diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp')
| -rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp | 2006 | 
1 files changed, 2006 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp new file mode 100644 index 000000000000..2108414c5ae6 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprScalar.cpp @@ -0,0 +1,2006 @@ +//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Expr nodes with scalar LLVM types as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGObjCRuntime.h" +#include "CodeGenModule.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Intrinsics.h" +#include "llvm/Module.h" +#include "llvm/Support/CFG.h" +#include "llvm/Target/TargetData.h" +#include <cstdarg> + +using namespace clang; +using namespace CodeGen; +using llvm::Value; + +//===----------------------------------------------------------------------===// +//                         Scalar Expression Emitter +//===----------------------------------------------------------------------===// + +struct BinOpInfo { +  Value *LHS; +  Value *RHS; +  QualType Ty;  // Computation Type. +  const BinaryOperator *E; +}; + +namespace { +class ScalarExprEmitter +  : public StmtVisitor<ScalarExprEmitter, Value*> { +  CodeGenFunction &CGF; +  CGBuilderTy &Builder; +  bool IgnoreResultAssign; +  llvm::LLVMContext &VMContext; +public: + +  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) +    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), +      VMContext(cgf.getLLVMContext()) { +  } + +  //===--------------------------------------------------------------------===// +  //                               Utilities +  //===--------------------------------------------------------------------===// + +  bool TestAndClearIgnoreResultAssign() { +    bool I = IgnoreResultAssign; +    IgnoreResultAssign = false; +    return I; +  } + +  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } +  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } +  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); } + +  Value *EmitLoadOfLValue(LValue LV, QualType T) { +    return CGF.EmitLoadOfLValue(LV, T).getScalarVal(); +  } + +  /// EmitLoadOfLValue - Given an expression with complex type that represents a +  /// value l-value, this method emits the address of the l-value, then loads +  /// and returns the result. +  Value *EmitLoadOfLValue(const Expr *E) { +    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType()); +  } + +  /// EmitConversionToBool - Convert the specified expression value to a +  /// boolean (i1) truth value.  This is equivalent to "Val != 0". +  Value *EmitConversionToBool(Value *Src, QualType DstTy); + +  /// EmitScalarConversion - Emit a conversion from the specified type to the +  /// specified destination type, both of which are LLVM scalar types. +  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); + +  /// EmitComplexToScalarConversion - Emit a conversion from the specified +  /// complex type to the specified destination type, where the destination type +  /// is an LLVM scalar type. +  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, +                                       QualType SrcTy, QualType DstTy); + +  /// EmitNullValue - Emit a value that corresponds to null for the given type. +  Value *EmitNullValue(QualType Ty); + +  //===--------------------------------------------------------------------===// +  //                            Visitor Methods +  //===--------------------------------------------------------------------===// + +  Value *VisitStmt(Stmt *S) { +    S->dump(CGF.getContext().getSourceManager()); +    assert(0 && "Stmt can't have complex result type!"); +    return 0; +  } +  Value *VisitExpr(Expr *S); +   +  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } + +  // Leaves. +  Value *VisitIntegerLiteral(const IntegerLiteral *E) { +    return llvm::ConstantInt::get(VMContext, E->getValue()); +  } +  Value *VisitFloatingLiteral(const FloatingLiteral *E) { +    return llvm::ConstantFP::get(VMContext, E->getValue()); +  } +  Value *VisitCharacterLiteral(const CharacterLiteral *E) { +    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); +  } +  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { +    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); +  } +  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) { +    return EmitNullValue(E->getType()); +  } +  Value *VisitGNUNullExpr(const GNUNullExpr *E) { +    return EmitNullValue(E->getType()); +  } +  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { +    return llvm::ConstantInt::get(ConvertType(E->getType()), +                                  CGF.getContext().typesAreCompatible( +                                    E->getArgType1(), E->getArgType2())); +  } +  Value *VisitOffsetOfExpr(const OffsetOfExpr *E); +  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E); +  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { +    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); +    return Builder.CreateBitCast(V, ConvertType(E->getType())); +  } + +  // l-values. +  Value *VisitDeclRefExpr(DeclRefExpr *E) { +    Expr::EvalResult Result; +    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) { +      assert(!Result.HasSideEffects && "Constant declref with side-effect?!"); +      return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); +    } +    return EmitLoadOfLValue(E); +  } +  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { +    return CGF.EmitObjCSelectorExpr(E); +  } +  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { +    return CGF.EmitObjCProtocolExpr(E); +  } +  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { +    return EmitLoadOfLValue(E); +  } +  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) { +    return EmitLoadOfLValue(E); +  } +  Value *VisitObjCImplicitSetterGetterRefExpr( +                        ObjCImplicitSetterGetterRefExpr *E) { +    return EmitLoadOfLValue(E); +  } +  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { +    return CGF.EmitObjCMessageExpr(E).getScalarVal(); +  } + +  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { +    LValue LV = CGF.EmitObjCIsaExpr(E); +    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal(); +    return V; +  } + +  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); +  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); +  Value *VisitMemberExpr(MemberExpr *E); +  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } +  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { +    return EmitLoadOfLValue(E); +  } + +  Value *VisitInitListExpr(InitListExpr *E); + +  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { +    return CGF.CGM.EmitNullConstant(E->getType()); +  } +  Value *VisitCastExpr(CastExpr *E) { +    // Make sure to evaluate VLA bounds now so that we have them for later. +    if (E->getType()->isVariablyModifiedType()) +      CGF.EmitVLASize(E->getType()); + +    return EmitCastExpr(E); +  } +  Value *EmitCastExpr(CastExpr *E); + +  Value *VisitCallExpr(const CallExpr *E) { +    if (E->getCallReturnType()->isReferenceType()) +      return EmitLoadOfLValue(E); + +    return CGF.EmitCallExpr(E).getScalarVal(); +  } + +  Value *VisitStmtExpr(const StmtExpr *E); + +  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E); + +  // Unary Operators. +  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) { +    LValue LV = EmitLValue(E->getSubExpr()); +    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre); +  } +  Value *VisitUnaryPostDec(const UnaryOperator *E) { +    return VisitPrePostIncDec(E, false, false); +  } +  Value *VisitUnaryPostInc(const UnaryOperator *E) { +    return VisitPrePostIncDec(E, true, false); +  } +  Value *VisitUnaryPreDec(const UnaryOperator *E) { +    return VisitPrePostIncDec(E, false, true); +  } +  Value *VisitUnaryPreInc(const UnaryOperator *E) { +    return VisitPrePostIncDec(E, true, true); +  } +  Value *VisitUnaryAddrOf(const UnaryOperator *E) { +    return EmitLValue(E->getSubExpr()).getAddress(); +  } +  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } +  Value *VisitUnaryPlus(const UnaryOperator *E) { +    // This differs from gcc, though, most likely due to a bug in gcc. +    TestAndClearIgnoreResultAssign(); +    return Visit(E->getSubExpr()); +  } +  Value *VisitUnaryMinus    (const UnaryOperator *E); +  Value *VisitUnaryNot      (const UnaryOperator *E); +  Value *VisitUnaryLNot     (const UnaryOperator *E); +  Value *VisitUnaryReal     (const UnaryOperator *E); +  Value *VisitUnaryImag     (const UnaryOperator *E); +  Value *VisitUnaryExtension(const UnaryOperator *E) { +    return Visit(E->getSubExpr()); +  } +  Value *VisitUnaryOffsetOf(const UnaryOperator *E); +     +  // C++ +  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { +    return Visit(DAE->getExpr()); +  } +  Value *VisitCXXThisExpr(CXXThisExpr *TE) { +    return CGF.LoadCXXThis(); +  } + +  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) { +    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal(); +  } +  Value *VisitCXXNewExpr(const CXXNewExpr *E) { +    return CGF.EmitCXXNewExpr(E); +  } +  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { +    CGF.EmitCXXDeleteExpr(E); +    return 0; +  } +  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { +    return llvm::ConstantInt::get(Builder.getInt1Ty(), +                                  E->EvaluateTrait(CGF.getContext())); +  } + +  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { +    // C++ [expr.pseudo]p1: +    //   The result shall only be used as the operand for the function call +    //   operator (), and the result of such a call has type void. The only +    //   effect is the evaluation of the postfix-expression before the dot or +    //   arrow. +    CGF.EmitScalarExpr(E->getBase()); +    return 0; +  } + +  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { +    return EmitNullValue(E->getType()); +  } + +  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { +    CGF.EmitCXXThrowExpr(E); +    return 0; +  } + +  // Binary Operators. +  Value *EmitMul(const BinOpInfo &Ops) { +    if (CGF.getContext().getLangOptions().OverflowChecking +        && Ops.Ty->isSignedIntegerType()) +      return EmitOverflowCheckedBinOp(Ops); +    if (Ops.LHS->getType()->isFPOrFPVectorTy()) +      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); +    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); +  } +  /// Create a binary op that checks for overflow. +  /// Currently only supports +, - and *. +  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); +  Value *EmitDiv(const BinOpInfo &Ops); +  Value *EmitRem(const BinOpInfo &Ops); +  Value *EmitAdd(const BinOpInfo &Ops); +  Value *EmitSub(const BinOpInfo &Ops); +  Value *EmitShl(const BinOpInfo &Ops); +  Value *EmitShr(const BinOpInfo &Ops); +  Value *EmitAnd(const BinOpInfo &Ops) { +    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); +  } +  Value *EmitXor(const BinOpInfo &Ops) { +    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); +  } +  Value *EmitOr (const BinOpInfo &Ops) { +    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); +  } + +  BinOpInfo EmitBinOps(const BinaryOperator *E); +  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, +                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &), +                                  Value *&BitFieldResult); + +  Value *EmitCompoundAssign(const CompoundAssignOperator *E, +                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); + +  // Binary operators and binary compound assignment operators. +#define HANDLEBINOP(OP) \ +  Value *VisitBin ## OP(const BinaryOperator *E) {                         \ +    return Emit ## OP(EmitBinOps(E));                                      \ +  }                                                                        \ +  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \ +    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \ +  } +  HANDLEBINOP(Mul) +  HANDLEBINOP(Div) +  HANDLEBINOP(Rem) +  HANDLEBINOP(Add) +  HANDLEBINOP(Sub) +  HANDLEBINOP(Shl) +  HANDLEBINOP(Shr) +  HANDLEBINOP(And) +  HANDLEBINOP(Xor) +  HANDLEBINOP(Or) +#undef HANDLEBINOP + +  // Comparisons. +  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, +                     unsigned SICmpOpc, unsigned FCmpOpc); +#define VISITCOMP(CODE, UI, SI, FP) \ +    Value *VisitBin##CODE(const BinaryOperator *E) { \ +      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ +                         llvm::FCmpInst::FP); } +  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) +  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) +  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) +  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) +  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) +  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) +#undef VISITCOMP + +  Value *VisitBinAssign     (const BinaryOperator *E); + +  Value *VisitBinLAnd       (const BinaryOperator *E); +  Value *VisitBinLOr        (const BinaryOperator *E); +  Value *VisitBinComma      (const BinaryOperator *E); + +  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } +  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } + +  // Other Operators. +  Value *VisitBlockExpr(const BlockExpr *BE); +  Value *VisitConditionalOperator(const ConditionalOperator *CO); +  Value *VisitChooseExpr(ChooseExpr *CE); +  Value *VisitVAArgExpr(VAArgExpr *VE); +  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { +    return CGF.EmitObjCStringLiteral(E); +  } +}; +}  // end anonymous namespace. + +//===----------------------------------------------------------------------===// +//                                Utilities +//===----------------------------------------------------------------------===// + +/// EmitConversionToBool - Convert the specified expression value to a +/// boolean (i1) truth value.  This is equivalent to "Val != 0". +Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { +  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); + +  if (SrcType->isRealFloatingType()) { +    // Compare against 0.0 for fp scalars. +    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); +    return Builder.CreateFCmpUNE(Src, Zero, "tobool"); +  } + +  if (SrcType->isMemberPointerType()) { +    // Compare against -1. +    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType()); +    return Builder.CreateICmpNE(Src, NegativeOne, "tobool"); +  } + +  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && +         "Unknown scalar type to convert"); + +  // Because of the type rules of C, we often end up computing a logical value, +  // then zero extending it to int, then wanting it as a logical value again. +  // Optimize this common case. +  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) { +    if (ZI->getOperand(0)->getType() == +        llvm::Type::getInt1Ty(CGF.getLLVMContext())) { +      Value *Result = ZI->getOperand(0); +      // If there aren't any more uses, zap the instruction to save space. +      // Note that there can be more uses, for example if this +      // is the result of an assignment. +      if (ZI->use_empty()) +        ZI->eraseFromParent(); +      return Result; +    } +  } + +  // Compare against an integer or pointer null. +  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType()); +  return Builder.CreateICmpNE(Src, Zero, "tobool"); +} + +/// EmitScalarConversion - Emit a conversion from the specified type to the +/// specified destination type, both of which are LLVM scalar types. +Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, +                                               QualType DstType) { +  SrcType = CGF.getContext().getCanonicalType(SrcType); +  DstType = CGF.getContext().getCanonicalType(DstType); +  if (SrcType == DstType) return Src; + +  if (DstType->isVoidType()) return 0; + +  llvm::LLVMContext &VMContext = CGF.getLLVMContext(); + +  // Handle conversions to bool first, they are special: comparisons against 0. +  if (DstType->isBooleanType()) +    return EmitConversionToBool(Src, SrcType); + +  const llvm::Type *DstTy = ConvertType(DstType); + +  // Ignore conversions like int -> uint. +  if (Src->getType() == DstTy) +    return Src; + +  // Handle pointer conversions next: pointers can only be converted to/from +  // other pointers and integers. Check for pointer types in terms of LLVM, as +  // some native types (like Obj-C id) may map to a pointer type. +  if (isa<llvm::PointerType>(DstTy)) { +    // The source value may be an integer, or a pointer. +    if (isa<llvm::PointerType>(Src->getType())) +      return Builder.CreateBitCast(Src, DstTy, "conv"); + +    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); +    // First, convert to the correct width so that we control the kind of +    // extension. +    const llvm::Type *MiddleTy = +          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); +    bool InputSigned = SrcType->isSignedIntegerType(); +    llvm::Value* IntResult = +        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); +    // Then, cast to pointer. +    return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); +  } + +  if (isa<llvm::PointerType>(Src->getType())) { +    // Must be an ptr to int cast. +    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); +    return Builder.CreatePtrToInt(Src, DstTy, "conv"); +  } + +  // A scalar can be splatted to an extended vector of the same element type +  if (DstType->isExtVectorType() && !SrcType->isVectorType()) { +    // Cast the scalar to element type +    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); +    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); + +    // Insert the element in element zero of an undef vector +    llvm::Value *UnV = llvm::UndefValue::get(DstTy); +    llvm::Value *Idx = +        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); +    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); + +    // Splat the element across to all elements +    llvm::SmallVector<llvm::Constant*, 16> Args; +    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); +    for (unsigned i = 0; i < NumElements; i++) +      Args.push_back(llvm::ConstantInt::get( +                                        llvm::Type::getInt32Ty(VMContext), 0)); + +    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); +    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); +    return Yay; +  } + +  // Allow bitcast from vector to integer/fp of the same size. +  if (isa<llvm::VectorType>(Src->getType()) || +      isa<llvm::VectorType>(DstTy)) +    return Builder.CreateBitCast(Src, DstTy, "conv"); + +  // Finally, we have the arithmetic types: real int/float. +  if (isa<llvm::IntegerType>(Src->getType())) { +    bool InputSigned = SrcType->isSignedIntegerType(); +    if (isa<llvm::IntegerType>(DstTy)) +      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); +    else if (InputSigned) +      return Builder.CreateSIToFP(Src, DstTy, "conv"); +    else +      return Builder.CreateUIToFP(Src, DstTy, "conv"); +  } + +  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion"); +  if (isa<llvm::IntegerType>(DstTy)) { +    if (DstType->isSignedIntegerType()) +      