aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp722
1 files changed, 722 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
new file mode 100644
index 000000000000..faa14046b1e3
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
@@ -0,0 +1,722 @@
+//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements induction variable simplification. It does
+// not define any actual pass or policy, but provides a single function to
+// simplify a loop's induction variables based on ScalarEvolution.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "indvars"
+
+STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
+STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
+STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
+STATISTIC(
+ NumSimplifiedSDiv,
+ "Number of IV signed division operations converted to unsigned division");
+STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
+
+namespace {
+ /// This is a utility for simplifying induction variables
+ /// based on ScalarEvolution. It is the primary instrument of the
+ /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
+ /// other loop passes that preserve SCEV.
+ class SimplifyIndvar {
+ Loop *L;
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts;
+
+ bool Changed;
+
+ public:
+ SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
+ LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead)
+ : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) {
+ assert(LI && "IV simplification requires LoopInfo");
+ }
+
+ bool hasChanged() const { return Changed; }
+
+ /// Iteratively perform simplification on a worklist of users of the
+ /// specified induction variable. This is the top-level driver that applies
+ /// all simplifications to users of an IV.
+ void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
+
+ Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
+
+ bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
+
+ bool eliminateOverflowIntrinsic(CallInst *CI);
+ bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
+ void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
+ void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
+ bool IsSigned);
+ bool eliminateSDiv(BinaryOperator *SDiv);
+ bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
+ };
+}
+
+/// Fold an IV operand into its use. This removes increments of an
+/// aligned IV when used by a instruction that ignores the low bits.
+///
+/// IVOperand is guaranteed SCEVable, but UseInst may not be.
+///
+/// Return the operand of IVOperand for this induction variable if IVOperand can
+/// be folded (in case more folding opportunities have been exposed).
+/// Otherwise return null.
+Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
+ Value *IVSrc = nullptr;
+ unsigned OperIdx = 0;
+ const SCEV *FoldedExpr = nullptr;
+ switch (UseInst->getOpcode()) {
+ default:
+ return nullptr;
+ case Instruction::UDiv:
+ case Instruction::LShr:
+ // We're only interested in the case where we know something about
+ // the numerator and have a constant denominator.
+ if (IVOperand != UseInst->getOperand(OperIdx) ||
+ !isa<ConstantInt>(UseInst->getOperand(1)))
+ return nullptr;
+
+ // Attempt to fold a binary operator with constant operand.
+ // e.g. ((I + 1) >> 2) => I >> 2
+ if (!isa<BinaryOperator>(IVOperand)
+ || !isa<ConstantInt>(IVOperand->getOperand(1)))
+ return nullptr;
+
+ IVSrc = IVOperand->getOperand(0);
+ // IVSrc must be the (SCEVable) IV, since the other operand is const.
+ assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
+
+ ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
+ if (UseInst->getOpcode() == Instruction::LShr) {
+ // Get a constant for the divisor. See createSCEV.
+ uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
+ if (D->getValue().uge(BitWidth))
+ return nullptr;
+
+ D = ConstantInt::get(UseInst->getContext(),
+ APInt::getOneBitSet(BitWidth, D->getZExtValue()));
+ }
+ FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
+ }
+ // We have something that might fold it's operand. Compare SCEVs.
+ if (!SE->isSCEVable(UseInst->getType()))
+ return nullptr;
+
+ // Bypass the operand if SCEV can prove it has no effect.
+ if (SE->getSCEV(UseInst) != FoldedExpr)
+ return nullptr;
+
+ DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
+ << " -> " << *UseInst << '\n');
+
+ UseInst->setOperand(OperIdx, IVSrc);
+ assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
+
+ ++NumElimOperand;
+ Changed = true;
+ if (IVOperand->use_empty())
+ DeadInsts.emplace_back(IVOperand);
+ return IVSrc;
+}
+
+/// SimplifyIVUsers helper for eliminating useless
+/// comparisons against an induction variable.
+void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
+ unsigned IVOperIdx = 0;
+ ICmpInst::Predicate Pred = ICmp->getPredicate();
+ if (IVOperand != ICmp->getOperand(0)) {
+ // Swapped
+ assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
+ IVOperIdx = 1;
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ // Get the SCEVs for the ICmp operands.
