aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/AST/Expr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/AST/Expr.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/AST/Expr.cpp3045
1 files changed, 3045 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/AST/Expr.cpp b/contrib/llvm/tools/clang/lib/AST/Expr.cpp
new file mode 100644
index 000000000000..987213907e45
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/AST/Expr.cpp
@@ -0,0 +1,3045 @@
+//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/Sema/SemaDiagnostic.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace clang;
+
+/// isKnownToHaveBooleanValue - Return true if this is an integer expression
+/// that is known to return 0 or 1. This happens for _Bool/bool expressions
+/// but also int expressions which are produced by things like comparisons in
+/// C.
+bool Expr::isKnownToHaveBooleanValue() const {
+ const Expr *E = IgnoreParens();
+
+ // If this value has _Bool type, it is obvious 0/1.
+ if (E->getType()->isBooleanType()) return true;
+ // If this is a non-scalar-integer type, we don't care enough to try.
+ if (!E->getType()->isIntegralOrEnumerationType()) return false;
+
+ if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
+ switch (UO->getOpcode()) {
+ case UO_Plus:
+ return UO->getSubExpr()->isKnownToHaveBooleanValue();
+ default:
+ return false;
+ }
+ }
+
+ // Only look through implicit casts. If the user writes
+ // '(int) (a && b)' treat it as an arbitrary int.
+ if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
+ return CE->getSubExpr()->isKnownToHaveBooleanValue();
+
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ switch (BO->getOpcode()) {
+ default: return false;
+ case BO_LT: // Relational operators.
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ: // Equality operators.
+ case BO_NE:
+ case BO_LAnd: // AND operator.
+ case BO_LOr: // Logical OR operator.
+ return true;
+
+ case BO_And: // Bitwise AND operator.
+ case BO_Xor: // Bitwise XOR operator.
+ case BO_Or: // Bitwise OR operator.
+ // Handle things like (x==2)|(y==12).
+ return BO->getLHS()->isKnownToHaveBooleanValue() &&
+ BO->getRHS()->isKnownToHaveBooleanValue();
+
+ case BO_Comma:
+ case BO_Assign:
+ return BO->getRHS()->isKnownToHaveBooleanValue();
+ }
+ }
+
+ if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
+ return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
+ CO->getFalseExpr()->isKnownToHaveBooleanValue();
+
+ return false;
+}
+
+// Amusing macro metaprogramming hack: check whether a class provides
+// a more specific implementation of getExprLoc().
+namespace {
+ /// This implementation is used when a class provides a custom
+ /// implementation of getExprLoc.
+ template <class E, class T>
+ SourceLocation getExprLocImpl(const Expr *expr,
+ SourceLocation (T::*v)() const) {
+ return static_cast<const E*>(expr)->getExprLoc();
+ }
+
+ /// This implementation is used when a class doesn't provide
+ /// a custom implementation of getExprLoc. Overload resolution
+ /// should pick it over the implementation above because it's
+ /// more specialized according to function template partial ordering.
+ template <class E>
+ SourceLocation getExprLocImpl(const Expr *expr,
+ SourceLocation (Expr::*v)() const) {
+ return static_cast<const E*>(expr)->getSourceRange().getBegin();
+ }
+}
+
+SourceLocation Expr::getExprLoc() const {
+ switch (getStmtClass()) {
+ case Stmt::NoStmtClass: llvm_unreachable("statement without class");
+#define ABSTRACT_STMT(type)
+#define STMT(type, base) \
+ case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
+#define EXPR(type, base) \
+ case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
+#include "clang/AST/StmtNodes.inc"
+ }
+ llvm_unreachable("unknown statement kind");
+ return SourceLocation();
+}
+
+//===----------------------------------------------------------------------===//
+// Primary Expressions.
+//===----------------------------------------------------------------------===//
+
+void ExplicitTemplateArgumentList::initializeFrom(
+ const TemplateArgumentListInfo &Info) {
+ LAngleLoc = Info.getLAngleLoc();
+ RAngleLoc = Info.getRAngleLoc();
+ NumTemplateArgs = Info.size();
+
+ TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
+ for (unsigned i = 0; i != NumTemplateArgs; ++i)
+ new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
+}
+
+void ExplicitTemplateArgumentList::initializeFrom(
+ const TemplateArgumentListInfo &Info,
+ bool &Dependent,
+ bool &ContainsUnexpandedParameterPack) {
+ LAngleLoc = Info.getLAngleLoc();
+ RAngleLoc = Info.getRAngleLoc();
+ NumTemplateArgs = Info.size();
+
+ TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
+ for (unsigned i = 0; i != NumTemplateArgs; ++i) {
+ Dependent = Dependent || Info[i].getArgument().isDependent();
+ ContainsUnexpandedParameterPack
+ = ContainsUnexpandedParameterPack ||
+ Info[i].getArgument().containsUnexpandedParameterPack();
+
+ new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
+ }
+}
+
+void ExplicitTemplateArgumentList::copyInto(
+ TemplateArgumentListInfo &Info) const {
+ Info.setLAngleLoc(LAngleLoc);
+ Info.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0; I != NumTemplateArgs; ++I)
+ Info.addArgument(getTemplateArgs()[I]);
+}
+
+std::size_t ExplicitTemplateArgumentList::sizeFor(unsigned NumTemplateArgs) {
+ return sizeof(ExplicitTemplateArgumentList) +
+ sizeof(TemplateArgumentLoc) * NumTemplateArgs;
+}
+
+std::size_t ExplicitTemplateArgumentList::sizeFor(
+ const TemplateArgumentListInfo &Info) {
+ return sizeFor(Info.size());
+}
+
+/// \brief Compute the type- and value-dependence of a declaration reference
+/// based on the declaration being referenced.
+static void computeDeclRefDependence(NamedDecl *D, QualType T,
+ bool &TypeDependent,
+ bool &ValueDependent) {
+ TypeDependent = false;
+ ValueDependent = false;
+
+
+ // (TD) C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ //
+ // and
+ //
+ // (VD) C++ [temp.dep.constexpr]p2:
+ // An identifier is value-dependent if it is:
+
+ // (TD) - an identifier that was declared with dependent type
+ // (VD) - a name declared with a dependent type,
+ if (T->isDependentType()) {
+ TypeDependent = true;
+ ValueDependent = true;
+ return;
+ }
+
+ // (TD) - a conversion-function-id that specifies a dependent type
+ if (D->getDeclName().getNameKind()
+ == DeclarationName::CXXConversionFunctionName &&
+ D->getDeclName().getCXXNameType()->isDependentType()) {
+ TypeDependent = true;
+ ValueDependent = true;
+ return;
+ }
+ // (VD) - the name of a non-type template parameter,
+ if (isa<NonTypeTemplateParmDecl>(D)) {
+ ValueDependent = true;
+ return;
+ }
+
+ // (VD) - a constant with integral or enumeration type and is
+ // initialized with an expression that is value-dependent.
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ if (Var->getType()->isIntegralOrEnumerationType() &&
+ Var->getType().getCVRQualifiers() == Qualifiers::Const) {
+ if (const Expr *Init = Var->getAnyInitializer())
+ if (Init->isValueDependent())
+ ValueDependent = true;
+ }
+
+ // (VD) - FIXME: Missing from the standard:
+ // - a member function or a static data member of the current
+ // instantiation
+ else if (Var->isStaticDataMember() &&
+ Var->getDeclContext()->isDependentContext())
+ ValueDependent = true;
+
+ return;
+ }
+
+ // (VD) - FIXME: Missing from the standard:
+ // - a member function or a static data member of the current
+ // instantiation
+ if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
+ ValueDependent = true;
+ return;
+ }
+}
+
+void DeclRefExpr::computeDependence() {
+ bool TypeDependent = false;
+ bool ValueDependent = false;
+ computeDeclRefDependence(getDecl(), getType(), TypeDependent, ValueDependent);
+
+ // (TD) C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ //
+ // and
+ //
+ // (VD) C++ [temp.dep.constexpr]p2:
+ // An identifier is value-dependent if it is:
+ if (!TypeDependent && !ValueDependent &&
+ hasExplicitTemplateArgs() &&
+ TemplateSpecializationType::anyDependentTemplateArguments(
+ getTemplateArgs(),
+ getNumTemplateArgs())) {
+ TypeDependent = true;
+ ValueDependent = true;
+ }
+
+ ExprBits.TypeDependent = TypeDependent;
+ ExprBits.ValueDependent = ValueDependent;
+
+ // Is the declaration a parameter pack?
+ if (getDecl()->isParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+}
+
+DeclRefExpr::DeclRefExpr(NestedNameSpecifierLoc QualifierLoc,
+ ValueDecl *D, const DeclarationNameInfo &NameInfo,
+ NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs,
+ QualType T, ExprValueKind VK)
+ : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false),
+ D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
+ DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
+ if (QualifierLoc)
+ getInternalQualifierLoc() = QualifierLoc;
+ DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
+ if (FoundD)
+ getInternalFoundDecl() = FoundD;
+ DeclRefExprBits.HasExplicitTemplateArgs = TemplateArgs ? 1 : 0;
+ if (TemplateArgs)
+ getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
+
+ computeDependence();
+}
+
+DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
+ NestedNameSpecifierLoc QualifierLoc,
+ ValueDecl *D,
+ SourceLocation NameLoc,
+ QualType T,
+ ExprValueKind VK,
+ NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ return Create(Context, QualifierLoc, D,
+ DeclarationNameInfo(D->getDeclName(), NameLoc),
+ T, VK, FoundD, TemplateArgs);
+}
+
+DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
+ NestedNameSpecifierLoc QualifierLoc,
+ ValueDecl *D,
+ const DeclarationNameInfo &NameInfo,
+ QualType T,
+ ExprValueKind VK,
+ NamedDecl *FoundD,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // Filter out cases where the found Decl is the same as the value refenenced.
+ if (D == FoundD)
+ FoundD = 0;
+
+ std::size_t Size = sizeof(DeclRefExpr);
+ if (QualifierLoc != 0)
+ Size += sizeof(NestedNameSpecifierLoc);
+ if (FoundD)
+ Size += sizeof(NamedDecl *);
+ if (TemplateArgs)
+ Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
+
+ void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
+ return new (Mem) DeclRefExpr(QualifierLoc, D, NameInfo, FoundD, TemplateArgs,
+ T, VK);
+}
+
+DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
+ bool HasQualifier,
+ bool HasFoundDecl,
+ bool HasExplicitTemplateArgs,
+ unsigned NumTemplateArgs) {
+ std::size_t Size = sizeof(DeclRefExpr);
+ if (HasQualifier)
+ Size += sizeof(NestedNameSpecifierLoc);
+ if (HasFoundDecl)
+ Size += sizeof(NamedDecl *);
+ if (HasExplicitTemplateArgs)
+ Size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
+
+ void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
+ return new (Mem) DeclRefExpr(EmptyShell());
+}
+
+SourceRange DeclRefExpr::getSourceRange() const {
+ SourceRange R = getNameInfo().getSourceRange();
+ if (hasQualifier())
+ R.setBegin(getQualifierLoc().getBeginLoc());
+ if (hasExplicitTemplateArgs())
+ R.setEnd(getRAngleLoc());
+ return R;
+}
+
+// FIXME: Maybe this should use DeclPrinter with a special "print predefined
+// expr" policy instead.