return Builder.CreateFPToSI(Src, DstTy, "conv"); +    else +      return Builder.CreateFPToUI(Src, DstTy, "conv"); +  } + +  assert(DstTy->isFloatingPointTy() && "Unknown real conversion"); +  if (DstTy->getTypeID() < Src->getType()->getTypeID()) +    return Builder.CreateFPTrunc(Src, DstTy, "conv"); +  else +    return Builder.CreateFPExt(Src, DstTy, "conv"); +} + +/// EmitComplexToScalarConversion - Emit a conversion from the specified complex +/// type to the specified destination type, where the destination type is an +/// LLVM scalar type. +Value *ScalarExprEmitter:: +EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, +                              QualType SrcTy, QualType DstTy) { +  // Get the source element type. +  SrcTy = SrcTy->getAs<ComplexType>()->getElementType(); + +  // Handle conversions to bool first, they are special: comparisons against 0. +  if (DstTy->isBooleanType()) { +    //  Complex != 0  -> (Real != 0) | (Imag != 0) +    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy); +    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); +    return Builder.CreateOr(Src.first, Src.second, "tobool"); +  } + +  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, +  // the imaginary part of the complex value is discarded and the value of the +  // real part is converted according to the conversion rules for the +  // corresponding real type. +  return EmitScalarConversion(Src.first, SrcTy, DstTy); +} + +Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { +  const llvm::Type *LTy = ConvertType(Ty); +   +  if (!Ty->isMemberPointerType()) +    return llvm::Constant::getNullValue(LTy); +   +  assert(!Ty->isMemberFunctionPointerType() && +         "member function pointers are not scalar!"); + +  // Itanium C++ ABI 2.3: +  //   A NULL pointer is represented as -1. +  return llvm::ConstantInt::get(LTy, -1ULL, /*isSigned=*/true);   +} + +//===----------------------------------------------------------------------===// +//                            Visitor Methods +//===----------------------------------------------------------------------===// + +Value *ScalarExprEmitter::VisitExpr(Expr *E) { +  CGF.ErrorUnsupported(E, "scalar expression"); +  if (E->getType()->isVoidType()) +    return 0; +  return llvm::UndefValue::get(CGF.ConvertType(E->getType())); +} + +Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { +  llvm::SmallVector<llvm::Constant*, 32> indices; +  for (unsigned i = 2; i < E->getNumSubExprs(); i++) { +    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)))); +  } +  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); +  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); +  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size()); +  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); +} +Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { +  Expr::EvalResult Result; +  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) { +    if (E->isArrow()) +      CGF.EmitScalarExpr(E->getBase()); +    else +      EmitLValue(E->getBase()); +    return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); +  } +  return EmitLoadOfLValue(E); +} + +Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { +  TestAndClearIgnoreResultAssign(); + +  // Emit subscript expressions in rvalue context's.  For most cases, this just +  // loads the lvalue formed by the subscript expr.  However, we have to be +  // careful, because the base of a vector subscript is occasionally an rvalue, +  // so we can't get it as an lvalue. +  if (!E->getBase()->getType()->isVectorType()) +    return EmitLoadOfLValue(E); + +  // Handle the vector case.  The base must be a vector, the index must be an +  // integer value. +  Value *Base = Visit(E->getBase()); +  Value *Idx  = Visit(E->getIdx()); +  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType(); +  Idx = Builder.CreateIntCast(Idx, +                              llvm::Type::getInt32Ty(CGF.getLLVMContext()), +                              IdxSigned, +                              "vecidxcast"); +  return Builder.CreateExtractElement(Base, Idx, "vecext"); +} + +static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, +                                  unsigned Off, const llvm::Type *I32Ty) { +  int MV = SVI->getMaskValue(Idx); +  if (MV == -1)  +    return llvm::UndefValue::get(I32Ty); +  return llvm::ConstantInt::get(I32Ty, Off+MV); +} + +Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { +  bool Ignore = TestAndClearIgnoreResultAssign(); +  (void)Ignore; +  assert (Ignore == false && "init list ignored"); +  unsigned NumInitElements = E->getNumInits(); +   +  if (E->hadArrayRangeDesignator()) +    CGF.ErrorUnsupported(E, "GNU array range designator extension"); +   +  const llvm::VectorType *VType = +    dyn_cast<llvm::VectorType>(ConvertType(E->getType())); +   +  // We have a scalar in braces. Just use the first element. +  if (!VType) +    return Visit(E->getInit(0)); +   +  unsigned ResElts = VType->getNumElements(); +  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext()); +   +  // Loop over initializers collecting the Value for each, and remembering  +  // whether the source was swizzle (ExtVectorElementExpr).  This will allow +  // us to fold the shuffle for the swizzle into the shuffle for the vector +  // initializer, since LLVM optimizers generally do not want to touch +  // shuffles. +  unsigned CurIdx = 0; +  bool VIsUndefShuffle = false; +  llvm::Value *V = llvm::UndefValue::get(VType); +  for (unsigned i = 0; i != NumInitElements; ++i) { +    Expr *IE = E->getInit(i); +    Value *Init = Visit(IE); +    llvm::SmallVector<llvm::Constant*, 16> Args; +     +    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); +     +    // Handle scalar elements.  If the scalar initializer is actually one +    // element of a different vector of the same width, use shuffle instead of  +    // extract+insert. +    if (!VVT) { +      if (isa<ExtVectorElementExpr>(IE)) { +        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); + +        if (EI->getVectorOperandType()->getNumElements() == ResElts) { +          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); +          Value *LHS = 0, *RHS = 0; +          if (CurIdx == 0) { +            // insert into undef -> shuffle (src, undef) +            Args.push_back(C); +            for (unsigned j = 1; j != ResElts; ++j) +              Args.push_back(llvm::UndefValue::get(I32Ty)); + +            LHS = EI->getVectorOperand(); +            RHS = V; +            VIsUndefShuffle = true; +          } else if (VIsUndefShuffle) { +            // insert into undefshuffle && size match -> shuffle (v, src) +            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); +            for (unsigned j = 0; j != CurIdx; ++j) +              Args.push_back(getMaskElt(SVV, j, 0, I32Ty)); +            Args.push_back(llvm::ConstantInt::get(I32Ty,  +                                                  ResElts + C->getZExtValue())); +            for (unsigned j = CurIdx + 1; j != ResElts; ++j) +              Args.push_back(llvm::UndefValue::get(I32Ty)); +             +            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); +            RHS = EI->getVectorOperand(); +            VIsUndefShuffle = false; +          } +          if (!Args.empty()) { +            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); +            V = Builder.CreateShuffleVector(LHS, RHS, Mask); +            ++CurIdx; +            continue; +          } +        } +      } +      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); +      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); +      VIsUndefShuffle = false; +      ++CurIdx; +      continue; +    } +     +    unsigned InitElts = VVT->getNumElements(); + +    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's  +    // input is the same width as the vector being constructed, generate an +    // optimized shuffle of the swizzle input into the result. +    unsigned Offset = (CurIdx == 0) ? 0 : ResElts; +    if (isa<ExtVectorElementExpr>(IE)) { +      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); +      Value *SVOp = SVI->getOperand(0); +      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); +       +      if (OpTy->getNumElements() == ResElts) { +        for (unsigned j = 0; j != CurIdx; ++j) { +          // If the current vector initializer is a shuffle with undef, merge +          // this shuffle directly into it. +          if (VIsUndefShuffle) { +            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, +                                      I32Ty)); +          } else { +            Args.push_back(llvm::ConstantInt::get(I32Ty, j)); +          } +        } +        for (unsigned j = 0, je = InitElts; j != je; ++j) +          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty)); +        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) +          Args.push_back(llvm::UndefValue::get(I32Ty)); + +        if (VIsUndefShuffle) +          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); + +        Init = SVOp; +      } +    } + +    // Extend init to result vector length, and then shuffle its contribution +    // to the vector initializer into V. +    if (Args.empty()) { +      for (unsigned j = 0; j != InitElts; ++j) +        Args.push_back(llvm::ConstantInt::get(I32Ty, j)); +      for (unsigned j = InitElts; j != ResElts; ++j) +        Args.push_back(llvm::UndefValue::get(I32Ty)); +      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); +      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), +                                         