aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp978
1 files changed, 978 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
new file mode 100644
index 000000000000..65b23f4d94a1
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -0,0 +1,978 @@
+//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements induction variable simplification. It does
+// not define any actual pass or policy, but provides a single function to
+// simplify a loop's induction variables based on ScalarEvolution.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/Local.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "indvars"
+
+STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
+STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
+STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
+STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
+STATISTIC(
+ NumSimplifiedSDiv,
+ "Number of IV signed division operations converted to unsigned division");
+STATISTIC(
+ NumSimplifiedSRem,
+ "Number of IV signed remainder operations converted to unsigned remainder");
+STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
+
+namespace {
+ /// This is a utility for simplifying induction variables
+ /// based on ScalarEvolution. It is the primary instrument of the
+ /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
+ /// other loop passes that preserve SCEV.
+ class SimplifyIndvar {
+ Loop *L;
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+ SCEVExpander &Rewriter;
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts;
+
+ bool Changed;
+
+ public:
+ SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
+ LoopInfo *LI, SCEVExpander &Rewriter,
+ SmallVectorImpl<WeakTrackingVH> &Dead)
+ : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
+ Changed(false) {
+ assert(LI && "IV simplification requires LoopInfo");
+ }
+
+ bool hasChanged() const { return Changed; }
+
+ /// Iteratively perform simplification on a worklist of users of the
+ /// specified induction variable. This is the top-level driver that applies
+ /// all simplifications to users of an IV.
+ void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
+
+ Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
+
+ bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
+ bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
+
+ bool eliminateOverflowIntrinsic(CallInst *CI);
+ bool eliminateTrunc(TruncInst *TI);
+ bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
+ bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
+ void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
+ void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
+ bool IsSigned);
+ void replaceRemWithNumerator(BinaryOperator *Rem);
+ void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
+ void replaceSRemWithURem(BinaryOperator *Rem);
+ bool eliminateSDiv(BinaryOperator *SDiv);
+ bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
+ bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
+ };
+}
+
+/// Fold an IV operand into its use. This removes increments of an
+/// aligned IV when used by a instruction that ignores the low bits.
+///
+/// IVOperand is guaranteed SCEVable, but UseInst may not be.
+///
+/// Return the operand of IVOperand for this induction variable if IVOperand can
+/// be folded (in case more folding opportunities have been exposed).
+/// Otherwise return null.
+Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
+ Value *IVSrc = nullptr;
+ unsigned OperIdx = 0;
+ const SCEV *FoldedExpr = nullptr;
+ switch (UseInst->getOpcode()) {
+ default:
+ return nullptr;
+ case Instruction::UDiv:
+ case Instruction::LShr:
+ // We're only interested in the case where we know something about
+ // the numerator and have a constant denominator.
+ if (IVOperand != UseInst->getOperand(OperIdx) ||
+ !isa<ConstantInt>(UseInst->getOperand(1)))
+ return nullptr;
+
+ // Attempt to fold a binary operator with constant operand.
+ // e.g. ((I + 1) >> 2) => I >> 2
+ if (!isa<BinaryOperator>(IVOperand)
+ || !isa<ConstantInt>(IVOperand->getOperand(1)))
+ return nullptr;
+
+ IVSrc = IVOperand->getOperand(0);
+ // IVSrc must be the (SCEVable) IV, since the other operand is const.
+ assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
+
+ ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
+ if (UseInst->getOpcode() == Instruction::LShr) {
+ // Get a constant for the divisor. See createSCEV.
+ uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
+ if (D->getValue().uge(BitWidth))
+ return nullptr;
+
+ D = ConstantInt::get(UseInst->getContext(),
+ APInt::getOneBitSet(BitWidth, D->getZExtValue()));
+ }
+ FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
+ }
+ // We have something that might fold it's operand. Compare SCEVs.
+ if (!SE->isSCEVable(UseInst->getType()))
+ return nullptr;
+
+ // Bypass the operand if SCEV can prove it has no effect.