+std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
+ ASTContext &Context = CurrentDecl->getASTContext();
+
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
+ if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
+ return FD->getNameAsString();
+
+ llvm::SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
+ Out << "virtual ";
+ if (MD->isStatic())
+ Out << "static ";
+ }
+
+ PrintingPolicy Policy(Context.getLangOptions());
+
+ std::string Proto = FD->getQualifiedNameAsString(Policy);
+
+ const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
+ const FunctionProtoType *FT = 0;
+ if (FD->hasWrittenPrototype())
+ FT = dyn_cast<FunctionProtoType>(AFT);
+
+ Proto += "(";
+ if (FT) {
+ llvm::raw_string_ostream POut(Proto);
+ for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
+ if (i) POut << ", ";
+ std::string Param;
+ FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
+ POut << Param;
+ }
+
+ if (FT->isVariadic()) {
+ if (FD->getNumParams()) POut << ", ";
+ POut << "...";
+ }
+ }
+ Proto += ")";
+
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
+ if (ThisQuals.hasConst())
+ Proto += " const";
+ if (ThisQuals.hasVolatile())
+ Proto += " volatile";
+ }
+
+ if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
+ AFT->getResultType().getAsStringInternal(Proto, Policy);
+
+ Out << Proto;
+
+ Out.flush();
+ return Name.str().str();
+ }
+ if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
+ llvm::SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ Out << (MD->isInstanceMethod() ? '-' : '+');
+ Out << '[';
+
+ // For incorrect code, there might not be an ObjCInterfaceDecl. Do
+ // a null check to avoid a crash.
+ if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
+ Out << ID;
+
+ if (const ObjCCategoryImplDecl *CID =
+ dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
+ Out << '(' << CID << ')';
+
+ Out << ' ';
+ Out << MD->getSelector().getAsString();
+ Out << ']';
+
+ Out.flush();
+ return Name.str().str();
+ }
+ if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
+ // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
+ return "top level";
+ }
+ return "";
+}
+
+void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
+ if (hasAllocation())
+ C.Deallocate(pVal);
+
+ BitWidth = Val.getBitWidth();
+ unsigned NumWords = Val.getNumWords();
+ const uint64_t* Words = Val.getRawData();
+ if (NumWords > 1) {
+ pVal = new (C) uint64_t[NumWords];
+ std::copy(Words, Words + NumWords, pVal);
+ } else if (NumWords == 1)
+ VAL = Words[0];
+ else
+ VAL = 0;
+}
+
+IntegerLiteral *
+IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
+ QualType type, SourceLocation l) {
+ return new (C) IntegerLiteral(C, V, type, l);
+}
+
+IntegerLiteral *
+IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
+ return new (C) IntegerLiteral(Empty);
+}
+
+FloatingLiteral *
+FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
+ bool isexact, QualType Type, SourceLocation L) {
+ return new (C) FloatingLiteral(C, V, isexact, Type, L);
+}
+
+FloatingLiteral *
+FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
+ return new (C) FloatingLiteral(Empty);
+}
+
+/// getValueAsApproximateDouble - This returns the value as an inaccurate
+/// double. Note that this may cause loss of precision, but is useful for
+/// debugging dumps, etc.
+double FloatingLiteral::getValueAsApproximateDouble() const {
+ llvm::APFloat V = getValue();
+ bool ignored;
+ V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
+ &ignored);
+ return V.convertToDouble();
+}
+
+StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
+ unsigned ByteLength, bool Wide,
+ bool Pascal, QualType Ty,
+ const SourceLocation *Loc,
+ unsigned NumStrs) {
+ // Allocate enough space for the StringLiteral plus an array of locations for
+ // any concatenated string tokens.
+ void *Mem = C.Allocate(sizeof(StringLiteral)+
+ sizeof(SourceLocation)*(NumStrs-1),
+ llvm::alignOf<StringLiteral>());
+ StringLiteral *SL = new (Mem) StringLiteral(Ty);
+
+ // OPTIMIZE: could allocate this appended to the StringLiteral.
+ char *AStrData = new (C, 1) char[ByteLength];
+ memcpy(AStrData, StrData, ByteLength);
+ SL->StrData = AStrData;
+ SL->ByteLength = ByteLength;
+ SL->IsWide = Wide;
+ SL->IsPascal = Pascal;
+ SL->TokLocs[0] = Loc[0];
+ SL->NumConcatenated = NumStrs;
+
+ if (NumStrs != 1)
+ memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
+ return SL;
+}
+
+StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
+ void *Mem = C.Allocate(sizeof(StringLiteral)+
+ sizeof(SourceLocation)*(NumStrs-1),
+ llvm::alignOf<StringLiteral>());
+ StringLiteral *SL = new (Mem) StringLiteral(QualType());
+ SL->StrData = 0;
+ SL->ByteLength = 0;
+ SL->NumConcatenated = NumStrs;
+ return SL;
+}
+
+void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
+ char *AStrData = new (C, 1) char[Str.size()];
+ memcpy(AStrData, Str.data(), Str.size());
+ StrData = AStrData;
+ ByteLength = Str.size();
+}
+
+/// getLocationOfByte - Return a source location that points to the specified
+/// byte of this string literal.
+///
+/// Strings are amazingly complex. They can be formed from multiple tokens and
+/// can have escape sequences in them in addition to the usual trigraph and
+/// escaped newline business. This routine handles this complexity.
+///
+SourceLocation StringLiteral::
+getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
+ const LangOptions &Features, const TargetInfo &Target) const {
+ assert(!isWide() && "This doesn't work for wide strings yet");
+
+ // Loop over all of the tokens in this string until we find the one that
+ // contains the byte we're looking for.
+ unsigned TokNo = 0;
+ while (1) {
+ assert(TokNo < getNumConcatenated() && "Invalid byte number!");
+ SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
+
+ // Get the spelling of the string so that we can get the data that makes up
+ // the string literal, not the identifier for the macro it is potentially
+ // expanded through.
+ SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
+
+ // Re-lex the token to get its length and original spelling.
+ std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
+ bool Invalid = false;
+ llvm::StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
+ if (Invalid)
+ return StrTokSpellingLoc;
+
+ const char *StrData = Buffer.data()+LocInfo.second;
+
+ // Create a langops struct and enable trigraphs. This is sufficient for
+ // relexing tokens.
+ LangOptions LangOpts;
+ LangOpts.Trigraphs = true;
+
+ // Create a lexer starting at the beginning of this token.
+ Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
+ Buffer.end());
+ Token TheTok;
+ TheLexer.LexFromRawLexer(TheTok);
+
+ // Use the StringLiteralParser to compute the length of the string in bytes.
+ StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
+ unsigned TokNumBytes = SLP.GetStringLength();
+
+ // If the byte is in this token, return the location of the byte.
+ if (ByteNo < TokNumBytes ||
+ (ByteNo == TokNumBytes && TokNo == getNumConcatenated())) {
+ unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
+
+ // Now that we know the offset of the token in the spelling, use the
+ // preprocessor to get the offset in the original source.
+ return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
+ }
+
+ // Move to the next string token.
+ ++TokNo;
+ ByteNo -= TokNumBytes;
+ }
+}
+
+
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "sizeof" or "[pre]++".
+const char *UnaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+ default: assert(0 && "Unknown unary operator");
+ case UO_PostInc: return "++";
+ case UO_PostDec: return "--";
+ case UO_PreInc: return "++";
+ case UO_PreDec: return "--";
+ case UO_AddrOf: return "&";
+ case UO_Deref: return "*";
+ case UO_Plus: return "+";
+ case UO_Minus: return "-";
+ case UO_Not: return "~";
+ case UO_LNot: return "!";
+ case UO_Real: return "__real";
+ case UO_Imag: return "__imag";
+ case UO_Extension: return "__extension__";
+ }
+}
+
+UnaryOperatorKind
+UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
+ switch (OO) {
+ default: assert(false && "No unary operator for overloaded function");
+ case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
+ case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
+ case OO_Amp: return UO_AddrOf;
+ case OO_Star: return UO_Deref;
+ case OO_Plus: return UO_Plus;
+ case OO_Minus: return UO_Minus;
+ case OO_Tilde: return UO_Not;
+ case OO_Exclaim: return UO_LNot;
+ }
+}
+
+OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
+ switch (Opc) {
+ case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
+ case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
+ case UO_AddrOf: return OO_Amp;
+ case UO_Deref: return OO_Star;
+ case UO_Plus: return OO_Plus;
+ case UO_Minus: return OO_Minus;
+ case UO_Not: return OO_Tilde;
+ case UO_LNot: return OO_Exclaim;
+ default: return OO_None;
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Postfix Operators.
+//===----------------------------------------------------------------------===//
+
+CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
+ Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
+ SourceLocation rparenloc)
+ : Expr(SC, t, VK, OK_Ordinary,
+ fn->isTypeDependent(),
+ fn->isValueDependent(),
+ fn->containsUnexpandedParameterPack()),
+ NumArgs(numargs) {
+
+ SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
+ SubExprs[FN] = fn;
+ for (unsigned i = 0; i != numargs; ++i) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
+ }
+
+ CallExprBits.NumPreArgs = NumPreArgs;
+ RParenLoc = rparenloc;
+}
+
+CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
+ QualType t, ExprValueKind VK, SourceLocation rparenloc)
+ : Expr(CallExprClass, t, VK, OK_Ordinary,
+ fn->isTypeDependent(),
+ fn->isValueDependent(),
+ fn->containsUnexpandedParameterPack()),
+ NumArgs(numargs) {
+
+ SubExprs = new (C) Stmt*[numargs+PREARGS_START];
+ SubExprs[FN] = fn;
+ for (unsigned i = 0; i != numargs; ++i) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i+PREARGS_START] = args[i];
+ }
+
+ CallExprBits.NumPreArgs = 0;
+ RParenLoc = rparenloc;
+}
+
+CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
+ : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
+ // FIXME: Why do we allocate this?
+ SubExprs = new (C) Stmt*[PREARGS_START];
+ CallExprBits.NumPreArgs = 0;
+}
+
+CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
+ EmptyShell Empty)
+ : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
+ // FIXME: Why do we allocate this?
+ SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
+ CallExprBits.NumPreArgs = NumPreArgs;
+}
+
+Decl *CallExpr::getCalleeDecl() {
+ Expr *CEE = getCallee()->IgnoreParenCasts();
+ // If we're calling a dereference, look at the pointer instead.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
+ if (BO->isPtrMemOp())
+ CEE = BO->getRHS()->IgnoreParenCasts();
+ } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
+ if (UO->getOpcode() == UO_Deref)
+ CEE = UO->getSubExpr()->IgnoreParenCasts();
+ }
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
+ return DRE->getDecl();
+ if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
+ return ME->getMemberDecl();
+
+ return 0;
+}
+
+FunctionDecl *CallExpr::getDirectCallee() {
+ return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
+}
+
+/// setNumArgs - This changes the number of arguments present in this call.
+/// Any orphaned expressions are deleted by this, and any new operands are set
+/// to null.
+void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
+ // No change, just return.
+ if (NumArgs == getNumArgs()) return;
+
+ // If shrinking # arguments, just delete the extras and forgot them.
+ if (NumArgs < getNumArgs()) {
+ this->NumArgs = NumArgs;
+ return;
+ }
+
+ // Otherwise, we are growing the # arguments. New an bigger argument array.
+ unsigned NumPreArgs = getNumPreArgs();
+ Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
+ // Copy over args.
+ for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
+ NewSubExprs[i] = SubExprs[i];
+ // Null out new args.