Mask, "vext"); + +      Args.clear(); +      for (unsigned j = 0; j != CurIdx; ++j) +        Args.push_back(llvm::ConstantInt::get(I32Ty, j)); +      for (unsigned j = 0; j != InitElts; ++j) +        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset)); +      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j) +        Args.push_back(llvm::UndefValue::get(I32Ty)); +    } + +    // If V is undef, make sure it ends up on the RHS of the shuffle to aid +    // merging subsequent shuffles into this one. +    if (CurIdx == 0) +      std::swap(V, Init); +    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts); +    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); +    VIsUndefShuffle = isa<llvm::UndefValue>(Init); +    CurIdx += InitElts; +  } +   +  // FIXME: evaluate codegen vs. shuffling against constant null vector. +  // Emit remaining default initializers. +  const llvm::Type *EltTy = VType->getElementType(); +   +  // Emit remaining default initializers +  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { +    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx); +    llvm::Value *Init = llvm::Constant::getNullValue(EltTy); +    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); +  } +  return V; +} + +static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { +  const Expr *E = CE->getSubExpr(); + +  if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase) +    return false; +   +  if (isa<CXXThisExpr>(E)) { +    // We always assume that 'this' is never null. +    return false; +  } +   +  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { +    // And that lvalue casts are never null. +    if (ICE->isLvalueCast()) +      return false; +  } + +  return true; +} + +// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts +// have to handle a more broad range of conversions than explicit casts, as they +// handle things like function to ptr-to-function decay etc. +Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) { +  Expr *E = CE->getSubExpr(); +  QualType DestTy = CE->getType(); +  CastExpr::CastKind Kind = CE->getCastKind(); +   +  if (!DestTy->isVoidType()) +    TestAndClearIgnoreResultAssign(); + +  // Since almost all cast kinds apply to scalars, this switch doesn't have +  // a default case, so the compiler will warn on a missing case.  The cases +  // are in the same order as in the CastKind enum. +  switch (Kind) { +  case CastExpr::CK_Unknown: +    // FIXME: All casts should have a known kind! +    //assert(0 && "Unknown cast kind!"); +    break; + +  case CastExpr::CK_AnyPointerToObjCPointerCast: +  case CastExpr::CK_AnyPointerToBlockPointerCast: +  case CastExpr::CK_BitCast: { +    Value *Src = Visit(const_cast<Expr*>(E)); +    return Builder.CreateBitCast(Src, ConvertType(DestTy)); +  } +  case CastExpr::CK_NoOp: +  case CastExpr::CK_UserDefinedConversion: +    return Visit(const_cast<Expr*>(E)); + +  case CastExpr::CK_BaseToDerived: { +    const CXXRecordDecl *DerivedClassDecl =  +      DestTy->getCXXRecordDeclForPointerType(); +     +    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,  +                                        CE->getBasePath(),  +                                        ShouldNullCheckClassCastValue(CE)); +  } +  case CastExpr::CK_UncheckedDerivedToBase: +  case CastExpr::CK_DerivedToBase: { +    const RecordType *DerivedClassTy =  +      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>(); +    CXXRecordDecl *DerivedClassDecl =  +      cast<CXXRecordDecl>(DerivedClassTy->getDecl()); + +    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,  +                                     CE->getBasePath(), +                                     ShouldNullCheckClassCastValue(CE)); +  } +  case CastExpr::CK_Dynamic: { +    Value *V = Visit(const_cast<Expr*>(E)); +    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); +    return CGF.EmitDynamicCast(V, DCE); +  } +  case CastExpr::CK_ToUnion: +    assert(0 && "Should be unreachable!"); +    break; + +  case CastExpr::CK_ArrayToPointerDecay: { +    assert(E->getType()->isArrayType() && +           "Array to pointer decay must have array source type!"); + +    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays. + +    // Note that VLA pointers are always decayed, so we don't need to do +    // anything here. +    if (!E->getType()->isVariableArrayType()) { +      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); +      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) +                                 ->getElementType()) && +             "Expected pointer to array"); +      V = Builder.CreateStructGEP(V, 0, "arraydecay"); +    } + +    return V; +  } +  case CastExpr::CK_FunctionToPointerDecay: +    return EmitLValue(E).getAddress(); + +  case CastExpr::CK_NullToMemberPointer: +    return CGF.CGM.EmitNullConstant(DestTy); + +  case CastExpr::CK_BaseToDerivedMemberPointer: +  case CastExpr::CK_DerivedToBaseMemberPointer: { +    Value *Src = Visit(E); + +    // See if we need to adjust the pointer. +    const CXXRecordDecl *BaseDecl =  +      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()-> +                          getClass()->getAs<RecordType>()->getDecl()); +    const CXXRecordDecl *DerivedDecl =  +      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()-> +                          getClass()->getAs<RecordType>()->getDecl()); +    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) +      std::swap(DerivedDecl, BaseDecl); + +    if (llvm::Constant *Adj =  +          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,  +                                               CE->getBasePath())) { +      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer) +        Src = Builder.CreateSub(Src, Adj, "adj"); +      else +        Src = Builder.CreateAdd(Src, Adj, "adj"); +    } +    return Src; +  } + +  case CastExpr::CK_ConstructorConversion: +    assert(0 && "Should be unreachable!"); +    break; + +  case CastExpr::CK_IntegralToPointer: { +    Value *Src = Visit(const_cast<Expr*>(E)); +     +    // First, convert to the correct width so that we control the kind of +    // extension. +    const llvm::Type *MiddleTy = +      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); +    bool InputSigned = E->getType()->isSignedIntegerType(); +    llvm::Value* IntResult = +      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); +     +    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); +  } +  case CastExpr::CK_PointerToIntegral: { +    Value *Src = Visit(const_cast<Expr*>(E)); +    return Builder.CreatePtrToInt(Src, ConvertType(DestTy)); +  } +  case CastExpr::CK_ToVoid: { +    CGF.EmitAnyExpr(E, 0, false, true); +    return 0; +  } +  case CastExpr::CK_VectorSplat: { +    const llvm::Type *DstTy = ConvertType(DestTy); +    Value *Elt = Visit(const_cast<Expr*>(E)); + +    // Insert the element in element zero of an undef vector +    llvm::Value *UnV = llvm::UndefValue::get(DstTy); +    llvm::Value *Idx = +        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0); +    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp"); + +    // Splat the element across to all elements +    llvm::SmallVector<llvm::Constant*, 16> Args; +    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); +    for (unsigned i = 0; i < NumElements; i++) +      Args.push_back(llvm::ConstantInt::get( +                                        llvm::Type::getInt32Ty(VMContext), 0)); + +    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements); +    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat"); +    return Yay; +  } +  case CastExpr::CK_IntegralCast: +  case CastExpr::CK_IntegralToFloating: +  case CastExpr::CK_FloatingToIntegral: +  case CastExpr::CK_FloatingCast: +    return EmitScalarConversion(Visit(E), E->getType(), DestTy); + +  case CastExpr::CK_MemberPointerToBoolean: +    return CGF.EvaluateExprAsBool(E); +  } + +  // Handle cases where the source is an non-complex type. + +  if (!CGF.hasAggregateLLVMType(E->getType())) { +    Value *Src = Visit(const_cast<Expr*>(E)); + +    // Use EmitScalarConversion to perform the conversion. +    return EmitScalarConversion(Src, E->getType(), DestTy); +  } + +  if (E->getType()->isAnyComplexType()) { +    // Handle cases where the source is a complex type. +    bool IgnoreImag = true; +    bool IgnoreImagAssign = true; +    bool IgnoreReal = IgnoreResultAssign; +    bool IgnoreRealAssign = IgnoreResultAssign; +    if (DestTy->isBooleanType()) +      IgnoreImagAssign = IgnoreImag = false; +    else if (DestTy->isVoidType()) { +      IgnoreReal = IgnoreImag = false; +      IgnoreRealAssign = IgnoreImagAssign = true; +    } +    CodeGenFunction::ComplexPairTy V +      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign, +                            IgnoreImagAssign); +    return EmitComplexToScalarConversion(V, E->getType(), DestTy); +  } + +  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just +  // evaluate the result and return. +  CGF.EmitAggExpr(E, 0, false, true); +  return 0; +} + +Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { +  return CGF.EmitCompoundStmt(*E->getSubStmt(), +                              !E->getType()->isVoidType()).getScalarVal(); +} + +Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) { +  llvm::Value *V = CGF.GetAddrOfBlockDecl(E); +  if (E->getType().isObjCGCWeak()) +    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V); +  return Builder.CreateLoad(V, "tmp"); +} + +//===----------------------------------------------------------------------===// +//                             Unary Operators +//===----------------------------------------------------------------------===// + +Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { +  TestAndClearIgnoreResultAssign(); +  Value *Op = Visit(E->getSubExpr()); +  if (Op->getType()->isFPOrFPVectorTy()) +    return Builder.CreateFNeg(Op, "neg"); +  return Builder.CreateNeg(Op, "neg"); +} + +Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { +  TestAndClearIgnoreResultAssign(); +  Value *Op = Visit(E->getSubExpr()); +  return Builder.CreateNot(Op, "neg"); +} + +Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { +  // Compare operand to zero. +  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); + +  // Invert value. +  // TODO: Could dynamically modify easy computations here.  