdge = getBlockEdge(B);
+ // Now sort by block edge and then defs before uses.
+ return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
+ }
+
+ // Get the definition of an instruction that occurs in the middle of a block.
+ Value *getMiddleDef(const ValueDFS &VD) const {
+ if (VD.Def)
+ return VD.Def;
+ // It's possible for the defs and uses to be null. For branches, the local
+ // numbering will say the placed predicaeinfos should go first (IE
+ // LN_beginning), so we won't be in this function. For assumes, we will end
+ // up here, beause we need to order the def we will place relative to the
+ // assume. So for the purpose of ordering, we pretend the def is the assume
+ // because that is where we will insert the info.
+ if (!VD.U) {
+ assert(VD.PInfo &&
+ "No def, no use, and no predicateinfo should not occur");
+ assert(isa<PredicateAssume>(VD.PInfo) &&
+ "Middle of block should only occur for assumes");
+ return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
+ }
+ return nullptr;
+ }
+
+ // Return either the Def, if it's not null, or the user of the Use, if the def
+ // is null.
+ const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
+ if (Def)
+ return cast<Instruction>(Def);
+ return cast<Instruction>(U->getUser());
+ }
+
+ // This performs the necessary local basic block ordering checks to tell
+ // whether A comes before B, where both are in the same basic block.
+ bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
+ auto *ADef = getMiddleDef(A);
+ auto *BDef = getMiddleDef(B);
+
+ // See if we have real values or uses. If we have real values, we are
+ // guaranteed they are instructions or arguments. No matter what, we are
+ // guaranteed they are in the same block if they are instructions.
+ auto *ArgA = dyn_cast_or_null<Argument>(ADef);
+ auto *ArgB = dyn_cast_or_null<Argument>(BDef);
+
+ if (ArgA || ArgB)
+ return valueComesBefore(OI, ArgA, ArgB);
+
+ auto *AInst = getDefOrUser(ADef, A.U);
+ auto *BInst = getDefOrUser(BDef, B.U);
+ return valueComesBefore(OI, AInst, BInst);
+ }
+};
+
+} // namespace PredicateInfoClasses
+
+bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
+ const ValueDFS &VDUse) const {
+ if (Stack.empty())
+ return false;
+ // If it's a phi only use, make sure it's for this phi node edge, and that the
+ // use is in a phi node. If it's anything else, and the top of the stack is
+ // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
+ // the defs they must go with so that we can know it's time to pop the stack
+ // when we hit the end of the phi uses for a given def.
+ if (Stack.back().EdgeOnly) {
+ if (!VDUse.U)
+ return false;
+ auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
+ if (!PHI)
+ return false;
+ // Check edge
+ BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
+ if (EdgePred != getBranchBlock(Stack.back().PInfo))
+ return false;
+
+ // Use dominates, which knows how to handle edge dominance.
+ return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
+ }
+
+ return (VDUse.DFSIn >= Stack.back().DFSIn &&
+ VDUse.DFSOut <= Stack.back().DFSOut);
+}
+
+void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
+ const ValueDFS &VD) {
+ while (!Stack.empty() && !stackIsInScope(Stack, VD))
+ Stack.pop_back();
+}
+
+// Convert the uses of Op into a vector of uses, associating global and local
+// DFS info with each one.
+void PredicateInfo::convertUsesToDFSOrdered(
+ Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
+ for (auto &U : Op->uses()) {
+ if (auto *I = dyn_cast<Instruction>(U.getUser())) {
+ ValueDFS VD;
+ // Put the phi node uses in the incoming block.
+ BasicBlock *IBlock;
+ if (auto *PN = dyn_cast<PHINode>(I)) {
+ IBlock = PN->getIncomingBlock(U);
+ // Make phi node users appear last in the incoming block
+ // they are from.
+ VD.LocalNum = LN_Last;
+ } else {
+ // If it's not a phi node use, it is somewhere in the middle of the
+ // block.