+ for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
+ i != NumArgs+PREARGS_START+NumPreArgs; ++i)
+ NewSubExprs[i] = 0;
+
+ if (SubExprs) C.Deallocate(SubExprs);
+ SubExprs = NewSubExprs;
+ this->NumArgs = NumArgs;
+}
+
+/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
+/// not, return 0.
+unsigned CallExpr::isBuiltinCall(const ASTContext &Context) const {
+ // All simple function calls (e.g. func()) are implicitly cast to pointer to
+ // function. As a result, we try and obtain the DeclRefExpr from the
+ // ImplicitCastExpr.
+ const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
+ if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
+ return 0;
+
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
+ if (!DRE)
+ return 0;
+
+ const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
+ if (!FDecl)
+ return 0;
+
+ if (!FDecl->getIdentifier())
+ return 0;
+
+ return FDecl->getBuiltinID();
+}
+
+QualType CallExpr::getCallReturnType() const {
+ QualType CalleeType = getCallee()->getType();
+ if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
+ CalleeType = FnTypePtr->getPointeeType();
+ else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
+ CalleeType = BPT->getPointeeType();
+ else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
+ // This should never be overloaded and so should never return null.
+ CalleeType = Expr::findBoundMemberType(getCallee());
+
+ const FunctionType *FnType = CalleeType->castAs<FunctionType>();
+ return FnType->getResultType();
+}
+
+SourceRange CallExpr::getSourceRange() const {
+ if (isa<CXXOperatorCallExpr>(this))
+ return cast<CXXOperatorCallExpr>(this)->getSourceRange();
+
+ SourceLocation begin = getCallee()->getLocStart();
+ if (begin.isInvalid() && getNumArgs() > 0)
+ begin = getArg(0)->getLocStart();
+ SourceLocation end = getRParenLoc();
+ if (end.isInvalid() && getNumArgs() > 0)
+ end = getArg(getNumArgs() - 1)->getLocEnd();
+ return SourceRange(begin, end);
+}
+
+OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
+ SourceLocation OperatorLoc,
+ TypeSourceInfo *tsi,
+ OffsetOfNode* compsPtr, unsigned numComps,
+ Expr** exprsPtr, unsigned numExprs,
+ SourceLocation RParenLoc) {
+ void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
+ sizeof(OffsetOfNode) * numComps +
+ sizeof(Expr*) * numExprs);
+
+ return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
+ exprsPtr, numExprs, RParenLoc);
+}
+
+OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
+ unsigned numComps, unsigned numExprs) {
+ void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
+ sizeof(OffsetOfNode) * numComps +
+ sizeof(Expr*) * numExprs);
+ return new (Mem) OffsetOfExpr(numComps, numExprs);
+}
+
+OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
+ SourceLocation OperatorLoc, TypeSourceInfo *tsi,
+ OffsetOfNode* compsPtr, unsigned numComps,
+ Expr** exprsPtr, unsigned numExprs,
+ SourceLocation RParenLoc)
+ : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
+ /*TypeDependent=*/false,
+ /*ValueDependent=*/tsi->getType()->isDependentType(),
+ tsi->getType()->containsUnexpandedParameterPack()),
+ OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
+ NumComps(numComps), NumExprs(numExprs)
+{
+ for(unsigned i = 0; i < numComps; ++i) {
+ setComponent(i, compsPtr[i]);
+ }
+
+ for(unsigned i = 0; i < numExprs; ++i) {
+ if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (exprsPtr[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ setIndexExpr(i, exprsPtr[i]);
+ }
+}
+
+IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
+ assert(getKind() == Field || getKind() == Identifier);
+ if (getKind() == Field)
+ return getField()->getIdentifier();
+
+ return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
+}
+
+MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
+ NestedNameSpecifierLoc QualifierLoc,
+ ValueDecl *memberdecl,
+ DeclAccessPair founddecl,
+ DeclarationNameInfo nameinfo,
+ const TemplateArgumentListInfo *targs,
+ QualType ty,
+ ExprValueKind vk,
+ ExprObjectKind ok) {
+ std::size_t Size = sizeof(MemberExpr);
+
+ bool hasQualOrFound = (QualifierLoc ||
+ founddecl.getDecl() != memberdecl ||
+ founddecl.getAccess() != memberdecl->getAccess());
+ if (hasQualOrFound)
+ Size += sizeof(MemberNameQualifier);
+
+ if (targs)
+ Size += ExplicitTemplateArgumentList::sizeFor(*targs);
+
+ void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
+ MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
+ ty, vk, ok);
+
+ if (hasQualOrFound) {
+ // FIXME: Wrong. We should be looking at the member declaration we found.
+ if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
+ E->setValueDependent(true);
+ E->setTypeDependent(true);
+ }
+ E->HasQualifierOrFoundDecl = true;
+
+ MemberNameQualifier *NQ = E->getMemberQualifier();
+ NQ->QualifierLoc = QualifierLoc;
+ NQ->FoundDecl = founddecl;
+ }
+
+ if (targs) {
+ E->HasExplicitTemplateArgumentList = true;
+ E->getExplicitTemplateArgs().initializeFrom(*targs);
+ }
+
+ return E;
+}
+
+SourceRange MemberExpr::getSourceRange() const {
+ SourceLocation StartLoc;
+ if (isImplicitAccess()) {
+ if (hasQualifier())
+ StartLoc = getQualifierLoc().getBeginLoc();
+ else
+ StartLoc = MemberLoc;
+ } else {
+ // FIXME: We don't want this to happen. Rather, we should be able to
+ // detect all kinds of implicit accesses more cleanly.
+ StartLoc = getBase()->getLocStart();
+ if (StartLoc.isInvalid())
+ StartLoc = MemberLoc;
+ }
+
+ SourceLocation EndLoc =
+ HasExplicitTemplateArgumentList? getRAngleLoc()
+ : getMemberNameInfo().getEndLoc();
+
+ return SourceRange(StartLoc, EndLoc);
+}
+
+const char *CastExpr::getCastKindName() const {
+ switch (getCastKind()) {
+ case CK_Dependent:
+ return "Dependent";
+ case CK_BitCast:
+ return "BitCast";
+ case CK_LValueBitCast:
+ return "LValueBitCast";
+ case CK_LValueToRValue:
+ return "LValueToRValue";
+ case CK_GetObjCProperty:
+ return "GetObjCProperty";
+ case CK_NoOp:
+ return "NoOp";
+ case CK_BaseToDerived:
+ return "BaseToDerived";
+ case CK_DerivedToBase:
+ return "DerivedToBase";
+ case CK_UncheckedDerivedToBase:
+ return "UncheckedDerivedToBase";
+ case CK_Dynamic:
+ return "Dynamic";
+ case CK_ToUnion:
+ return "ToUnion";
+ case CK_ArrayToPointerDecay:
+ return "ArrayToPointerDecay";
+ case CK_FunctionToPointerDecay:
+ return "FunctionToPointerDecay";
+ case CK_NullToMemberPointer:
+ return "NullToMemberPointer";
+ case CK_NullToPointer:
+ return "NullToPointer";
+ case CK_BaseToDerivedMemberPointer:
+ return "BaseToDerivedMemberPointer";
+ case CK_DerivedToBaseMemberPointer:
+ return "DerivedToBaseMemberPointer";
+ case CK_UserDefinedConversion:
+ return "UserDefinedConversion";
+ case CK_ConstructorConversion:
+ return "ConstructorConversion";
+ case CK_IntegralToPointer:
+ return "IntegralToPointer";
+ case CK_PointerToIntegral:
+ return "PointerToIntegral";
+ case CK_PointerToBoolean:
+ return "PointerToBoolean";
+ case CK_ToVoid:
+ return "ToVoid";
+ case CK_VectorSplat:
+ return "VectorSplat";
+ case CK_IntegralCast:
+ return "IntegralCast";
+ case CK_IntegralToBoolean:
+ return "IntegralToBoolean";
+ case CK_IntegralToFloating:
+ return "IntegralToFloating";
+ case CK_FloatingToIntegral:
+ return "FloatingToIntegral";
+ case CK_FloatingCast:
+ return "FloatingCast";
+ case CK_FloatingToBoolean:
+ return "FloatingToBoolean";
+ case CK_MemberPointerToBoolean:
+ return "MemberPointerToBoolean";
+ case CK_AnyPointerToObjCPointerCast:
+ return "AnyPointerToObjCPointerCast";
+ case CK_AnyPointerToBlockPointerCast:
+ return "AnyPointerToBlockPointerCast";
+ case CK_ObjCObjectLValueCast:
+ return "ObjCObjectLValueCast";
+ case CK_FloatingRealToComplex:
+ return "FloatingRealToComplex";
+ case CK_FloatingComplexToReal:
+ return "FloatingComplexToReal";
+ case CK_FloatingComplexToBoolean:
+ return "FloatingComplexToBoolean";
+ case CK_FloatingComplexCast:
+ return "FloatingComplexCast";
+ case CK_FloatingComplexToIntegralComplex:
+ return "FloatingComplexToIntegralComplex";
+ case CK_IntegralRealToComplex:
+ return "IntegralRealToComplex";
+ case CK_IntegralComplexToReal:
+ return "IntegralComplexToReal";
+ case CK_IntegralComplexToBoolean:
+ return "IntegralComplexToBoolean";
+ case CK_IntegralComplexCast:
+ return "IntegralComplexCast";
+ case CK_IntegralComplexToFloatingComplex:
+ return "IntegralComplexToFloatingComplex";
+ }
+
+ llvm_unreachable("Unhandled cast kind!");
+ return 0;
+}
+
+Expr *CastExpr::getSubExprAsWritten() {
+ Expr *SubExpr = 0;
+ CastExpr *E = this;
+ do {
+ SubExpr = E->getSubExpr();
+
+ // Skip any temporary bindings; they're implicit.
+ if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
+ SubExpr = Binder->getSubExpr();
+
+ // Conversions by constructor and conversion functions have a
+ // subexpression describing the call; strip it off.
+ if (E->getCastKind() == CK_ConstructorConversion)
+ SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
+ else if (E->getCastKind() == CK_UserDefinedConversion)
+ SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
+
+ // If the subexpression we're left with is an implicit cast, look
+ // through that, too.
+ } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
+
+ return SubExpr;
+}
+
+CXXBaseSpecifier **CastExpr::path_buffer() {
+ switch (getStmtClass()) {
+#define ABSTRACT_STMT(x)
+#define CASTEXPR(Type, Base) \
+ case Stmt::Type##Class: \
+ return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
+#define STMT(Type, Base)
+#include "clang/AST/StmtNodes.inc"
+ default:
+ llvm_unreachable("non-cast expressions not possible here");
+ return 0;
+ }
+}
+
+void CastExpr::setCastPath(const CXXCastPath &Path) {
+ assert(Path.size() == path_size());
+ memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
+}
+
+ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
+ CastKind Kind, Expr *Operand,
+ const CXXCastPath *BasePath,
+ ExprValueKind VK) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer =
+ C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ ImplicitCastExpr *E =
+ new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
+ unsigned PathSize) {
+ void *Buffer =
+ C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
+}
+
+
+CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
+ ExprValueKind VK, CastKind K, Expr *Op,
+ const CXXCastPath *BasePath,
+ TypeSourceInfo *WrittenTy,
+ SourceLocation L, SourceLocation R) {
+ unsigned PathSize = (BasePath ? BasePath->size() : 0);
+ void *Buffer =
+ C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ CStyleCastExpr *E =
+ new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
+ if (PathSize) E->setCastPath(*BasePath);
+ return E;
+}
+
+CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
+ void *Buffer =
+ C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
+ return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "<<=".