+ if (SE->getSCEV(UseInst) != FoldedExpr)
+ return nullptr;
+
+ LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
+ << " -> " << *UseInst << '\n');
+
+ UseInst->setOperand(OperIdx, IVSrc);
+ assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
+
+ ++NumElimOperand;
+ Changed = true;
+ if (IVOperand->use_empty())
+ DeadInsts.emplace_back(IVOperand);
+ return IVSrc;
+}
+
+bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
+ Value *IVOperand) {
+ unsigned IVOperIdx = 0;
+ ICmpInst::Predicate Pred = ICmp->getPredicate();
+ if (IVOperand != ICmp->getOperand(0)) {
+ // Swapped
+ assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
+ IVOperIdx = 1;
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ // Get the SCEVs for the ICmp operands (in the specific context of the
+ // current loop)
+ const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
+ const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
+ const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
+
+ ICmpInst::Predicate InvariantPredicate;
+ const SCEV *InvariantLHS, *InvariantRHS;
+
+ auto *PN = dyn_cast<PHINode>(IVOperand);
+ if (!PN)
+ return false;
+ if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
+ InvariantLHS, InvariantRHS))
+ return false;
+
+ // Rewrite the comparison to a loop invariant comparison if it can be done
+ // cheaply, where cheaply means "we don't need to emit any new
+ // instructions".
+
+ SmallDenseMap<const SCEV*, Value*> CheapExpansions;
+ CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
+ CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
+
+ // TODO: Support multiple entry loops? (We currently bail out of these in
+ // the IndVarSimplify pass)
+ if (auto *BB = L->getLoopPredecessor()) {
+ const int Idx = PN->getBasicBlockIndex(BB);
+ if (Idx >= 0) {
+ Value *Incoming = PN->getIncomingValue(Idx);
+ const SCEV *IncomingS = SE->getSCEV(Incoming);
+ CheapExpansions[IncomingS] = Incoming;
+ }
+ }
+ Value *NewLHS = CheapExpansions[InvariantLHS];
+ Value *NewRHS = CheapExpansions[InvariantRHS];
+
+ if (!NewLHS)
+ if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
+ NewLHS = ConstLHS->getValue();
+ if (!NewRHS)
+ if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
+ NewRHS = ConstRHS->getValue();
+
+ if (!NewLHS || !NewRHS)
+ // We could not find an existing value to replace either LHS or RHS.
+ // Generating new instructions has subtler tradeoffs, so avoid doing that
+ // for now.
+ return false;
+
+ LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
+ ICmp->setPredicate(InvariantPredicate);
+ ICmp->setOperand(0, NewLHS);
+ ICmp->setOperand(1, NewRHS);
+ return true;
+}
+
+/// SimplifyIVUsers helper for eliminating useless
+/// comparisons against an induction variable.
+void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
+ unsigned IVOperIdx = 0;
+ ICmpInst::Predicate Pred = ICmp->getPredicate();
+ ICmpInst::Predicate OriginalPred = Pred;
+ if (IVOperand != ICmp->getOperand(0)) {
+ // Swapped
+ assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
+ IVOperIdx = 1;
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ // Get the SCEVs for the ICmp operands (in the specific context of the
+ // current loop)
+ const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
+ const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
+ const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
+
+ // If the condition is always true or always false, replace it with
+ // a constant value.
+ if (SE->isKnownPredicate(Pred, S, X)) {
+ ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
+ DeadInsts.emplace_back(ICmp);
+ LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
+ } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
+ ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
+ DeadInsts.emplace_back(ICmp);
+ LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
+ } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
+ // fallthrough to end of function
+ } else if (ICmpInst::isSigned(OriginalPred) &&
+ SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
+ // If we were unable to make anything above, all we can is to canonicalize
+ // the comparison hoping that it will open the doors for other
+ // optimizations. If we find out that we compare two non-negative values,
+ // we turn the instruction's predicate to its unsigned version. Note that
+ // we cannot rely on Pred here unless we check if we have swapped it.
+ assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
+ LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
+ << '\n');
+ ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
+ } else
+ return;
+
+ ++NumElimCmp;
+ Changed = true;
+}
+
+bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
+ // Get the SCEVs for the ICmp operands.