+ IBlock = I->getParent();
+ VD.LocalNum = LN_Middle;
+ }
+ DomTreeNode *DomNode = DT.getNode(IBlock);
+ // It's possible our use is in an unreachable block. Skip it if so.
+ if (!DomNode)
+ continue;
+ VD.DFSIn = DomNode->getDFSNumIn();
+ VD.DFSOut = DomNode->getDFSNumOut();
+ VD.U = &U;
+ DFSOrderedSet.push_back(VD);
+ }
+ }
+}
+
+// Collect relevant operations from Comparison that we may want to insert copies
+// for.
+void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
+ auto *Op0 = Comparison->getOperand(0);
+ auto *Op1 = Comparison->getOperand(1);
+ if (Op0 == Op1)
+ return;
+ CmpOperands.push_back(Comparison);
+ // Only want real values, not constants. Additionally, operands with one use
+ // are only being used in the comparison, which means they will not be useful
+ // for us to consider for predicateinfo.
+ //
+ if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
+ CmpOperands.push_back(Op0);
+ if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
+ CmpOperands.push_back(Op1);
+}
+
+// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
+void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
+ PredicateBase *PB) {
+ OpsToRename.insert(Op);
+ auto &OperandInfo = getOrCreateValueInfo(Op);
+ AllInfos.push_back(PB);
+ OperandInfo.Infos.push_back(PB);
+}
+
+// Process an assume instruction and place relevant operations we want to rename
+// into OpsToRename.
+void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
+ SmallPtrSetImpl<Value *> &OpsToRename) {
+ // See if we have a comparison we support
+ SmallVector<Value *, 8> CmpOperands;
+ SmallVector<Value *, 2> ConditionsToProcess;
+ CmpInst::Predicate Pred;
+ Value *Operand = II->getOperand(0);
+ if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
+ m_Cmp(Pred, m_Value(), m_Value()))
+ .match(II->getOperand(0))) {
+ ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
+ ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
+ ConditionsToProcess.push_back(Operand);
+ } else if (isa<CmpInst>(Operand)) {
+
+ ConditionsToProcess.push_back(Operand);
+ }
+ for (auto Cond : ConditionsToProcess) {
+ if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
+ collectCmpOps(Cmp, CmpOperands);
+ // Now add our copy infos for our operands
+ for (auto *Op : CmpOperands) {
+ auto *PA = new PredicateAssume(Op, II, Cmp);
+ addInfoFor(OpsToRename, Op, PA);
+ }
+ CmpOperands.clear();
+ } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
+ // Otherwise, it should be an AND.
+ assert(BinOp->getOpcode() == Instruction::And &&
+ "Should have been an AND");
+ auto *PA = new PredicateAssume(BinOp, II, BinOp);
+ addInfoFor(OpsToRename, BinOp, PA);
+ } else {
+ llvm_unreachable("Unknown type of condition");
+ }
+ }
+}
+
+// Process a block terminating branch, and place relevant operations to be
+// renamed into OpsToRename.
+void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
+ SmallPtrSetImpl<Value *> &OpsToRename) {
+ BasicBlock *FirstBB = BI->getSuccessor(0);
+ BasicBlock *SecondBB = BI->getSuccessor(1);
+ SmallVector<BasicBlock *, 2> SuccsToProcess;
+ SuccsToProcess.push_back(FirstBB);
+ SuccsToProcess.push_back(SecondBB);
+ SmallVector<Value *, 2> ConditionsToProcess;
+
+ auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
+ for (auto *Succ : SuccsToProcess) {
+ // Don't try to insert on a self-edge. This is mainly because we will
+ // eliminate during renaming anyway.
+ if (Succ == BranchBB)
+ continue;
+ bool TakenEdge = (Succ == FirstBB);
+ // For and, only insert on the true edge
+ // For or, only insert on the false edge
+ if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
+ continue;
+ PredicateBase *PB =
+ new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
+ addInfoFor(OpsToRename, Op, PB);
+ if (!Succ->getSinglePredecessor())
+ EdgeUsesOnly.insert({BranchBB, Succ});
+ }
+ };
+
+ // Match combinations of conditions.