For example, if +  // the operand is an icmp ne, turn into icmp eq. +  BoolVal = Builder.CreateNot(BoolVal, "lnot"); + +  // ZExt result to the expr type. +  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); +} + +Value *ScalarExprEmitter::VisitOffsetOfExpr(const OffsetOfExpr *E) { +  Expr::EvalResult Result; +  if(E->Evaluate(Result, CGF.getContext())) +    return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); +   +  // FIXME: Cannot support code generation for non-constant offsetof. +  unsigned DiagID = CGF.CGM.getDiags().getCustomDiagID(Diagnostic::Error, +                             "cannot compile non-constant __builtin_offsetof"); +  CGF.CGM.getDiags().Report(CGF.getContext().getFullLoc(E->getLocStart()),  +                            DiagID) +    << E->getSourceRange(); +   +  return llvm::Constant::getNullValue(ConvertType(E->getType())); +} + +/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of +/// argument of the sizeof expression as an integer. +Value * +ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) { +  QualType TypeToSize = E->getTypeOfArgument(); +  if (E->isSizeOf()) { +    if (const VariableArrayType *VAT = +          CGF.getContext().getAsVariableArrayType(TypeToSize)) { +      if (E->isArgumentType()) { +        // sizeof(type) - make sure to emit the VLA size. +        CGF.EmitVLASize(TypeToSize); +      } else { +        // C99 6.5.3.4p2: If the argument is an expression of type +        // VLA, it is evaluated. +        CGF.EmitAnyExpr(E->getArgumentExpr()); +      } + +      return CGF.GetVLASize(VAT); +    } +  } + +  // If this isn't sizeof(vla), the result must be constant; use the constant +  // folding logic so we don't have to duplicate it here. +  Expr::EvalResult Result; +  E->Evaluate(Result, CGF.getContext()); +  return llvm::ConstantInt::get(VMContext, Result.Val.getInt()); +} + +Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { +  Expr *Op = E->getSubExpr(); +  if (Op->getType()->isAnyComplexType()) +    return CGF.EmitComplexExpr(Op, false, true, false, true).first; +  return Visit(Op); +} +Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { +  Expr *Op = E->getSubExpr(); +  if (Op->getType()->isAnyComplexType()) +    return CGF.EmitComplexExpr(Op, true, false, true, false).second; + +  // __imag on a scalar returns zero.  Emit the subexpr to ensure side +  // effects are evaluated, but not the actual value. +  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid) +    CGF.EmitLValue(Op); +  else +    CGF.EmitScalarExpr(Op, true); +  return llvm::Constant::getNullValue(ConvertType(E->getType())); +} + +Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) { +  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress(); +  const llvm::Type* ResultType = ConvertType(E->getType()); +  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof"); +} + +//===----------------------------------------------------------------------===// +//                           Binary Operators +//===----------------------------------------------------------------------===// + +BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { +  TestAndClearIgnoreResultAssign(); +  BinOpInfo Result; +  Result.LHS = Visit(E->getLHS()); +  Result.RHS = Visit(E->getRHS()); +  Result.Ty  = E->getType(); +  Result.E = E; +  return Result; +} + +LValue ScalarExprEmitter::EmitCompoundAssignLValue( +                                              const CompoundAssignOperator *E, +                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), +                                                   Value *&BitFieldResult) { +  QualType LHSTy = E->getLHS()->getType(); +  BitFieldResult = 0; +  BinOpInfo OpInfo; +   +  if (E->getComputationResultType()->isAnyComplexType()) { +    // This needs to go through the complex expression emitter, but it's a tad +    // complicated to do that... I'm leaving it out for now.  (Note that we do +    // actually need the imaginary part of the RHS for multiplication and +    // division.) +    CGF.ErrorUnsupported(E, "complex compound assignment"); +    llvm::UndefValue::get(CGF.ConvertType(E->getType())); +    return LValue(); +  } +   +  // Emit the RHS first.  __block variables need to have the rhs evaluated +  // first, plus this should improve codegen a little. +  OpInfo.RHS = Visit(E->getRHS()); +  OpInfo.Ty = E->getComputationResultType(); +  OpInfo.E = E; +  // Load/convert the LHS. +  LValue LHSLV = EmitCheckedLValue(E->getLHS()); +  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); +  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, +                                    E->getComputationLHSType()); +   +  // Expand the binary operator. +  Value *Result = (this->*Func)(OpInfo); +   +  // Convert the result back to the LHS type. +  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); +   +  // Store the result value into the LHS lvalue. Bit-fields are handled +  // specially because the result is altered by the store, i.e., [C99 6.5.16p1] +  // 'An assignment expression has the value of the left operand after the +  // assignment...'. +  if (LHSLV.isBitField()) { +    if (!LHSLV.isVolatileQualified()) { +      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy, +                                         &Result); +      BitFieldResult = Result; +      return LHSLV; +    } else +      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy); +  } else +    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy); +  return LHSLV; +} + +Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, +                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { +  bool Ignore = TestAndClearIgnoreResultAssign(); +  Value *BitFieldResult; +  LValue LHSLV = EmitCompoundAssignLValue(E, Func, BitFieldResult); +  if (BitFieldResult) +    return BitFieldResult; +   +  if (Ignore) +    return 0; +  return EmitLoadOfLValue(LHSLV, E->getType()); +} + + +Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { +  if (Ops.LHS->getType()->isFPOrFPVectorTy()) +    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); +  else if (Ops.Ty->isUnsignedIntegerType()) +    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); +  else +    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); +} + +Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { +  // Rem in C can't be a floating point type: C99 6.5.5p2. +  if (Ops.Ty->isUnsignedIntegerType()) +    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); +  else +    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); +} + +Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { +  unsigned IID; +  unsigned OpID = 0; + +  switch (Ops.E->getOpcode()) { +  case BinaryOperator::Add: +  case BinaryOperator::AddAssign: +    OpID = 1; +    IID = llvm::Intrinsic::sadd_with_overflow; +    break; +  case BinaryOperator::Sub: +  case BinaryOperator::SubAssign: +    OpID = 2; +    IID = llvm::Intrinsic::ssub_with_overflow; +    break; +  case BinaryOperator::Mul: +  case BinaryOperator::MulAssign: +    OpID = 3; +    IID = llvm::Intrinsic::smul_with_overflow; +    break; +  default: +    assert(false && "Unsupported operation for overflow detection"); +    IID = 0; +  } +  OpID <<= 1; +  OpID |= 1; + +  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); + +  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1); + +  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS); +  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); +  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); + +  // Branch in case of overflow. +  llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); +  llvm::BasicBlock *overflowBB = +    CGF.createBasicBlock("overflow", CGF.CurFn); +  llvm::BasicBlock *continueBB = +    CGF.createBasicBlock("overflow.continue", CGF.CurFn); + +  Builder.CreateCondBr(overflow, overflowBB, continueBB); + +  // Handle overflow + +  Builder.SetInsertPoint(overflowBB); + +  // Handler is: +  // long long *__overflow_handler)(long long a, long long b, char op, +  // char width) +  std::vector<const llvm::Type*> handerArgTypes; +  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); +  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext)); +  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); +  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext)); +  llvm::FunctionType *handlerTy = llvm::FunctionType::get( +      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false); +  llvm::Value *handlerFunction = +    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler", +        llvm::PointerType::getUnqual(handlerTy)); +  handlerFunction = Builder.CreateLoad(handlerFunction); + +  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction, +      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)), +      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)), +      