+const char *BinaryOperator::getOpcodeStr(Opcode Op) {
+ switch (Op) {
+ case BO_PtrMemD: return ".*";
+ case BO_PtrMemI: return "->*";
+ case BO_Mul: return "*";
+ case BO_Div: return "/";
+ case BO_Rem: return "%";
+ case BO_Add: return "+";
+ case BO_Sub: return "-";
+ case BO_Shl: return "<<";
+ case BO_Shr: return ">>";
+ case BO_LT: return "<";
+ case BO_GT: return ">";
+ case BO_LE: return "<=";
+ case BO_GE: return ">=";
+ case BO_EQ: return "==";
+ case BO_NE: return "!=";
+ case BO_And: return "&";
+ case BO_Xor: return "^";
+ case BO_Or: return "|";
+ case BO_LAnd: return "&&";
+ case BO_LOr: return "||";
+ case BO_Assign: return "=";
+ case BO_MulAssign: return "*=";
+ case BO_DivAssign: return "/=";
+ case BO_RemAssign: return "%=";
+ case BO_AddAssign: return "+=";
+ case BO_SubAssign: return "-=";
+ case BO_ShlAssign: return "<<=";
+ case BO_ShrAssign: return ">>=";
+ case BO_AndAssign: return "&=";
+ case BO_XorAssign: return "^=";
+ case BO_OrAssign: return "|=";
+ case BO_Comma: return ",";
+ }
+
+ return "";
+}
+
+BinaryOperatorKind
+BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
+ switch (OO) {
+ default: assert(false && "Not an overloadable binary operator");
+ case OO_Plus: return BO_Add;
+ case OO_Minus: return BO_Sub;
+ case OO_Star: return BO_Mul;
+ case OO_Slash: return BO_Div;
+ case OO_Percent: return BO_Rem;
+ case OO_Caret: return BO_Xor;
+ case OO_Amp: return BO_And;
+ case OO_Pipe: return BO_Or;
+ case OO_Equal: return BO_Assign;
+ case OO_Less: return BO_LT;
+ case OO_Greater: return BO_GT;
+ case OO_PlusEqual: return BO_AddAssign;
+ case OO_MinusEqual: return BO_SubAssign;
+ case OO_StarEqual: return BO_MulAssign;
+ case OO_SlashEqual: return BO_DivAssign;
+ case OO_PercentEqual: return BO_RemAssign;
+ case OO_CaretEqual: return BO_XorAssign;
+ case OO_AmpEqual: return BO_AndAssign;
+ case OO_PipeEqual: return BO_OrAssign;
+ case OO_LessLess: return BO_Shl;
+ case OO_GreaterGreater: return BO_Shr;
+ case OO_LessLessEqual: return BO_ShlAssign;
+ case OO_GreaterGreaterEqual: return BO_ShrAssign;
+ case OO_EqualEqual: return BO_EQ;
+ case OO_ExclaimEqual: return BO_NE;
+ case OO_LessEqual: return BO_LE;
+ case OO_GreaterEqual: return BO_GE;
+ case OO_AmpAmp: return BO_LAnd;
+ case OO_PipePipe: return BO_LOr;
+ case OO_Comma: return BO_Comma;
+ case OO_ArrowStar: return BO_PtrMemI;
+ }
+}
+
+OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
+ static const OverloadedOperatorKind OverOps[] = {
+ /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
+ OO_Star, OO_Slash, OO_Percent,
+ OO_Plus, OO_Minus,
+ OO_LessLess, OO_GreaterGreater,
+ OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
+ OO_EqualEqual, OO_ExclaimEqual,
+ OO_Amp,
+ OO_Caret,
+ OO_Pipe,
+ OO_AmpAmp,
+ OO_PipePipe,
+ OO_Equal, OO_StarEqual,
+ OO_SlashEqual, OO_PercentEqual,
+ OO_PlusEqual, OO_MinusEqual,
+ OO_LessLessEqual, OO_GreaterGreaterEqual,
+ OO_AmpEqual, OO_CaretEqual,
+ OO_PipeEqual,
+ OO_Comma
+ };
+ return OverOps[Opc];
+}
+
+InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
+ Expr **initExprs, unsigned numInits,
+ SourceLocation rbraceloc)
+ : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
+ false),
+ InitExprs(C, numInits),
+ LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
+ HadArrayRangeDesignator(false)
+{
+ for (unsigned I = 0; I != numInits; ++I) {
+ if (initExprs[I]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (initExprs[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (initExprs[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+ }
+
+ InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
+}
+
+void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
+ if (NumInits > InitExprs.size())
+ InitExprs.reserve(C, NumInits);
+}
+
+void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
+ InitExprs.resize(C, NumInits, 0);
+}
+
+Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
+ if (Init >= InitExprs.size()) {
+ InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
+ InitExprs.back() = expr;
+ return 0;
+ }
+
+ Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
+ InitExprs[Init] = expr;
+ return Result;
+}
+
+void InitListExpr::setArrayFiller(Expr *filler) {
+ ArrayFillerOrUnionFieldInit = filler;
+ // Fill out any "holes" in the array due to designated initializers.
+ Expr **inits = getInits();
+ for (unsigned i = 0, e = getNumInits(); i != e; ++i)
+ if (inits[i] == 0)
+ inits[i] = filler;
+}
+
+SourceRange InitListExpr::getSourceRange() const {
+ if (SyntacticForm)
+ return SyntacticForm->getSourceRange();
+ SourceLocation Beg = LBraceLoc, End = RBraceLoc;
+ if (Beg.isInvalid()) {
+ // Find the first non-null initializer.
+ for (InitExprsTy::const_iterator I = InitExprs.begin(),
+ E = InitExprs.end();
+ I != E; ++I) {
+ if (Stmt *S = *I) {
+ Beg = S->getLocStart();
+ break;
+ }
+ }
+ }
+ if (End.isInvalid()) {
+ // Find the first non-null initializer from the end.
+ for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
+ E = InitExprs.rend();
+ I != E; ++I) {
+ if (Stmt *S = *I) {
+ End = S->getSourceRange().getEnd();
+ break;
+ }
+ }
+ }
+ return SourceRange(Beg, End);
+}
+
+/// getFunctionType - Return the underlying function type for this block.
+///
+const FunctionType *BlockExpr::getFunctionType() const {
+ return getType()->getAs<BlockPointerType>()->
+ getPointeeType()->getAs<FunctionType>();
+}
+
+SourceLocation BlockExpr::getCaretLocation() const {
+ return TheBlock->getCaretLocation();
+}
+const Stmt *BlockExpr::getBody() const {
+ return TheBlock->getBody();
+}
+Stmt *BlockExpr::getBody() {
+ return TheBlock->getBody();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Generic Expression Routines
+//===----------------------------------------------------------------------===//
+
+/// isUnusedResultAWarning - Return true if this immediate expression should
+/// be warned about if the result is unused. If so, fill in Loc and Ranges
+/// with location to warn on and the source range[s] to report with the
+/// warning.
+bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
+ SourceRange &R2, ASTContext &Ctx) const {
+ // Don't warn if the expr is type dependent. The type could end up
+ // instantiating to void.
+ if (isTypeDependent())
+ return false;
+
+ switch (getStmtClass()) {
+ default:
+ if (getType()->isVoidType())
+ return false;
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()->
+ isUnusedResultAWarning(Loc, R1, R2, Ctx);
+ case GenericSelectionExprClass:
+ return cast<GenericSelectionExpr>(this)->getResultExpr()->
+ isUnusedResultAWarning(Loc, R1, R2, Ctx);
+ case UnaryOperatorClass: {
+ const UnaryOperator *UO = cast<UnaryOperator>(this);
+
+ switch (UO->getOpcode()) {
+ default: break;
+ case UO_PostInc:
+ case UO_PostDec:
+ case UO_PreInc:
+ case UO_PreDec: // ++/--
+ return false; // Not a warning.
+ case UO_Deref:
+ // Dereferencing a volatile pointer is a side-effect.
+ if (Ctx.getCanonicalType(getType()).isVolatileQualified())
+ return false;
+ break;
+ case UO_Real:
+ case UO_Imag:
+ // accessing a piece of a volatile complex is a side-effect.
+ if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
+ .isVolatileQualified())
+ return false;
+ break;
+ case UO_Extension:
+ return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+ }
+ Loc = UO->getOperatorLoc();
+ R1 = UO->getSubExpr()->getSourceRange();
+ return true;
+ }
+ case BinaryOperatorClass: {
+ const BinaryOperator *BO = cast<BinaryOperator>(this);
+ switch (BO->getOpcode()) {
+ default:
+ break;
+ // Consider the RHS of comma for side effects. LHS was checked by
+ // Sema::CheckCommaOperands.
+ case BO_Comma:
+ // ((foo = <blah>), 0) is an idiom for hiding the result (and
+ // lvalue-ness) of an assignment written in a macro.
+ if (IntegerLiteral *IE =
+ dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
+ if (IE->getValue() == 0)
+ return false;
+ return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+ // Consider '||', '&&' to have side effects if the LHS or RHS does.
+ case BO_LAnd:
+ case BO_LOr:
+ if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
+ !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
+ return false;
+ break;
+ }
+ if (BO->isAssignmentOp())
+ return false;
+ Loc = BO->getOperatorLoc();
+ R1 = BO->getLHS()->getSourceRange();
+ R2 = BO->getRHS()->getSourceRange();
+ return true;
+ }
+ case CompoundAssignOperatorClass:
+ case VAArgExprClass:
+ return false;
+
+ case ConditionalOperatorClass: {
+ // If only one of the LHS or RHS is a warning, the operator might
+ // be being used for control flow. Only warn if both the LHS and
+ // RHS are warnings.
+ const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
+ if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
+ return false;
+ if (!Exp->getLHS())
+ return true;
+ return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+ }
+
+ case MemberExprClass:
+ // If the base pointer or element is to a volatile pointer/field, accessing
+ // it is a side effect.
+ if (Ctx.getCanonicalType(getType()).isVolatileQualified())
+ return false;
+ Loc = cast<MemberExpr>(this)->getMemberLoc();
+ R1 = SourceRange(Loc, Loc);
+ R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
+ return true;
+
+ case ArraySubscriptExprClass:
+ // If the base pointer or element is to a volatile pointer/field, accessing
+ // it is a side effect.
+ if (Ctx.getCanonicalType(getType()).isVolatileQualified())
+ return false;
+ Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
+ R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
+ R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
+ return true;
+
+ case CallExprClass:
+ case CXXOperatorCallExprClass:
+ case CXXMemberCallExprClass: {
+ // If this is a direct call, get the callee.
+ const CallExpr *CE = cast<CallExpr>(this);
+ if (const Decl *FD = CE->getCalleeDecl()) {
+ // If the callee has attribute pure, const, or warn_unused_result, warn
+ // about it. void foo() { strlen("bar"); } should warn.
+ //
+ // Note: If new cases are added here, DiagnoseUnusedExprResult should be
+ // updated to match for QoI.
+ if (FD->getAttr<WarnUnusedResultAttr>() ||
+ FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
+ Loc = CE->getCallee()->getLocStart();
+ R1 = CE->getCallee()->getSourceRange();
+
+ if (unsigned NumArgs = CE->getNumArgs())
+ R2 = SourceRange(CE->getArg(0)->getLocStart(),
+ CE->getArg(NumArgs-1)->getLocEnd());
+ return true;
+ }
+ }
+ return false;
+ }
+
+ case CXXTemporaryObjectExprClass:
+ case CXXConstructExprClass:
+ return false;
+
+ case ObjCMessageExprClass: {
+ const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
+ const ObjCMethodDecl *MD = ME->getMethodDecl();
+ if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
+ Loc = getExprLoc();
+ return true;
+ }
+ return false;
+ }
+
+ case ObjCPropertyRefExprClass:
+ Loc = getExprLoc();
+ R1 = getSourceRange();
+ return true;
+
+ case StmtExprClass: {
+ // Statement exprs don't logically have side effects themselves, but are
+ // sometimes used in macros in ways that give them a type that is unused.