+ CmpInst::Predicate Pred;
+ bool isAnd = false;
+ bool isOr = false;
+ SmallVector<Value *, 8> CmpOperands;
+ if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
+ m_Cmp(Pred, m_Value(), m_Value()))) ||
+ match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
+ m_Cmp(Pred, m_Value(), m_Value())))) {
+ auto *BinOp = cast<BinaryOperator>(BI->getCondition());
+ if (BinOp->getOpcode() == Instruction::And)
+ isAnd = true;
+ else if (BinOp->getOpcode() == Instruction::Or)
+ isOr = true;
+ ConditionsToProcess.push_back(BinOp->getOperand(0));
+ ConditionsToProcess.push_back(BinOp->getOperand(1));
+ ConditionsToProcess.push_back(BI->getCondition());
+ } else if (isa<CmpInst>(BI->getCondition())) {
+ ConditionsToProcess.push_back(BI->getCondition());
+ }
+ for (auto Cond : ConditionsToProcess) {
+ if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
+ collectCmpOps(Cmp, CmpOperands);
+ // Now add our copy infos for our operands
+ for (auto *Op : CmpOperands)
+ InsertHelper(Op, isAnd, isOr, Cmp);
+ } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
+ // This must be an AND or an OR.
+ assert((BinOp->getOpcode() == Instruction::And ||
+ BinOp->getOpcode() == Instruction::Or) &&
+ "Should have been an AND or an OR");
+ // The actual value of the binop is not subject to the same restrictions
+ // as the comparison. It's either true or false on the true/false branch.
+ InsertHelper(BinOp, false, false, BinOp);
+ } else {
+ llvm_unreachable("Unknown type of condition");
+ }
+ CmpOperands.clear();
+ }
+}
+// Process a block terminating switch, and place relevant operations to be
+// renamed into OpsToRename.
+void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
+ SmallPtrSetImpl<Value *> &OpsToRename) {
+ Value *Op = SI->getCondition();
+ if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
+ return;
+
+ // Remember how many outgoing edges there are to every successor.
+ SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
+ for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
+ BasicBlock *TargetBlock = SI->getSuccessor(i);
+ ++SwitchEdges[TargetBlock];
+ }
+
+ // Now propagate info for each case value
+ for (auto C : SI->cases()) {
+ BasicBlock *TargetBlock = C.getCaseSuccessor();
+ if (SwitchEdges.lookup(TargetBlock) == 1) {
+ PredicateSwitch *PS = new PredicateSwitch(
+ Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
+ addInfoFor(OpsToRename, Op, PS);
+ if (!TargetBlock->getSinglePredecessor())
+ EdgeUsesOnly.insert({BranchBB, TargetBlock});
+ }
+ }
+}
+
+// Build predicate info for our function
+void PredicateInfo::buildPredicateInfo() {
+ DT.updateDFSNumbers();
+ // Collect operands to rename from all conditional branch terminators, as well
+ // as assume statements.
+ SmallPtrSet<Value *, 8> OpsToRename;
+ for (auto DTN : depth_first(DT.getRootNode())) {
+ BasicBlock *BranchBB = DTN->getBlock();
+ if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
+ if (!BI->isConditional())
+ continue;
+ // Can't insert conditional information if they all go to the same place.
+ if (BI->getSuccessor(0) == BI->getSuccessor(1))
+ continue;
+ processBranch(BI, BranchBB, OpsToRename);
+ } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
+ processSwitch(SI, BranchBB, OpsToRename);
+ }
+ }
+ for (auto &Assume : AC.assumptions()) {
+ if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
+ processAssume(II, II->getParent(), OpsToRename);
+ }
+ // Now rename all our operations.
+ renameUses(OpsToRename);
+}
+
+// Given the renaming stack, make all the operands currently on the stack real
+// by inserting them into the IR. Return the last operation's value.