+ auto *N = SE->getSCEV(SDiv->getOperand(0));
+ auto *D = SE->getSCEV(SDiv->getOperand(1));
+
+ // Simplify unnecessary loops away.
+ const Loop *L = LI->getLoopFor(SDiv->getParent());
+ N = SE->getSCEVAtScope(N, L);
+ D = SE->getSCEVAtScope(D, L);
+
+ // Replace sdiv by udiv if both of the operands are non-negative
+ if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
+ auto *UDiv = BinaryOperator::Create(
+ BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
+ SDiv->getName() + ".udiv", SDiv);
+ UDiv->setIsExact(SDiv->isExact());
+ SDiv->replaceAllUsesWith(UDiv);
+ LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
+ ++NumSimplifiedSDiv;
+ Changed = true;
+ DeadInsts.push_back(SDiv);
+ return true;
+ }
+
+ return false;
+}
+
+// i %s n -> i %u n if i >= 0 and n >= 0
+void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
+ auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
+ auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
+ Rem->getName() + ".urem", Rem);
+ Rem->replaceAllUsesWith(URem);
+ LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
+ ++NumSimplifiedSRem;
+ Changed = true;
+ DeadInsts.emplace_back(Rem);
+}
+
+// i % n --> i if i is in [0,n).
+void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
+ Rem->replaceAllUsesWith(Rem->getOperand(0));
+ LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
+ ++NumElimRem;
+ Changed = true;
+ DeadInsts.emplace_back(Rem);
+}
+
+// (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
+void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
+ auto *T = Rem->getType();
+ auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
+ ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
+ SelectInst *Sel =
+ SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
+ Rem->replaceAllUsesWith(Sel);
+ LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
+ ++NumElimRem;
+ Changed = true;
+ DeadInsts.emplace_back(Rem);
+}
+
+/// SimplifyIVUsers helper for eliminating useless remainder operations
+/// operating on an induction variable or replacing srem by urem.
+void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
+ bool IsSigned) {
+ auto *NValue = Rem->getOperand(0);
+ auto *DValue = Rem->getOperand(1);
+ // We're only interested in the case where we know something about
+ // the numerator, unless it is a srem, because we want to replace srem by urem
+ // in general.
+ bool UsedAsNumerator = IVOperand == NValue;
+ if (!UsedAsNumerator && !IsSigned)
+ return;
+
+ const SCEV *N = SE->getSCEV(NValue);
+
+ // Simplify unnecessary loops away.
+ const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
+ N = SE->getSCEVAtScope(N, ICmpLoop);
+
+ bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
+
+ // Do not proceed if the Numerator may be negative
+ if (!IsNumeratorNonNegative)
+ return;
+
+ const SCEV *D = SE->getSCEV(DValue);
+ D = SE->getSCEVAtScope(D, ICmpLoop);
+
+ if (UsedAsNumerator) {
+ auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
+ if (SE->isKnownPredicate(LT, N, D)) {
+ replaceRemWithNumerator(Rem);
+ return;
+ }
+
+ auto *T = Rem->getType();
+ const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
+ if (SE->isKnownPredicate(LT, NLessOne, D)) {
+ replaceRemWithNumeratorOrZero(Rem);
+ return;
+ }
+ }
+
+ // Try to replace SRem with URem, if both N and D are known non-negative.
+ // Since we had already check N, we only need to check D now
+ if (!IsSigned || !SE->isKnownNonNegative(D))
+ return;
+
+ replaceSRemWithURem(Rem);
+}
+
+bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
+ auto *F = CI->getCalledFunction();
+ if (!F)
+ return false;
+
+ typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
+ const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned);
+ typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
+ const SCEV *, Type *, unsigned);
+
+ OperationFunctionTy Operation;
+ ExtensionFunctionTy Extension;
+
+ Instruction::BinaryOps RawOp;
+
+ // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we
+ // have nuw.