+ const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
+ const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
+
+ // Simplify unnecessary loops away.
+ const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
+ S = SE->getSCEVAtScope(S, ICmpLoop);
+ X = SE->getSCEVAtScope(X, ICmpLoop);
+
+ ICmpInst::Predicate InvariantPredicate;
+ const SCEV *InvariantLHS, *InvariantRHS;
+
+ // If the condition is always true or always false, replace it with
+ // a constant value.
+ if (SE->isKnownPredicate(Pred, S, X)) {
+ ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
+ DeadInsts.emplace_back(ICmp);
+ DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
+ } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
+ ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
+ DeadInsts.emplace_back(ICmp);
+ DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
+ } else if (isa<PHINode>(IVOperand) &&
+ SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
+ InvariantLHS, InvariantRHS)) {
+
+ // Rewrite the comparison to a loop invariant comparison if it can be done
+ // cheaply, where cheaply means "we don't need to emit any new
+ // instructions".
+
+ Value *NewLHS = nullptr, *NewRHS = nullptr;
+
+ if (S == InvariantLHS || X == InvariantLHS)
+ NewLHS =
+ ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx));
+
+ if (S == InvariantRHS || X == InvariantRHS)
+ NewRHS =
+ ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx));
+
+ auto *PN = cast<PHINode>(IVOperand);
+ for (unsigned i = 0, e = PN->getNumIncomingValues();
+ i != e && (!NewLHS || !NewRHS);
+ ++i) {
+
+ // If this is a value incoming from the backedge, then it cannot be a loop
+ // invariant value (since we know that IVOperand is an induction variable).
+ if (L->contains(PN->getIncomingBlock(i)))
+ continue;
+
+ // NB! This following assert does not fundamentally have to be true, but
+ // it is true today given how SCEV analyzes induction variables.
+ // Specifically, today SCEV will *not* recognize %iv as an induction
+ // variable in the following case:
+ //
+ // define void @f(i32 %k) {
+ // entry:
+ // br i1 undef, label %r, label %l
+ //
+ // l:
+ // %k.inc.l = add i32 %k, 1
+ // br label %loop
+ //
+ // r:
+ // %k.inc.r = add i32 %k, 1
+ // br label %loop
+ //
+ // loop:
+ // %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ]
+ // %iv.inc = add i32 %iv, 1
+ // br label %loop
+ // }
+ //
+ // but if it starts to, at some point, then the assertion below will have
+ // to be changed to a runtime check.
+
+ Value *Incoming = PN->getIncomingValue(i);
+
+#ifndef NDEBUG
+ if (auto *I = dyn_cast<Instruction>(Incoming))
+ assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!");
+#endif
+
+ const SCEV *IncomingS = SE->getSCEV(Incoming);
+
+ if (!NewLHS && IncomingS == InvariantLHS)
+ NewLHS = Incoming;
+ if (!NewRHS && IncomingS == InvariantRHS)
+ NewRHS = Incoming;
+ }
+
+ if (!NewLHS || !NewRHS)
+ // We could not find an existing value to replace either LHS or RHS.
+ // Generating new instructions has subtler tradeoffs, so avoid doing that
+ // for now.
+ return;
+
+ DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
+ ICmp->setPredicate(InvariantPredicate);
+ ICmp->setOperand(0, NewLHS);
+ ICmp->setOperand(1, NewRHS);
+ } else
+ return;
+
+ ++NumElimCmp;
+ Changed = true;
+}
+
+bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
+ // Get the SCEVs for the ICmp operands.
+ auto *N = SE->getSCEV(SDiv->getOperand(0));
+ auto *D = SE->getSCEV(SDiv->getOperand(1));
+
+ // Simplify unnecessary loops away.
+ const Loop *L = LI->getLoopFor(SDiv->getParent());
+ N = SE->getSCEVAtScope(N, L);
+ D = SE->getSCEVAtScope(D, L);
+
+ // Replace sdiv by udiv if both of the operands are non-negative
+ if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
+ auto *UDiv = BinaryOperator::Create(
+ BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
+ SDiv->getName() + ".udiv", SDiv);
+ UDiv->setIsExact(SDiv->isExact());
+ SDiv->replaceAllUsesWith(UDiv);
+ DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
+ ++NumSimplifiedSDiv;
+ Changed = true;
+ DeadInsts.push_back(SDiv);
+ return true;
+ }
+
+ return false;
+}
+
+/// SimplifyIVUsers helper for eliminating useless
+/// remainder operations operating on an induction variable.