+Value *PredicateInfo::materializeStack(unsigned int &Counter,
+ ValueDFSStack &RenameStack,
+ Value *OrigOp) {
+ // Find the first thing we have to materialize
+ auto RevIter = RenameStack.rbegin();
+ for (; RevIter != RenameStack.rend(); ++RevIter)
+ if (RevIter->Def)
+ break;
+
+ size_t Start = RevIter - RenameStack.rbegin();
+ // The maximum number of things we should be trying to materialize at once
+ // right now is 4, depending on if we had an assume, a branch, and both used
+ // and of conditions.
+ for (auto RenameIter = RenameStack.end() - Start;
+ RenameIter != RenameStack.end(); ++RenameIter) {
+ auto *Op =
+ RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
+ ValueDFS &Result = *RenameIter;
+ auto *ValInfo = Result.PInfo;
+ // For edge predicates, we can just place the operand in the block before
+ // the terminator. For assume, we have to place it right before the assume
+ // to ensure we dominate all of our uses. Always insert right before the
+ // relevant instruction (terminator, assume), so that we insert in proper
+ // order in the case of multiple predicateinfo in the same block.
+ if (isa<PredicateWithEdge>(ValInfo)) {
+ IRBuilder<> B(getBranchTerminator(ValInfo));
+ Function *IF = Intrinsic::getDeclaration(
+ F.getParent(), Intrinsic::ssa_copy, Op->getType());
+ CallInst *PIC =
+ B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
+ PredicateMap.insert({PIC, ValInfo});
+ Result.Def = PIC;
+ } else {
+ auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
+ assert(PAssume &&
+ "Should not have gotten here without it being an assume");
+ IRBuilder<> B(PAssume->AssumeInst);
+ Function *IF = Intrinsic::getDeclaration(
+ F.getParent(), Intrinsic::ssa_copy, Op->getType());
+ CallInst *PIC = B.CreateCall(IF, Op);
+ PredicateMap.insert({PIC, ValInfo});
+ Result.Def = PIC;
+ }
+ }
+ return RenameStack.back().Def;
+}
+
+// Instead of the standard SSA renaming algorithm, which is O(Number of
+// instructions), and walks the entire dominator tree, we walk only the defs +
+// uses. The standard SSA renaming algorithm does not really rely on the
+// dominator tree except to order the stack push/pops of the renaming stacks, so
+// that defs end up getting pushed before hitting the correct uses. This does
+// not require the dominator tree, only the *order* of the dominator tree. The
+// complete and correct ordering of the defs and uses, in dominator tree is
+// contained in the DFS numbering of the dominator tree. So we sort the defs and
+// uses into the DFS ordering, and then just use the renaming stack as per
+// normal, pushing when we hit a def (which is a predicateinfo instruction),
+// popping when we are out of the dfs scope for that def, and replacing any uses
+// with top of stack if it exists. In order to handle liveness without
+// propagating liveness info, we don't actually insert the predicateinfo
+// instruction def until we see a use that it would dominate. Once we see such
+// a use, we materialize the predicateinfo instruction in the right place and
+// use it.
+//
+// TODO: Use this algorithm to perform fast single-variable renaming in
+// promotememtoreg and memoryssa.
+void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) {
+ // Sort OpsToRename since we are going to iterate it.
+ SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end());
+ auto Comparator = [&](const Value *A, const Value *B) {
+ return valueComesBefore(OI, A, B);
+ };
+ std::sort(OpsToRename.begin(), OpsToRename.end(), Comparator);
+ ValueDFS_Compare Compare(OI);
+ // Compute liveness, and rename in O(uses) per Op.
+ for (auto *Op : OpsToRename) {
+ unsigned Counter = 0;
+ SmallVector<ValueDFS, 16> OrderedUses;
+ const auto &ValueInfo = getValueInfo(Op);
+ // Insert the possible copies into the def/use list.
+ // They will become real copies if we find a real use for them, and never
+ // created otherwise.