+ bool NoSignedOverflow;
+
+ switch (F->getIntrinsicID()) {
+ default:
+ return false;
+
+ case Intrinsic::sadd_with_overflow:
+ Operation = &ScalarEvolution::getAddExpr;
+ Extension = &ScalarEvolution::getSignExtendExpr;
+ RawOp = Instruction::Add;
+ NoSignedOverflow = true;
+ break;
+
+ case Intrinsic::uadd_with_overflow:
+ Operation = &ScalarEvolution::getAddExpr;
+ Extension = &ScalarEvolution::getZeroExtendExpr;
+ RawOp = Instruction::Add;
+ NoSignedOverflow = false;
+ break;
+
+ case Intrinsic::ssub_with_overflow:
+ Operation = &ScalarEvolution::getMinusSCEV;
+ Extension = &ScalarEvolution::getSignExtendExpr;
+ RawOp = Instruction::Sub;
+ NoSignedOverflow = true;
+ break;
+
+ case Intrinsic::usub_with_overflow:
+ Operation = &ScalarEvolution::getMinusSCEV;
+ Extension = &ScalarEvolution::getZeroExtendExpr;
+ RawOp = Instruction::Sub;
+ NoSignedOverflow = false;
+ break;
+ }
+
+ const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
+ const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
+
+ auto *NarrowTy = cast<IntegerType>(LHS->getType());
+ auto *WideTy =
+ IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
+
+ const SCEV *A =
+ (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
+ WideTy, 0);
+ const SCEV *B =
+ (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
+ (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
+
+ if (A != B)
+ return false;
+
+ // Proved no overflow, nuke the overflow check and, if possible, the overflow
+ // intrinsic as well.
+
+ BinaryOperator *NewResult = BinaryOperator::Create(
+ RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
+
+ if (NoSignedOverflow)
+ NewResult->setHasNoSignedWrap(true);
+ else
+ NewResult->setHasNoUnsignedWrap(true);
+
+ SmallVector<ExtractValueInst *, 4> ToDelete;
+
+ for (auto *U : CI->users()) {
+ if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
+ if (EVI->getIndices()[0] == 1)
+ EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
+ else {
+ assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
+ EVI->replaceAllUsesWith(NewResult);
+ }
+ ToDelete.push_back(EVI);
+ }
+ }
+
+ for (auto *EVI : ToDelete)
+ EVI->eraseFromParent();
+
+ if (CI->use_empty())
+ CI->eraseFromParent();
+
+ return true;
+}
+
+bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
+ // It is always legal to replace
+ // icmp <pred> i32 trunc(iv), n
+ // with
+ // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
+ // Or with
+ // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
+ // Or with either of these if pred is an equality predicate.
+ //
+ // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
+ // every comparison which uses trunc, it means that we can replace each of
+ // them with comparison of iv against sext/zext(n). We no longer need trunc
+ // after that.
+ //
+ // TODO: Should we do this if we can widen *some* comparisons, but not all
+ // of them? Sometimes it is enough to enable other optimizations, but the
+ // trunc instruction will stay in the loop.
+ Value *IV = TI->getOperand(0);
+ Type *IVTy = IV->getType();
+ const SCEV *IVSCEV = SE->getSCEV(IV);
+ const SCEV *TISCEV = SE->getSCEV(TI);
+
+ // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
+ // get rid of trunc
+ bool DoesSExtCollapse = false;
+ bool DoesZExtCollapse = false;
+ if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
+ DoesSExtCollapse = true;
+ if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
+ DoesZExtCollapse = true;
+
+ // If neither sext nor zext does collapse, it is not profitable to do any
+ // transform. Bail.
+ if (!DoesSExtCollapse && !DoesZExtCollapse)
+ return false;
+
+ // Collect users of the trunc that look like comparisons against invariants.
+ // Bail if we find something different.
+ SmallVector<ICmpInst *, 4> ICmpUsers;
+ for (auto *U : TI->users()) {
+ // We don't care about users in unreachable blocks.
+ if (isa<Instruction>(U) &&
+ !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
+ continue;
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
+ if (ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) {
+ assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
+ // If we cannot get rid of trunc, bail.
+ if (ICI->isSigned() && !DoesSExtCollapse)
+ return false;
+ if (ICI->isUnsigned() && !DoesZExtCollapse)
+ return false;
+ // For equality, either signed or unsigned works.