+void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
+ Value *IVOperand,
+ bool IsSigned) {
+ // We're only interested in the case where we know something about
+ // the numerator.
+ if (IVOperand != Rem->getOperand(0))
+ return;
+
+ // Get the SCEVs for the ICmp operands.
+ const SCEV *S = SE->getSCEV(Rem->getOperand(0));
+ const SCEV *X = SE->getSCEV(Rem->getOperand(1));
+
+ // Simplify unnecessary loops away.
+ const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
+ S = SE->getSCEVAtScope(S, ICmpLoop);
+ X = SE->getSCEVAtScope(X, ICmpLoop);
+
+ // i % n --> i if i is in [0,n).
+ if ((!IsSigned || SE->isKnownNonNegative(S)) &&
+ SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+ S, X))
+ Rem->replaceAllUsesWith(Rem->getOperand(0));
+ else {
+ // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
+ const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType()));
+ if (IsSigned && !SE->isKnownNonNegative(LessOne))
+ return;
+
+ if (!SE->isKnownPredicate(IsSigned ?
+ ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+ LessOne, X))
+ return;
+
+ ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
+ Rem->getOperand(0), Rem->getOperand(1));
+ SelectInst *Sel =
+ SelectInst::Create(ICmp,
+ ConstantInt::get(Rem->getType(), 0),
+ Rem->getOperand(0), "tmp", Rem);
+ Rem->replaceAllUsesWith(Sel);
+ }
+
+ DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
+ ++NumElimRem;
+ Changed = true;
+ DeadInsts.emplace_back(Rem);
+}
+
+bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
+ auto *F = CI->getCalledFunction();
+ if (!F)
+ return false;
+
+ typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
+ const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned);
+ typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
+ const SCEV *, Type *);
+
+ OperationFunctionTy Operation;
+ ExtensionFunctionTy Extension;
+
+ Instruction::BinaryOps RawOp;
+
+ // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we
+ // have nuw.
+ bool NoSignedOverflow;
+
+ switch (F->getIntrinsicID()) {
+ default:
+ return false;
+
+ case Intrinsic::sadd_with_overflow:
+ Operation = &ScalarEvolution::getAddExpr;
+ Extension = &ScalarEvolution::getSignExtendExpr;
+ RawOp = Instruction::Add;
+ NoSignedOverflow = true;
+ break;
+
+ case Intrinsic::uadd_with_overflow:
+ Operation = &ScalarEvolution::getAddExpr;
+ Extension = &ScalarEvolution::getZeroExtendExpr;
+ RawOp = Instruction::Add;
+ NoSignedOverflow = false;
+ break;
+
+ case Intrinsic::ssub_with_overflow:
+ Operation = &ScalarEvolution::getMinusSCEV;
+ Extension = &ScalarEvolution::getSignExtendExpr;
+ RawOp = Instruction::Sub;
+ NoSignedOverflow = true;
+ break;
+
+ case Intrinsic::usub_with_overflow:
+ Operation = &ScalarEvolution::getMinusSCEV;
+ Extension = &ScalarEvolution::getZeroExtendExpr;
+ RawOp = Instruction::Sub;
+ NoSignedOverflow = false;
+ break;
+ }
+
+ const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
+ const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
+
+ auto *NarrowTy = cast<IntegerType>(LHS->getType());
+ auto *WideTy =
+ IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
+
+ const SCEV *A =
+ (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0u),
+ WideTy);
+ const SCEV *B =
+ (SE->*Operation)((SE->*Extension)(LHS, WideTy),
+ (SE->*Extension)(RHS, WideTy), SCEV::FlagAnyWrap, 0u);
+
+ if (A != B)
+ return false;
+
+ // Proved no overflow, nuke the overflow check and, if possible, the overflow
+ // intrinsic as well.