+ for (auto &PossibleCopy : ValueInfo.Infos) {
+ ValueDFS VD;
+ // Determine where we are going to place the copy by the copy type.
+ // The predicate info for branches always come first, they will get
+ // materialized in the split block at the top of the block.
+ // The predicate info for assumes will be somewhere in the middle,
+ // it will get materialized in front of the assume.
+ if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
+ VD.LocalNum = LN_Middle;
+ DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
+ if (!DomNode)
+ continue;
+ VD.DFSIn = DomNode->getDFSNumIn();
+ VD.DFSOut = DomNode->getDFSNumOut();
+ VD.PInfo = PossibleCopy;
+ OrderedUses.push_back(VD);
+ } else if (isa<PredicateWithEdge>(PossibleCopy)) {
+ // If we can only do phi uses, we treat it like it's in the branch
+ // block, and handle it specially. We know that it goes last, and only
+ // dominate phi uses.
+ auto BlockEdge = getBlockEdge(PossibleCopy);
+ if (EdgeUsesOnly.count(BlockEdge)) {
+ VD.LocalNum = LN_Last;
+ auto *DomNode = DT.getNode(BlockEdge.first);
+ if (DomNode) {
+ VD.DFSIn = DomNode->getDFSNumIn();
+ VD.DFSOut = DomNode->getDFSNumOut();
+ VD.PInfo = PossibleCopy;
+ VD.EdgeOnly = true;
+ OrderedUses.push_back(VD);
+ }
+ } else {
+ // Otherwise, we are in the split block (even though we perform
+ // insertion in the branch block).
+ // Insert a possible copy at the split block and before the branch.
+ VD.LocalNum = LN_First;
+ auto *DomNode = DT.getNode(BlockEdge.second);
+ if (DomNode) {
+ VD.DFSIn = DomNode->getDFSNumIn();
+ VD.DFSOut = DomNode->getDFSNumOut();
+ VD.PInfo = PossibleCopy;
+ OrderedUses.push_back(VD);
+ }
+ }
+ }
+ }
+
+ convertUsesToDFSOrdered(Op, OrderedUses);
+ // Here we require a stable sort because we do not bother to try to
+ // assign an order to the operands the uses represent. Thus, two
+ // uses in the same instruction do not have a strict sort order
+ // currently and will be considered equal. We could get rid of the
+ // stable sort by creating one if we wanted.
+ std::stable_sort(OrderedUses.begin(), OrderedUses.end(), Compare);
+ SmallVector<ValueDFS, 8> RenameStack;
+ // For each use, sorted into dfs order, push values and replaces uses with
+ // top of stack, which will represent the reaching def.
+ for (auto &VD : OrderedUses) {
+ // We currently do not materialize copy over copy, but we should decide if
+ // we want to.
+ bool PossibleCopy = VD.PInfo != nullptr;
+ if (RenameStack.empty()) {
+ DEBUG(dbgs() << "Rename Stack is empty\n");
+ } else {
+ DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
+ << RenameStack.back().DFSIn << ","
+ << RenameStack.back().DFSOut << ")\n");
+ }
+
+ DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
+ << VD.DFSOut << ")\n");
+
+ bool ShouldPush = (VD.Def || PossibleCopy);
+ bool OutOfScope = !stackIsInScope(RenameStack, VD);
+ if (OutOfScope || ShouldPush) {
+ // Sync to our current scope.
+ popStackUntilDFSScope(RenameStack, VD);
+ if (ShouldPush) {
+ RenameStack.push_back(VD);
+ }
+ }
+ // If we get to this point, and the stack is empty we must have a use
+ // with no renaming needed, just skip it.
+ if (RenameStack.empty())
+ continue;
+ // Skip values, only want to rename the uses
+ if (VD.Def || PossibleCopy)
+ continue;
+ if (!DebugCounter::shouldExecute(RenameCounter)) {
+ DEBUG(dbgs() << "Skipping execution due to debug counter\n");
+ continue;
+ }
+ ValueDFS &Result = RenameStack.back();
+
+ // If the possible copy dominates something, materialize our stack up to
+ // this point. This ensures every comparison that affects our operation
+ // ends up with predicateinfo.