+ ICmpUsers.push_back(ICI);
+ } else
+ return false;
+ } else
+ return false;
+ }
+
+ auto CanUseZExt = [&](ICmpInst *ICI) {
+ // Unsigned comparison can be widened as unsigned.
+ if (ICI->isUnsigned())
+ return true;
+ // Is it profitable to do zext?
+ if (!DoesZExtCollapse)
+ return false;
+ // For equality, we can safely zext both parts.
+ if (ICI->isEquality())
+ return true;
+ // Otherwise we can only use zext when comparing two non-negative or two
+ // negative values. But in practice, we will never pass DoesZExtCollapse
+ // check for a negative value, because zext(trunc(x)) is non-negative. So
+ // it only make sense to check for non-negativity here.
+ const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
+ const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
+ return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
+ };
+ // Replace all comparisons against trunc with comparisons against IV.
+ for (auto *ICI : ICmpUsers) {
+ auto *Op1 = ICI->getOperand(1);
+ Instruction *Ext = nullptr;
+ // For signed/unsigned predicate, replace the old comparison with comparison
+ // of immediate IV against sext/zext of the invariant argument. If we can
+ // use either sext or zext (i.e. we are dealing with equality predicate),
+ // then prefer zext as a more canonical form.
+ // TODO: If we see a signed comparison which can be turned into unsigned,
+ // we can do it here for canonicalization purposes.
+ ICmpInst::Predicate Pred = ICI->getPredicate();
+ if (CanUseZExt(ICI)) {
+ assert(DoesZExtCollapse && "Unprofitable zext?");
+ Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
+ Pred = ICmpInst::getUnsignedPredicate(Pred);
+ } else {
+ assert(DoesSExtCollapse && "Unprofitable sext?");
+ Ext = new SExtInst(Op1, IVTy, "sext", ICI);
+ assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
+ }
+ bool Changed;
+ L->makeLoopInvariant(Ext, Changed);
+ (void)Changed;
+ ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
+ ICI->replaceAllUsesWith(NewICI);
+ DeadInsts.emplace_back(ICI);
+ }
+
+ // Trunc no longer needed.
+ TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
+ DeadInsts.emplace_back(TI);
+ return true;
+}
+
+/// Eliminate an operation that consumes a simple IV and has no observable
+/// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
+/// but UseInst may not be.
+bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
+ Instruction *IVOperand) {
+ if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
+ eliminateIVComparison(ICmp, IVOperand);
+ return true;
+ }
+ if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
+ bool IsSRem = Bin->getOpcode() == Instruction::SRem;
+ if (IsSRem || Bin->getOpcode() == Instruction::URem) {
+ simplifyIVRemainder(Bin, IVOperand, IsSRem);
+ return true;
+ }
+
+ if (Bin->getOpcode() == Instruction::SDiv)
+ return eliminateSDiv(Bin);
+ }
+
+ if (auto *CI = dyn_cast<CallInst>(UseInst))
+ if (eliminateOverflowIntrinsic(CI))
+ return true;
+
+ if (auto *TI = dyn_cast<TruncInst>(UseInst))
+ if (eliminateTrunc(TI))
+ return true;
+
+ if (eliminateIdentitySCEV(UseInst, IVOperand))
+ return true;
+
+ return false;
+}
+
+static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
+ if (auto *BB = L->getLoopPreheader())
+ return BB->getTerminator();
+
+ return Hint;
+}
+
+/// Replace the UseInst with a constant if possible.
+bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
+ if (!SE->isSCEVable(I->getType()))
+ return false;
+
+ // Get the symbolic expression for this instruction.
+ const SCEV *S = SE->getSCEV(I);
+
+ if (!SE->isLoopInvariant(S, L))
+ return false;
+
+ // Do not generate something ridiculous even if S is loop invariant.
+ if (Rewriter.isHighCostExpansion(S, L, I))
+ return false;
+
+ auto *IP = GetLoopInvariantInsertPosition(L, I);
+ auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
+
+ I->replaceAllUsesWith(Invariant);
+ LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
+ << " with loop invariant: " << *S << '\n');
+ ++NumFoldedUser;
+ Changed = true;
+ DeadInsts.emplace_back(I);
+ return true;
+}
+
+/// Eliminate any operation that SCEV can prove is an identity function.
+bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
+ Instruction *IVOperand) {
+ if (!SE->isSCEVable(UseInst->getType()) ||
+ (UseInst->getType() != IVOperand->getType()) ||
+ (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
+ return false;
+
+ // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
+ // dominator tree, even if X is an operand to Y. For instance, in
+ //
+ // %iv = phi i32 {0,+,1}
+ // br %cond, label %left, label %merge
+ //
+ // left:
+ // %X = add i32 %iv, 0
+ // br label %merge
+ //
+ // merge:
+ // %M = phi (%X, %iv)
+ //
+ // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
+ // %M.replaceAllUsesWith(%X) would be incorrect.
+
+ if (isa<PHINode>(UseInst))
+ // If UseInst is not a PHI node then we know that IVOperand dominates
+ // UseInst directly from the legality of SSA.
+ if (!DT || !DT->dominates(IVOperand, UseInst))
+ return false;
+
+ if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
+
+ UseInst->replaceAllUsesWith(IVOperand);
+ ++NumElimIdentity;
+ Changed = true;
+ DeadInsts.emplace_back(UseInst);
+ return true;
+}
+
+/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
+/// unsigned-overflow. Returns true if anything changed, false otherwise.
+bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
+ Value *IVOperand) {
+
+ // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
+ if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
+ return false;
+
+ const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
+ SCEV::NoWrapFlags, unsigned);
+ switch (BO->getOpcode()) {
+ default:
+ return false;
+
+ case Instruction::Add:
+ GetExprForBO = &ScalarEvolution::getAddExpr;
+ break;
+
+ case Instruction::Sub:
+ GetExprForBO = &ScalarEvolution::getMinusSCEV;
+ break;
+
+ case Instruction::Mul:
+ GetExprForBO = &ScalarEvolution::getMulExpr;
+ break;
+ }
+
+ unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
+ Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
+ const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
+ const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
+
+ bool Changed = false;
+
+ if (!BO->hasNoUnsignedWrap()) {
+ const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
+ const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
+ SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
+ SCEV::FlagAnyWrap, 0u);
+ if (ExtendAfterOp == OpAfterExtend) {
+ BO->setHasNoUnsignedWrap();
+ SE->forgetValue(BO);
+ Changed = true;
+ }
+ }
+
+ if (!BO->hasNoSignedWrap()) {
+ const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
+ const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
+ SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
+ SCEV::FlagAnyWrap, 0u);
+ if (ExtendAfterOp == OpAfterExtend) {
+ BO->setHasNoSignedWrap();
+ SE->forgetValue(BO);
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+/// Annotate the Shr in (X << IVOperand) >> C as exact using the
+/// information from the IV's range. Returns true if anything changed, false
+/// otherwise.
+bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
+ Value *IVOperand) {
+ using namespace llvm::PatternMatch;
+
+ if (BO->getOpcode() == Instruction::Shl) {
+ bool Changed = false;
+ ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
+ for (auto *U : BO->users()) {
+ const APInt *C;
+ if (match(U,
+ m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
+ match(U,
+ m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
+ BinaryOperator *Shr = cast<BinaryOperator>(U);
+ if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
+ Shr->setIsExact(true);
+ Changed = true;
+ }
+ }
+ }
+ return Changed;
+ }
+
+ return false;
+}
+
+/// Add all uses of Def to the current IV's worklist.
+static void pushIVUsers(
+ Instruction *Def, Loop *L,
+ SmallPtrSet<Instruction*,16> &Simplified,
+ SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
+
+ for (User *U : Def->users()) {
+ Instruction *UI = cast<Instruction>(U);
+
+ // Avoid infinite or exponential worklist processing.
+ // Also ensure unique worklist users.
+ // If Def is a LoopPhi, it may not be in the Simplified set, so check for
+ // self edges first.
+ if (UI == Def)
+ continue;
+
+ // Only change the current Loop, do not change the other parts (e.g. other
+ // Loops).
+ if (!L->contains(UI))
+ continue;
+
+ // Do not push the same instruction more than once.