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID), +      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), +        cast<llvm::IntegerType>(opTy)->getBitWidth())); + +  handlerResult = Builder.CreateTrunc(handlerResult, opTy); + +  Builder.CreateBr(continueBB); + +  // Set up the continuation +  Builder.SetInsertPoint(continueBB); +  // Get the correct result +  llvm::PHINode *phi = Builder.CreatePHI(opTy); +  phi->reserveOperandSpace(2); +  phi->addIncoming(result, initialBB); +  phi->addIncoming(handlerResult, overflowBB); + +  return phi; +} + +Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { +  if (!Ops.Ty->isAnyPointerType()) { +    if (CGF.getContext().getLangOptions().OverflowChecking && +        Ops.Ty->isSignedIntegerType()) +      return EmitOverflowCheckedBinOp(Ops); + +    if (Ops.LHS->getType()->isFPOrFPVectorTy()) +      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add"); + +    // Signed integer overflow is undefined behavior. +    if (Ops.Ty->isSignedIntegerType()) +      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add"); + +    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); +  } + +  if (Ops.Ty->isPointerType() && +      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) { +    // The amount of the addition needs to account for the VLA size +    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition"); +  } +  Value *Ptr, *Idx; +  Expr *IdxExp; +  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>(); +  const ObjCObjectPointerType *OPT = +    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>(); +  if (PT || OPT) { +    Ptr = Ops.LHS; +    Idx = Ops.RHS; +    IdxExp = Ops.E->getRHS(); +  } else {  // int + pointer +    PT = Ops.E->getRHS()->getType()->getAs<PointerType>(); +    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>(); +    assert((PT || OPT) && "Invalid add expr"); +    Ptr = Ops.RHS; +    Idx = Ops.LHS; +    IdxExp = Ops.E->getLHS(); +  } + +  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); +  if (Width < CGF.LLVMPointerWidth) { +    // Zero or sign extend the pointer value based on whether the index is +    // signed or not. +    const llvm::Type *IdxType = +        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); +    if (IdxExp->getType()->isSignedIntegerType()) +      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); +    else +      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); +  } +  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType(); +  // Handle interface types, which are not represented with a concrete type. +  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) { +    llvm::Value *InterfaceSize = +      llvm::ConstantInt::get(Idx->getType(), +          CGF.getContext().getTypeSizeInChars(OIT).getQuantity()); +    Idx = Builder.CreateMul(Idx, InterfaceSize); +    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); +    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); +    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); +    return Builder.CreateBitCast(Res, Ptr->getType()); +  } + +  // Explicitly handle GNU void* and function pointer arithmetic extensions. The +  // GNU void* casts amount to no-ops since our void* type is i8*, but this is +  // future proof. +  if (ElementType->isVoidType() || ElementType->isFunctionType()) { +    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); +    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty); +    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr"); +    return Builder.CreateBitCast(Res, Ptr->getType()); +  } + +  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr"); +} + +Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { +  if (!isa<llvm::PointerType>(Ops.LHS->getType())) { +    if (CGF.getContext().getLangOptions().OverflowChecking +        && Ops.Ty->isSignedIntegerType()) +      return EmitOverflowCheckedBinOp(Ops); + +    if (Ops.LHS->getType()->isFPOrFPVectorTy()) +      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub"); + +    // Signed integer overflow is undefined behavior. +    if (Ops.Ty->isSignedIntegerType()) +      return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub"); + +    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); +  } + +  if (Ops.E->getLHS()->getType()->isPointerType() && +      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) { +    // The amount of the addition needs to account for the VLA size for +    // ptr-int +    // The amount of the division needs to account for the VLA size for +    // ptr-ptr. +    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction"); +  } + +  const QualType LHSType = Ops.E->getLHS()->getType(); +  const QualType LHSElementType = LHSType->getPointeeType(); +  if (!isa<llvm::PointerType>(Ops.RHS->getType())) { +    // pointer - int +    Value *Idx = Ops.RHS; +    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); +    if (Width < CGF.LLVMPointerWidth) { +      // Zero or sign extend the pointer value based on whether the index is +      // signed or not. +      const llvm::Type *IdxType = +          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth); +      if (Ops.E->getRHS()->getType()->isSignedIntegerType()) +        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext"); +      else +        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext"); +    } +    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg"); + +    // Handle interface types, which are not represented with a concrete type. +    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) { +      llvm::Value *InterfaceSize = +        llvm::ConstantInt::get(Idx->getType(), +                               CGF.getContext(). +                                 getTypeSizeInChars(OIT).getQuantity()); +      Idx = Builder.CreateMul(Idx, InterfaceSize); +      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); +      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); +      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr"); +      return Builder.CreateBitCast(Res, Ops.LHS->getType()); +    } + +    // Explicitly handle GNU void* and function pointer arithmetic +    // extensions. The GNU void* casts amount to no-ops since our void* type is +    // i8*, but this is future proof. +    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { +      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext); +      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty); +      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr"); +      return Builder.CreateBitCast(Res, Ops.LHS->getType()); +    } + +    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr"); +  } else { +    // pointer - pointer +    Value *LHS = Ops.LHS; +    Value *RHS = Ops.RHS; + +    CharUnits ElementSize; + +    // Handle GCC extension for pointer arithmetic on void* and function pointer +    // types. +    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) { +      ElementSize = CharUnits::One(); +    } else { +      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType); +    } + +    const llvm::Type *ResultType = ConvertType(Ops.Ty); +    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); +    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); +    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); + +    // Optimize out the shift for element size of 1. +    if (ElementSize.isOne()) +      return BytesBetween; + +    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since +    // pointer difference in C is only defined in the case where both operands +    // are pointing to elements of an array. +    Value *BytesPerElt =  +        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity()); +    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); +  } +} + +Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { +  // LLVM requires the LHS and RHS to be the same type: promote or truncate the +  // RHS to the same size as the LHS. +  Value *RHS = Ops.RHS; +  if (Ops.LHS->getType() != RHS->getType()) +    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); + +  if (CGF.CatchUndefined  +      && isa<llvm::IntegerType>(Ops.LHS->getType())) { +    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); +    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); +    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, +                                 llvm::ConstantInt::get(RHS->getType(), Width)), +                             Cont, CGF.getTrapBB()); +    CGF.EmitBlock(Cont); +  } + +  return Builder.CreateShl(Ops.LHS, RHS, "shl"); +} + +Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { +  // LLVM requires the LHS and RHS to be the same type: promote or truncate the +  // RHS to the same size as the LHS. +  Value *RHS = Ops.RHS; +  if (Ops.LHS->getType() != RHS->getType()) +    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); + +  if (CGF.CatchUndefined  +      && isa<llvm::IntegerType>(Ops.LHS->getType())) { +    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth(); +    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); +    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS, +                                 llvm::ConstantInt::get(RHS->getType(), Width)), +                             Cont, CGF.getTrapBB()); +    CGF.EmitBlock(Cont); +  } + +  if (Ops.Ty->isUnsignedIntegerType()) +    return Builder.CreateLShr(Ops.LHS, RHS, "shr"); +  return Builder.CreateAShr(Ops.LHS, RHS, "shr"); +} + +Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, +                                      unsigned