diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp | 978 |
1 files changed, 978 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp new file mode 100644 index 000000000000..65b23f4d94a1 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp @@ -0,0 +1,978 @@ +//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements induction variable simplification. It does +// not define any actual pass or policy, but provides a single function to +// simplify a loop's induction variables based on ScalarEvolution. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/SimplifyIndVar.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/Local.h" + +using namespace llvm; + +#define DEBUG_TYPE "indvars" + +STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); +STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); +STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); +STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); +STATISTIC( + NumSimplifiedSDiv, + "Number of IV signed division operations converted to unsigned division"); +STATISTIC( + NumSimplifiedSRem, + "Number of IV signed remainder operations converted to unsigned remainder"); +STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); + +namespace { + /// This is a utility for simplifying induction variables + /// based on ScalarEvolution. It is the primary instrument of the + /// IndvarSimplify pass, but it may also be directly invoked to cleanup after + /// other loop passes that preserve SCEV. + class SimplifyIndvar { + Loop *L; + LoopInfo *LI; + ScalarEvolution *SE; + DominatorTree *DT; + SCEVExpander &Rewriter; + SmallVectorImpl<WeakTrackingVH> &DeadInsts; + + bool Changed; + + public: + SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, + LoopInfo *LI, SCEVExpander &Rewriter, + SmallVectorImpl<WeakTrackingVH> &Dead) + : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead), + Changed(false) { + assert(LI && "IV simplification requires LoopInfo"); + } + + bool hasChanged() const { return Changed; } + + /// Iteratively perform simplification on a worklist of users of the + /// specified induction variable. This is the top-level driver that applies + /// all simplifications to users of an IV. + void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); + + Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); + + bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); + bool replaceIVUserWithLoopInvariant(Instruction *UseInst); + + bool eliminateOverflowIntrinsic(CallInst *CI); + bool eliminateTrunc(TruncInst *TI); + bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); + bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); + void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); + void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, + bool IsSigned); + void replaceRemWithNumerator(BinaryOperator *Rem); + void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); + void replaceSRemWithURem(BinaryOperator *Rem); + bool eliminateSDiv(BinaryOperator *SDiv); + bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); + bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); + }; +} + +/// Fold an IV operand into its use. This removes increments of an +/// aligned IV when used by a instruction that ignores the low bits. +/// +/// IVOperand is guaranteed SCEVable, but UseInst may not be. +/// +/// Return the operand of IVOperand for this induction variable if IVOperand can +/// be folded (in case more folding opportunities have been exposed). +/// Otherwise return null. +Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { + Value *IVSrc = nullptr; + unsigned OperIdx = 0; + const SCEV *FoldedExpr = nullptr; + switch (UseInst->getOpcode()) { + default: + return nullptr; + case Instruction::UDiv: + case Instruction::LShr: + // We're only interested in the case where we know something about + // the numerator and have a constant denominator. + if (IVOperand != UseInst->getOperand(OperIdx) || + !isa<ConstantInt>(UseInst->getOperand(1))) + return nullptr; + + // Attempt to fold a binary operator with constant operand. + // e.g. ((I + 1) >> 2) => I >> 2 + if (!isa<BinaryOperator>(IVOperand) + || !isa<ConstantInt>(IVOperand->getOperand(1))) + return nullptr; + + IVSrc = IVOperand->getOperand(0); + // IVSrc must be the (SCEVable) IV, since the other operand is const. + assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); + + ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); + if (UseInst->getOpcode() == Instruction::LShr) { + // Get a constant for the divisor. See createSCEV. + uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); + if (D->getValue().uge(BitWidth)) + return nullptr; + + D = ConstantInt::get(UseInst->getContext(), + APInt::getOneBitSet(BitWidth, D->getZExtValue())); + } + FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); + } + // We have something that might fold it's operand. Compare SCEVs. + if (!SE->isSCEVable(UseInst->getType())) + return nullptr; + + // Bypass the operand if SCEV can prove it has no effect. + if (SE->getSCEV(UseInst) != FoldedExpr) + return nullptr; + + LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand + << " -> " << *UseInst << '\n'); + + UseInst->setOperand(OperIdx, IVSrc); + assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); + + ++NumElimOperand; + Changed = true; + if (IVOperand->use_empty()) + DeadInsts.emplace_back(IVOperand); + return IVSrc; +} + +bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, + Value *IVOperand) { + unsigned IVOperIdx = 0; + ICmpInst::Predicate Pred = ICmp->getPredicate(); + if (IVOperand != ICmp->getOperand(0)) { + // Swapped + assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); + IVOperIdx = 1; + Pred = ICmpInst::getSwappedPredicate(Pred); + } + + // Get the SCEVs for the ICmp operands (in the specific context of the + // current loop) + const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); + const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); + const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); + + ICmpInst::Predicate InvariantPredicate; + const SCEV *InvariantLHS, *InvariantRHS; + + auto *PN = dyn_cast<PHINode>(IVOperand); + if (!PN) + return false; + if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, + InvariantLHS, InvariantRHS)) + return false; + + // Rewrite the comparison to a loop invariant comparison if it can be done + // cheaply, where cheaply means "we don't need to emit any new + // instructions". + + SmallDenseMap<const SCEV*, Value*> CheapExpansions; + CheapExpansions[S] = ICmp->getOperand(IVOperIdx); + CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); + + // TODO: Support multiple entry loops? (We currently bail out of these in + // the IndVarSimplify pass) + if (auto *BB = L->getLoopPredecessor()) { + const int Idx = PN->getBasicBlockIndex(BB); + if (Idx >= 0) { + Value *Incoming = PN->getIncomingValue(Idx); + const SCEV *IncomingS = SE->getSCEV(Incoming); + CheapExpansions[IncomingS] = Incoming; + } + } + Value *NewLHS = CheapExpansions[InvariantLHS]; + Value *NewRHS = CheapExpansions[InvariantRHS]; + + if (!NewLHS) + if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) + NewLHS = ConstLHS->getValue(); + if (!NewRHS) + if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) + NewRHS = ConstRHS->getValue(); + + if (!NewLHS || !NewRHS) + // We could not find an existing value to replace either LHS or RHS. + // Generating new instructions has subtler tradeoffs, so avoid doing that + // for now. + return false; + + LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); + ICmp->setPredicate(InvariantPredicate); + ICmp->setOperand(0, NewLHS); + ICmp->setOperand(1, NewRHS); + return true; +} + +/// SimplifyIVUsers helper for eliminating useless +/// comparisons against an induction variable. +void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { + unsigned IVOperIdx = 0; + ICmpInst::Predicate Pred = ICmp->getPredicate(); + ICmpInst::Predicate OriginalPred = Pred; + if (IVOperand != ICmp->getOperand(0)) { + // Swapped + assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); + IVOperIdx = 1; + Pred = ICmpInst::getSwappedPredicate(Pred); + } + + // Get the SCEVs for the ICmp operands (in the specific context of the + // current loop) + const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); + const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); + const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); + + // If the condition is always true or always false, replace it with + // a constant value. + if (SE->isKnownPredicate(Pred, S, X)) { + ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); + DeadInsts.emplace_back(ICmp); + LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); + } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { + ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); + DeadInsts.emplace_back(ICmp); + LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); + } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { + // fallthrough to end of function + } else if (ICmpInst::isSigned(OriginalPred) && + SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { + // If we were unable to make anything above, all we can is to canonicalize + // the comparison hoping that it will open the doors for other + // optimizations. If we find out that we compare two non-negative values, + // we turn the instruction's predicate to its unsigned version. Note that + // we cannot rely on Pred here unless we check if we have swapped it. + assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); + LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp + << '\n'); + ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); + } else + return; + + ++NumElimCmp; + Changed = true; +} + +bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { + // Get the SCEVs for the ICmp operands. + auto *N = SE->getSCEV(SDiv->getOperand(0)); + auto *D = SE->getSCEV(SDiv->getOperand(1)); + + // Simplify unnecessary loops away. + const Loop *L = LI->getLoopFor(SDiv->getParent()); + N = SE->getSCEVAtScope(N, L); + D = SE->getSCEVAtScope(D, L); + + // Replace sdiv by udiv if both of the operands are non-negative + if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { + auto *UDiv = BinaryOperator::Create( + BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), + SDiv->getName() + ".udiv", SDiv); + UDiv->setIsExact(SDiv->isExact()); + SDiv->replaceAllUsesWith(UDiv); + LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); + ++NumSimplifiedSDiv; + Changed = true; + DeadInsts.push_back(SDiv); + return true; + } + + return false; +} + +// i %s n -> i %u n if i >= 0 and n >= 0 +void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { + auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); + auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, + Rem->getName() + ".urem", Rem); + Rem->replaceAllUsesWith(URem); + LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); + ++NumSimplifiedSRem; + Changed = true; + DeadInsts.emplace_back(Rem); +} + +// i % n --> i if i is in [0,n). +void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { + Rem->replaceAllUsesWith(Rem->getOperand(0)); + LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); + ++NumElimRem; + Changed = true; + DeadInsts.emplace_back(Rem); +} + +// (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). +void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { + auto *T = Rem->getType(); + auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); + ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); + SelectInst *Sel = + SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); + Rem->replaceAllUsesWith(Sel); + LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); + ++NumElimRem; + Changed = true; + DeadInsts.emplace_back(Rem); +} + +/// SimplifyIVUsers helper for eliminating useless remainder operations +/// operating on an induction variable or replacing srem by urem. +void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, + bool IsSigned) { + auto *NValue = Rem->getOperand(0); + auto *DValue = Rem->getOperand(1); + // We're only interested in the case where we know something about + // the numerator, unless it is a srem, because we want to replace srem by urem + // in general. + bool UsedAsNumerator = IVOperand == NValue; + if (!UsedAsNumerator && !IsSigned) + return; + + const SCEV *N = SE->getSCEV(NValue); + + // Simplify unnecessary loops away. + const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); + N = SE->getSCEVAtScope(N, ICmpLoop); + + bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); + + // Do not proceed if the Numerator may be negative + if (!IsNumeratorNonNegative) + return; + + const SCEV *D = SE->getSCEV(DValue); + D = SE->getSCEVAtScope(D, ICmpLoop); + + if (UsedAsNumerator) { + auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; + if (SE->isKnownPredicate(LT, N, D)) { + replaceRemWithNumerator(Rem); + return; + } + + auto *T = Rem->getType(); + const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); + if (SE->isKnownPredicate(LT, NLessOne, D)) { + replaceRemWithNumeratorOrZero(Rem); + return; + } + } + + // Try to replace SRem with URem, if both N and D are known non-negative. + // Since we had already check N, we only need to check D now + if (!IsSigned || !SE->isKnownNonNegative(D)) + return; + + replaceSRemWithURem(Rem); +} + +bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { + auto *F = CI->getCalledFunction(); + if (!F) + return false; + + typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( + const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); + typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( + const SCEV *, Type *, unsigned); + + OperationFunctionTy Operation; + ExtensionFunctionTy Extension; + + Instruction::BinaryOps RawOp; + + // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we + // have nuw. + bool NoSignedOverflow; + + switch (F->getIntrinsicID()) { + default: + return false; + + case Intrinsic::sadd_with_overflow: + Operation = &ScalarEvolution::getAddExpr; + Extension = &ScalarEvolution::getSignExtendExpr; + RawOp = Instruction::Add; + NoSignedOverflow = true; + break; + + case Intrinsic::uadd_with_overflow: + Operation = &ScalarEvolution::getAddExpr; + Extension = &ScalarEvolution::getZeroExtendExpr; + RawOp = Instruction::Add; + NoSignedOverflow = false; + break; + + case Intrinsic::ssub_with_overflow: + Operation = &ScalarEvolution::getMinusSCEV; + Extension = &ScalarEvolution::getSignExtendExpr; + RawOp = Instruction::Sub; + NoSignedOverflow = true; + break; + + case Intrinsic::usub_with_overflow: + Operation = &ScalarEvolution::getMinusSCEV; + Extension = &ScalarEvolution::getZeroExtendExpr; + RawOp = Instruction::Sub; + NoSignedOverflow = false; + break; + } + + const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); + const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); + + auto *NarrowTy = cast<IntegerType>(LHS->getType()); + auto *WideTy = + IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); + + const SCEV *A = + (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), + WideTy, 0); + const SCEV *B = + (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), + (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); + + if (A != B) + return false; + + // Proved no overflow, nuke the overflow check and, if possible, the overflow + // intrinsic as well. + + BinaryOperator *NewResult = BinaryOperator::Create( + RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); + + if (NoSignedOverflow) + NewResult->setHasNoSignedWrap(true); + else + NewResult->setHasNoUnsignedWrap(true); + + SmallVector<ExtractValueInst *, 4> ToDelete; + + for (auto *U : CI->users()) { + if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { + if (EVI->getIndices()[0] == 1) + EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); + else { + assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); + EVI->replaceAllUsesWith(NewResult); + } + ToDelete.push_back(EVI); + } + } + + for (auto *EVI : ToDelete) + EVI->eraseFromParent(); + + if (CI->use_empty()) + CI->eraseFromParent(); + + return true; +} + +bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { + // It is always legal to replace + // icmp <pred> i32 trunc(iv), n + // with + // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. + // Or with + // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. + // Or with either of these if pred is an equality predicate. + // + // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for + // every comparison which uses trunc, it means that we can replace each of + // them with comparison of iv against sext/zext(n). We no longer need trunc + // after that. + // + // TODO: Should we do this if we can widen *some* comparisons, but not all + // of them? Sometimes it is enough to enable other optimizations, but the + // trunc instruction will stay in the loop. + Value *IV = TI->getOperand(0); + Type *IVTy = IV->getType(); + const SCEV *IVSCEV = SE->getSCEV(IV); + const SCEV *TISCEV = SE->getSCEV(TI); + + // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can + // get rid of trunc + bool DoesSExtCollapse = false; + bool DoesZExtCollapse = false; + if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) + DoesSExtCollapse = true; + if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) + DoesZExtCollapse = true; + + // If neither sext nor zext does collapse, it is not profitable to do any + // transform. Bail. + if (!DoesSExtCollapse && !DoesZExtCollapse) + return false; + + // Collect users of the trunc that look like comparisons against invariants. + // Bail if we find something different. + SmallVector<ICmpInst *, 4> ICmpUsers; + for (auto *U : TI->users()) { + // We don't care about users in unreachable blocks. + if (isa<Instruction>(U) && + !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) + continue; + if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { + if (ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) { + assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); + // If we cannot get rid of trunc, bail. + if (ICI->isSigned() && !DoesSExtCollapse) + return false; + if (ICI->isUnsigned() && !DoesZExtCollapse) + return false; + // For equality, either signed or unsigned works. + ICmpUsers.push_back(ICI); + } else + return false; + } else + return false; + } + + auto CanUseZExt = [&](ICmpInst *ICI) { + // Unsigned comparison can be widened as unsigned. + if (ICI->isUnsigned()) + return true; + // Is it profitable to do zext? + if (!DoesZExtCollapse) + return false; + // For equality, we can safely zext both parts. + if (ICI->isEquality()) + return true; + // Otherwise we can only use zext when comparing two non-negative or two + // negative values. But in practice, we will never pass DoesZExtCollapse + // check for a negative value, because zext(trunc(x)) is non-negative. So + // it only make sense to check for non-negativity here. + const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); + const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); + return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); + }; + // Replace all comparisons against trunc with comparisons against IV. + for (auto *ICI : ICmpUsers) { + auto *Op1 = ICI->getOperand(1); + Instruction *Ext = nullptr; + // For signed/unsigned predicate, replace the old comparison with comparison + // of immediate IV against sext/zext of the invariant argument. If we can + // use either sext or zext (i.e. we are dealing with equality predicate), + // then prefer zext as a more canonical form. + // TODO: If we see a signed comparison which can be turned into unsigned, + // we can do it here for canonicalization purposes. + ICmpInst::Predicate Pred = ICI->getPredicate(); + if (CanUseZExt(ICI)) { + assert(DoesZExtCollapse && "Unprofitable zext?"); + Ext = new ZExtInst(Op1, IVTy, "zext", ICI); + Pred = ICmpInst::getUnsignedPredicate(Pred); + } else { + assert(DoesSExtCollapse && "Unprofitable sext?"); + Ext = new SExtInst(Op1, IVTy, "sext", ICI); + assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); + } + bool Changed; + L->makeLoopInvariant(Ext, Changed); + (void)Changed; + ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); + ICI->replaceAllUsesWith(NewICI); + DeadInsts.emplace_back(ICI); + } + + // Trunc no longer needed. + TI->replaceAllUsesWith(UndefValue::get(TI->getType())); + DeadInsts.emplace_back(TI); + return true; +} + +/// Eliminate an operation that consumes a simple IV and has no observable +/// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, +/// but UseInst may not be. +bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, + Instruction *IVOperand) { + if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { + eliminateIVComparison(ICmp, IVOperand); + return true; + } + if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { + bool IsSRem = Bin->getOpcode() == Instruction::SRem; + if (IsSRem || Bin->getOpcode() == Instruction::URem) { + simplifyIVRemainder(Bin, IVOperand, IsSRem); + return true; + } + + if (Bin->getOpcode() == Instruction::SDiv) + return eliminateSDiv(Bin); + } + + if (auto *CI = dyn_cast<CallInst>(UseInst)) + if (eliminateOverflowIntrinsic(CI)) + return true; + + if (auto *TI = dyn_cast<TruncInst>(UseInst)) + if (eliminateTrunc(TI)) + return true; + + if (eliminateIdentitySCEV(UseInst, IVOperand)) + return true; + + return false; +} + +static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { + if (auto *BB = L->getLoopPreheader()) + return BB->getTerminator(); + + return Hint; +} + +/// Replace the UseInst with a constant if possible. +bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { + if (!SE->isSCEVable(I->getType())) + return false; + + // Get the symbolic expression for this instruction. + const SCEV *S = SE->getSCEV(I); + + if (!SE->isLoopInvariant(S, L)) + return false; + + // Do not generate something ridiculous even if S is loop invariant. + if (Rewriter.isHighCostExpansion(S, L, I)) + return false; + + auto *IP = GetLoopInvariantInsertPosition(L, I); + auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); + + I->replaceAllUsesWith(Invariant); + LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I + << " with loop invariant: " << *S << '\n'); + ++NumFoldedUser; + Changed = true; + DeadInsts.emplace_back(I); + return true; +} + +/// Eliminate any operation that SCEV can prove is an identity function. +bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, + Instruction *IVOperand) { + if (!SE->isSCEVable(UseInst->getType()) || + (UseInst->getType() != IVOperand->getType()) || + (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) + return false; + + // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the + // dominator tree, even if X is an operand to Y. For instance, in + // + // %iv = phi i32 {0,+,1} + // br %cond, label %left, label %merge + // + // left: + // %X = add i32 %iv, 0 + // br label %merge + // + // merge: + // %M = phi (%X, %iv) + // + // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and + // %M.replaceAllUsesWith(%X) would be incorrect. + + if (isa<PHINode>(UseInst)) + // If UseInst is not a PHI node then we know that IVOperand dominates + // UseInst directly from the legality of SSA. + if (!DT || !DT->dominates(IVOperand, UseInst)) + return false; + + if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) + return false; + + LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); + + UseInst->replaceAllUsesWith(IVOperand); + ++NumElimIdentity; + Changed = true; + DeadInsts.emplace_back(UseInst); + return true; +} + +/// Annotate BO with nsw / nuw if it provably does not signed-overflow / +/// unsigned-overflow. Returns true if anything changed, false otherwise. +bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, + Value *IVOperand) { + + // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. + if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) + return false; + + const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, + SCEV::NoWrapFlags, unsigned); + switch (BO->getOpcode()) { + default: + return false; + + case Instruction::Add: + GetExprForBO = &ScalarEvolution::getAddExpr; + break; + + case Instruction::Sub: + GetExprForBO = &ScalarEvolution::getMinusSCEV; + break; + + case Instruction::Mul: + GetExprForBO = &ScalarEvolution::getMulExpr; + break; + } + + unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); + Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); + const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); + const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); + + bool Changed = false; + + if (!BO->hasNoUnsignedWrap()) { + const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); + const SCEV *OpAfterExtend = (SE->*GetExprForBO)( + SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), + SCEV::FlagAnyWrap, 0u); + if (ExtendAfterOp == OpAfterExtend) { + BO->setHasNoUnsignedWrap(); + SE->forgetValue(BO); + Changed = true; + } + } + + if (!BO->hasNoSignedWrap()) { + const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); + const SCEV *OpAfterExtend = (SE->*GetExprForBO)( + SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), + SCEV::FlagAnyWrap, 0u); + if (ExtendAfterOp == OpAfterExtend) { + BO->setHasNoSignedWrap(); + SE->forgetValue(BO); + Changed = true; + } + } + + return Changed; +} + +/// Annotate the Shr in (X << IVOperand) >> C as exact using the +/// information from the IV's range. Returns true if anything changed, false +/// otherwise. +bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, + Value *IVOperand) { + using namespace llvm::PatternMatch; + + if (BO->getOpcode() == Instruction::Shl) { + bool Changed = false; + ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); + for (auto *U : BO->users()) { + const APInt *C; + if (match(U, + m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || + match(U, + m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { + BinaryOperator *Shr = cast<BinaryOperator>(U); + if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { + Shr->setIsExact(true); + Changed = true; + } + } + } + return Changed; + } + + return false; +} + +/// Add all uses of Def to the current IV's worklist. +static void pushIVUsers( + Instruction *Def, Loop *L, + SmallPtrSet<Instruction*,16> &Simplified, + SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { + + for (User *U : Def->users()) { + Instruction *UI = cast<Instruction>(U); + + // Avoid infinite or exponential worklist processing. + // Also ensure unique worklist users. + // If Def is a LoopPhi, it may not be in the Simplified set, so check for + // self edges first. + if (UI == Def) + continue; + + // Only change the current Loop, do not change the other parts (e.g. other + // Loops). + if (!L->contains(UI)) + continue; + + // Do not push the same instruction more than once. + if (!Simplified.insert(UI).second) + continue; + + SimpleIVUsers.push_back(std::make_pair(UI, Def)); + } +} + +/// Return true if this instruction generates a simple SCEV +/// expression in terms of that IV. +/// +/// This is similar to IVUsers' isInteresting() but processes each instruction +/// non-recursively when the operand is already known to be a simpleIVUser. +/// +static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { + if (!SE->isSCEVable(I->getType())) + return false; + + // Get the symbolic expression for this instruction. + const SCEV *S = SE->getSCEV(I); + + // Only consider affine recurrences. + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); + if (AR && AR->getLoop() == L) + return true; + + return false; +} + +/// Iteratively perform simplification on a worklist of users +/// of the specified induction variable. Each successive simplification may push +/// more users which may themselves be candidates for simplification. +/// +/// This algorithm does not require IVUsers analysis. Instead, it simplifies +/// instructions in-place during analysis. Rather than rewriting induction +/// variables bottom-up from their users, it transforms a chain of IVUsers +/// top-down, updating the IR only when it encounters a clear optimization +/// opportunity. +/// +/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. +/// +void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { + if (!SE->isSCEVable(CurrIV->getType())) + return; + + // Instructions processed by SimplifyIndvar for CurrIV. + SmallPtrSet<Instruction*,16> Simplified; + + // Use-def pairs if IV users waiting to be processed for CurrIV. + SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; + + // Push users of the current LoopPhi. In rare cases, pushIVUsers may be + // called multiple times for the same LoopPhi. This is the proper thing to + // do for loop header phis that use each other. + pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); + + while (!SimpleIVUsers.empty()) { + std::pair<Instruction*, Instruction*> UseOper = + SimpleIVUsers.pop_back_val(); + Instruction *UseInst = UseOper.first; + + // If a user of the IndVar is trivially dead, we prefer just to mark it dead + // rather than try to do some complex analysis or transformation (such as + // widening) basing on it. + // TODO: Propagate TLI and pass it here to handle more cases. + if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { + DeadInsts.emplace_back(UseInst); + continue; + } + + // Bypass back edges to avoid extra work. + if (UseInst == CurrIV) continue; + + // Try to replace UseInst with a loop invariant before any other + // simplifications. + if (replaceIVUserWithLoopInvariant(UseInst)) + continue; + + Instruction *IVOperand = UseOper.second; + for (unsigned N = 0; IVOperand; ++N) { + assert(N <= Simplified.size() && "runaway iteration"); + + Value *NewOper = foldIVUser(UseInst, IVOperand); + if (!NewOper) + break; // done folding + IVOperand = dyn_cast<Instruction>(NewOper); + } + if (!IVOperand) + continue; + + if (eliminateIVUser(UseInst, IVOperand)) { + pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); + continue; + } + + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { + if ((isa<OverflowingBinaryOperator>(BO) && + strengthenOverflowingOperation(BO, IVOperand)) || + (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { + // re-queue uses of the now modified binary operator and fall + // through to the checks that remain. + pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); + } + } + + CastInst *Cast = dyn_cast<CastInst>(UseInst); + if (V && Cast) { + V->visitCast(Cast); + continue; + } + if (isSimpleIVUser(UseInst, L, SE)) { + pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); + } + } +} + +namespace llvm { + +void IVVisitor::anchor() { } + +/// Simplify instructions that use this induction variable +/// by using ScalarEvolution to analyze the IV's recurrence. +bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, + LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, + SCEVExpander &Rewriter, IVVisitor *V) { + SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter, + Dead); + SIV.simplifyUsers(CurrIV, V); + return SIV.hasChanged(); +} + +/// Simplify users of induction variables within this +/// loop. This does not actually change or add IVs. +bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, + LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { + SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); +#ifndef NDEBUG + Rewriter.setDebugType(DEBUG_TYPE); +#endif + bool Changed = false; + for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { + Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter); + } + return Changed; +} + +} // namespace llvm |