+ // For example ({ blah; foo(); }) will end up with a type if foo has a type.
+ // however, if the result of the stmt expr is dead, we don't want to emit a
+ // warning.
+ const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
+ if (!CS->body_empty()) {
+ if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
+ return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+ if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
+ if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
+ return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+ }
+
+ if (getType()->isVoidType())
+ return false;
+ Loc = cast<StmtExpr>(this)->getLParenLoc();
+ R1 = getSourceRange();
+ return true;
+ }
+ case CStyleCastExprClass:
+ // If this is an explicit cast to void, allow it. People do this when they
+ // think they know what they're doing :).
+ if (getType()->isVoidType())
+ return false;
+ Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
+ R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
+ return true;
+ case CXXFunctionalCastExprClass: {
+ if (getType()->isVoidType())
+ return false;
+ const CastExpr *CE = cast<CastExpr>(this);
+
+ // If this is a cast to void or a constructor conversion, check the operand.
+ // Otherwise, the result of the cast is unused.
+ if (CE->getCastKind() == CK_ToVoid ||
+ CE->getCastKind() == CK_ConstructorConversion)
+ return (cast<CastExpr>(this)->getSubExpr()
+ ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+ Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
+ R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
+ return true;
+ }
+
+ case ImplicitCastExprClass:
+ // Check the operand, since implicit casts are inserted by Sema
+ return (cast<ImplicitCastExpr>(this)
+ ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+
+ case CXXDefaultArgExprClass:
+ return (cast<CXXDefaultArgExpr>(this)
+ ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+
+ case CXXNewExprClass:
+ // FIXME: In theory, there might be new expressions that don't have side
+ // effects (e.g. a placement new with an uninitialized POD).
+ case CXXDeleteExprClass:
+ return false;
+ case CXXBindTemporaryExprClass:
+ return (cast<CXXBindTemporaryExpr>(this)
+ ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+ case ExprWithCleanupsClass:
+ return (cast<ExprWithCleanups>(this)
+ ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+ }
+}
+
+/// isOBJCGCCandidate - Check if an expression is objc gc'able.
+/// returns true, if it is; false otherwise.
+bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
+ const Expr *E = IgnoreParens();
+ switch (E->getStmtClass()) {
+ default:
+ return false;
+ case ObjCIvarRefExprClass:
+ return true;
+ case Expr::UnaryOperatorClass:
+ return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case ImplicitCastExprClass:
+ return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case CStyleCastExprClass:
+ return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
+ case DeclRefExprClass: {
+ const Decl *D = cast<DeclRefExpr>(E)->getDecl();
+ if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->hasGlobalStorage())
+ return true;
+ QualType T = VD->getType();
+ // dereferencing to a pointer is always a gc'able candidate,
+ // unless it is __weak.
+ return T->isPointerType() &&
+ (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
+ }
+ return false;
+ }
+ case MemberExprClass: {
+ const MemberExpr *M = cast<MemberExpr>(E);
+ return M->getBase()->isOBJCGCCandidate(Ctx);
+ }
+ case ArraySubscriptExprClass:
+ return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
+ }
+}
+
+bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
+ if (isTypeDependent())
+ return false;
+ return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
+}
+
+QualType Expr::findBoundMemberType(const Expr *expr) {
+ assert(expr->getType()->isSpecificPlaceholderType(BuiltinType::BoundMember));
+
+ // Bound member expressions are always one of these possibilities:
+ // x->m x.m x->*y x.*y
+ // (possibly parenthesized)
+
+ expr = expr->IgnoreParens();
+ if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
+ assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
+ return mem->getMemberDecl()->getType();
+ }
+
+ if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
+ QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
+ ->getPointeeType();
+ assert(type->isFunctionType());
+ return type;
+ }
+
+ assert(isa<UnresolvedMemberExpr>(expr));
+ return QualType();
+}
+
+static Expr::CanThrowResult MergeCanThrow(Expr::CanThrowResult CT1,
+ Expr::CanThrowResult CT2) {
+ // CanThrowResult constants are ordered so that the maximum is the correct
+ // merge result.
+ return CT1 > CT2 ? CT1 : CT2;
+}
+
+static Expr::CanThrowResult CanSubExprsThrow(ASTContext &C, const Expr *CE) {
+ Expr *E = const_cast<Expr*>(CE);
+ Expr::CanThrowResult R = Expr::CT_Cannot;
+ for (Expr::child_range I = E->children(); I && R != Expr::CT_Can; ++I) {
+ R = MergeCanThrow(R, cast<Expr>(*I)->CanThrow(C));
+ }
+ return R;
+}
+
+static Expr::CanThrowResult CanCalleeThrow(ASTContext &Ctx, const Expr *E,
+ const Decl *D,
+ bool NullThrows = true) {
+ if (!D)
+ return NullThrows ? Expr::CT_Can : Expr::CT_Cannot;
+
+ // See if we can get a function type from the decl somehow.
+ const ValueDecl *VD = dyn_cast<ValueDecl>(D);
+ if (!VD) // If we have no clue what we're calling, assume the worst.
+ return Expr::CT_Can;
+
+ // As an extension, we assume that __attribute__((nothrow)) functions don't
+ // throw.
+ if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
+ return Expr::CT_Cannot;
+
+ QualType T = VD->getType();
+ const FunctionProtoType *FT;
+ if ((FT = T->getAs<FunctionProtoType>())) {
+ } else if (const PointerType *PT = T->getAs<PointerType>())
+ FT = PT->getPointeeType()->getAs<FunctionProtoType>();
+ else if (const ReferenceType *RT = T->getAs<ReferenceType>())
+ FT = RT->getPointeeType()->getAs<FunctionProtoType>();
+ else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
+ FT = MT->getPointeeType()->getAs<FunctionProtoType>();
+ else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
+ FT = BT->getPointeeType()->getAs<FunctionProtoType>();
+
+ if (!FT)
+ return Expr::CT_Can;
+
+ if (FT->getExceptionSpecType() == EST_Delayed) {
+ assert(isa<CXXConstructorDecl>(D) &&
+ "only constructor exception specs can be unknown");
+ Ctx.getDiagnostics().Report(E->getLocStart(),
+ diag::err_exception_spec_unknown)
+ << E->getSourceRange();
+ return Expr::CT_Can;
+ }
+
+ return FT->isNothrow(Ctx) ? Expr::CT_Cannot : Expr::CT_Can;
+}
+
+static Expr::CanThrowResult CanDynamicCastThrow(const CXXDynamicCastExpr *DC) {
+ if (DC->isTypeDependent())
+ return Expr::CT_Dependent;
+
+ if (!DC->getTypeAsWritten()->isReferenceType())
+ return Expr::CT_Cannot;
+
+ if (DC->getSubExpr()->isTypeDependent())
+ return Expr::CT_Dependent;
+
+ return DC->getCastKind() == clang::CK_Dynamic? Expr::CT_Can : Expr::CT_Cannot;
+}
+
+static Expr::CanThrowResult CanTypeidThrow(ASTContext &C,
+ const CXXTypeidExpr *DC) {
+ if (DC->isTypeOperand())
+ return Expr::CT_Cannot;
+
+ Expr *Op = DC->getExprOperand();
+ if (Op->isTypeDependent())
+ return Expr::CT_Dependent;
+
+ const RecordType *RT = Op->getType()->getAs<RecordType>();
+ if (!RT)
+ return Expr::CT_Cannot;
+
+ if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
+ return Expr::CT_Cannot;
+
+ if (Op->Classify(C).isPRValue())
+ return Expr::CT_Cannot;
+
+ return Expr::CT_Can;
+}
+
+Expr::CanThrowResult Expr::CanThrow(ASTContext &C) const {
+ // C++ [expr.unary.noexcept]p3:
+ // [Can throw] if in a potentially-evaluated context the expression would
+ // contain:
+ switch (getStmtClass()) {
+ case CXXThrowExprClass:
+ // - a potentially evaluated throw-expression
+ return CT_Can;
+
+ case CXXDynamicCastExprClass: {
+ // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
+ // where T is a reference type, that requires a run-time check
+ CanThrowResult CT = CanDynamicCastThrow(cast<CXXDynamicCastExpr>(this));
+ if (CT == CT_Can)
+ return CT;
+ return MergeCanThrow(CT, CanSubExprsThrow(C, this));
+ }
+
+ case CXXTypeidExprClass:
+ // - a potentially evaluated typeid expression applied to a glvalue
+ // expression whose type is a polymorphic class type
+ return CanTypeidThrow(C, cast<CXXTypeidExpr>(this));
+
+ // - a potentially evaluated call to a function, member function, function
+ // pointer, or member function pointer that does not have a non-throwing
+ // exception-specification
+ case CallExprClass:
+ case CXXOperatorCallExprClass:
+ case CXXMemberCallExprClass: {
+ const CallExpr *CE = cast<CallExpr>(this);
+ CanThrowResult CT;
+ if (isTypeDependent())
+ CT = CT_Dependent;
+ else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
+ CT = CT_Cannot;
+ else
+ CT = CanCalleeThrow(C, this, CE->getCalleeDecl());
+ if (CT == CT_Can)
+ return CT;
+ return MergeCanThrow(CT, CanSubExprsThrow(C, this));
+ }
+
+ case CXXConstructExprClass:
+ case CXXTemporaryObjectExprClass: {
+ CanThrowResult CT = CanCalleeThrow(C, this,
+ cast<CXXConstructExpr>(this)->getConstructor());
+ if (CT == CT_Can)
+ return CT;
+ return MergeCanThrow(CT, CanSubExprsThrow(C, this));
+ }
+
+ case CXXNewExprClass: {
+ CanThrowResult CT;
+ if (isTypeDependent())
+ CT = CT_Dependent;
+ else
+ CT = MergeCanThrow(
+ CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getOperatorNew()),
+ CanCalleeThrow(C, this, cast<CXXNewExpr>(this)->getConstructor(),
+ /*NullThrows*/false));
+ if (CT == CT_Can)
+ return CT;
+ return MergeCanThrow(CT, CanSubExprsThrow(C, this));
+ }
+
+ case CXXDeleteExprClass: {
+ CanThrowResult CT;
+ QualType DTy = cast<CXXDeleteExpr>(this)->getDestroyedType();
+ if (DTy.isNull() || DTy->isDependentType()) {
+ CT = CT_Dependent;
+ } else {
+ CT = CanCalleeThrow(C, this,
+ cast<CXXDeleteExpr>(this)->getOperatorDelete());
+ if (const RecordType *RT = DTy->getAs<RecordType>()) {
+ const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ CT = MergeCanThrow(CT, CanCalleeThrow(C, this, RD->getDestructor()));
+ }
+ if (CT == CT_Can)
+ return CT;
+ }
+ return MergeCanThrow(CT, CanSubExprsThrow(C, this));
+ }
+
+ case CXXBindTemporaryExprClass: {
+ // The bound temporary has to be destroyed again, which might throw.