SICmpOpc, unsigned FCmpOpc) { +  TestAndClearIgnoreResultAssign(); +  Value *Result; +  QualType LHSTy = E->getLHS()->getType(); +  if (LHSTy->isMemberFunctionPointerType()) { +    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr(); +    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr(); +    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0); +    LHSFunc = Builder.CreateLoad(LHSFunc); +    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0); +    RHSFunc = Builder.CreateLoad(RHSFunc); +    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, +                                        LHSFunc, RHSFunc, "cmp.func"); +    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType()); +    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, +                                           LHSFunc, NullPtr, "cmp.null"); +    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1); +    LHSAdj = Builder.CreateLoad(LHSAdj); +    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1); +    RHSAdj = Builder.CreateLoad(RHSAdj); +    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, +                                        LHSAdj, RHSAdj, "cmp.adj"); +    if (E->getOpcode() == BinaryOperator::EQ) { +      Result = Builder.CreateOr(ResultNull, ResultA, "or.na"); +      Result = Builder.CreateAnd(Result, ResultF, "and.f"); +    } else { +      assert(E->getOpcode() == BinaryOperator::NE && +             "Member pointer comparison other than == or != ?"); +      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na"); +      Result = Builder.CreateOr(Result, ResultF, "or.f"); +    } +  } else if (!LHSTy->isAnyComplexType()) { +    Value *LHS = Visit(E->getLHS()); +    Value *RHS = Visit(E->getRHS()); + +    if (LHS->getType()->isFPOrFPVectorTy()) { +      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, +                                  LHS, RHS, "cmp"); +    } else if (LHSTy->isSignedIntegerType()) { +      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, +                                  LHS, RHS, "cmp"); +    } else { +      // Unsigned integers and pointers. +      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, +                                  LHS, RHS, "cmp"); +    } + +    // If this is a vector comparison, sign extend the result to the appropriate +    // vector integer type and return it (don't convert to bool). +    if (LHSTy->isVectorType()) +      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); + +  } else { +    // Complex Comparison: can only be an equality comparison. +    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); +    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); + +    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType(); + +    Value *ResultR, *ResultI; +    if (CETy->isRealFloatingType()) { +      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, +                                   LHS.first, RHS.first, "cmp.r"); +      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, +                                   LHS.second, RHS.second, "cmp.i"); +    } else { +      // Complex comparisons can only be equality comparisons.  As such, signed +      // and unsigned opcodes are the same. +      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, +                                   LHS.first, RHS.first, "cmp.r"); +      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, +                                   LHS.second, RHS.second, "cmp.i"); +    } + +    if (E->getOpcode() == BinaryOperator::EQ) { +      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); +    } else { +      assert(E->getOpcode() == BinaryOperator::NE && +             "Complex comparison other than == or != ?"); +      Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); +    } +  } + +  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); +} + +Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { +  bool Ignore = TestAndClearIgnoreResultAssign(); + +  // __block variables need to have the rhs evaluated first, plus this should +  // improve codegen just a little. +  Value *RHS = Visit(E->getRHS()); +  LValue LHS = EmitCheckedLValue(E->getLHS()); + +  // Store the value into the LHS.  Bit-fields are handled specially +  // because the result is altered by the store, i.e., [C99 6.5.16p1] +  // 'An assignment expression has the value of the left operand after +  // the assignment...'. +  if (LHS.isBitField()) { +    if (!LHS.isVolatileQualified()) { +      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(), +                                         &RHS); +      return RHS; +    } else +      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType()); +  } else +    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); +  if (Ignore) +    return 0; +  return EmitLoadOfLValue(LHS, E->getType()); +} + +Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { +  const llvm::Type *ResTy = ConvertType(E->getType()); +   +  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. +  // If we have 1 && X, just emit X without inserting the control flow. +  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { +    if (Cond == 1) { // If we have 1 && X, just emit X. +      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); +      // ZExt result to int or bool. +      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); +    } + +    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. +    if (!CGF.ContainsLabel(E->getRHS())) +      return llvm::Constant::getNullValue(ResTy); +  } + +  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); +  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs"); + +  // Branch on the LHS first.  If it is false, go to the failure (cont) block. +  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock); + +  // Any edges into the ContBlock are now from an (indeterminate number of) +  // edges from this first condition.  All of these values will be false.  Start +  // setting up the PHI node in the Cont Block for this. +  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), +                                            "", ContBlock); +  PN->reserveOperandSpace(2);  // Normal case, two inputs. +  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); +       PI != PE; ++PI) +    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); + +  CGF.BeginConditionalBranch(); +  CGF.EmitBlock(RHSBlock); +  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); +  CGF.EndConditionalBranch(); + +  // Reaquire the RHS block, as there may be subblocks inserted. +  RHSBlock = Builder.GetInsertBlock(); + +  // Emit an unconditional branch from this block to ContBlock.  Insert an entry +  // into the phi node for the edge with the value of RHSCond. +  CGF.EmitBlock(ContBlock); +  PN->addIncoming(RHSCond, RHSBlock); + +  // ZExt result to int. +  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); +} + +Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { +  const llvm::Type *ResTy = ConvertType(E->getType()); +   +  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. +  // If we have 0 || X, just emit X without inserting the control flow. +  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) { +    if (Cond == -1) { // If we have 0 || X, just emit X. +      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); +      // ZExt result to int or bool. +      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); +    } + +    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. +    if (!CGF.ContainsLabel(E->getRHS())) +      return llvm::ConstantInt::get(ResTy, 1); +  } + +  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); +  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); + +  // Branch on the LHS first.  If it is true, go to the success (cont) block. +  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock); + +  // Any edges into the ContBlock are now from an (indeterminate number of) +  // edges from this first condition.  All of these values will be true.  Start +  // setting up the PHI node in the Cont Block for this. +  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), +                                            "", ContBlock); +  PN->reserveOperandSpace(2);  // Normal case, two inputs. +  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); +       PI != PE; ++PI) +    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); + +  CGF.BeginConditionalBranch(); + +  // Emit the RHS condition as a bool value. +  CGF.EmitBlock(RHSBlock); +  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); + +  CGF.EndConditionalBranch(); + +  // Reaquire the RHS block, as there may be subblocks inserted. +  RHSBlock = Builder.GetInsertBlock(); + +  // Emit an unconditional branch from this block to ContBlock.  Insert an entry +  // into the phi node for the edge with the value of RHSCond. +  CGF.EmitBlock(ContBlock); +  PN->addIncoming(RHSCond, RHSBlock); + +  // ZExt result to int. +  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); +} + +Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { +  CGF.EmitStmt(E->getLHS()); +  CGF.EnsureInsertPoint(); +  return Visit(E->getRHS()); +} + +//===----------------------------------------------------------------------===// +//                             Other Operators +//===----------------------------------------------------------------------===// + +/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified +/// expression is cheap enough and side-effect-free enough to evaluate +/// unconditionally instead of conditionally.  