+ if (!Result.Def)
+ Result.Def = materializeStack(Counter, RenameStack, Op);
+
+ DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
+ << *VD.U->get() << " in " << *(VD.U->getUser()) << "\n");
+ assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
+ "Predicateinfo def should have dominated this use");
+ VD.U->set(Result.Def);
+ }
+ }
+}
+
+PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
+ auto OIN = ValueInfoNums.find(Operand);
+ if (OIN == ValueInfoNums.end()) {
+ // This will grow it
+ ValueInfos.resize(ValueInfos.size() + 1);
+ // This will use the new size and give us a 0 based number of the info
+ auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
+ assert(InsertResult.second && "Value info number already existed?");
+ return ValueInfos[InsertResult.first->second];
+ }
+ return ValueInfos[OIN->second];
+}
+
+const PredicateInfo::ValueInfo &
+PredicateInfo::getValueInfo(Value *Operand) const {
+ auto OINI = ValueInfoNums.lookup(Operand);
+ assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
+ assert(OINI < ValueInfos.size() &&
+ "Value Info Number greater than size of Value Info Table");
+ return ValueInfos[OINI];
+}
+
+PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
+ AssumptionCache &AC)
+ : F(F), DT(DT), AC(AC), OI(&DT) {
+ // Push an empty operand info so that we can detect 0 as not finding one
+ ValueInfos.resize(1);
+ buildPredicateInfo();
+}
+
+PredicateInfo::~PredicateInfo() {}
+
+void PredicateInfo::verifyPredicateInfo() const {}
+
+char PredicateInfoPrinterLegacyPass::ID = 0;
+
+PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
+ : FunctionPass(ID) {
+ initializePredicateInfoPrinterLegacyPassPass(
+ *PassRegistry::getPassRegistry());
+}
+
+void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequiredTransitive<DominatorTreeWrapperPass>();
+ AU.addRequired<AssumptionCacheTracker>();
+}
+
+bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
+ PredInfo->print(dbgs());
+ if (VerifyPredicateInfo)
+ PredInfo->verifyPredicateInfo();
+ return false;
+}
+
+PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ OS << "PredicateInfo for function: " << F.getName() << "\n";
+ make_unique<PredicateInfo>(F, DT, AC)->print(OS);
+
+ return PreservedAnalyses::all();
+}
+
+/// \brief An assembly annotator class to print PredicateInfo information in
+/// comments.
+class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
+ friend class PredicateInfo;
+ const PredicateInfo *PredInfo;
+
+public:
+ PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
+
+ virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
+ formatted_raw_ostream &OS) {}
+
+ virtual void emitInstructionAnnot(const Instruction *I,
+ formatted_raw_ostream &OS) {
+ if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
+ OS << "; Has predicate info\n";
+ if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
+ OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
+ << " Comparison:" << *PB->Condition << " Edge: [";
+ PB->From->printAsOperand(OS);
+ OS << ",";
+ PB->To->printAsOperand(OS);
+ OS << "] }\n";
+ } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
+ OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
+ << " Switch:" << *PS->Switch << " Edge: [";
+ PS->From->printAsOperand(OS);
+ OS << ",";
+ PS->To->printAsOperand(OS);
+ OS << "] }\n";
+ } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
+ OS << "; assume predicate info {"
+ << " Comparison:" << *PA->Condition << " }\n";
+ }
+ }
+ }
+};
+
+void PredicateInfo::print(raw_ostream &OS) const {
+ PredicateInfoAnnotatedWriter Writer(this);
+ F.print(OS, &Writer);
+}
+
+void PredicateInfo::dump() const {
+ PredicateInfoAnnotatedWriter Writer(this);
+ F.print(dbgs(), &Writer);
+}
+
+PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
+
+ return PreservedAnalyses::all();
+}
+}