+ CanThrowResult CT = CanCalleeThrow(C, this,
+ cast<CXXBindTemporaryExpr>(this)->getTemporary()->getDestructor());
+ if (CT == CT_Can)
+ return CT;
+ return MergeCanThrow(CT, CanSubExprsThrow(C, this));
+ }
+
+ // ObjC message sends are like function calls, but never have exception
+ // specs.
+ case ObjCMessageExprClass:
+ case ObjCPropertyRefExprClass:
+ return CT_Can;
+
+ // Many other things have subexpressions, so we have to test those.
+ // Some are simple:
+ case ParenExprClass:
+ case MemberExprClass:
+ case CXXReinterpretCastExprClass:
+ case CXXConstCastExprClass:
+ case ConditionalOperatorClass:
+ case CompoundLiteralExprClass:
+ case ExtVectorElementExprClass:
+ case InitListExprClass:
+ case DesignatedInitExprClass:
+ case ParenListExprClass:
+ case VAArgExprClass:
+ case CXXDefaultArgExprClass:
+ case ExprWithCleanupsClass:
+ case ObjCIvarRefExprClass:
+ case ObjCIsaExprClass:
+ case ShuffleVectorExprClass:
+ return CanSubExprsThrow(C, this);
+
+ // Some might be dependent for other reasons.
+ case UnaryOperatorClass:
+ case ArraySubscriptExprClass:
+ case ImplicitCastExprClass:
+ case CStyleCastExprClass:
+ case CXXStaticCastExprClass:
+ case CXXFunctionalCastExprClass:
+ case BinaryOperatorClass:
+ case CompoundAssignOperatorClass: {
+ CanThrowResult CT = isTypeDependent() ? CT_Dependent : CT_Cannot;
+ return MergeCanThrow(CT, CanSubExprsThrow(C, this));
+ }
+
+ // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
+ case StmtExprClass:
+ return CT_Can;
+
+ case ChooseExprClass:
+ if (isTypeDependent() || isValueDependent())
+ return CT_Dependent;
+ return cast<ChooseExpr>(this)->getChosenSubExpr(C)->CanThrow(C);
+
+ case GenericSelectionExprClass:
+ if (cast<GenericSelectionExpr>(this)->isResultDependent())
+ return CT_Dependent;
+ return cast<GenericSelectionExpr>(this)->getResultExpr()->CanThrow(C);
+
+ // Some expressions are always dependent.
+ case DependentScopeDeclRefExprClass:
+ case CXXUnresolvedConstructExprClass:
+ case CXXDependentScopeMemberExprClass:
+ return CT_Dependent;
+
+ default:
+ // All other expressions don't have subexpressions, or else they are
+ // unevaluated.
+ return CT_Cannot;
+ }
+}
+
+Expr* Expr::IgnoreParens() {
+ Expr* E = this;
+ while (true) {
+ if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
+ if (P->getOpcode() == UO_Extension) {
+ E = P->getSubExpr();
+ continue;
+ }
+ }
+ if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
+ if (!P->isResultDependent()) {
+ E = P->getResultExpr();
+ continue;
+ }
+ }
+ return E;
+ }
+}
+
+/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
+/// or CastExprs or ImplicitCastExprs, returning their operand.
+Expr *Expr::IgnoreParenCasts() {
+ Expr *E = this;
+ while (true) {
+ if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
+ if (P->getOpcode() == UO_Extension) {
+ E = P->getSubExpr();
+ continue;
+ }
+ }
+ if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
+ if (!P->isResultDependent()) {
+ E = P->getResultExpr();
+ continue;
+ }
+ }
+ return E;
+ }
+}
+
+/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
+/// casts. This is intended purely as a temporary workaround for code
+/// that hasn't yet been rewritten to do the right thing about those
+/// casts, and may disappear along with the last internal use.
+Expr *Expr::IgnoreParenLValueCasts() {
+ Expr *E = this;
+ while (true) {
+ if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+ if (P->getCastKind() == CK_LValueToRValue) {
+ E = P->getSubExpr();
+ continue;
+ }
+ } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
+ if (P->getOpcode() == UO_Extension) {
+ E = P->getSubExpr();
+ continue;
+ }
+ } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
+ if (!P->isResultDependent()) {
+ E = P->getResultExpr();
+ continue;
+ }
+ }
+ break;
+ }
+ return E;
+}
+
+Expr *Expr::IgnoreParenImpCasts() {
+ Expr *E = this;
+ while (true) {
+ if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+ if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
+ if (P->getOpcode() == UO_Extension) {
+ E = P->getSubExpr();
+ continue;
+ }
+ }
+ if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
+ if (!P->isResultDependent()) {
+ E = P->getResultExpr();
+ continue;
+ }
+ }
+ return E;
+ }
+}
+
+Expr *Expr::IgnoreConversionOperator() {
+ if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
+ if (isa<CXXConversionDecl>(MCE->getMethodDecl()))
+ return MCE->getImplicitObjectArgument();
+ }
+ return this;
+}
+
+/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
+/// value (including ptr->int casts of the same size). Strip off any
+/// ParenExpr or CastExprs, returning their operand.
+Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
+ Expr *E = this;
+ while (true) {
+ if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
+ E = P->getSubExpr();
+ continue;
+ }
+
+ if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+ // We ignore integer <-> casts that are of the same width, ptr<->ptr and
+ // ptr<->int casts of the same width. We also ignore all identity casts.
+ Expr *SE = P->getSubExpr();
+
+ if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
+ E = SE;
+ continue;
+ }
+
+ if ((E->getType()->isPointerType() ||
+ E->getType()->isIntegralType(Ctx)) &&
+ (SE->getType()->isPointerType() ||
+ SE->getType()->isIntegralType(Ctx)) &&
+ Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
+ E = SE;
+ continue;
+ }
+ }
+
+ if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
+ if (P->getOpcode() == UO_Extension) {
+ E = P->getSubExpr();
+ continue;
+ }
+ }
+
+ if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
+ if (!P->isResultDependent()) {
+ E = P->getResultExpr();
+ continue;
+ }
+ }
+
+ return E;
+ }
+}
+
+bool Expr::isDefaultArgument() const {
+ const Expr *E = this;
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ E = ICE->getSubExprAsWritten();
+
+ return isa<CXXDefaultArgExpr>(E);
+}
+
+/// \brief Skip over any no-op casts and any temporary-binding
+/// expressions.
+static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
+ E = BE->getSubExpr();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr();
+ else
+ break;
+ }
+
+ return E->IgnoreParens();
+}
+
+/// isTemporaryObject - Determines if this expression produces a
+/// temporary of the given class type.
+bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
+ if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
+ return false;
+
+ const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
+
+ // Temporaries are by definition pr-values of class type.
+ if (!E->Classify(C).isPRValue()) {
+ // In this context, property reference is a message call and is pr-value.
+ if (!isa<ObjCPropertyRefExpr>(E))
+ return false;
+ }
+
+ // Black-list a few cases which yield pr-values of class type that don't
+ // refer to temporaries of that type:
+
+ // - implicit derived-to-base conversions
+ if (isa<ImplicitCastExpr>(E)) {
+ switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase:
+ return false;
+ default:
+ break;
+ }
+ }
+
+ // - member expressions (all)
+ if (isa<MemberExpr>(E))
+ return false;
+
+ // - opaque values (all)
+ if (isa<OpaqueValueExpr>(E))
+ return false;
+
+ return true;
+}
+
+bool Expr::isImplicitCXXThis() const {
+ const Expr *E = this;
+
+ // Strip away parentheses and casts we don't care about.
+ while (true) {
+ if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
+ E = Paren->getSubExpr();
+ continue;
+ }
+
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_NoOp ||
+ ICE->getCastKind() == CK_LValueToRValue ||
+ ICE->getCastKind() == CK_DerivedToBase ||
+ ICE->getCastKind() == CK_UncheckedDerivedToBase) {
+ E = ICE->getSubExpr();
+ continue;
+ }
+ }
+
+ if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
+ if (UnOp->getOpcode() == UO_Extension) {
+ E = UnOp->getSubExpr();
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
+ return This->isImplicit();
+
+ return false;
+}
+
+/// hasAnyTypeDependentArguments - Determines if any of the expressions
+/// in Exprs is type-dependent.
+bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
+ for (unsigned I = 0; I < NumExprs; ++I)
+ if (Exprs[I]->isTypeDependent())
+ return true;
+
+ return false;
+}
+
+/// hasAnyValueDependentArguments - Determines if any of the expressions
+/// in Exprs is value-dependent.
+bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
+ for (unsigned I = 0; I < NumExprs; ++I)
+ if (Exprs[I]->isValueDependent())
+ return true;
+
+ return false;
+}
+
+bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
+ // This function is attempting whether an expression is an initializer
+ // which can be evaluated at compile-time. isEvaluatable handles most
+ // of the cases, but it can't deal with some initializer-specific
+ // expressions, and it can't deal with aggregates; we deal with those here,
+ // and fall back to isEvaluatable for the other cases.
+
+ // If we ever capture reference-binding directly in the AST, we can
+ // kill the second parameter.
+
+ if (IsForRef) {
+ EvalResult Result;
+ return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
+ }
+
+ switch (getStmtClass()) {
+ default: break;
+ case StringLiteralClass:
+ case ObjCStringLiteralClass:
+ case ObjCEncodeExprClass:
+ return true;
+ case CXXTemporaryObjectExprClass:
+ case CXXConstructExprClass: {
+ const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
+
+ // Only if it's
+ // 1) an application of the trivial default constructor or
+ if (!CE->getConstructor()->isTrivial()) return false;
+ if (!CE->getNumArgs()) return true;
+
+ // 2) an elidable trivial copy construction of an operand which is
+ // itself a constant initializer. Note that we consider the
+ // operand on its own, *not* as a reference binding.
+ return CE->isElidable() &&
+ CE->getArg(0)->isConstantInitializer(Ctx, false);
+ }
+ case CompoundLiteralExprClass: {
+ // This handles gcc's extension that allows global initializers like
+ // "struct x {int x;} x = (struct x) {};".
+ // FIXME: This accepts other cases it shouldn't!
+ const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
+ return Exp->isConstantInitializer(Ctx, false);
+ }
+ case InitListExprClass: {
+ // FIXME: This doesn't deal with fields with reference types correctly.
+ // FIXME: This incorrectly allows pointers cast to integers to be assigned
+ // to bitfields.
+ const InitListExpr *Exp = cast<InitListExpr>(this);
+ unsigned numInits = Exp->getNumInits();
+ for (unsigned i = 0; i < numInits; i++) {
+ if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
+ return false;
+ }
+ return true;
+ }
+ case ImplicitValueInitExprClass:
+ return true;
+ case ParenExprClass:
+ return cast<ParenExpr>(this)->getSubExpr()
+ ->isConstantInitializer(Ctx, IsForRef);
+ case GenericSelectionExprClass:
+ if (cast<GenericSelectionExpr>(this)->isResultDependent())
+ return false;
+ return cast<GenericSelectionExpr>(this)->getResultExpr()
+ ->isConstantInitializer(Ctx, IsForRef);
+ case ChooseExprClass:
+ return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
+ ->isConstantInitializer(Ctx, IsForRef);
+ case UnaryOperatorClass: {
+ const UnaryOperator* Exp = cast<UnaryOperator>(this);
+ if (Exp->getOpcode() == UO_Extension)
+ return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
+ break;
+ }
+ case BinaryOperatorClass: {
+ // Special case &&foo - &&bar. It would be nice to generalize this somehow
+ // but this handles the common case.