+
+ BinaryOperator *NewResult = BinaryOperator::Create(
+ RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
+
+ if (NoSignedOverflow)
+ NewResult->setHasNoSignedWrap(true);
+ else
+ NewResult->setHasNoUnsignedWrap(true);
+
+ SmallVector<ExtractValueInst *, 4> ToDelete;
+
+ for (auto *U : CI->users()) {
+ if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
+ if (EVI->getIndices()[0] == 1)
+ EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
+ else {
+ assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
+ EVI->replaceAllUsesWith(NewResult);
+ }
+ ToDelete.push_back(EVI);
+ }
+ }
+
+ for (auto *EVI : ToDelete)
+ EVI->eraseFromParent();
+
+ if (CI->use_empty())
+ CI->eraseFromParent();
+
+ return true;
+}
+
+/// Eliminate an operation that consumes a simple IV and has no observable
+/// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
+/// but UseInst may not be.
+bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
+ Instruction *IVOperand) {
+ if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
+ eliminateIVComparison(ICmp, IVOperand);
+ return true;
+ }
+ if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
+ bool IsSRem = Bin->getOpcode() == Instruction::SRem;
+ if (IsSRem || Bin->getOpcode() == Instruction::URem) {
+ eliminateIVRemainder(Bin, IVOperand, IsSRem);
+ return true;
+ }
+
+ if (Bin->getOpcode() == Instruction::SDiv)
+ return eliminateSDiv(Bin);
+ }
+
+ if (auto *CI = dyn_cast<CallInst>(UseInst))
+ if (eliminateOverflowIntrinsic(CI))
+ return true;
+
+ if (eliminateIdentitySCEV(UseInst, IVOperand))
+ return true;
+
+ return false;
+}
+
+/// Eliminate any operation that SCEV can prove is an identity function.
+bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
+ Instruction *IVOperand) {
+ if (!SE->isSCEVable(UseInst->getType()) ||
+ (UseInst->getType() != IVOperand->getType()) ||
+ (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
+ return false;
+
+ // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
+ // dominator tree, even if X is an operand to Y. For instance, in
+ //
+ // %iv = phi i32 {0,+,1}
+ // br %cond, label %left, label %merge
+ //
+ // left:
+ // %X = add i32 %iv, 0
+ // br label %merge
+ //
+ // merge:
+ // %M = phi (%X, %iv)
+ //
+ // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
+ // %M.replaceAllUsesWith(%X) would be incorrect.
+
+ if (isa<PHINode>(UseInst))
+ // If UseInst is not a PHI node then we know that IVOperand dominates
+ // UseInst directly from the legality of SSA.
+ if (!DT || !DT->dominates(IVOperand, UseInst))
+ return false;
+
+ if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
+ return false;
+
+ DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
+
+ UseInst->replaceAllUsesWith(IVOperand);
+ ++NumElimIdentity;
+ Changed = true;
+ DeadInsts.emplace_back(UseInst);
+ return true;
+}
+
+/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
+/// unsigned-overflow. Returns true if anything changed, false otherwise.
+bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
+ Value *IVOperand) {
+
+ // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
+ if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
+ return false;
+
+ const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
+ SCEV::NoWrapFlags, unsigned);
+ switch (BO->getOpcode()) {
+ default:
+ return false;
+
+ case Instruction::Add:
+ GetExprForBO = &ScalarEvolution::getAddExpr;
+ break;
+
+ case Instruction::Sub:
+ GetExprForBO = &ScalarEvolution::getMinusSCEV;
+ break;
+
+ case Instruction::Mul:
+ GetExprForBO = &ScalarEvolution::getMulExpr;
+ break;
+ }
+
+ unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
+ Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
+ const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
+ const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
+
+ bool Changed = false;
+
+ if (!BO->hasNoUnsignedWrap()) {
+ const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
+ const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
+ SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
+ SCEV::FlagAnyWrap, 0u);
+ if (ExtendAfterOp == OpAfterExtend) {
+ BO->setHasNoUnsignedWrap();
+ SE->forgetValue(BO);
+ Changed = true;
+ }
+ }
+
+ if (!BO->hasNoSignedWrap()) {
+ const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
+ const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
+ SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
+ SCEV::FlagAnyWrap, 0u);
+ if (ExtendAfterOp == OpAfterExtend) {
+ BO->setHasNoSignedWrap();
+ SE->forgetValue(BO);
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+/// Add all uses of Def to the current IV's worklist.