This is used to convert control +/// flow into selects in some cases. +static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, +                                                   CodeGenFunction &CGF) { +  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) +    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF); + +  // TODO: Allow anything we can constant fold to an integer or fp constant. +  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) || +      isa<FloatingLiteral>(E)) +    return true; + +  // Non-volatile automatic variables too, to get "cond ? X : Y" where +  // X and Y are local variables. +  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) +    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) +      if (VD->hasLocalStorage() && !(CGF.getContext() +                                     .getCanonicalType(VD->getType()) +                                     .isVolatileQualified())) +        return true; + +  return false; +} + + +Value *ScalarExprEmitter:: +VisitConditionalOperator(const ConditionalOperator *E) { +  TestAndClearIgnoreResultAssign(); +  // If the condition constant folds and can be elided, try to avoid emitting +  // the condition and the dead arm. +  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){ +    Expr *Live = E->getLHS(), *Dead = E->getRHS(); +    if (Cond == -1) +      std::swap(Live, Dead); + +    // If the dead side doesn't have labels we need, and if the Live side isn't +    // the gnu missing ?: extension (which we could handle, but don't bother +    // to), just emit the Live part. +    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part +        Live)                                   // Live part isn't missing. +      return Visit(Live); +  } + + +  // If this is a really simple expression (like x ? 4 : 5), emit this as a +  // select instead of as control flow.  We can only do this if it is cheap and +  // safe to evaluate the LHS and RHS unconditionally. +  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(), +                                                            CGF) && +      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) { +    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond()); +    llvm::Value *LHS = Visit(E->getLHS()); +    llvm::Value *RHS = Visit(E->getRHS()); +    return Builder.CreateSelect(CondV, LHS, RHS, "cond"); +  } + + +  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); +  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); +  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); +  Value *CondVal = 0; + +  // If we don't have the GNU missing condition extension, emit a branch on bool +  // the normal way. +  if (E->getLHS()) { +    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for +    // the branch on bool. +    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); +  } else { +    // Otherwise, for the ?: extension, evaluate the conditional and then +    // convert it to bool the hard way.  We do this explicitly because we need +    // the unconverted value for the missing middle value of the ?:. +    CondVal = CGF.EmitScalarExpr(E->getCond()); + +    // In some cases, EmitScalarConversion will delete the "CondVal" expression +    // if there are no extra uses (an optimization).  Inhibit this by making an +    // extra dead use, because we're going to add a use of CondVal later.  We +    // don't use the builder for this, because we don't want it to get optimized +    // away.  This leaves dead code, but the ?: extension isn't common. +    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder", +                          Builder.GetInsertBlock()); + +    Value *CondBoolVal = +      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(), +                               CGF.getContext().BoolTy); +    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock); +  } + +  CGF.BeginConditionalBranch(); +  CGF.EmitBlock(LHSBlock); + +  // Handle the GNU extension for missing LHS. +  Value *LHS; +  if (E->getLHS()) +    LHS = Visit(E->getLHS()); +  else    // Perform promotions, to handle cases like "short ?: int" +    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType()); + +  CGF.EndConditionalBranch(); +  LHSBlock = Builder.GetInsertBlock(); +  CGF.EmitBranch(ContBlock); + +  CGF.BeginConditionalBranch(); +  CGF.EmitBlock(RHSBlock); + +  Value *RHS = Visit(E->getRHS()); +  CGF.EndConditionalBranch(); +  RHSBlock = Builder.GetInsertBlock(); +  CGF.EmitBranch(ContBlock); + +  CGF.EmitBlock(ContBlock); + +  // If the LHS or RHS is a throw expression, it will be legitimately null. +  if (!LHS) +    return RHS; +  if (!RHS) +    return LHS; + +  // Create a PHI node for the real part. +  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond"); +  PN->reserveOperandSpace(2); +  PN->addIncoming(LHS, LHSBlock); +  PN->addIncoming(RHS, RHSBlock); +  return PN; +} + +Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { +  return Visit(E->getChosenSubExpr(CGF.getContext())); +} + +Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { +  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); +  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); + +  // If EmitVAArg fails, we fall back to the LLVM instruction. +  if (!ArgPtr) +    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType())); + +  // FIXME Volatility. +  return Builder.CreateLoad(ArgPtr); +} + +Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) { +  return CGF.BuildBlockLiteralTmp(BE); +} + +//===----------------------------------------------------------------------===// +//                         Entry Point into this File +//===----------------------------------------------------------------------===// + +/// EmitScalarExpr - Emit the computation of the specified expression of scalar +/// type, ignoring the result. +Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { +  assert(E && !hasAggregateLLVMType(E->getType()) && +         "Invalid scalar expression to emit"); + +  return ScalarExprEmitter(*this, IgnoreResultAssign) +    .Visit(const_cast<Expr*>(E)); +} + +/// EmitScalarConversion - Emit a conversion from the specified type to the +/// specified destination type, both of which are LLVM scalar types. +Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, +                                             QualType DstTy) { +  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) && +         "Invalid scalar expression to emit"); +  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); +} + +/// EmitComplexToScalarConversion - Emit a conversion from the specified complex +/// type to the specified destination type, where the destination type is an +/// LLVM scalar type. +Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, +                                                      QualType SrcTy, +                                                      QualType DstTy) { +  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) && +         "Invalid complex -> scalar conversion"); +  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, +                                                                DstTy); +} + +LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { +  llvm::Value *V; +  // object->isa or (*object).isa +  // Generate code as for: *(Class*)object +  // build Class* type +  const llvm::Type *ClassPtrTy = ConvertType(E->getType()); + +  Expr *BaseExpr = E->getBase(); +  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) { +    V = CreateTempAlloca(ClassPtrTy, "resval"); +    llvm::Value *Src = EmitScalarExpr(BaseExpr); +    Builder.CreateStore(Src, V); +    LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType())); +    V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType()); +  } +  else { +      if (E->isArrow()) +        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); +      else +        V  = EmitLValue(BaseExpr).getAddress(); +  } +   +  // build Class* type +  ClassPtrTy = ClassPtrTy->getPointerTo(); +  V = Builder.CreateBitCast(V, ClassPtrTy); +  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType())); +  return LV; +} + + +LValue CodeGenFunction::EmitCompoundAssignOperatorLValue( +                                            const CompoundAssignOperator *E) { +  ScalarExprEmitter Scalar(*this); +  Value *BitFieldResult = 0; +  switch (E->getOpcode()) { +#define COMPOUND_OP(Op)                                                       \ +    case BinaryOperator::Op##Assign:                                          \ +      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ +                                             BitFieldResult) +  COMPOUND_OP(Mul); +  COMPOUND_OP(Div); +  COMPOUND_OP(Rem); +  COMPOUND_OP(Add); +  COMPOUND_OP(Sub); +  COMPOUND_OP(Shl); +  COMPOUND_OP(Shr); +  COMPOUND_OP(And); +  COMPOUND_OP(Xor); +  COMPOUND_OP(Or); +#undef COMPOUND_OP +       +  case BinaryOperator::PtrMemD: +  case BinaryOperator::PtrMemI: +  case BinaryOperator::Mul: +  case BinaryOperator::Div: +  case BinaryOperator::Rem: +  case BinaryOperator::Add: +  case BinaryOperator::Sub: +  case BinaryOperator::Shl: +  case BinaryOperator::Shr: +  case BinaryOperator::LT: +  case BinaryOperator::GT: +  case BinaryOperator::LE: +  case BinaryOperator::GE: +  case BinaryOperator::EQ: +  case BinaryOperator::NE: +  case BinaryOperator::And: +  case BinaryOperator::Xor: +  case BinaryOperator::Or: +  case BinaryOperator::LAnd: +  case BinaryOperator::LOr: +  case BinaryOperator::Assign: +  case BinaryOperator::Comma: +    assert(false && "Not valid compound assignment operators"); +    break; +  } +    +  llvm_unreachable("Unhandled compound assignment operator"); +}  | 