+ const BinaryOperator *Exp = cast<BinaryOperator>(this);
+ if (Exp->getOpcode() == BO_Sub &&
+ isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
+ isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
+ return true;
+ break;
+ }
+ case CXXFunctionalCastExprClass:
+ case CXXStaticCastExprClass:
+ case ImplicitCastExprClass:
+ case CStyleCastExprClass:
+ // Handle casts with a destination that's a struct or union; this
+ // deals with both the gcc no-op struct cast extension and the
+ // cast-to-union extension.
+ if (getType()->isRecordType())
+ return cast<CastExpr>(this)->getSubExpr()
+ ->isConstantInitializer(Ctx, false);
+
+ // Integer->integer casts can be handled here, which is important for
+ // things like (int)(&&x-&&y). Scary but true.
+ if (getType()->isIntegerType() &&
+ cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
+ return cast<CastExpr>(this)->getSubExpr()
+ ->isConstantInitializer(Ctx, false);
+
+ break;
+ }
+ return isEvaluatable(Ctx);
+}
+
+/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
+/// pointer constant or not, as well as the specific kind of constant detected.
+/// Null pointer constants can be integer constant expressions with the
+/// value zero, casts of zero to void*, nullptr (C++0X), or __null
+/// (a GNU extension).
+Expr::NullPointerConstantKind
+Expr::isNullPointerConstant(ASTContext &Ctx,
+ NullPointerConstantValueDependence NPC) const {
+ if (isValueDependent()) {
+ switch (NPC) {
+ case NPC_NeverValueDependent:
+ assert(false && "Unexpected value dependent expression!");
+ // If the unthinkable happens, fall through to the safest alternative.
+
+ case NPC_ValueDependentIsNull:
+ if (isTypeDependent() || getType()->isIntegralType(Ctx))
+ return NPCK_ZeroInteger;
+ else
+ return NPCK_NotNull;
+
+ case NPC_ValueDependentIsNotNull:
+ return NPCK_NotNull;
+ }
+ }
+
+ // Strip off a cast to void*, if it exists. Except in C++.
+ if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
+ if (!Ctx.getLangOptions().CPlusPlus) {
+ // Check that it is a cast to void*.
+ if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
+ QualType Pointee = PT->getPointeeType();
+ if (!Pointee.hasQualifiers() &&
+ Pointee->isVoidType() && // to void*
+ CE->getSubExpr()->getType()->isIntegerType()) // from int.
+ return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ }
+ }
+ } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
+ // Ignore the ImplicitCastExpr type entirely.
+ return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
+ // Accept ((void*)0) as a null pointer constant, as many other
+ // implementations do.
+ return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const GenericSelectionExpr *GE =
+ dyn_cast<GenericSelectionExpr>(this)) {
+ return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (const CXXDefaultArgExpr *DefaultArg
+ = dyn_cast<CXXDefaultArgExpr>(this)) {
+ // See through default argument expressions
+ return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
+ } else if (isa<GNUNullExpr>(this)) {
+ // The GNU __null extension is always a null pointer constant.
+ return NPCK_GNUNull;
+ }
+
+ // C++0x nullptr_t is always a null pointer constant.
+ if (getType()->isNullPtrType())
+ return NPCK_CXX0X_nullptr;
+
+ if (const RecordType *UT = getType()->getAsUnionType())
+ if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
+ const Expr *InitExpr = CLE->getInitializer();
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
+ return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
+ }
+ // This expression must be an integer type.
+ if (!getType()->isIntegerType() ||
+ (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
+ return NPCK_NotNull;
+
+ // If we have an integer constant expression, we need to *evaluate* it and
+ // test for the value 0.
+ llvm::APSInt Result;
+ bool IsNull = isIntegerConstantExpr(Result, Ctx) && Result == 0;
+
+ return (IsNull ? NPCK_ZeroInteger : NPCK_NotNull);
+}
+
+/// \brief If this expression is an l-value for an Objective C
+/// property, find the underlying property reference expression.
+const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
+ const Expr *E = this;
+ while (true) {
+ assert((E->getValueKind() == VK_LValue &&
+ E->getObjectKind() == OK_ObjCProperty) &&
+ "expression is not a property reference");
+ E = E->IgnoreParenCasts();
+ if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Comma) {
+ E = BO->getRHS();
+ continue;
+ }
+ }
+
+ break;
+ }
+
+ return cast<ObjCPropertyRefExpr>(E);
+}
+
+FieldDecl *Expr::getBitField() {
+ Expr *E = this->IgnoreParens();
+
+ while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getCastKind() == CK_LValueToRValue ||
+ (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
+ E = ICE->getSubExpr()->IgnoreParens();
+ else
+ break;
+ }
+
+ if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
+ if (Field->isBitField())
+ return Field;
+
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
+ if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
+ if (Field->isBitField())
+ return Field;
+
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
+ if (BinOp->isAssignmentOp() && BinOp->getLHS())
+ return BinOp->getLHS()->getBitField();
+
+ return 0;
+}
+
+bool Expr::refersToVectorElement() const {
+ const Expr *E = this->IgnoreParens();
+
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+ if (ICE->getValueKind() != VK_RValue &&
+ ICE->getCastKind() == CK_NoOp)
+ E = ICE->getSubExpr()->IgnoreParens();
+ else
+ break;
+ }
+
+ if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
+ return ASE->getBase()->getType()->isVectorType();
+
+ if (isa<ExtVectorElementExpr>(E))
+ return true;
+
+ return false;
+}
+
+/// isArrow - Return true if the base expression is a pointer to vector,
+/// return false if the base expression is a vector.
+bool ExtVectorElementExpr::isArrow() const {
+ return getBase()->getType()->isPointerType();
+}
+
+unsigned ExtVectorElementExpr::getNumElements() const {
+ if (const VectorType *VT = getType()->getAs<VectorType>())
+ return VT->getNumElements();
+ return 1;
+}
+
+/// containsDuplicateElements - Return true if any element access is repeated.
+bool ExtVectorElementExpr::containsDuplicateElements() const {
+ // FIXME: Refactor this code to an accessor on the AST node which returns the
+ // "type" of component access, and share with code below and in Sema.
+ llvm::StringRef Comp = Accessor->getName();
+
+ // Halving swizzles do not contain duplicate elements.
+ if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
+ return false;
+
+ // Advance past s-char prefix on hex swizzles.
+ if (Comp[0] == 's' || Comp[0] == 'S')
+ Comp = Comp.substr(1);
+
+ for (unsigned i = 0, e = Comp.size(); i != e; ++i)
+ if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
+ return true;
+
+ return false;
+}
+
+/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
+void ExtVectorElementExpr::getEncodedElementAccess(
+ llvm::SmallVectorImpl<unsigned> &Elts) const {
+ llvm::StringRef Comp = Accessor->getName();
+ if (Comp[0] == 's' || Comp[0] == 'S')
+ Comp = Comp.substr(1);
+
+ bool isHi = Comp == "hi";
+ bool isLo = Comp == "lo";
+ bool isEven = Comp == "even";
+ bool isOdd = Comp == "odd";
+
+ for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
+ uint64_t Index;
+
+ if (isHi)
+ Index = e + i;
+ else if (isLo)
+ Index = i;
+ else if (isEven)
+ Index = 2 * i;
+ else if (isOdd)
+ Index = 2 * i + 1;
+ else
+ Index = ExtVectorType::getAccessorIdx(Comp[i]);
+
+ Elts.push_back(Index);
+ }
+}
+
+ObjCMessageExpr::ObjCMessageExpr(QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ SourceLocation SuperLoc,
+ bool IsInstanceSuper,
+ QualType SuperType,
+ Selector Sel,
+ SourceLocation SelLoc,
+ ObjCMethodDecl *Method,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RBracLoc)
+ : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
+ /*TypeDependent=*/false, /*ValueDependent=*/false,
+ /*ContainsUnexpandedParameterPack=*/false),
+ NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
+ HasMethod(Method != 0), SuperLoc(SuperLoc),
+ SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
+ : Sel.getAsOpaquePtr())),
+ SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
+{
+ setReceiverPointer(SuperType.getAsOpaquePtr());
+ if (NumArgs)
+ memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
+}
+
+ObjCMessageExpr::ObjCMessageExpr(QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ TypeSourceInfo *Receiver,
+ Selector Sel,
+ SourceLocation SelLoc,
+ ObjCMethodDecl *Method,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RBracLoc)
+ : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
+ T->isDependentType(), T->containsUnexpandedParameterPack()),
+ NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
+ SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
+ : Sel.getAsOpaquePtr())),
+ SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
+{
+ setReceiverPointer(Receiver);
+ Expr **MyArgs = getArgs();
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ if (Args[I]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (Args[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (Args[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ MyArgs[I] = Args[I];
+ }
+}
+
+ObjCMessageExpr::ObjCMessageExpr(QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ Expr *Receiver,
+ Selector Sel,
+ SourceLocation SelLoc,
+ ObjCMethodDecl *Method,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RBracLoc)
+ : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
+ Receiver->isTypeDependent(),
+ Receiver->containsUnexpandedParameterPack()),
+ NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
+ SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
+ : Sel.getAsOpaquePtr())),
+ SelectorLoc(SelLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
+{
+ setReceiverPointer(Receiver);
+ Expr **MyArgs = getArgs();
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ if (Args[I]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (Args[I]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (Args[I]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ MyArgs[I] = Args[I];
+ }
+}
+
+ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ SourceLocation SuperLoc,
+ bool IsInstanceSuper,
+ QualType SuperType,
+ Selector Sel,
+ SourceLocation SelLoc,
+ ObjCMethodDecl *Method,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RBracLoc) {
+ unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
+ NumArgs * sizeof(Expr *);
+ void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
+ return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
+ SuperType, Sel, SelLoc, Method, Args,NumArgs,
+ RBracLoc);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ TypeSourceInfo *Receiver,
+ Selector Sel,
+ SourceLocation SelLoc,
+ ObjCMethodDecl *Method,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RBracLoc) {
+ unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
+ NumArgs * sizeof(Expr *);
+ void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
+ return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
+ Method, Args, NumArgs, RBracLoc);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
+ ExprValueKind VK,
+ SourceLocation LBracLoc,
+ Expr *Receiver,
+ Selector Sel,
+ SourceLocation SelLoc,
+ ObjCMethodDecl *Method,
+ Expr **Args, unsigned NumArgs,
+ SourceLocation RBracLoc) {
+ unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
+ NumArgs * sizeof(Expr *);
+ void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
+ return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel, SelLoc,
+ Method, Args, NumArgs, RBracLoc);
+}
+
+ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
+ unsigned NumArgs) {
+ unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
+ NumArgs * sizeof(Expr *);
+ void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
+ return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
+}
+
+SourceRange ObjCMessageExpr::getReceiverRange() const {
+ switch (getReceiverKind()) {
+ case Instance:
+ return getInstanceReceiver()->getSourceRange();
+
+ case Class:
+ return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
+
+ case SuperInstance:
+ case SuperClass:
+ return getSuperLoc();
+ }
+
+ return SourceLocation();
+}
+
+Selector ObjCMessageExpr::getSelector() const {
+ if (HasMethod)
+ return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
+ ->getSelector();
+ return Selector(SelectorOrMethod);
+}
+
+ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
+ switch (getReceiverKind()) {
+ case Instance:
+ if (const ObjCObjectPointerType *Ptr
+ = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
+ return Ptr->getInterfaceDecl();
+ break;
+
+ case Class:
+ if (const ObjCObjectType *Ty
+ = getClassReceiver()->getAs<ObjCObjectType>())
+ return Ty->getInterface();
+ break;
+
+ case SuperInstance:
+ if (const ObjCObjectPointerType *Ptr
+ = getSuperType()->getAs<ObjCObjectPointerType>())
+ return Ptr->getInterfaceDecl();
+ break;
+
+ case SuperClass:
+ if (const ObjCObjectType *Iface
+ = getSuperType()->getAs<ObjCObjectType>())
+ return Iface->getInterface();
+ break;
+ }
+
+ return 0;
+}
+
+bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
+ return getCond()->EvaluateAsInt(C) != 0;
+}
+
+ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
+ QualType Type, SourceLocation BLoc,
+ SourceLocation RP)
+ : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
+ Type->isDependentType(), Type->isDependentType(),
+ Type->containsUnexpandedParameterPack()),
+ BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
+{
+ SubExprs = new (C) Stmt*[nexpr];
+ for (unsigned i = 0; i < nexpr; i++) {
+ if (args[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (args[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (args[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ SubExprs[i] = args[i];
+ }
+}
+
+void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
+ unsigned NumExprs) {
+ if (SubExprs) C.Deallocate(SubExprs);
+
+ SubExprs = new (C) Stmt* [NumExprs];
+ this->NumExprs = NumExprs;
+ memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
+}
+
+GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
+ SourceLocation GenericLoc, Expr *ControllingExpr,
+ TypeSourceInfo **AssocTypes, Expr **AssocExprs,
+ unsigned NumAssocs, SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack,
+ unsigned ResultIndex)
+ : Expr(GenericSelectionExprClass,
+ AssocExprs[ResultIndex]->getType(),
+ AssocExprs[ResultIndex]->getValueKind(),
+ AssocExprs[ResultIndex]->getObjectKind(),
+ AssocExprs[ResultIndex]->isTypeDependent(),
+ AssocExprs[ResultIndex]->isValueDependent(),
+ ContainsUnexpandedParameterPack),
+ AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
+ SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
+ ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
+ RParenLoc(RParenLoc) {
+ SubExprs[CONTROLLING] = ControllingExpr;
+ std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
+ std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
+}
+
+GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
+ SourceLocation GenericLoc, Expr *ControllingExpr,
+ TypeSourceInfo **AssocTypes, Expr **AssocExprs,
+ unsigned NumAssocs, SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ bool ContainsUnexpandedParameterPack)
+ : Expr(GenericSelectionExprClass,
+ Context.DependentTy,
+ VK_RValue,
+ OK_Ordinary,
+ /*isTypeDependent=*/ true,
+ /*isValueDependent=*/ true,
+ ContainsUnexpandedParameterPack),
+ AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
+ SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
+ ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
+ RParenLoc(RParenLoc) {
+ SubExprs[CONTROLLING] = ControllingExpr;
+ std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
+ std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
+}
+
+//===----------------------------------------------------------------------===//
+// DesignatedInitExpr
+//===----------------------------------------------------------------------===//
+
+IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
+ assert(Kind == FieldDesignator && "Only valid on a field designator");
+ if (Field.NameOrField & 0x01)
+ return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
+ else
+ return getField()->getIdentifier();
+}
+
+DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
+ unsigned NumDesignators,
+ const Designator *Designators,
+ SourceLocation EqualOrColonLoc,
+ bool GNUSyntax,
+ Expr **IndexExprs,
+ unsigned NumIndexExprs,
+ Expr *Init)
+ : Expr(DesignatedInitExprClass, Ty,
+ Init->getValueKind(), Init->getObjectKind(),
+ Init->isTypeDependent(), Init->isValueDependent(),
+ Init->containsUnexpandedParameterPack()),
+ EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
+ NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
+ this->Designators = new (C) Designator[NumDesignators];
+
+ // Record the initializer itself.
+ child_range Child = children();
+ *Child++ = Init;
+
+ // Copy the designators and their subexpressions, computing
+ // value-dependence along the way.
+ unsigned IndexIdx = 0;
+ for (unsigned I = 0; I != NumDesignators; ++I) {
+ this->Designators[I] = Designators[I];
+
+ if (this->Designators[I].isArrayDesignator()) {
+ // Compute type- and value-dependence.
+ Expr *Index = IndexExprs[IndexIdx];
+ if (Index->isTypeDependent() || Index->isValueDependent())
+ ExprBits.ValueDependent = true;
+
+ // Propagate unexpanded parameter packs.
+ if (Index->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ // Copy the index expressions into permanent storage.
+ *Child++ = IndexExprs[IndexIdx++];
+ } else if (this->Designators[I].isArrayRangeDesignator()) {
+ // Compute type- and value-dependence.
+ Expr *Start = IndexExprs[IndexIdx];
+ Expr *End = IndexExprs[IndexIdx + 1];
+ if (Start->isTypeDependent() || Start->isValueDependent() ||
+ End->isTypeDependent() || End->isValueDependent())
+ ExprBits.ValueDependent = true;
+
+ // Propagate unexpanded parameter packs.
+ if (Start->containsUnexpandedParameterPack() ||
+ End->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ // Copy the start/end expressions into permanent storage.
+ *Child++ = IndexExprs[IndexIdx++];
+ *Child++ = IndexExprs[IndexIdx++];
+ }
+ }
+
+ assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
+}
+
+DesignatedInitExpr *
+DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
+ unsigned NumDesignators,
+ Expr **IndexExprs, unsigned NumIndexExprs,
+ SourceLocation ColonOrEqualLoc,
+ bool UsesColonSyntax, Expr *Init) {
+ void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
+ sizeof(Stmt *) * (NumIndexExprs + 1), 8);
+ return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
+ ColonOrEqualLoc, UsesColonSyntax,
+ IndexExprs, NumIndexExprs, Init);
+}
+
+DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
+ unsigned NumIndexExprs) {
+ void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
+ sizeof(Stmt *) * (NumIndexExprs + 1), 8);
+ return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
+}
+
+void DesignatedInitExpr::setDesignators(ASTContext &C,
+ const Designator *Desigs,
+ unsigned NumDesigs) {
+ Designators = new (C) Designator[NumDesigs];
+ NumDesignators = NumDesigs;
+ for (unsigned I = 0; I != NumDesigs; ++I)
+ Designators[I] = Desigs[I];
+}
+
+SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
+ DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
+ if (size() == 1)
+ return DIE->getDesignator(0)->getSourceRange();
+ return SourceRange(DIE->getDesignator(0)->getStartLocation(),
+ DIE->getDesignator(size()-1)->getEndLocation());
+}
+
+SourceRange DesignatedInitExpr::getSourceRange() const {
+ SourceLocation StartLoc;
+ Designator &First =
+ *const_cast<DesignatedInitExpr*>(this)->designators_begin();
+ if (First.isFieldDesignator()) {
+ if (GNUSyntax)
+ StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
+ else
+ StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
+ } else
+ StartLoc =
+ SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
+ return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
+}
+
+Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
+ assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
+ char* Ptr = static_cast<char*>(static_cast<void *>(this));
+ Ptr += sizeof(DesignatedInitExpr);
+ Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
+ return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
+}
+
+Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
+ assert(D.Kind == Designator::ArrayRangeDesignator &&
+ "Requires array range designator");
+ char* Ptr = static_cast<char*>(static_cast<void *>(this));
+ Ptr += sizeof(DesignatedInitExpr);
+ Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
+ return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
+}
+
+Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
+ assert(D.Kind == Designator::ArrayRangeDesignator &&
+ "Requires array range designator");
+ char* Ptr = static_cast<char*>(static_cast<void *>(this));
+ Ptr += sizeof(DesignatedInitExpr);
+ Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
+ return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
+}
+
+/// \brief Replaces the designator at index @p Idx with the series
+/// of designators in [First, Last).
+void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
+ const Designator *First,
+ const Designator *Last) {
+ unsigned NumNewDesignators = Last - First;
+ if (NumNewDesignators == 0) {
+ std::copy_backward(Designators + Idx + 1,
+ Designators + NumDesignators,
+ Designators + Idx);
+ --NumNewDesignators;
+ return;
+ } else if (NumNewDesignators == 1) {
+ Designators[Idx] = *First;
+ return;
+ }
+
+ Designator *NewDesignators
+ = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
+ std::copy(Designators, Designators + Idx, NewDesignators);
+ std::copy(First, Last, NewDesignators + Idx);
+ std::copy(Designators + Idx + 1, Designators + NumDesignators,
+ NewDesignators + Idx + NumNewDesignators);
+ Designators = NewDesignators;
+ NumDesignators = NumDesignators - 1 + NumNewDesignators;
+}
+
+ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
+ Expr **exprs, unsigned nexprs,
+ SourceLocation rparenloc)
+ : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
+ false, false, false),
+ NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
+
+ Exprs = new (C) Stmt*[nexprs];
+ for (unsigned i = 0; i != nexprs; ++i) {
+ if (exprs[i]->isTypeDependent())
+ ExprBits.TypeDependent = true;
+ if (exprs[i]->isValueDependent())
+ ExprBits.ValueDependent = true;
+ if (exprs[i]->containsUnexpandedParameterPack())
+ ExprBits.ContainsUnexpandedParameterPack = true;
+
+ Exprs[i] = exprs[i];
+ }
+}
+
+const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
+ if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
+ e = ewc->getSubExpr();
+ e = cast<CXXConstructExpr>(e)->getArg(0);
+ while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
+ e = ice->getSubExpr();
+ return cast<OpaqueValueExpr>(e);
+}
+
+//===----------------------------------------------------------------------===//
+// ExprIterator.
+//===----------------------------------------------------------------------===//
+
+Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
+Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
+Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
+const Expr* ConstExprIterator::operator[](size_t idx) const {
+ return cast<Expr>(I[idx]);
+}
+const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
+const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
+
+//===----------------------------------------------------------------------===//
+// Child Iterators for iterating over subexpressions/substatements
+//===----------------------------------------------------------------------===//
+
+// UnaryExprOrTypeTraitExpr
+Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
+ // If this is of a type and the type is a VLA type (and not a typedef), the
+ // size expression of the VLA needs to be treated as an executable expression.
+ // Why isn't this weirdness documented better in StmtIterator?
+ if (isArgumentType()) {
+ if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
+ getArgumentType().getTypePtr()))
+ return child_range(child_iterator(T), child_iterator());
+ return child_range();
+ }
+ return child_range(&Argument.Ex, &Argument.Ex + 1);
+}
+
+// ObjCMessageExpr
+Stmt::child_range ObjCMessageExpr::children() {
+ Stmt **begin;
+ if (getReceiverKind() == Instance)
+ begin = reinterpret_cast<Stmt **>(this + 1);
+ else
+ begin = reinterpret_cast<Stmt **>(getArgs());
+ return child_range(begin,
+ reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
+}
+
+// Blocks
+BlockDeclRefExpr::BlockDeclRefExpr(VarDecl *d, QualType t, ExprValueKind VK,
+ SourceLocation l, bool ByRef,
+ bool constAdded)
+ : Expr(BlockDeclRefExprClass, t, VK, OK_Ordinary, false, false,
+ d->isParameterPack()),
+ D(d), Loc(l), IsByRef(ByRef), ConstQualAdded(constAdded)
+{
+ bool TypeDependent = false;
+ bool ValueDependent = false;
+ computeDeclRefDependence(D, getType(), TypeDependent, ValueDependent);
+ ExprBits.TypeDependent = TypeDependent;
+ ExprBits.ValueDependent = ValueDependent;
+}