+static void pushIVUsers(
+ Instruction *Def,
+ SmallPtrSet<Instruction*,16> &Simplified,
+ SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
+
+ for (User *U : Def->users()) {
+ Instruction *UI = cast<Instruction>(U);
+
+ // Avoid infinite or exponential worklist processing.
+ // Also ensure unique worklist users.
+ // If Def is a LoopPhi, it may not be in the Simplified set, so check for
+ // self edges first.
+ if (UI != Def && Simplified.insert(UI).second)
+ SimpleIVUsers.push_back(std::make_pair(UI, Def));
+ }
+}
+
+/// Return true if this instruction generates a simple SCEV
+/// expression in terms of that IV.
+///
+/// This is similar to IVUsers' isInteresting() but processes each instruction
+/// non-recursively when the operand is already known to be a simpleIVUser.
+///
+static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
+ if (!SE->isSCEVable(I->getType()))
+ return false;
+
+ // Get the symbolic expression for this instruction.
+ const SCEV *S = SE->getSCEV(I);
+
+ // Only consider affine recurrences.
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
+ if (AR && AR->getLoop() == L)
+ return true;
+
+ return false;
+}
+
+/// Iteratively perform simplification on a worklist of users
+/// of the specified induction variable. Each successive simplification may push
+/// more users which may themselves be candidates for simplification.
+///
+/// This algorithm does not require IVUsers analysis. Instead, it simplifies
+/// instructions in-place during analysis. Rather than rewriting induction
+/// variables bottom-up from their users, it transforms a chain of IVUsers
+/// top-down, updating the IR only when it encounters a clear optimization
+/// opportunity.
+///
+/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
+///
+void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
+ if (!SE->isSCEVable(CurrIV->getType()))
+ return;
+
+ // Instructions processed by SimplifyIndvar for CurrIV.
+ SmallPtrSet<Instruction*,16> Simplified;
+
+ // Use-def pairs if IV users waiting to be processed for CurrIV.
+ SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
+
+ // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
+ // called multiple times for the same LoopPhi. This is the proper thing to
+ // do for loop header phis that use each other.
+ pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
+
+ while (!SimpleIVUsers.empty()) {
+ std::pair<Instruction*, Instruction*> UseOper =
+ SimpleIVUsers.pop_back_val();
+ Instruction *UseInst = UseOper.first;
+
+ // Bypass back edges to avoid extra work.
+ if (UseInst == CurrIV) continue;
+
+ Instruction *IVOperand = UseOper.second;
+ for (unsigned N = 0; IVOperand; ++N) {
+ assert(N <= Simplified.size() && "runaway iteration");
+
+ Value *NewOper = foldIVUser(UseOper.first, IVOperand);
+ if (!NewOper)
+ break; // done folding
+ IVOperand = dyn_cast<Instruction>(NewOper);
+ }
+ if (!IVOperand)
+ continue;
+
+ if (eliminateIVUser(UseOper.first, IVOperand)) {
+ pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
+ continue;
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
+ if (isa<OverflowingBinaryOperator>(BO) &&
+ strengthenOverflowingOperation(BO, IVOperand)) {
+ // re-queue uses of the now modified binary operator and fall
+ // through to the checks that remain.
+ pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
+ }
+ }
+
+ CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
+ if (V && Cast) {
+ V->visitCast(Cast);
+ continue;
+ }
+ if (isSimpleIVUser(UseOper.first, L, SE)) {
+ pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
+ }
+ }
+}
+
+namespace llvm {
+
+void IVVisitor::anchor() { }
+
+/// Simplify instructions that use this induction variable
+/// by using ScalarEvolution to analyze the IV's recurrence.
+bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
+ LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
+ IVVisitor *V) {
+ SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
+ SIV.simplifyUsers(CurrIV, V);
+ return SIV.hasChanged();
+}
+
+/// Simplify users of induction variables within this
+/// loop. This does not actually change or add IVs.
+bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
+ LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
+ bool Changed = false;
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
+ }
+ return Changed;
+}
+
+} // namespace llvm