+ if (!Simplified.insert(UI).second)
+ continue;
+
+ SimpleIVUsers.push_back(std::make_pair(UI, Def));
+ }
+}
+
+/// Return true if this instruction generates a simple SCEV
+/// expression in terms of that IV.
+///
+/// This is similar to IVUsers' isInteresting() but processes each instruction
+/// non-recursively when the operand is already known to be a simpleIVUser.
+///
+static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
+ if (!SE->isSCEVable(I->getType()))
+ return false;
+
+ // Get the symbolic expression for this instruction.
+ const SCEV *S = SE->getSCEV(I);
+
+ // Only consider affine recurrences.
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
+ if (AR && AR->getLoop() == L)
+ return true;
+
+ return false;
+}
+
+/// Iteratively perform simplification on a worklist of users
+/// of the specified induction variable. Each successive simplification may push
+/// more users which may themselves be candidates for simplification.
+///
+/// This algorithm does not require IVUsers analysis. Instead, it simplifies
+/// instructions in-place during analysis. Rather than rewriting induction
+/// variables bottom-up from their users, it transforms a chain of IVUsers
+/// top-down, updating the IR only when it encounters a clear optimization
+/// opportunity.
+///
+/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
+///
+void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
+ if (!SE->isSCEVable(CurrIV->getType()))
+ return;
+
+ // Instructions processed by SimplifyIndvar for CurrIV.
+ SmallPtrSet<Instruction*,16> Simplified;
+
+ // Use-def pairs if IV users waiting to be processed for CurrIV.
+ SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
+
+ // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
+ // called multiple times for the same LoopPhi. This is the proper thing to
+ // do for loop header phis that use each other.
+ pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
+
+ while (!SimpleIVUsers.empty()) {
+ std::pair<Instruction*, Instruction*> UseOper =
+ SimpleIVUsers.pop_back_val();
+ Instruction *UseInst = UseOper.first;
+
+ // If a user of the IndVar is trivially dead, we prefer just to mark it dead
+ // rather than try to do some complex analysis or transformation (such as
+ // widening) basing on it.
+ // TODO: Propagate TLI and pass it here to handle more cases.
+ if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
+ DeadInsts.emplace_back(UseInst);
+ continue;
+ }
+
+ // Bypass back edges to avoid extra work.
+ if (UseInst == CurrIV) continue;
+
+ // Try to replace UseInst with a loop invariant before any other
+ // simplifications.
+ if (replaceIVUserWithLoopInvariant(UseInst))
+ continue;
+
+ Instruction *IVOperand = UseOper.second;
+ for (unsigned N = 0; IVOperand; ++N) {
+ assert(N <= Simplified.size() && "runaway iteration");
+
+ Value *NewOper = foldIVUser(UseInst, IVOperand);
+ if (!NewOper)
+ break; // done folding
+ IVOperand = dyn_cast<Instruction>(NewOper);
+ }
+ if (!IVOperand)
+ continue;
+
+ if (eliminateIVUser(UseInst, IVOperand)) {
+ pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
+ continue;
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
+ if ((isa<OverflowingBinaryOperator>(BO) &&
+ strengthenOverflowingOperation(BO, IVOperand)) ||
+ (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
+ // re-queue uses of the now modified binary operator and fall
+ // through to the checks that remain.
+ pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
+ }
+ }
+
+ CastInst *Cast = dyn_cast<CastInst>(UseInst);
+ if (V && Cast) {
+ V->visitCast(Cast);
+ continue;
+ }
+ if (isSimpleIVUser(UseInst, L, SE)) {
+ pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
+ }
+ }
+}
+
+namespace llvm {
+
+void IVVisitor::anchor() { }
+
+/// Simplify instructions that use this induction variable
+/// by using ScalarEvolution to analyze the IV's recurrence.
+bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
+ LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
+ SCEVExpander &Rewriter, IVVisitor *V) {
+ SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
+ Dead);
+ SIV.simplifyUsers(CurrIV, V);
+ return SIV.hasChanged();
+}
+
+/// Simplify users of induction variables within this
+/// loop. This does not actually change or add IVs.
+bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
+ LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
+ SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
+ bool Changed = false;
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
+ }
+ return Changed;
+}
+
+} // namespace llvm